summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp2363
1 files changed, 2363 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
new file mode 100644
index 0000000..3b61bb5
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -0,0 +1,2363 @@
+//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a utility pass used for testing the InstructionSimplify analysis.
+// The analysis is applied to every instruction, and if it simplifies then the
+// instruction is replaced by the simplification. If you are looking for a pass
+// that performs serious instruction folding, use the instcombine pass instead.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+ColdErrorCalls("error-reporting-is-cold", cl::init(true),
+ cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
+
+/// This class is the abstract base class for the set of optimizations that
+/// corresponds to one library call.
+namespace {
+class LibCallOptimization {
+protected:
+ Function *Caller;
+ const DataLayout *DL;
+ const TargetLibraryInfo *TLI;
+ const LibCallSimplifier *LCS;
+ LLVMContext* Context;
+public:
+ LibCallOptimization() { }
+ virtual ~LibCallOptimization() {}
+
+ /// callOptimizer - This pure virtual method is implemented by base classes to
+ /// do various optimizations. If this returns null then no transformation was
+ /// performed. If it returns CI, then it transformed the call and CI is to be
+ /// deleted. If it returns something else, replace CI with the new value and
+ /// delete CI.
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
+ =0;
+
+ /// ignoreCallingConv - Returns false if this transformation could possibly
+ /// change the calling convention.
+ virtual bool ignoreCallingConv() { return false; }
+
+ Value *optimizeCall(CallInst *CI, const DataLayout *DL,
+ const TargetLibraryInfo *TLI,
+ const LibCallSimplifier *LCS, IRBuilder<> &B) {
+ Caller = CI->getParent()->getParent();
+ this->DL = DL;
+ this->TLI = TLI;
+ this->LCS = LCS;
+ if (CI->getCalledFunction())
+ Context = &CI->getCalledFunction()->getContext();
+
+ // We never change the calling convention.
+ if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
+ return nullptr;
+
+ return callOptimizer(CI->getCalledFunction(), CI, B);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
+/// value is equal or not-equal to zero.
+static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
+ for (User *U : V->users()) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (IC->isEquality())
+ if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
+/// comparisons with With.
+static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
+ for (User *U : V->users()) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (IC->isEquality() && IC->getOperand(1) == With)
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static bool callHasFloatingPointArgument(const CallInst *CI) {
+ for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
+ it != e; ++it) {
+ if ((*it)->getType()->isFloatingPointTy())
+ return true;
+ }
+ return false;
+}
+
+/// \brief Check whether the overloaded unary floating point function
+/// corresponing to \a Ty is available.
+static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
+ LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
+ LibFunc::Func LongDoubleFn) {
+ switch (Ty->getTypeID()) {
+ case Type::FloatTyID:
+ return TLI->has(FloatFn);
+ case Type::DoubleTyID:
+ return TLI->has(DoubleFn);
+ default:
+ return TLI->has(LongDoubleFn);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Fortified Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct FortifiedLibCallOptimization : public LibCallOptimization {
+protected:
+ virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
+ bool isString) const = 0;
+};
+
+struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
+ CallInst *CI;
+
+ bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
+ bool isString) const override {
+ if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
+ return true;
+ if (ConstantInt *SizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
+ if (SizeCI->isAllOnesValue())
+ return true;
+ if (isString) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
+ // If the length is 0 we don't know how long it is and so we can't
+ // remove the check.
+ if (Len == 0) return false;
+ return SizeCI->getZExtValue() >= Len;
+ }
+ if (ConstantInt *Arg = dyn_cast<ConstantInt>(
+ CI->getArgOperand(SizeArgOp)))
+ return SizeCI->getZExtValue() >= Arg->getZExtValue();
+ }
+ return false;
+ }
+};
+
+struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ this->CI = CI;
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != DL->getIntPtrType(Context) ||
+ FT->getParamType(3) != DL->getIntPtrType(Context))
+ return nullptr;
+
+ if (isFoldable(3, 2, false)) {
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+ }
+};
+
+struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ this->CI = CI;
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != DL->getIntPtrType(Context) ||
+ FT->getParamType(3) != DL->getIntPtrType(Context))
+ return nullptr;
+
+ if (isFoldable(3, 2, false)) {
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+ }
+};
+
+struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ this->CI = CI;
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ FT->getParamType(2) != DL->getIntPtrType(Context) ||
+ FT->getParamType(3) != DL->getIntPtrType(Context))
+ return nullptr;
+
+ if (isFoldable(3, 2, false)) {
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
+ false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+ }
+};
+
+struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ this->CI = CI;
+ StringRef Name = Callee->getName();
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
+ FT->getParamType(2) != DL->getIntPtrType(Context))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // __strcpy_chk(x,x) -> x
+ return Src;
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain strcpy. Otherwise we'll keep our
+ // strcpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFoldable(2, 1, true)) {
+ Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
+ return Ret;
+ } else {
+ // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return nullptr;
+
+ // This optimization require DataLayout.
+ if (!DL) return nullptr;
+
+ Value *Ret =
+ EmitMemCpyChk(Dst, Src,
+ ConstantInt::get(DL->getIntPtrType(Context), Len),
+ CI->getArgOperand(2), B, DL, TLI);
+ return Ret;
+ }
+ return nullptr;
+ }
+};
+
+struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ this->CI = CI;
+ StringRef Name = Callee->getName();
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
+ FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = EmitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
+ }
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain stpcpy. Otherwise we'll keep our
+ // stpcpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFoldable(2, 1, true)) {
+ Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
+ return Ret;
+ } else {
+ // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return nullptr;
+
+ // This optimization require DataLayout.
