diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp new file mode 100644 index 0000000..3fa8b70 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp @@ -0,0 +1,141 @@ +//===- UnifyFunctionExitNodes.cpp - Make all functions have a single exit -===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass is used to ensure that functions have at most one return +// instruction in them. Additionally, it keeps track of which node is the new +// exit node of the CFG. If there are no exit nodes in the CFG, the getExitNode +// method will return a null pointer. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/BasicBlock.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Type.h" +#include "llvm/ADT/StringExtras.h" +using namespace llvm; + +char UnifyFunctionExitNodes::ID = 0; +static RegisterPass<UnifyFunctionExitNodes> +X("mergereturn", "Unify function exit nodes"); + +Pass *llvm::createUnifyFunctionExitNodesPass() { + return new UnifyFunctionExitNodes(); +} + +void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ + // We preserve the non-critical-edgeness property + AU.addPreservedID(BreakCriticalEdgesID); + // This is a cluster of orthogonal Transforms + AU.addPreservedID(PromoteMemoryToRegisterID); + AU.addPreservedID(LowerSwitchID); +} + +// UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new +// BasicBlock, and converting all returns to unconditional branches to this +// new basic block. The singular exit node is returned. +// +// If there are no return stmts in the Function, a null pointer is returned. +// +bool UnifyFunctionExitNodes::runOnFunction(Function &F) { + // Loop over all of the blocks in a function, tracking all of the blocks that + // return. + // + std::vector<BasicBlock*> ReturningBlocks; + std::vector<BasicBlock*> UnwindingBlocks; + std::vector<BasicBlock*> UnreachableBlocks; + for(Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + if (isa<ReturnInst>(I->getTerminator())) + ReturningBlocks.push_back(I); + else if (isa<UnwindInst>(I->getTerminator())) + UnwindingBlocks.push_back(I); + else if (isa<UnreachableInst>(I->getTerminator())) + UnreachableBlocks.push_back(I); + + // Handle unwinding blocks first. + if (UnwindingBlocks.empty()) { + UnwindBlock = 0; + } else if (UnwindingBlocks.size() == 1) { + UnwindBlock = UnwindingBlocks.front(); + } else { + UnwindBlock = BasicBlock::Create(F.getContext(), "UnifiedUnwindBlock", &F); + new UnwindInst(F.getContext(), UnwindBlock); + + for (std::vector<BasicBlock*>::iterator I = UnwindingBlocks.begin(), + E = UnwindingBlocks.end(); I != E; ++I) { + BasicBlock *BB = *I; + BB->getInstList().pop_back(); // Remove the unwind insn + BranchInst::Create(UnwindBlock, BB); + } + } + + // Then unreachable blocks. + if (UnreachableBlocks.empty()) { + UnreachableBlock = 0; + } else if (UnreachableBlocks.size() == 1) { + UnreachableBlock = UnreachableBlocks.front(); + } else { + UnreachableBlock = BasicBlock::Create(F.getContext(), + "UnifiedUnreachableBlock", &F); + new UnreachableInst(F.getContext(), UnreachableBlock); + + for (std::vector<BasicBlock*>::iterator I = UnreachableBlocks.begin(), + E = UnreachableBlocks.end(); I != E; ++I) { + BasicBlock *BB = *I; + BB->getInstList().pop_back(); // Remove the unreachable inst. + BranchInst::Create(UnreachableBlock, BB); + } + } + + // Now handle return blocks. + if (ReturningBlocks.empty()) { + ReturnBlock = 0; + return false; // No blocks return + } else if (ReturningBlocks.size() == 1) { + ReturnBlock = ReturningBlocks.front(); // Already has a single return block + return false; + } + + // Otherwise, we need to insert a new basic block into the function, add a PHI + // nodes (if the function returns values), and convert all of the return + // instructions into unconditional branches. + // + BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), + "UnifiedReturnBlock", &F); + + PHINode *PN = 0; + if (F.getReturnType()->isVoidTy()) { + ReturnInst::Create(F.getContext(), NULL, NewRetBlock); + } else { + // If the function doesn't return void... add a PHI node to the block... + PN = PHINode::Create(F.getReturnType(), "UnifiedRetVal"); + NewRetBlock->getInstList().push_back(PN); + ReturnInst::Create(F.getContext(), PN, NewRetBlock); + } + + // Loop over all of the blocks, replacing the return instruction with an + // unconditional branch. + // + for (std::vector<BasicBlock*>::iterator I = ReturningBlocks.begin(), + E = ReturningBlocks.end(); I != E; ++I) { + BasicBlock *BB = *I; + + // Add an incoming element to the PHI node for every return instruction that + // is merging into this new block... + if (PN) + PN->addIncoming(BB->getTerminator()->getOperand(0), BB); + + BB->getInstList().pop_back(); // Remove the return insn + BranchInst::Create(NewRetBlock, BB); + } + ReturnBlock = NewRetBlock; + return true; +} |