summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp2593
1 files changed, 2593 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
new file mode 100644
index 0000000..dc07440
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -0,0 +1,2593 @@
+//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a utility pass used for testing the InstructionSimplify analysis.
+// The analysis is applied to every instruction, and if it simplifies then the
+// instruction is replaced by the simplification. If you are looking for a pass
+// that performs serious instruction folding, use the instcombine pass instead.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Transforms/Utils/Local.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+static cl::opt<bool>
+ ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
+ cl::desc("Treat error-reporting calls as cold"));
+
+static cl::opt<bool>
+ EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
+ cl::init(false),
+ cl::desc("Enable unsafe double to float "
+ "shrinking for math lib calls"));
+
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+static bool ignoreCallingConv(LibFunc::Func Func) {
+ return Func == LibFunc::abs || Func == LibFunc::labs ||
+ Func == LibFunc::llabs || Func == LibFunc::strlen;
+}
+
+/// Return true if it only matters that the value is equal or not-equal to zero.
+static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
+ for (User *U : V->users()) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (IC->isEquality())
+ if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+/// Return true if it is only used in equality comparisons with With.
+static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
+ for (User *U : V->users()) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (IC->isEquality() && IC->getOperand(1) == With)
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static bool callHasFloatingPointArgument(const CallInst *CI) {
+ return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) {
+ return OI->getType()->isFloatingPointTy();
+ });
+}
+
+/// \brief Check whether the overloaded unary floating point function
+/// corresponding to \a Ty is available.
+static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
+ LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
+ LibFunc::Func LongDoubleFn) {
+ switch (Ty->getTypeID()) {
+ case Type::FloatTyID:
+ return TLI->has(FloatFn);
+ case Type::DoubleTyID:
+ return TLI->has(DoubleFn);
+ default:
+ return TLI->has(LongDoubleFn);
+ }
+}
+
+/// \brief Check whether we can use unsafe floating point math for
+/// the function passed as input.
+static bool canUseUnsafeFPMath(Function *F) {
+
+ // FIXME: For finer-grain optimization, we need intrinsics to have the same
+ // fast-math flag decorations that are applied to FP instructions. For now,
+ // we have to rely on the function-level unsafe-fp-math attribute to do this
+ // optimization because there's no other way to express that the call can be
+ // relaxed.
+ if (F->hasFnAttribute("unsafe-fp-math")) {
+ Attribute Attr = F->getFnAttribute("unsafe-fp-math");
+ if (Attr.getValueAsString() == "true")
+ return true;
+ }
+ return false;
+}
+
+/// \brief Returns whether \p F matches the signature expected for the
+/// string/memory copying library function \p Func.
+/// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
+/// Their fortified (_chk) counterparts are also accepted.
+static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
+ const DataLayout &DL = F->getParent()->getDataLayout();
+ FunctionType *FT = F->getFunctionType();
+ LLVMContext &Context = F->getContext();
+ Type *PCharTy = Type::getInt8PtrTy(Context);
+ Type *SizeTTy = DL.getIntPtrType(Context);
+ unsigned NumParams = FT->getNumParams();
+
+ // All string libfuncs return the same type as the first parameter.
+ if (FT->getReturnType() != FT->getParamType(0))
+ return false;
+
+ switch (Func) {
+ default:
+ llvm_unreachable("Can't check signature for non-string-copy libfunc.");
+ case LibFunc::stpncpy_chk:
+ case LibFunc::strncpy_chk:
+ --NumParams; // fallthrough
+ case LibFunc::stpncpy:
+ case LibFunc::strncpy: {
+ if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
+ return false;
+ break;
+ }
+ case LibFunc::strcpy_chk:
+ case LibFunc::stpcpy_chk:
+ --NumParams; // fallthrough
+ case LibFunc::stpcpy:
+ case LibFunc::strcpy: {
+ if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != PCharTy)
+ return false;
+ break;
+ }
+ case LibFunc::memmove_chk:
+ case LibFunc::memcpy_chk:
+ --NumParams; // fallthrough
+ case LibFunc::memmove:
+ case LibFunc::memcpy: {
+ if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
+ return false;
+ break;
+ }
+ case LibFunc::memset_chk:
+ --NumParams; // fallthrough
+ case LibFunc::memset: {
+ if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
+ return false;
+ break;
+ }
+ }
+ // If this is a fortified libcall, the last parameter is a size_t.
+ if (NumParams == FT->getNumParams() - 1)
+ return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// String and Memory Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strcat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType())
+ return nullptr;
+
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
+ --Len; // Unbias length.
+
+ // Handle the simple, do-nothing case: strcat(x, "") -> x
+ if (Len == 0)
+ return Dst;
+
+ return emitStrLenMemCpy(Src, Dst, Len, B);
+}
+
+Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
+ IRBuilder<> &B) {
+ // We need to find the end of the destination string. That's where the
+ // memory is to be moved to. We just generate a call to strlen.
+ Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
+ if (!DstLen)
+ return nullptr;
+
+ // Now that we have the destination's length, we must index into the
+ // destination's pointer to get the actual memcpy destination (end of
+ // the string .. we're concatenating).
+ Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
+
+ // We have enough information to now generate the memcpy call to do the
+ // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(CpyDst, Src,
+ ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
+ 1);
+ return Dst;
+}
+
+Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strncat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return nullptr;
+
+ // Extract some information from the instruction.
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ uint64_t Len;
+
+ // We don't do anything if length is not constant.
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Len = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0)
+ return nullptr;
+ --SrcLen; // Unbias length.
+
+ // Handle the simple, do-nothing cases:
+ // strncat(x, "", c) -> x
+ // strncat(x, c, 0) -> x
+ if (SrcLen == 0 || Len == 0)
+ return Dst;
+
+ // We don't optimize this case.
+ if (Len < SrcLen)
+ return nullptr;
+
+ // strncat(x, s, c) -> strcat(x, s)
+ // s is constant so the strcat can be optimized further.
+ return emitStrLenMemCpy(Src, Dst, SrcLen, B);
+}
+
+Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return nullptr;
+
+ Value *SrcStr = CI->getArgOperand(0);
+
+ // If the second operand is non-constant, see if we can compute the length
+ // of the input string and turn this into memchr.
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (!CharC) {
+ uint64_t Len = GetStringLength(SrcStr);
+ if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
+ return nullptr;
+
+ return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
+ B, DL, TLI);
+ }
+
+ // Otherwise, the character is a constant, see if the first argument is
+ // a string literal. If so, we can constant fold.
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI),
+ "strchr");
+ return nullptr;
+ }
+
+ // Compute the offset, make sure to handle the case when we're searching for
+ // zero (a weird way to spell strlen).