+ if (!DL) return nullptr;
+
+ Type *PT = FT->getParamType(0);
+ Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
+ Value *DstEnd = B.CreateGEP(Dst,
+ ConstantInt::get(DL->getIntPtrType(PT),
+ Len - 1));
+ if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
+ return nullptr;
+ return DstEnd;
+ }
+ return nullptr;
+ }
+};
+
+struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ this->CI = CI;
+ StringRef Name = Callee->getName();
+ FunctionType *FT = Callee->getFunctionType();
+ LLVMContext &Context = CI->getParent()->getContext();
+
+ // Check if this has the right signature.
+ if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ FT->getParamType(3) != DL->getIntPtrType(Context))
+ return nullptr;
+
+ if (isFoldable(3, 2, false)) {
+ Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, DL, TLI,
+ Name.substr(2, 7));
+ return Ret;
+ }
+ return nullptr;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// String and Memory Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct StrCatOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strcat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType())
+ return nullptr;
+
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return nullptr;
+ --Len; // Unbias length.
+
+ // Handle the simple, do-nothing case: strcat(x, "") -> x
+ if (Len == 0)
+ return Dst;
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ return emitStrLenMemCpy(Src, Dst, Len, B);
+ }
+
+ Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
+ IRBuilder<> &B) {
+ // We need to find the end of the destination string. That's where the
+ // memory is to be moved to. We just generate a call to strlen.
+ Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
+ if (!DstLen)
+ return nullptr;
+
+ // Now that we have the destination's length, we must index into the
+ // destination's pointer to get the actual memcpy destination (end of
+ // the string .. we're concatenating).
+ Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
+
+ // We have enough information to now generate the memcpy call to do the
+ // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(CpyDst, Src,
+ ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
+ return Dst;
+ }
+};
+
+struct StrNCatOpt : public StrCatOpt {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strncat" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ FT->getParamType(1) != FT->getReturnType() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return nullptr;
+
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ uint64_t Len;
+
+ // We don't do anything if length is not constant
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Len = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0) return nullptr;
+ --SrcLen; // Unbias length.
+
+ // Handle the simple, do-nothing cases:
+ // strncat(x, "", c) -> x
+ // strncat(x, c, 0) -> x
+ if (SrcLen == 0 || Len == 0) return Dst;
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ // We don't optimize this case
+ if (Len < SrcLen) return nullptr;
+
+ // strncat(x, s, c) -> strcat(x, s)
+ // s is constant so the strcat can be optimized further
+ return emitStrLenMemCpy(Src, Dst, SrcLen, B);
+ }
+};
+
+struct StrChrOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return nullptr;
+
+ Value *SrcStr = CI->getArgOperand(0);
+
+ // If the second operand is non-constant, see if we can compute the length
+ // of the input string and turn this into memchr.
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (!CharC) {
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ uint64_t Len = GetStringLength(SrcStr);
+ if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
+ return nullptr;
+
+ return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(DL->getIntPtrType(*Context), Len),
+ B, DL, TLI);
+ }
+
+ // Otherwise, the character is a constant, see if the first argument is
+ // a string literal. If so, we can constant fold.
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+ return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
+ return nullptr;
+ }
+
+ // Compute the offset, make sure to handle the case when we're searching for
+ // zero (a weird way to spell strlen).
+ size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
+ Str.size() : Str.find(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. strchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // strchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
+ }
+};
+
+struct StrRChrOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strrchr" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != B.getInt8PtrTy() ||
+ FT->getParamType(0) != FT->getReturnType() ||
+ !FT->getParamType(1)->isIntegerTy(32))
+ return nullptr;
+
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+
+ // Cannot fold anything if we're not looking for a constant.
+ if (!CharC)
+ return nullptr;
+
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ // strrchr(s, 0) -> strchr(s, 0)
+ if (DL && CharC->isZero())
+ return EmitStrChr(SrcStr, '\0', B, DL, TLI);
+ return nullptr;
+ }
+
+ // Compute the offset.
+ size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
+ Str.size() : Str.rfind(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. Return null.
+ return Constant::getNullValue(CI->getType());
+
+ // strrchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
+ }
+};
+
+struct StrCmpOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strcmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return nullptr;
+
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strcmp(x,x) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strcmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2)
+ return ConstantInt::get(CI->getType(), Str1.compare(Str2));
+
+ if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
+ return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
+ CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+
+ // strcmp(P, "x") -> memcmp(P, "x", 2)
+ uint64_t Len1 = GetStringLength(Str1P);
+ uint64_t Len2 = GetStringLength(Str2P);
+ if (Len1 && Len2) {
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ return EmitMemCmp(Str1P, Str2P,
+ ConstantInt::get(DL->getIntPtrType(*Context),
+ std::min(Len1, Len2)), B, DL, TLI);
+ }
+
+ return nullptr;
+ }
+};
+
+struct StrNCmpOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strncmp" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return nullptr;
+
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strncmp(x,x,n) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ // Get the length argument if it is constant.
