diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp | 200 |
1 files changed, 200 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp new file mode 100644 index 0000000..fc2538d --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp @@ -0,0 +1,200 @@ +//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the MapValue function, which is shared by various parts of +// the lib/Transforms/Utils library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/ValueMapper.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Metadata.h" +using namespace llvm; + +// Out of line method to get vtable etc for class. +void ValueMapTypeRemapper::Anchor() {} + +Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, + ValueMapTypeRemapper *TypeMapper) { + ValueToValueMapTy::iterator I = VM.find(V); + + // If the value already exists in the map, use it. + if (I != VM.end() && I->second) return I->second; + + // Global values do not need to be seeded into the VM if they + // are using the identity mapping. + if (isa<GlobalValue>(V) || isa<MDString>(V)) + return VM[V] = const_cast<Value*>(V); + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + // Inline asm may need *type* remapping. + FunctionType *NewTy = IA->getFunctionType(); + if (TypeMapper) { + NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); + + if (NewTy != IA->getFunctionType()) + V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), + IA->hasSideEffects(), IA->isAlignStack()); + } + + return VM[V] = const_cast<Value*>(V); + } + + + if (const MDNode *MD = dyn_cast<MDNode>(V)) { + // If this is a module-level metadata and we know that nothing at the module + // level is changing, then use an identity mapping. + if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges)) + return VM[V] = const_cast<Value*>(V); + + // Create a dummy node in case we have a metadata cycle. + MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>()); + VM[V] = Dummy; + + // Check all operands to see if any need to be remapped. + for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) { + Value *OP = MD->getOperand(i); + if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue; + + // Ok, at least one operand needs remapping. + SmallVector<Value*, 4> Elts; + Elts.reserve(MD->getNumOperands()); + for (i = 0; i != e; ++i) { + Value *Op = MD->getOperand(i); + Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0); + } + MDNode *NewMD = MDNode::get(V->getContext(), Elts); + Dummy->replaceAllUsesWith(NewMD); + VM[V] = NewMD; + MDNode::deleteTemporary(Dummy); + return NewMD; + } + + VM[V] = const_cast<Value*>(V); + MDNode::deleteTemporary(Dummy); + + // No operands needed remapping. Use an identity mapping. + return const_cast<Value*>(V); + } + + // Okay, this either must be a constant (which may or may not be mappable) or + // is something that is not in the mapping table. + Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); + if (C == 0) + return 0; + + if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { + Function *F = + cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper)); + BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, + Flags, TypeMapper)); + return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); + } + + // Otherwise, we have some other constant to remap. Start by checking to see + // if all operands have an identity remapping. + unsigned OpNo = 0, NumOperands = C->getNumOperands(); + Value *Mapped = 0; + for (; OpNo != NumOperands; ++OpNo) { + Value *Op = C->getOperand(OpNo); + Mapped = MapValue(Op, VM, Flags, TypeMapper); + if (Mapped != C) break; + } + + // See if the type mapper wants to remap the type as well. + Type *NewTy = C->getType(); + if (TypeMapper) + NewTy = TypeMapper->remapType(NewTy); + + // If the result type and all operands match up, then just insert an identity + // mapping. + if (OpNo == NumOperands && NewTy == C->getType()) + return VM[V] = C; + + // Okay, we need to create a new constant. We've already processed some or + // all of the operands, set them all up now. + SmallVector<Constant*, 8> Ops; + Ops.reserve(NumOperands); + for (unsigned j = 0; j != OpNo; ++j) + Ops.push_back(cast<Constant>(C->getOperand(j))); + + // If one of the operands mismatch, push it and the other mapped operands. + if (OpNo != NumOperands) { + Ops.push_back(cast<Constant>(Mapped)); + + // Map the rest of the operands that aren't processed yet. + for (++OpNo; OpNo != NumOperands; ++OpNo) + Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, + Flags, TypeMapper)); + } + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) + return VM[V] = CE->getWithOperands(Ops, NewTy); + if (isa<ConstantArray>(C)) + return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); + if (isa<ConstantStruct>(C)) + return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); + if (isa<ConstantVector>(C)) + return VM[V] = ConstantVector::get(Ops); + // If this is a no-operand constant, it must be because the type was remapped. + if (isa<UndefValue>(C)) + return VM[V] = UndefValue::get(NewTy); + if (isa<ConstantAggregateZero>(C)) + return VM[V] = ConstantAggregateZero::get(NewTy); + assert(isa<ConstantPointerNull>(C)); + return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); +} + +/// RemapInstruction - Convert the instruction operands from referencing the +/// current values into those specified by VMap. +/// +void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, + RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){ + // Remap operands. + for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { + Value *V = MapValue(*op, VMap, Flags, TypeMapper); + // If we aren't ignoring missing entries, assert that something happened. + if (V != 0) + *op = V; + else + assert((Flags & RF_IgnoreMissingEntries) && + "Referenced value not in value map!"); + } + + // Remap phi nodes' incoming blocks. + if (PHINode *PN = dyn_cast<PHINode>(I)) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); + // If we aren't ignoring missing entries, assert that something happened. + if (V != 0) + PN->setIncomingBlock(i, cast<BasicBlock>(V)); + else + assert((Flags & RF_IgnoreMissingEntries) && + "Referenced block not in value map!"); + } + } + + // Remap attached metadata. + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + I->getAllMetadata(MDs); + for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator + MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) { + MDNode *Old = MI->second; + MDNode *New = MapValue(Old, VMap, Flags, TypeMapper); + if (New != Old) + I->setMetadata(MI->first, New); + } + + // If the instruction's type is being remapped, do so now. + if (TypeMapper) + I->mutateType(TypeMapper->remapType(I->getType())); +} |