+ size_t I = (0xFF & CharC->getSExtValue()) == 0
+ ? Str.size()
+ : Str.find(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. strchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // strchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
+}
+
+Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strrchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return nullptr;
+
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+
+ // Cannot fold anything if we're not looking for a constant.
+ if (!CharC)
+ return nullptr;
+
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ // strrchr(s, 0) -> strchr(s, 0)
+ if (CharC->isZero())
+ return EmitStrChr(SrcStr, '\0', B, TLI);
+ return nullptr;
+ }
+
+ // Compute the offset.
+ size_t I = (0xFF & CharC->getSExtValue()) == 0
+ ? Str.size()
+ : Str.rfind(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. Return null.
+ return Constant::getNullValue(CI->getType());
+
+ // strrchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
+}
+
+Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strcmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return nullptr;
+
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strcmp(x,x) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strcmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2)
+ return ConstantInt::get(CI->getType(), Str1.compare(Str2));
+
+ if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
+ return B.CreateNeg(
+ B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+
+ // strcmp(P, "x") -> memcmp(P, "x", 2)
+ uint64_t Len1 = GetStringLength(Str1P);
+ uint64_t Len2 = GetStringLength(Str2P);
+ if (Len1 && Len2) {
+ return EmitMemCmp(Str1P, Str2P,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ std::min(Len1, Len2)),
+ B, DL, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Verify the "strncmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return nullptr;
+
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strncmp(x,x,n) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ // Get the length argument if it is constant.
+ uint64_t Length;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Length = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ if (Length == 0) // strncmp(x,y,0) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strncmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2) {
+ StringRef SubStr1 = Str1.substr(0, Length);
+ StringRef SubStr2 = Str2.substr(0, Length);
+ return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
+ }
+
+ if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
+ return B.CreateNeg(
+ B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // strcpy(x,x) -> x
+ return Src;
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
+ return Dst;
+}
+
+Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = EmitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
+ }
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
+
+ Type *PT = Callee->getFunctionType()->getParamType(0);
+ Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
+ Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
+ ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src, LenV, 1);
+ return DstEnd;
+}
+
+Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ Value *LenOp = CI->getArgOperand(2);
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0)
+ return nullptr;
+ --SrcLen;
+
+ if (SrcLen == 0) {
+ // strncpy(x, "", y) -> memset(x, '\0', y, 1)
+ B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
+ return Dst;
+ }
+
+ uint64_t Len;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
+ Len = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ if (Len == 0)
+ return Dst; // strncpy(x, y, 0) -> x
+
+ // Let strncpy handle the zero padding
+ if (Len > SrcLen + 1)
+ return nullptr;
+
+ Type *PT = Callee->getFunctionType()->getParamType(0);
+ // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
+ B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
+
+ return Dst;
+}
+
+Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ Value *Src = CI->getArgOperand(0);
+
+ // Constant folding: strlen("xyz") -> 3
+ if (uint64_t Len = GetStringLength(Src))
+ return ConstantInt::get(CI->getType(), Len - 1);
+
+ // strlen(x?"foo":"bars") --> x ? 3 : 4
+ if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
+ uint64_t LenTrue = GetStringLength(SI->getTrueValue());
+ uint64_t LenFalse = GetStringLength(SI->getFalseValue());
+ if (LenTrue && LenFalse) {
+ Function *Caller = CI->getParent()->getParent();
+ emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
+ SI->getDebugLoc(),
+ "folded strlen(select) to select of constants");
+ return B.CreateSelect(SI->getCondition(),
+ ConstantInt::get(CI->getType(), LenTrue - 1),
+ ConstantInt::get(CI->getType(), LenFalse - 1));
+ }
+ }
+
+ // strlen(x) != 0 --> *x != 0
+ // strlen(x) == 0 --> *x == 0
+ if (isOnlyUsedInZeroEqualityComparison(CI))
+ return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ FT->getReturnType() != FT->getParamType(0))
+ return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strpbrk(s, "") -> nullptr
+ // strpbrk("", s) -> nullptr
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t I = S1.find_first_of(S2);
+ if (I == StringRef::npos) // No match.
+ return Constant::getNullValue(CI->getType());
+
+ return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
+ "strpbrk");
+ }
+
+ // strpbrk(s, "a") -> strchr(s, 'a')
+ if (HasS2 && S2.size() == 1)
+ return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy())
+ return nullptr;
+
+ Value *EndPtr = CI->getArgOperand(1);
+ if (isa<ConstantPointerNull>(EndPtr)) {
+ // With a null EndPtr, this function won't capture the main argument.
+ // It would be readonly too, except that it still may write to errno.
+ CI->addAttribute(1, Attribute::NoCapture);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strspn(s, "") -> 0
+ // strspn("", s) -> 0
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_not_of(S2);
+ if (Pos == StringRef::npos)
+ Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strcspn("", s) -> 0
+ if (HasS1 && S1.empty())
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_of(S2);
+ if (Pos == StringRef::npos)
+ Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ // strcspn(s, "") -> strlen(s)
+ if (HasS2 && S2.empty())
+ return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isPointerTy())
+ return nullptr;
+
+ // fold strstr(x, x) -> x.
+ if (CI->getArgOperand(0) == CI->getArgOperand(1))
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
+ if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
+ if (!StrLen)
+ return nullptr;
+ Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
+ StrLen, B, DL, TLI);
+ if (!StrNCmp)
+ return nullptr;
+ for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
+ ICmpInst *Old = cast<ICmpInst>(*UI++);
+ Value *Cmp =
+ B.CreateICmp(Old->getPredicate(), StrNCmp,
+ ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
+ replaceAllUsesWith(Old, Cmp);
+ }
+ return CI;
+ }
+
+ // See if either input string is a constant string.
+ StringRef SearchStr, ToFindStr;
+ bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
+ bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
+
+ // fold strstr(x, "") -> x.
+ if (HasStr2 && ToFindStr.empty())
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // If both strings are known, constant fold it.
+ if (HasStr1 && HasStr2) {
+ size_t Offset = SearchStr.find(ToFindStr);
+
+ if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
+ return Constant::getNullValue(CI->getType());
+
+ // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
+ Value *Result = CastToCStr(CI->getArgOperand(0), B);
+ Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
+ return B.CreateBitCast(Result, CI->getType());
+ }
+
+ // fold strstr(x, "y") -> strchr(x, 'y').
+ if (HasStr2 && ToFindStr.size() == 1) {
+ Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
+ return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy(32) ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getReturnType()->isPointerTy())
+ return nullptr;
+
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+
+ // memchr(x, y, 0) -> null
+ if (LenC && LenC->isNullValue())
+ return Constant::getNullValue(CI->getType());
+
+ // From now on we need at least constant length and string.