+ uint64_t Length;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
+ Length = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ if (Length == 0) // strncmp(x,y,0) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strncmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2) {
+ StringRef SubStr1 = Str1.substr(0, Length);
+ StringRef SubStr2 = Str2.substr(0, Length);
+ return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
+ }
+
+ if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
+ return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
+ CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
+ return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+
+ return nullptr;
+ }
+};
+
+struct StrCpyOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "strcpy" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // strcpy(x,x) -> x
+ return Src;
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return nullptr;
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src,
+ ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
+ return Dst;
+ }
+};
+
+struct StpCpyOpt: public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Verify the "stpcpy" function prototype.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy())
+ return nullptr;
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = EmitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
+ }
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len == 0) return nullptr;
+
+ Type *PT = FT->getParamType(0);
+ Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
+ Value *DstEnd = B.CreateGEP(Dst,
+ ConstantInt::get(DL->getIntPtrType(PT),
+ Len - 1));
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(Dst, Src, LenV, 1);
+ return DstEnd;
+ }
+};
+
+struct StrNCpyOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getParamType(2)->isIntegerTy())
+ return nullptr;
+
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ Value *LenOp = CI->getArgOperand(2);
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen == 0) return nullptr;
+ --SrcLen;
+
+ if (SrcLen == 0) {
+ // strncpy(x, "", y) -> memset(x, '\0', y, 1)
+ B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
+ return Dst;
+ }
+
+ uint64_t Len;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
+ Len = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ // Let strncpy handle the zero padding
+ if (Len > SrcLen+1) return nullptr;
+
+ Type *PT = FT->getParamType(0);
+ // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
+ B.CreateMemCpy(Dst, Src,
+ ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
+
+ return Dst;
+ }
+};
+
+struct StrLenOpt : public LibCallOptimization {
+ bool ignoreCallingConv() override { return true; }
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ Value *Src = CI->getArgOperand(0);
+
+ // Constant folding: strlen("xyz") -> 3
+ if (uint64_t Len = GetStringLength(Src))
+ return ConstantInt::get(CI->getType(), Len-1);
+
+ // strlen(x?"foo":"bars") --> x ? 3 : 4
+ if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
+ uint64_t LenTrue = GetStringLength(SI->getTrueValue());
+ uint64_t LenFalse = GetStringLength(SI->getFalseValue());
+ if (LenTrue && LenFalse) {
+ emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
+ SI->getDebugLoc(),
+ "folded strlen(select) to select of constants");
+ return B.CreateSelect(SI->getCondition(),
+ ConstantInt::get(CI->getType(), LenTrue-1),
+ ConstantInt::get(CI->getType(), LenFalse-1));
+ }
+ }
+
+ // strlen(x) != 0 --> *x != 0
+ // strlen(x) == 0 --> *x == 0
+ if (isOnlyUsedInZeroEqualityComparison(CI))
+ return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
+
+ return nullptr;
+ }
+};
+
+struct StrPBrkOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ FT->getReturnType() != FT->getParamType(0))
+ return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strpbrk(s, "") -> NULL
+ // strpbrk("", s) -> NULL
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t I = S1.find_first_of(S2);
+ if (I == StringRef::npos) // No match.
+ return Constant::getNullValue(CI->getType());
+
+ return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
+ }
+
+ // strpbrk(s, "a") -> strchr(s, 'a')
+ if (DL && HasS2 && S2.size() == 1)
+ return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
+
+ return nullptr;
+ }
+};
+
+struct StrToOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy())
+ return nullptr;
+
+ Value *EndPtr = CI->getArgOperand(1);
+ if (isa<ConstantPointerNull>(EndPtr)) {
+ // With a null EndPtr, this function won't capture the main argument.
+ // It would be readonly too, except that it still may write to errno.
+ CI->addAttribute(1, Attribute::NoCapture);
+ }
+
+ return nullptr;
+ }
+};
+
+struct StrSpnOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strspn(s, "") -> 0
+ // strspn("", s) -> 0
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_not_of(S2);
+ if (Pos == StringRef::npos) Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ return nullptr;
+ }
+};
+
+struct StrCSpnOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ FT->getParamType(0) != B.getInt8PtrTy() ||
+ FT->getParamType(1) != FT->getParamType(0) ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strcspn("", s) -> 0
+ if (HasS1 && S1.empty())
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_of(S2);
+ if (Pos == StringRef::npos) Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ // strcspn(s, "") -> strlen(s)
+ if (DL && HasS2 && S2.empty())
+ return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
+
+ return nullptr;
+ }
+};
+
+struct StrStrOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isPointerTy())
+ return nullptr;
+
+ // fold strstr(x, x) -> x.
+ if (CI->getArgOperand(0) == CI->getArgOperand(1))
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
+ if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
+ if (!StrLen)
+ return nullptr;
+ Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
+ StrLen, B, DL, TLI);
+ if (!StrNCmp)
+ return nullptr;
+ for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
+ ICmpInst *Old = cast<ICmpInst>(*UI++);
+ Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
+ ConstantInt::getNullValue(StrNCmp->getType()),
+ "cmp");
+ LCS->replaceAllUsesWith(Old, Cmp);
+ }
+ return CI;
+ }
+
+ // See if either input string is a constant string.
+ StringRef SearchStr, ToFindStr;
+ bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
+ bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
+
+ // fold strstr(x, "") -> x.
+ if (HasStr2 && ToFindStr.empty())
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // If both strings are known, constant fold it.
+ if (HasStr1 && HasStr2) {
+ size_t Offset = SearchStr.find(ToFindStr);
+
+ if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
+ return Constant::getNullValue(CI->getType());
+
+ // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
+ Value *Result = CastToCStr(CI->getArgOperand(0), B);
+ Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
+ return B.CreateBitCast(Result, CI->getType());
+ }
+
+ // fold strstr(x, "y") -> strchr(x, 'y').
+ if (HasStr2 && ToFindStr.size() == 1) {
+ Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
+ return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
+ }
+ return nullptr;
+ }
+};
+
+struct MemCmpOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy(32))
+ return nullptr;
+
+ Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+
+ if (LHS == RHS) // memcmp(s,s,x) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // Make sure we have a constant length.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!LenC) return nullptr;
+ uint64_t Len = LenC->getZExtValue();
+
+ if (Len == 0) // memcmp(s1,s2,0) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
+ if (Len == 1) {
+ Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
+ CI->getType(), "lhsv");
+ Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
+ CI->getType(), "rhsv");
+ return B.CreateSub(LHSV, RHSV, "chardiff");
+ }
+
+ // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
+ StringRef LHSStr, RHSStr;
+ if (getConstantStringInfo(LHS, LHSStr) &&
+ getConstantStringInfo(RHS, RHSStr)) {
+ // Make sure we're not reading out-of-bounds memory.
+ if (Len > LHSStr.size() || Len > RHSStr.size())
+ return nullptr;
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
+ return ConstantInt::get(CI->getType(), Ret);
+ }
+
+ return nullptr;
+ }
+};
+
+struct MemCpyOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != DL->getIntPtrType(*Context))
+ return nullptr;
+
+ // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+};
+
+struct MemMoveOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ FT->getParamType(2) != DL->getIntPtrType(*Context))
+ return nullptr;
+
+ // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
+ B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+};
+
+struct MemSetOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
+ return nullptr;
+
+ // memset(p, v, n) -> llvm.memset(p, v, n, 1)
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
+ return CI->getArgOperand(0);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+struct UnaryDoubleFPOpt : public LibCallOptimization {
+ bool CheckRetType;
+ UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
+ return nullptr;
+
+ if (CheckRetType) {
+ // Check if all the uses for function like 'sin' are converted to float.
+ for (User *U : CI->users()) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
+ if (!Cast || !Cast->getType()->isFloatTy())
+ return nullptr;
+ }
+ }
+
+ // If this is something like 'floor((double)floatval)', convert to floorf.
+ FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
+ if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
+ return nullptr;
+
+ // floor((double)floatval) -> (double)floorf(floatval)
+ Value *V = Cast->getOperand(0);
+ V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+ }
+};
+
+// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
+struct BinaryDoubleFPOpt : public LibCallOptimization {
+ bool CheckRetType;
+ BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return nullptr;
+
+ if (CheckRetType) {
+ // Check if all the uses for function like 'fmin/fmax' are converted to
+ // float.
+ for (User *U : CI->users()) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
+ if (!Cast || !Cast->getType()->isFloatTy())
+ return nullptr;
+ }
+ }
+
+ // If this is something like 'fmin((double)floatval1, (double)floatval2)',
+ // we convert it to fminf.
+ FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
+ FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
+ if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
+ !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
+ return nullptr;
+
+ // fmin((double)floatval1, (double)floatval2)
+ // -> (double)fmin(floatval1, floatval2)
+ Value *V = nullptr;
+ Value *V1 = Cast1->getOperand(0);
+ Value *V2 = Cast2->getOperand(0);
+ V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
+ Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+ }
+};
+
+struct UnsafeFPLibCallOptimization : public LibCallOptimization {
+ bool UnsafeFPShrink;
+ UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
+ this->UnsafeFPShrink = UnsafeFPShrink;
+ }
+};
+
+struct CosOpt : public UnsafeFPLibCallOptimization {
+ CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Callee->getName() == "cos" &&
+ TLI->has(LibFunc::cosf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ // cos(-x) -> cos(x)
+ Value *Op1 = CI->getArgOperand(0);
+ if (BinaryOperator::isFNeg(Op1)) {
+ BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+ return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+ }
+ return Ret;
+ }
+};
+
+struct PowOpt : public UnsafeFPLibCallOptimization {
+ PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Callee->getName() == "pow" &&
+ TLI->has(LibFunc::powf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ // pow(1.0, x) -> 1.0
+ if (Op1C->isExactlyValue(1.0))
+ return Op1C;
+ // pow(2.0, x) -> exp2(x)
+ if (Op1C->isExactlyValue(2.0) &&
+ hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
+ LibFunc::exp2l))
+ return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
+ // pow(10.0, x) -> exp10(x)
+ if (Op1C->isExactlyValue(10.0) &&
+ hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
+ LibFunc::exp10l))
+ return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
+ Callee->getAttributes());
+ }
+
+ ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+ if (!Op2C) return Ret;
+
+ if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
+ return ConstantFP::get(CI->getType(), 1.0);
+
+ if (Op2C->isExactlyValue(0.5) &&
+ hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
+ LibFunc::sqrtl) &&
+ hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
+ LibFunc::fabsl)) {
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinity correctly.
+ // TODO: In fast-math mode, this could be just sqrt(x).