+ StringRef Str;
+ if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
+ return nullptr;
+
+ // Truncate the string to LenC. If Str is smaller than LenC we will still only
+ // scan the string, as reading past the end of it is undefined and we can just
+ // return null if we don't find the char.
+ Str = Str.substr(0, LenC->getZExtValue());
+
+ // If the char is variable but the input str and length are not we can turn
+ // this memchr call into a simple bit field test. Of course this only works
+ // when the return value is only checked against null.
+ //
+ // It would be really nice to reuse switch lowering here but we can't change
+ // the CFG at this point.
+ //
+ // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
+ // after bounds check.
+ if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
+ unsigned char Max =
+ *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
+ reinterpret_cast<const unsigned char *>(Str.end()));
+
+ // Make sure the bit field we're about to create fits in a register on the
+ // target.
+ // FIXME: On a 64 bit architecture this prevents us from using the
+ // interesting range of alpha ascii chars. We could do better by emitting
+ // two bitfields or shifting the range by 64 if no lower chars are used.
+ if (!DL.fitsInLegalInteger(Max + 1))
+ return nullptr;
+
+ // For the bit field use a power-of-2 type with at least 8 bits to avoid
+ // creating unnecessary illegal types.
+ unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
+
+ // Now build the bit field.
+ APInt Bitfield(Width, 0);
+ for (char C : Str)
+ Bitfield.setBit((unsigned char)C);
+ Value *BitfieldC = B.getInt(Bitfield);
+
+ // First check that the bit field access is within bounds.
+ Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
+ Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
+ "memchr.bounds");
+
+ // Create code that checks if the given bit is set in the field.
+ Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
+ Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
+
+ // Finally merge both checks and cast to pointer type. The inttoptr
+ // implicitly zexts the i1 to intptr type.
+ return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
+ }
+
+ // Check if all arguments are constants. If so, we can constant fold.
+ if (!CharC)
+ return nullptr;
+
+ // Compute the offset.
+ size_t I = Str.find(CharC->getSExtValue() & 0xFF);
+ if (I == StringRef::npos) // Didn't find the char. memchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // memchr(s+n,c,l) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
+}
+
+Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy(32))
+ return nullptr;
+
+ Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+
+ if (LHS == RHS) // memcmp(s,s,x) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // Make sure we have a constant length.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!LenC)
+ return nullptr;
+ uint64_t Len = LenC->getZExtValue();
+
+ if (Len == 0) // memcmp(s1,s2,0) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
+ if (Len == 1) {
+ Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
+ CI->getType(), "lhsv");
+ Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
+ CI->getType(), "rhsv");
+ return B.CreateSub(LHSV, RHSV, "chardiff");
+ }
+
+ // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
+ if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
+
+ IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
+ unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
+
+ if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
+ getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
+
+ Type *LHSPtrTy =
+ IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
+ Type *RHSPtrTy =
+ IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
+
+ Value *LHSV =
+ B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
+ Value *RHSV =
+ B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
+
+ return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
+ }
+ }
+
+ // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
+ StringRef LHSStr, RHSStr;
+ if (getConstantStringInfo(LHS, LHSStr) &&
+ getConstantStringInfo(RHS, RHSStr)) {
+ // Make sure we're not reading out-of-bounds memory.
+ if (Len > LHSStr.size() || Len > RHSStr.size())
+ return nullptr;
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
+ return ConstantInt::get(CI->getType(), Ret);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
+ return nullptr;
+
+ // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+}
+
+Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
+ return nullptr;
+
+ // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+}
+
+Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
+ return nullptr;
+
+ // memset(p, v, n) -> llvm.memset(p, v, n, 1)
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+}
+
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+/// Return a variant of Val with float type.
+/// Currently this works in two cases: If Val is an FPExtension of a float
+/// value to something bigger, simply return the operand.
+/// If Val is a ConstantFP but can be converted to a float ConstantFP without
+/// loss of precision do so.
+static Value *valueHasFloatPrecision(Value *Val) {
+ if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
+ Value *Op = Cast->getOperand(0);
+ if (Op->getType()->isFloatTy())
+ return Op;
+ }
+ if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
+ APFloat F = Const->getValueAPF();
+ bool losesInfo;
+ (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
+ &losesInfo);
+ if (!losesInfo)
+ return ConstantFP::get(Const->getContext(), F);
+ }
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
+ bool CheckRetType) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
+ return nullptr;
+
+ if (CheckRetType) {
+ // Check if all the uses for function like 'sin' are converted to float.
+ for (User *U : CI->users()) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
+ if (!Cast || !Cast->getType()->isFloatTy())
+ return nullptr;
+ }
+ }
+
+ // If this is something like 'floor((double)floatval)', convert to floorf.
+ Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
+ if (V == nullptr)
+ return nullptr;
+
+ // Propagate fast-math flags from the existing call to the new call.
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+
+ // floor((double)floatval) -> (double)floorf(floatval)
+ if (Callee->isIntrinsic()) {
+ Module *M = CI->getModule();
+ Intrinsic::ID IID = Callee->getIntrinsicID();
+ Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
+ V = B.CreateCall(F, V);
+ } else {
+ // The call is a library call rather than an intrinsic.
+ V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
+ }
+
+ return B.CreateFPExt(V, B.getDoubleTy());
+}
+
+// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
+Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return nullptr;
+
+ // If this is something like 'fmin((double)floatval1, (double)floatval2)',
+ // or fmin(1.0, (double)floatval), then we convert it to fminf.
+ Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
+ if (V1 == nullptr)
+ return nullptr;
+ Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
+ if (V2 == nullptr)
+ return nullptr;
+
+ // Propagate fast-math flags from the existing call to the new call.
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+
+ // fmin((double)floatval1, (double)floatval2)
+ // -> (double)fminf(floatval1, floatval2)
+ // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
+ Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
+ Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+}
+
+Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ // cos(-x) -> cos(x)
+ Value *Op1 = CI->getArgOperand(0);
+ if (BinaryOperator::isFNeg(Op1)) {
+ BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+ return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+ }
+ return Ret;
+}
+
+static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
+ // Multiplications calculated using Addition Chains.
+ // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
+
+ assert(Exp != 0 && "Incorrect exponent 0 not handled");
+
+ if (InnerChain[Exp])
+ return InnerChain[Exp];
+
+ static const unsigned AddChain[33][2] = {
+ {0, 0}, // Unused.
+ {0, 0}, // Unused (base case = pow1).
+ {1, 1}, // Unused (pre-computed).