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
+ Callee->getAttributes());
+ Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
+ Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+ return Sel;
+ }
+
+ if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
+ return Op1;
+ if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
+ return B.CreateFMul(Op1, Op1, "pow2");
+ if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
+ Op1, "powrecip");
+ return nullptr;
+ }
+};
+
+struct Exp2Opt : public UnsafeFPLibCallOptimization {
+ Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Callee->getName() == "exp2" &&
+ TLI->has(LibFunc::exp2f)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op = CI->getArgOperand(0);
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ LibFunc::Func LdExp = LibFunc::ldexpl;
+ if (Op->getType()->isFloatTy())
+ LdExp = LibFunc::ldexpf;
+ else if (Op->getType()->isDoubleTy())
+ LdExp = LibFunc::ldexp;
+
+ if (TLI->has(LdExp)) {
+ Value *LdExpArg = nullptr;
+ if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+ LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+ } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+ LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
+ }
+
+ if (LdExpArg) {
+ Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
+
+ Module *M = Caller->getParent();
+ Value *Callee =
+ M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
+ Op->getType(), B.getInt32Ty(), NULL);
+ CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+ }
+ }
+ return Ret;
+ }
+};
+
+struct SinCosPiOpt : public LibCallOptimization {
+ SinCosPiOpt() {}
+
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Make sure the prototype is as expected, otherwise the rest of the
+ // function is probably invalid and likely to abort.
+ if (!isTrigLibCall(CI))
+ return nullptr;
+
+ Value *Arg = CI->getArgOperand(0);
+ SmallVector<CallInst *, 1> SinCalls;
+ SmallVector<CallInst *, 1> CosCalls;
+ SmallVector<CallInst *, 1> SinCosCalls;
+
+ bool IsFloat = Arg->getType()->isFloatTy();
+
+ // Look for all compatible sinpi, cospi and sincospi calls with the same
+ // argument. If there are enough (in some sense) we can make the
+ // substitution.
+ for (User *U : Arg->users())
+ classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
+ SinCosCalls);
+
+ // It's only worthwhile if both sinpi and cospi are actually used.
+ if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
+ return nullptr;
+
+ Value *Sin, *Cos, *SinCos;
+ insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
+ SinCos);
+
+ replaceTrigInsts(SinCalls, Sin);
+ replaceTrigInsts(CosCalls, Cos);
+ replaceTrigInsts(SinCosCalls, SinCos);
+
+ return nullptr;
+ }
+
+ bool isTrigLibCall(CallInst *CI) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+
+ // We can only hope to do anything useful if we can ignore things like errno
+ // and floating-point exceptions.
+ bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
+ CI->hasFnAttr(Attribute::ReadNone);
+
+ // Other than that we need float(float) or double(double)
+ return AttributesSafe && FT->getNumParams() == 1 &&
+ FT->getReturnType() == FT->getParamType(0) &&
+ (FT->getParamType(0)->isFloatTy() ||
+ FT->getParamType(0)->isDoubleTy());
+ }
+
+ void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
+ SmallVectorImpl<CallInst *> &SinCalls,
+ SmallVectorImpl<CallInst *> &CosCalls,
+ SmallVectorImpl<CallInst *> &SinCosCalls) {
+ CallInst *CI = dyn_cast<CallInst>(Val);
+
+ if (!CI)
+ return;
+
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+ LibFunc::Func Func;
+ if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
+ !isTrigLibCall(CI))
+ return;
+
+ if (IsFloat) {
+ if (Func == LibFunc::sinpif)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc::cospif)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc::sincospif_stret)
+ SinCosCalls.push_back(CI);
+ } else {
+ if (Func == LibFunc::sinpi)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc::cospi)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc::sincospi_stret)
+ SinCosCalls.push_back(CI);
+ }
+ }
+
+ void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
+ for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
+ E = Calls.end();
+ I != E; ++I) {
+ LCS->replaceAllUsesWith(*I, Res);
+ }
+ }
+
+ void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
+ bool UseFloat, Value *&Sin, Value *&Cos,
+ Value *&SinCos) {
+ Type *ArgTy = Arg->getType();
+ Type *ResTy;
+ StringRef Name;
+
+ Triple T(OrigCallee->getParent()->getTargetTriple());
+ if (UseFloat) {
+ Name = "__sincospif_stret";
+
+ assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
+ // x86_64 can't use {float, float} since that would be returned in both
+ // xmm0 and xmm1, which isn't what a real struct would do.
+ ResTy = T.getArch() == Triple::x86_64
+ ? static_cast<Type *>(VectorType::get(ArgTy, 2))
+ : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
+ } else {
+ Name = "__sincospi_stret";
+ ResTy = StructType::get(ArgTy, ArgTy, NULL);
+ }
+
+ Module *M = OrigCallee->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
+ ResTy, ArgTy, NULL);
+
+ if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
+ // If the argument is an instruction, it must dominate all uses so put our
+ // sincos call there.
+ BasicBlock::iterator Loc = ArgInst;
+ B.SetInsertPoint(ArgInst->getParent(), ++Loc);
+ } else {
+ // Otherwise (e.g. for a constant) the beginning of the function is as
+ // good a place as any.
+ BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
+ B.SetInsertPoint(&EntryBB, EntryBB.begin());
+ }
+
+ SinCos = B.CreateCall(Callee, Arg, "sincospi");
+
+ if (SinCos->getType()->isStructTy()) {
+ Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
+ Cos = B.CreateExtractValue(SinCos, 1, "cospi");
+ } else {
+ Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
+ "sinpi");
+ Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
+ "cospi");
+ }
+ }
+
+};
+
+//===----------------------------------------------------------------------===//
+// Integer Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct FFSOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 1 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ !FT->getParamType(0)->isIntegerTy())
+ return nullptr;
+
+ Value *Op = CI->getArgOperand(0);
+
+ // Constant fold.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->isZero()) // ffs(0) -> 0.
+ return B.getInt32(0);
+ // ffs(c) -> cttz(c)+1
+ return B.getInt32(CI->getValue().countTrailingZeros() + 1);
+ }
+
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Type *ArgType = Op->getType();
+ Value *F = Intrinsic::getDeclaration(Callee->getParent(),
+ Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+ }
+};
+
+struct AbsOpt : public LibCallOptimization {
+ bool ignoreCallingConv() override { return true; }
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(integer) where the types agree.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ FT->getParamType(0) != FT->getReturnType())
+ return nullptr;
+
+ // abs(x) -> x >s -1 ? x : -x
+ Value *Op = CI->getArgOperand(0);
+ Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
+ "ispos");
+ Value *Neg = B.CreateNeg(Op, "neg");
+ return B.CreateSelect(Pos, Op, Neg);
+ }
+};
+
+struct IsDigitOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return nullptr;
+
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct IsAsciiOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return nullptr;
+
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct ToAsciiOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require i32(i32)
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return nullptr;
+
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(),0x7F));
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct ErrorReportingOpt : public LibCallOptimization {
+ ErrorReportingOpt(int S = -1) : StreamArg(S) {}
+
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &) override {
+ // Error reporting calls should be cold, mark them as such.
+ // This applies even to non-builtin calls: it is only a hint and applies to
+ // functions that the frontend might not understand as builtins.
+
+ // This heuristic was suggested in:
+ // Improving Static Branch Prediction in a Compiler
+ // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
+ // Proceedings of PACT'98, Oct. 1998, IEEE
+
+ if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
+ CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
+ }
+
+ return nullptr;
+ }
+
+protected:
+ bool isReportingError(Function *Callee, CallInst *CI) {
+ if (!ColdErrorCalls)
+ return false;
+
+ if (!Callee || !Callee->isDeclaration())
+ return false;
+
+ if (StreamArg < 0)
+ return true;
+
+ // These functions might be considered cold, but only if their stream
+ // argument is stderr.
+
+ if (StreamArg >= (int) CI->getNumArgOperands())
+ return false;
+ LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
+ if (!LI)
+ return false;
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
+ if (!GV || !GV->isDeclaration())
+ return false;
+ return GV->getName() == "stderr";
+ }
+
+ int StreamArg;
+};
+
+struct PrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return nullptr;
+
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 0);
+
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // printf("x") -> putchar('x'), even for '%'.
+ if (FormatStr.size() == 1) {
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size()-1] == '\n' &&
+ FormatStr.find('%') == StringRef::npos) { // No format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ Value *NewCI = EmitPutS(GV, B, DL, TLI);
+ return (CI->use_empty() || !NewCI) ?
+ NewCI :
+ ConstantInt::get(CI->getType(), FormatStr.size()+1);
+ }
+
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy()) {
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
+
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy()) {
+ return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
+ }
+ return nullptr;
+ }
+
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return nullptr;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+ }
+};
+
+struct SPrintFOpt : public LibCallOptimization {
+ Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%')
+ return nullptr; // we found a format specifier, bail out.
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
+ FormatStr.size() + 1), 1); // nul byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
+
+ Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
+ if (!Len)
+ return nullptr;
+ Value *IncLen = B.CreateAdd(Len,
+ ConstantInt::get(Len->getType(), 1),
+ "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
+ }
+ return nullptr;
+ }
+
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Require two fixed pointer arguments and an integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+ }
+};
+
+struct FPrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ ErrorReportingOpt ER(/* StreamArg = */ 0);
+ (void) ER.callOptimizer(Callee, CI, B);
+
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
+
+ // Do not do any of the following transformations if the fprintf return
+ // value is used, in general the fprintf return value is not compatible
+ // with fwrite(), fputc() or fputs().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
+ return nullptr; // We found a format specifier.
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ return EmitFWrite(CI->getArgOperand(1),
+ ConstantInt::get(DL->getIntPtrType(*Context),
+ FormatStr.size()),
+ CI->getArgOperand(0), B, DL, TLI);
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
+ return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ }
+
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
+ }
+ return nullptr;
+ }
+
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Require two fixed paramters as pointers and integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return nullptr;
+ }
+};
+
+struct FWriteOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ ErrorReportingOpt ER(/* StreamArg = */ 3);
+ (void) ER.callOptimizer(Callee, CI, B);
+
+ // Require a pointer, an integer, an integer, a pointer, returning integer.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getParamType(3)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return nullptr;
+
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeC || !CountC) return nullptr;
+ uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
+
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
+
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
+ }
+
+ return nullptr;
+ }
+};
+
+struct FPutsOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ ErrorReportingOpt ER(/* StreamArg = */ 1);
+ (void) ER.callOptimizer(Callee, CI, B);
+
+ // These optimizations require DataLayout.
+ if (!DL) return nullptr;
+
+ // Require two pointers. Also, we can't optimize if return value is used.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !CI->use_empty())
+ return nullptr;
+
+ // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len) return nullptr;
+ // Known to have no uses (see above).
+ return EmitFWrite(CI->getArgOperand(0),
+ ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
+ CI->getArgOperand(1), B, DL, TLI);
+ }
+};
+
+struct PutsOpt : public LibCallOptimization {
+ Value *callOptimizer(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) override {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return nullptr;
+
+ // Check for a constant string.
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return nullptr;
+
+ if (Str.empty() && CI->use_empty()) {
+ // puts("") -> putchar('\n')
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ return nullptr;
+ }
+};
+
+} // End anonymous namespace.
+
+namespace llvm {
+
+class LibCallSimplifierImpl {
+ const DataLayout *DL;
+ const TargetLibraryInfo *TLI;
+ const LibCallSimplifier *LCS;
+ bool UnsafeFPShrink;
+
+ // Math library call optimizations.