+ {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
+ {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
+ {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
+ {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
+ {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
+ };
+
+ InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
+ getPow(InnerChain, AddChain[Exp][1], B));
+ return InnerChain[Exp];
+}
+
+Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ // pow(1.0, x) -> 1.0
+ if (Op1C->isExactlyValue(1.0))
+ return Op1C;
+ // pow(2.0, x) -> exp2(x)
+ if (Op1C->isExactlyValue(2.0) &&
+ hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
+ LibFunc::exp2l))
+ return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B,
+ Callee->getAttributes());
+ // pow(10.0, x) -> exp10(x)
+ if (Op1C->isExactlyValue(10.0) &&
+ hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
+ LibFunc::exp10l))
+ return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
+ Callee->getAttributes());
+ }
+
+ // FIXME: Use instruction-level FMF.
+ bool UnsafeFPMath = canUseUnsafeFPMath(CI->getParent()->getParent());
+
+ // pow(exp(x), y) -> exp(x * y)
+ // pow(exp2(x), y) -> exp2(x * y)
+ // We enable these only with fast-math. Besides rounding differences, the
+ // transformation changes overflow and underflow behavior quite dramatically.
+ // Example: x = 1000, y = 0.001.
+ // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
+ auto *OpC = dyn_cast<CallInst>(Op1);
+ if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
+ LibFunc::Func Func;
+ Function *OpCCallee = OpC->getCalledFunction();
+ if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
+ TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+ Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
+ return EmitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
+ OpCCallee->getAttributes());
+ }
+ }
+
+ ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+ if (!Op2C)
+ return Ret;
+
+ if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
+ return ConstantFP::get(CI->getType(), 1.0);
+
+ if (Op2C->isExactlyValue(0.5) &&
+ hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
+ LibFunc::sqrtl) &&
+ hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
+ LibFunc::fabsl)) {
+
+ // In -ffast-math, pow(x, 0.5) -> sqrt(x).
+ if (CI->hasUnsafeAlgebra()) {
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+ return EmitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
+ Callee->getAttributes());
+ }
+
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinity correctly.
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
+ Value *FAbs =
+ EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+ return Sel;
+ }
+
+ if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
+ return Op1;
+ if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
+ return B.CreateFMul(Op1, Op1, "pow2");
+ if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
+
+ // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
+ if (UnsafeFPMath) {
+ APFloat V = abs(Op2C->getValueAPF());
+ // We limit to a max of 7 fmul(s). Thus max exponent is 32.
+ // This transformation applies to integer exponents only.
+ if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
+ !V.isInteger())
+ return nullptr;
+
+ // We will memoize intermediate products of the Addition Chain.
+ Value *InnerChain[33] = {nullptr};
+ InnerChain[1] = Op1;
+ InnerChain[2] = B.CreateFMul(Op1, Op1);
+
+ // We cannot readily convert a non-double type (like float) to a double.
+ // So we first convert V to something which could be converted to double.
+ bool ignored;
+ V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
+ Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
+ // For negative exponents simply compute the reciprocal.
+ if (Op2C->isNegative())
+ FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
+ return FMul;
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Function *Caller = CI->getParent()->getParent();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op = CI->getArgOperand(0);
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ LibFunc::Func LdExp = LibFunc::ldexpl;
+ if (Op->getType()->isFloatTy())
+ LdExp = LibFunc::ldexpf;
+ else if (Op->getType()->isDoubleTy())
+ LdExp = LibFunc::ldexp;
+
+ if (TLI->has(LdExp)) {
+ Value *LdExpArg = nullptr;
+ if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+ LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+ } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+ LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
+ }
+
+ if (LdExpArg) {
+ Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
+
+ Module *M = Caller->getParent();
+ Value *Callee =
+ M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
+ Op->getType(), B.getInt32Ty(), nullptr);
+ CallInst *CI = B.CreateCall(Callee, {One, LdExpArg});
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+ }
+ }
+ return Ret;
+}
+
+Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (Name == "fabs" && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, false);
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Make sure this has 1 argument of FP type which matches the result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op = CI->getArgOperand(0);
+ if (Instruction *I = dyn_cast<Instruction>(Op)) {
+ // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
+ if (I->getOpcode() == Instruction::FMul)
+ if (I->getOperand(0) == I->getOperand(1))
+ return Op;
+ }
+ return Ret;
+}
+
+Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
+ // If we can shrink the call to a float function rather than a double
+ // function, do that first.
+ Function *Callee = CI->getCalledFunction();
+ StringRef Name = Callee->getName();
+ if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
+ if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
+ return Ret;
+
+ // Make sure this has 2 arguments of FP type which match the result type.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return nullptr;
+
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ FastMathFlags FMF;
+ if (CI->hasUnsafeAlgebra()) {
+ // Unsafe algebra sets all fast-math-flags to true.
+ FMF.setUnsafeAlgebra();
+ } else {
+ // At a minimum, no-nans-fp-math must be true.
+ if (!CI->hasNoNaNs())
+ return nullptr;
+ // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
+ // "Ideally, fmax would be sensitive to the sign of zero, for example
+ // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
+ // might be impractical."
+ FMF.setNoSignedZeros();
+ FMF.setNoNaNs();
+ }
+ B.setFastMathFlags(FMF);
+
+ // We have a relaxed floating-point environment. We can ignore NaN-handling
+ // and transform to a compare and select. We do not have to consider errno or
+ // exceptions, because fmin/fmax do not have those.
+ Value *Op0 = CI->getArgOperand(0);
+ Value *Op1 = CI->getArgOperand(1);
+ Value *Cmp = Callee->getName().startswith("fmin") ?
+ B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
+ return B.CreateSelect(Cmp, Op0, Op1);
+}
+
+Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (UnsafeFPShrink && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+ FunctionType *FT = Callee->getFunctionType();
+
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ if (!CI->hasUnsafeAlgebra())
+ return Ret;
+ Value *Op1 = CI->getArgOperand(0);
+ auto *OpC = dyn_cast<CallInst>(Op1);
+
+ // The earlier call must also be unsafe in order to do these transforms.
+ if (!OpC || !OpC->hasUnsafeAlgebra())
+ return Ret;
+
+ // log(pow(x,y)) -> y*log(x)
+ // This is only applicable to log, log2, log10.
+ if (Name != "log" && Name != "log2" && Name != "log10")
+ return Ret;
+
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ FastMathFlags FMF;
+ FMF.setUnsafeAlgebra();
+ B.setFastMathFlags(FMF);
+
+ LibFunc::Func Func;
+ Function *F = OpC->getCalledFunction();
+ if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
+ Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
+ return B.CreateFMul(OpC->getArgOperand(1),
+ EmitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
+ Callee->getAttributes()), "mul");
+
+ // log(exp2(y)) -> y*log(2)
+ if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
+ TLI->has(Func) && Func == LibFunc::exp2)
+ return B.CreateFMul(
+ OpC->getArgOperand(0),
+ EmitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
+ Callee->getName(), B, Callee->getAttributes()),
+ "logmul");
+ return Ret;
+}
+
+Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ Value *Ret = nullptr;
+ if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
+ Callee->getIntrinsicID() == Intrinsic::sqrt))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ if (!CI->hasUnsafeAlgebra())
+ return Ret;
+
+ Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
+ if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return Ret;
+
+ // We're looking for a repeated factor in a multiplication tree,
+ // so we can do this fold: sqrt(x * x) -> fabs(x);
+ // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+ Value *RepeatOp = nullptr;
+ Value *OtherOp = nullptr;
+ if (Op0 == Op1) {
+ // Simple match: the operands of the multiply are identical.