+ CosOpt Cos;
+ PowOpt Pow;
+ Exp2Opt Exp2;
+public:
+ LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
+ const LibCallSimplifier *LCS,
+ bool UnsafeFPShrink = false)
+ : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
+ this->DL = DL;
+ this->TLI = TLI;
+ this->LCS = LCS;
+ this->UnsafeFPShrink = UnsafeFPShrink;
+ }
+
+ Value *optimizeCall(CallInst *CI);
+ LibCallOptimization *lookupOptimization(CallInst *CI);
+ bool hasFloatVersion(StringRef FuncName);
+};
+
+bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
+ LibFunc::Func Func;
+ SmallString<20> FloatFuncName = FuncName;
+ FloatFuncName += 'f';
+ if (TLI->getLibFunc(FloatFuncName, Func))
+ return TLI->has(Func);
+ return false;
+}
+
+// Fortified library call optimizations.
+static MemCpyChkOpt MemCpyChk;
+static MemMoveChkOpt MemMoveChk;
+static MemSetChkOpt MemSetChk;
+static StrCpyChkOpt StrCpyChk;
+static StpCpyChkOpt StpCpyChk;
+static StrNCpyChkOpt StrNCpyChk;
+
+// String library call optimizations.
+static StrCatOpt StrCat;
+static StrNCatOpt StrNCat;
+static StrChrOpt StrChr;
+static StrRChrOpt StrRChr;
+static StrCmpOpt StrCmp;
+static StrNCmpOpt StrNCmp;
+static StrCpyOpt StrCpy;
+static StpCpyOpt StpCpy;
+static StrNCpyOpt StrNCpy;
+static StrLenOpt StrLen;
+static StrPBrkOpt StrPBrk;
+static StrToOpt StrTo;
+static StrSpnOpt StrSpn;
+static StrCSpnOpt StrCSpn;
+static StrStrOpt StrStr;
+
+// Memory library call optimizations.
+static MemCmpOpt MemCmp;
+static MemCpyOpt MemCpy;
+static MemMoveOpt MemMove;
+static MemSetOpt MemSet;
+
+// Math library call optimizations.
+static UnaryDoubleFPOpt UnaryDoubleFP(false);
+static BinaryDoubleFPOpt BinaryDoubleFP(false);
+static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+static SinCosPiOpt SinCosPi;
+
+ // Integer library call optimizations.
+static FFSOpt FFS;
+static AbsOpt Abs;
+static IsDigitOpt IsDigit;
+static IsAsciiOpt IsAscii;
+static ToAsciiOpt ToAscii;
+
+// Formatting and IO library call optimizations.
+static ErrorReportingOpt ErrorReporting;
+static ErrorReportingOpt ErrorReporting0(0);
+static ErrorReportingOpt ErrorReporting1(1);
+static PrintFOpt PrintF;
+static SPrintFOpt SPrintF;
+static FPrintFOpt FPrintF;
+static FWriteOpt FWrite;
+static FPutsOpt FPuts;
+static PutsOpt Puts;
+
+LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
+ LibFunc::Func Func;
+ Function *Callee = CI->getCalledFunction();
+ StringRef FuncName = Callee->getName();
+
+ // Next check for intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::pow:
+ return &Pow;
+ case Intrinsic::exp2:
+ return &Exp2;
+ default:
+ return nullptr;
+ }
+ }
+
+ // Then check for known library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ switch (Func) {
+ case LibFunc::strcat:
+ return &StrCat;
+ case LibFunc::strncat:
+ return &StrNCat;
+ case LibFunc::strchr:
+ return &StrChr;
+ case LibFunc::strrchr:
+ return &StrRChr;
+ case LibFunc::strcmp:
+ return &StrCmp;
+ case LibFunc::strncmp:
+ return &StrNCmp;
+ case LibFunc::strcpy:
+ return &StrCpy;
+ case LibFunc::stpcpy:
+ return &StpCpy;
+ case LibFunc::strncpy:
+ return &StrNCpy;
+ case LibFunc::strlen:
+ return &StrLen;
+ case LibFunc::strpbrk:
+ return &StrPBrk;
+ case LibFunc::strtol:
+ case LibFunc::strtod:
+ case LibFunc::strtof:
+ case LibFunc::strtoul:
+ case LibFunc::strtoll:
+ case LibFunc::strtold:
+ case LibFunc::strtoull:
+ return &StrTo;
+ case LibFunc::strspn:
+ return &StrSpn;
+ case LibFunc::strcspn:
+ return &StrCSpn;
+ case LibFunc::strstr:
+ return &StrStr;
+ case LibFunc::memcmp:
+ return &MemCmp;
+ case LibFunc::memcpy:
+ return &MemCpy;
+ case LibFunc::memmove:
+ return &MemMove;
+ case LibFunc::memset:
+ return &MemSet;
+ case LibFunc::cosf:
+ case LibFunc::cos:
+ case LibFunc::cosl:
+ return &Cos;
+ case LibFunc::sinpif:
+ case LibFunc::sinpi:
+ case LibFunc::cospif:
+ case LibFunc::cospi:
+ return &SinCosPi;
+ case LibFunc::powf:
+ case LibFunc::pow:
+ case LibFunc::powl:
+ return &Pow;
+ case LibFunc::exp2l:
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ return &Exp2;
+ case LibFunc::ffs:
+ case LibFunc::ffsl:
+ case LibFunc::ffsll:
+ return &FFS;
+ case LibFunc::abs:
+ case LibFunc::labs:
+ case LibFunc::llabs:
+ return &Abs;
+ case LibFunc::isdigit:
+ return &IsDigit;
+ case LibFunc::isascii:
+ return &IsAscii;
+ case LibFunc::toascii:
+ return &ToAscii;
+ case LibFunc::printf:
+ return &PrintF;
+ case LibFunc::sprintf:
+ return &SPrintF;
+ case LibFunc::fprintf:
+ return &FPrintF;
+ case LibFunc::fwrite:
+ return &FWrite;
+ case LibFunc::fputs:
+ return &FPuts;
+ case LibFunc::puts:
+ return &Puts;
+ case LibFunc::perror:
+ return &ErrorReporting;
+ case LibFunc::vfprintf:
+ case LibFunc::fiprintf:
+ return &ErrorReporting0;
+ case LibFunc::fputc:
+ return &ErrorReporting1;
+ case LibFunc::ceil:
+ case LibFunc::fabs:
+ case LibFunc::floor:
+ case LibFunc::rint:
+ case LibFunc::round:
+ case LibFunc::nearbyint:
+ case LibFunc::trunc:
+ if (hasFloatVersion(FuncName))
+ return &UnaryDoubleFP;
+ return nullptr;
+ case LibFunc::acos:
+ case LibFunc::acosh:
+ case LibFunc::asin:
+ case LibFunc::asinh:
+ case LibFunc::atan:
+ case LibFunc::atanh:
+ case LibFunc::cbrt:
+ case LibFunc::cosh:
+ case LibFunc::exp:
+ case LibFunc::exp10:
+ case LibFunc::expm1:
+ case LibFunc::log:
+ case LibFunc::log10:
+ case LibFunc::log1p:
+ case LibFunc::log2:
+ case LibFunc::logb:
+ case LibFunc::sin:
+ case LibFunc::sinh:
+ case LibFunc::sqrt:
+ case LibFunc::tan:
+ case LibFunc::tanh:
+ if (UnsafeFPShrink && hasFloatVersion(FuncName))
+ return &UnsafeUnaryDoubleFP;
+ return nullptr;
+ case LibFunc::fmin:
+ case LibFunc::fmax:
+ if (hasFloatVersion(FuncName))
+ return &BinaryDoubleFP;
+ return nullptr;
+ case LibFunc::memcpy_chk:
+ return &MemCpyChk;
+ default:
+ return nullptr;
+ }
+ }
+
+ // Finally check for fortified library calls.
+ if (FuncName.endswith("_chk")) {
+ if (FuncName == "__memmove_chk")
+ return &MemMoveChk;
+ else if (FuncName == "__memset_chk")
+ return &MemSetChk;
+ else if (FuncName == "__strcpy_chk")
+ return &StrCpyChk;
+ else if (FuncName == "__stpcpy_chk")
+ return &StpCpyChk;
+ else if (FuncName == "__strncpy_chk")
+ return &StrNCpyChk;
+ else if (FuncName == "__stpncpy_chk")
+ return &StrNCpyChk;
+ }
+
+ return nullptr;
+
+}
+
+Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
+ LibCallOptimization *LCO = lookupOptimization(CI);
+ if (LCO) {
+ IRBuilder<> Builder(CI);
+ return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
+ }
+ return nullptr;
+}
+
+LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
+ const TargetLibraryInfo *TLI,
+ bool UnsafeFPShrink) {
+ Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
+}
+
+LibCallSimplifier::~LibCallSimplifier() {
+ delete Impl;
+}
+
+Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
+ if (CI->isNoBuiltin()) return nullptr;
+ return Impl->optimizeCall(CI);
+}
+
+void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
+ I->replaceAllUsesWith(With);
+ I->eraseFromParent();
+}
+
+}
+
+// TODO:
+// Additional cases that we need to add to this file:
+//
+// cbrt:
+// * cbrt(expN(X)) -> expN(x/3)
+// * cbrt(sqrt(x)) -> pow(x,1/6)
+// * cbrt(sqrt(x)) -> pow(x,1/9)
+//
+// exp, expf, expl:
+// * exp(log(x)) -> x
+//
+// log, logf, logl:
+// * log(exp(x)) -> x
+// * log(x**y) -> y*log(x)
+// * log(exp(y)) -> y*log(e)
+// * log(exp2(y)) -> y*log(2)
+// * log(exp10(y)) -> y*log(10)
+// * log(sqrt(x)) -> 0.5*log(x)
+// * log(pow(x,y)) -> y*log(x)
+//
+// lround, lroundf, lroundl:
+// * lround(cnst) -> cnst'
+//
+// pow, powf, powl:
+// * pow(exp(x),y) -> exp(x*y)
+// * pow(sqrt(x),y) -> pow(x,y*0.5)
+// * pow(pow(x,y),z)-> pow(x,y*z)
+//
+// round, roundf, roundl:
+// * round(cnst) -> cnst'
+//
+// signbit:
+// * signbit(cnst) -> cnst'
+// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
+//
+// sqrt, sqrtf, sqrtl:
+// * sqrt(expN(x)) -> expN(x*0.5)
+// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
+// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
+//
+// tan, tanf, tanl:
+// * tan(atan(x)) -> x
+//
+// trunc, truncf, truncl:
+// * trunc(cnst) -> cnst'
+//
+//
OpenPOWER on IntegriCloud