+ RepeatOp = Op0;
+ } else {
+ // Look for a more complicated pattern: one of the operands is itself
+ // a multiply, so search for a common factor in that multiply.
+ // Note: We don't bother looking any deeper than this first level or for
+ // variations of this pattern because instcombine's visitFMUL and/or the
+ // reassociation pass should give us this form.
+ Value *OtherMul0, *OtherMul1;
+ if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
+ // Pattern: sqrt((x * y) * z)
+ if (OtherMul0 == OtherMul1 &&
+ cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
+ // Matched: sqrt((x * x) * z)
+ RepeatOp = OtherMul0;
+ OtherOp = Op1;
+ }
+ }
+ }
+ if (!RepeatOp)
+ return Ret;
+
+ // Fast math flags for any created instructions should match the sqrt
+ // and multiply.
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(I->getFastMathFlags());
+
+ // If we found a repeated factor, hoist it out of the square root and
+ // replace it with the fabs of that factor.
+ Module *M = Callee->getParent();
+ Type *ArgType = I->getType();
+ Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
+ Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
+ if (OtherOp) {
+ // If we found a non-repeated factor, we still need to get its square
+ // root. We then multiply that by the value that was simplified out
+ // of the square root calculation.
+ Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
+ Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
+ return B.CreateFMul(FabsCall, SqrtCall);
+ }
+ return FabsCall;
+}
+
+// TODO: Generalize to handle any trig function and its inverse.
+Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+ FunctionType *FT = Callee->getFunctionType();
+
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0);
+ auto *OpC = dyn_cast<CallInst>(Op1);
+ if (!OpC)
+ return Ret;
+
+ // Both calls must allow unsafe optimizations in order to remove them.
+ if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
+ return Ret;
+
+ // tan(atan(x)) -> x
+ // tanf(atanf(x)) -> x
+ // tanl(atanl(x)) -> x
+ LibFunc::Func Func;
+ Function *F = OpC->getCalledFunction();
+ if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
+ ((Func == LibFunc::atan && Callee->getName() == "tan") ||
+ (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
+ (Func == LibFunc::atanl && Callee->getName() == "tanl")))
+ Ret = OpC->getArgOperand(0);
+ return Ret;
+}
+
+static bool isTrigLibCall(CallInst *CI);
+static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
+ bool UseFloat, Value *&Sin, Value *&Cos,
+ Value *&SinCos);
+
+Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
+
+ // Make sure the prototype is as expected, otherwise the rest of the
+ // function is probably invalid and likely to abort.
+ if (!isTrigLibCall(CI))
+ return nullptr;
+
+ Value *Arg = CI->getArgOperand(0);
+ SmallVector<CallInst *, 1> SinCalls;
+ SmallVector<CallInst *, 1> CosCalls;
+ SmallVector<CallInst *, 1> SinCosCalls;
+
+ bool IsFloat = Arg->getType()->isFloatTy();
+
+ // Look for all compatible sinpi, cospi and sincospi calls with the same
+ // argument. If there are enough (in some sense) we can make the
+ // substitution.
+ for (User *U : Arg->users())
+ classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
+ SinCosCalls);
+
+ // It's only worthwhile if both sinpi and cospi are actually used.
+ if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
+ return nullptr;
+
+ Value *Sin, *Cos, *SinCos;
+ insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
+
+ replaceTrigInsts(SinCalls, Sin);
+ replaceTrigInsts(CosCalls, Cos);
+ replaceTrigInsts(SinCosCalls, SinCos);
+
+ return nullptr;
+}
+
+static bool isTrigLibCall(CallInst *CI) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+
+ // We can only hope to do anything useful if we can ignore things like errno
+ // and floating-point exceptions.
+ bool AttributesSafe =
+ CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
+
+ // Other than that we need float(float) or double(double)
+ return AttributesSafe && FT->getNumParams() == 1 &&
+ FT->getReturnType() == FT->getParamType(0) &&
+ (FT->getParamType(0)->isFloatTy() ||
+ FT->getParamType(0)->isDoubleTy());
+}
+
+void
+LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
+ SmallVectorImpl<CallInst *> &SinCalls,
+ SmallVectorImpl<CallInst *> &CosCalls,
+ SmallVectorImpl<CallInst *> &SinCosCalls) {
+ CallInst *CI = dyn_cast<CallInst>(Val);
+
+ if (!CI)
+ return;
+
+ Function *Callee = CI->getCalledFunction();
+ LibFunc::Func Func;
+ if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) ||
+ !isTrigLibCall(CI))
+ return;
+
+ if (IsFloat) {
+ if (Func == LibFunc::sinpif)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc::cospif)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc::sincospif_stret)
+ SinCosCalls.push_back(CI);
+ } else {
+ if (Func == LibFunc::sinpi)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc::cospi)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc::sincospi_stret)
+ SinCosCalls.push_back(CI);
+ }
+}
+
+void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
+ Value *Res) {
+ for (CallInst *C : Calls)
+ replaceAllUsesWith(C, Res);
+}
+
+void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
+ bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
+ Type *ArgTy = Arg->getType();
+ Type *ResTy;
+ StringRef Name;
+
+ Triple T(OrigCallee->getParent()->getTargetTriple());
+ if (UseFloat) {
+ Name = "__sincospif_stret";
+
+ assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
+ // x86_64 can't use {float, float} since that would be returned in both
+ // xmm0 and xmm1, which isn't what a real struct would do.
+ ResTy = T.getArch() == Triple::x86_64
+ ? static_cast<Type *>(VectorType::get(ArgTy, 2))
+ : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
+ } else {
+ Name = "__sincospi_stret";
+ ResTy = StructType::get(ArgTy, ArgTy, nullptr);
+ }
+
+ Module *M = OrigCallee->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
+ ResTy, ArgTy, nullptr);
+
+ if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
+ // If the argument is an instruction, it must dominate all uses so put our
+ // sincos call there.
+ B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
+ } else {
+ // Otherwise (e.g. for a constant) the beginning of the function is as
+ // good a place as any.
+ BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
+ B.SetInsertPoint(&EntryBB, EntryBB.begin());
+ }
+
+ SinCos = B.CreateCall(Callee, Arg, "sincospi");
+
+ if (SinCos->getType()->isStructTy()) {
+ Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
+ Cos = B.CreateExtractValue(SinCos, 1, "cospi");
+ } else {
+ Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
+ "sinpi");
+ Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
+ "cospi");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+static bool checkIntUnaryReturnAndParam(Function *Callee) {
+ FunctionType *FT = Callee->getFunctionType();
+ return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) &&
+ FT->getParamType(0)->isIntegerTy();
+}
+
+Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ if (!checkIntUnaryReturnAndParam(Callee))
+ return nullptr;
+ Value *Op = CI->getArgOperand(0);
+
+ // Constant fold.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->isZero()) // ffs(0) -> 0.
+ return B.getInt32(0);
+ // ffs(c) -> cttz(c)+1
+ return B.getInt32(CI->getValue().countTrailingZeros() + 1);
+ }
+
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Type *ArgType = Op->getType();
+ Value *F =
+ Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+}
+
+Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(integer) where the types agree.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ FT->getParamType(0) != FT->getReturnType())
+ return nullptr;
+
+ // abs(x) -> x >s -1 ? x : -x
+ Value *Op = CI->getArgOperand(0);
+ Value *Pos =
+ B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
+ Value *Neg = B.CreateNeg(Op, "neg");
+ return B.CreateSelect(Pos, Op, Neg);
+}
+
+Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
+ if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
+ return nullptr;
+
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
+ if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
+ return nullptr;
+
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
+ if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
+ return nullptr;
+
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(), 0x7F));
+}
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
+
+Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
+ int StreamArg) {
+ // Error reporting calls should be cold, mark them as such.
+ // This applies even to non-builtin calls: it is only a hint and applies to
+ // functions that the frontend might not understand as builtins.
+
+ // This heuristic was suggested in:
+ // Improving Static Branch Prediction in a Compiler
+ // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
+ // Proceedings of PACT'98, Oct. 1998, IEEE
+ Function *Callee = CI->getCalledFunction();
+
+ if (!CI->hasFnAttr(Attribute::Cold) &&
+ isReportingError(Callee, CI, StreamArg)) {
+ CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
+ }
+
+ return nullptr;
+}
+
+static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
+ if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
+ return false;
+
+ if (StreamArg < 0)
+ return true;
+
+ // These functions might be considered cold, but only if their stream
+ // argument is stderr.
+
+ if (StreamArg >= (int)CI->getNumArgOperands())
+ return false;
+ LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
+ if (!LI)
+ return false;
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
+ if (!GV || !GV->isDeclaration())
+ return false;
+ return GV->getName() == "stderr";
+}
+
+Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return nullptr;
+
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
+
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // printf("x") -> putchar('x'), even for '%'.
+ if (FormatStr.size() == 1) {
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
+ if (CI->use_empty() || !Res)
+ return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size() - 1] == '\n' &&
+ FormatStr.find('%') == StringRef::npos) { // No format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ Value *NewCI = EmitPutS(GV, B, TLI);
+ return (CI->use_empty() || !NewCI)
+ ? NewCI
+ : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
+ }
+
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy()) {
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
+
+ if (CI->use_empty() || !Res)
+ return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy()) {
+ return EmitPutS(CI->getArgOperand(1), B, TLI);
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
+
+ Function *Callee = CI->getCalledFunction();
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
+ return nullptr;
+
+ if (Value *V = optimizePrintFString(CI, B)) {
+ return V;
+ }
+
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%')
+ return nullptr; // we found a format specifier, bail out.
+
+ // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ FormatStr.size() + 1),
+ 1); // Copy the null byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy())
+ return nullptr;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
+
+ Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
+ if (!Len)
+ return nullptr;
+ Value *IncLen =
+ B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Require two fixed pointer arguments and an integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ if (Value *V = optimizeSPrintFString(CI, B)) {
+ return V;
+ }
+
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
+ optimizeErrorReporting(CI, B, 0);
+
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
+
+ // Do not do any of the following transformations if the fprintf return
+ // value is used, in general the fprintf return value is not compatible
+ // with fwrite(), fputc() or fputs().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
+ return nullptr; // We found a format specifier.
+
+ return EmitFWrite(
+ CI->getArgOperand(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
+ CI->getArgOperand(0), B, DL, TLI);
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy())
+ return nullptr;
+ return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
+ }
+
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Require two fixed paramters as pointers and integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ if (Value *V = optimizeFPrintFString(CI, B)) {
+ return V;
+ }
+
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
+ optimizeErrorReporting(CI, B, 3);
+
+ Function *Callee = CI->getCalledFunction();
+ // Require a pointer, an integer, an integer, a pointer, returning integer.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getParamType(3)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeC || !CountC)
+ return nullptr;
+ uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
+
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
+
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
+ optimizeErrorReporting(CI, B, 1);
+
+ Function *Callee = CI->getCalledFunction();
+
+ // Require two pointers. Also, we can't optimize if return value is used.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
+ return nullptr;
+
+ // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len)
+ return nullptr;
+
+ // Known to have no uses (see above).
+ return EmitFWrite(
+ CI->getArgOperand(0),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
+ CI->getArgOperand(1), B, DL, TLI);
+}
+
+Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
+ return nullptr;
+
+ // Check for a constant string.
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return nullptr;
+
+ if (Str.empty() && CI->use_empty()) {
+ // puts("") -> putchar('\n')
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
+ if (CI->use_empty() || !Res)
+ return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ return nullptr;
+}
+
+bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
+ LibFunc::Func Func;
+ SmallString<20> FloatFuncName = FuncName;
+ FloatFuncName += 'f';
+ if (TLI->getLibFunc(FloatFuncName, Func))
+ return TLI->has(Func);
+ return false;
+}
+
+Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
+ IRBuilder<> &Builder) {
+ LibFunc::Func Func;
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+
+ // Check for string/memory library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ // Make sure we never change the calling convention.
+ assert((ignoreCallingConv(Func) ||
+ CI->getCallingConv() == llvm::CallingConv::C) &&
+ "Optimizing string/memory libcall would change the calling convention");
+ switch (Func) {
+ case LibFunc::strcat:
+ return optimizeStrCat(CI, Builder);
+ case LibFunc::strncat:
+ return optimizeStrNCat(CI, Builder);
+ case LibFunc::strchr:
+ return optimizeStrChr(CI, Builder);
+ case LibFunc::strrchr:
+ return optimizeStrRChr(CI, Builder);
+ case LibFunc::strcmp:
+ return optimizeStrCmp(CI, Builder);
+ case LibFunc::strncmp:
+ return optimizeStrNCmp(CI, Builder);
+ case LibFunc::strcpy:
+ return optimizeStrCpy(CI, Builder);
+ case LibFunc::stpcpy:
+ return optimizeStpCpy(CI, Builder);
+ case LibFunc::strncpy:
+ return optimizeStrNCpy(CI, Builder);
+ case LibFunc::strlen:
+ return optimizeStrLen(CI, Builder);
+ case LibFunc::strpbrk:
+ return optimizeStrPBrk(CI, Builder);
+ case LibFunc::strtol:
+ case LibFunc::strtod:
+ case LibFunc::strtof:
+ case LibFunc::strtoul:
+ case LibFunc::strtoll:
+ case LibFunc::strtold:
+ case LibFunc::strtoull:
+ return optimizeStrTo(CI, Builder);
+ case LibFunc::strspn:
+ return optimizeStrSpn(CI, Builder);
+ case LibFunc::strcspn:
+ return optimizeStrCSpn(CI, Builder);
+ case LibFunc::strstr:
+ return optimizeStrStr(CI, Builder);
+ case LibFunc::memchr:
+ return optimizeMemChr(CI, Builder);
+ case LibFunc::memcmp:
+ return optimizeMemCmp(CI, Builder);
+ case LibFunc::memcpy:
+ return optimizeMemCpy(CI, Builder);
+ case LibFunc::memmove:
+ return optimizeMemMove(CI, Builder);
+ case LibFunc::memset:
+ return optimizeMemSet(CI, Builder);
+ default:
+ break;
+ }
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
+ if (CI->isNoBuiltin())
+ return nullptr;
+
+ LibFunc::Func Func;
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+
+ SmallVector<OperandBundleDef, 2> OpBundles;
+ CI->getOperandBundlesAsDefs(OpBundles);
+ IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
+ bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
+
+ // Command-line parameter overrides function attribute.
+ if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
+ UnsafeFPShrink = EnableUnsafeFPShrink;
+ else if (canUseUnsafeFPMath(Callee))
+ UnsafeFPShrink = true;
+
+ // First, check for intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ if (!isCallingConvC)
+ return nullptr;
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::pow:
+ return optimizePow(CI, Builder);
+ case Intrinsic::exp2:
+ return optimizeExp2(CI, Builder);
+ case Intrinsic::fabs:
+ return optimizeFabs(CI, Builder);
+ case Intrinsic::log:
+ return optimizeLog(CI, Builder);
+ case Intrinsic::sqrt:
+ return optimizeSqrt(CI, Builder);
+ default:
+ return nullptr;
+ }
+ }
+
+ // Also try to simplify calls to fortified library functions.
+ if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
+ // Try to further simplify the result.
+ CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
+ if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
+ // Use an IR Builder from SimplifiedCI if available instead of CI
+ // to guarantee we reach all uses we might replace later on.
+ IRBuilder<> TmpBuilder(SimplifiedCI);
+ if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
+ // If we were able to further simplify, remove the now redundant call.
+ SimplifiedCI->replaceAllUsesWith(V);
+ SimplifiedCI->eraseFromParent();
+ return V;
+ }
+ }
+ return SimplifiedFortifiedCI;
+ }
+
+ // Then check for known library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ // We never change the calling convention.
+ if (!ignoreCallingConv(Func) && !isCallingConvC)
+ return nullptr;
+ if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
+ return V;
+ switch (Func) {
+ case LibFunc::cosf:
+ case LibFunc::cos:
+ case LibFunc::cosl:
+ return optimizeCos(CI, Builder);
+ case LibFunc::sinpif:
+ case LibFunc::sinpi:
+ case LibFunc::cospif:
+ case LibFunc::cospi:
+ return optimizeSinCosPi(CI, Builder);
+ case LibFunc::powf:
+ case LibFunc::pow:
+ case LibFunc::powl:
+ return optimizePow(CI, Builder);
+ case LibFunc::exp2l:
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ return optimizeExp2(CI, Builder);
+ case LibFunc::fabsf:
+ case LibFunc::fabs:
+ case LibFunc::fabsl:
+ return optimizeFabs(CI, Builder);
+ case LibFunc::sqrtf:
+ case LibFunc::sqrt:
+ case LibFunc::sqrtl:
+ return optimizeSqrt(CI, Builder);
+ case LibFunc::ffs:
+ case LibFunc::ffsl:
+ case LibFunc::ffsll:
+ return optimizeFFS(CI, Builder);
+ case LibFunc::abs:
+ case LibFunc::labs:
+ case LibFunc::llabs:
+ return optimizeAbs(CI, Builder);
+ case LibFunc::isdigit:
+ return optimizeIsDigit(CI, Builder);
+ case LibFunc::isascii:
+ return optimizeIsAscii(CI, Builder);
+ case LibFunc::toascii:
+ return optimizeToAscii(CI, Builder);
+ case LibFunc::printf:
+ return optimizePrintF(CI, Builder);
+ case LibFunc::sprintf:
+ return optimizeSPrintF(CI, Builder);
+ case LibFunc::fprintf:
+ return optimizeFPrintF(CI, Builder);
+ case LibFunc::fwrite:
+ return optimizeFWrite(CI, Builder);
+ case LibFunc::fputs:
+ return optimizeFPuts(CI, Builder);
+ case LibFunc::log:
+ case LibFunc::log10:
+ case LibFunc::log1p:
+ case LibFunc::log2:
+ case LibFunc::logb:
+ return optimizeLog(CI, Builder);
+ case LibFunc::puts:
+ return optimizePuts(CI, Builder);
+ case LibFunc::tan:
+ case LibFunc::tanf:
+ case LibFunc::tanl:
+ return optimizeTan(CI, Builder);
+ case LibFunc::perror:
+ return optimizeErrorReporting(CI, Builder);
+ case LibFunc::vfprintf:
+ case LibFunc::fiprintf:
+ return optimizeErrorReporting(CI, Builder, 0);
+ case LibFunc::fputc:
+ return optimizeErrorReporting(CI, Builder, 1);
+ case LibFunc::ceil:
+ case LibFunc::floor:
+ case LibFunc::rint:
+ case LibFunc::round:
+ case LibFunc::nearbyint:
+ case LibFunc::trunc:
+ if (hasFloatVersion(FuncName))
+ return optimizeUnaryDoubleFP(CI, Builder, false);
+ return nullptr;
+ case LibFunc::acos:
+ case LibFunc::acosh:
+ case LibFunc::asin:
+ case LibFunc::asinh:
+ case LibFunc::atan:
+ case LibFunc::atanh:
+ case LibFunc::cbrt:
+ case LibFunc::cosh:
+ case LibFunc::exp:
+ case LibFunc::exp10:
+ case LibFunc::expm1:
+ case LibFunc::sin:
+ case LibFunc::sinh:
+ case LibFunc::tanh:
+ if (UnsafeFPShrink && hasFloatVersion(FuncName))
+ return optimizeUnaryDoubleFP(CI, Builder, true);
+ return nullptr;
+ case LibFunc::copysign:
+ if (hasFloatVersion(FuncName))
+ return optimizeBinaryDoubleFP(CI, Builder);
+ return nullptr;
+ case LibFunc::fminf:
+ case LibFunc::fmin:
+ case LibFunc::fminl:
+ case LibFunc::fmaxf:
+ case LibFunc::fmax:
+ case LibFunc::fmaxl:
+ return optimizeFMinFMax(CI, Builder);
+ default:
+ return nullptr;
+ }
+ }
+ return nullptr;
+}
+
+LibCallSimplifier::LibCallSimplifier(
+ const DataLayout &DL, const TargetLibraryInfo *TLI,
+ function_ref<void(Instruction *, Value *)> Replacer)
+ : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
+ Replacer(Replacer) {}
+
+void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
+ // Indirect through the replacer used in this instance.
+ Replacer(I, With);
+}
+
+// TODO:
+// Additional cases that we need to add to this file:
+//
+// cbrt:
+// * cbrt(expN(X)) -> expN(x/3)
+// * cbrt(sqrt(x)) -> pow(x,1/6)
+// * cbrt(cbrt(x)) -> pow(x,1/9)
+//
+// exp, expf, expl:
+// * exp(log(x)) -> x
+//
+// log, logf, logl:
+// * log(exp(x)) -> x
+// * log(exp(y)) -> y*log(e)
+// * log(exp10(y)) -> y*log(10)
+// * log(sqrt(x)) -> 0.5*log(x)
+//
+// lround, lroundf, lroundl:
+// * lround(cnst) -> cnst'
+//
+// pow, powf, powl:
+// * pow(sqrt(x),y) -> pow(x,y*0.5)
+// * pow(pow(x,y),z)-> pow(x,y*z)
+//
+// round, roundf, roundl:
+// * round(cnst) -> cnst'
+//
+// signbit:
+// * signbit(cnst) -> cnst'
+// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
+//
+// sqrt, sqrtf, sqrtl:
+// * sqrt(expN(x)) -> expN(x*0.5)
+// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
+// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
+//
+// trunc, truncf, truncl:
+// * trunc(cnst) -> cnst'
+//
+//
+
+//===----------------------------------------------------------------------===//
+// Fortified Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
+ unsigned ObjSizeOp,
+ unsigned SizeOp,
+ bool isString) {
+ if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
+ return true;
+ if (ConstantInt *ObjSizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
+ if (ObjSizeCI->isAllOnesValue())
+ return true;
+ // If the object size wasn't -1 (unknown), bail out if we were asked to.
+ if (OnlyLowerUnknownSize)
+ return false;
+ if (isString) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
+ // If the length is 0 we don't know how long it is and so we can't
+ // remove the check.
+ if (Len == 0)
+ return false;
+ return ObjSizeCI->getZExtValue() >= Len;
+ }
+ if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
+ return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
+ }
+ return false;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
+ IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
+ return nullptr;
+
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
+ IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
+ return nullptr;
+
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
+ IRBuilder<> &B) {
+ Function *Callee = CI->getCalledFunction();
+
+ if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
+ return nullptr;
+
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
+ IRBuilder<> &B,
+ LibFunc::Func Func) {
+ Function *Callee = CI->getCalledFunction();
+ StringRef Name = Callee->getName();
+ const DataLayout &DL = CI->getModule()->getDataLayout();
+
+ if (!checkStringCopyLibFuncSignature(Callee, Func))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
+ *ObjSize = CI->getArgOperand(2);
+
+ // __stpcpy_chk(x,x,...) -> x+strlen(x)
+ if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
+ Value *StrLen = EmitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
+ }
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
+ // st[rp]cpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFortifiedCallFoldable(CI, 2, 1, true))
+ return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
+
+ if (OnlyLowerUnknownSize)
+ return nullptr;
+
+ // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0)
+ return nullptr;
+
+ Type *SizeTTy = DL.getIntPtrType(CI->getContext());
+ Value *LenV = ConstantInt::get(SizeTTy, Len);
+ Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
+ // If the function was an __stpcpy_chk, and we were able to fold it into
+ // a __memcpy_chk, we still need to return the correct end pointer.
+ if (Ret && Func == LibFunc::stpcpy_chk)
+ return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
+ return Ret;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
+ IRBuilder<> &B,
+ LibFunc::Func Func) {
+ Function *Callee = CI->getCalledFunction();
+ StringRef Name = Callee->getName();
+
+ if (!checkStringCopyLibFuncSignature(Callee, Func))
+ return nullptr;
+ if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
+ return Ret;
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
+ // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
+ // Some clang users checked for _chk libcall availability using:
+ // __has_builtin(__builtin___memcpy_chk)
+ // When compiling with -fno-builtin, this is always true.
+ // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
+ // end up with fortified libcalls, which isn't acceptable in a freestanding
+ // environment which only provides their non-fortified counterparts.
+ //
+ // Until we change clang and/or teach external users to check for availability
+ // differently, disregard the "nobuiltin" attribute and TLI::has.
+ //
+ // PR23093.
+
+ LibFunc::Func Func;
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+
+ SmallVector<OperandBundleDef, 2> OpBundles;
+ CI->getOperandBundlesAsDefs(OpBundles);
+ IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
+ bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
+
+ // First, check that this is a known library functions.
+ if (!TLI->getLibFunc(FuncName, Func))
+ return nullptr;
+
+ // We never change the calling convention.
+ if (!ignoreCallingConv(Func) && !isCallingConvC)
+ return nullptr;
+
+ switch (Func) {
+ case LibFunc::memcpy_chk:
+ return optimizeMemCpyChk(CI, Builder);
+ case LibFunc::memmove_chk:
+ return optimizeMemMoveChk(CI, Builder);
+ case LibFunc::memset_chk:
+ return optimizeMemSetChk(CI, Builder);
+ case LibFunc::stpcpy_chk:
+ case LibFunc::strcpy_chk:
+ return optimizeStrpCpyChk(CI, Builder, Func);
+ case LibFunc::stpncpy_chk:
+ case LibFunc::strncpy_chk:
+ return optimizeStrpNCpyChk(CI, Builder, Func);
+ default:
+ break;
+ }
+ return nullptr;
+}
+
+FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
+ const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
+ : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
OpenPOWER on IntegriCloud