diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp | 2363 |
1 files changed, 2363 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp new file mode 100644 index 0000000..3b61bb5 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -0,0 +1,2363 @@ +//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is a utility pass used for testing the InstructionSimplify analysis. +// The analysis is applied to every instruction, and if it simplifies then the +// instruction is replaced by the simplification. If you are looking for a pass +// that performs serious instruction folding, use the instcombine pass instead. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" + +using namespace llvm; + +static cl::opt<bool> +ColdErrorCalls("error-reporting-is-cold", cl::init(true), + cl::Hidden, cl::desc("Treat error-reporting calls as cold")); + +/// This class is the abstract base class for the set of optimizations that +/// corresponds to one library call. +namespace { +class LibCallOptimization { +protected: + Function *Caller; + const DataLayout *DL; + const TargetLibraryInfo *TLI; + const LibCallSimplifier *LCS; + LLVMContext* Context; +public: + LibCallOptimization() { } + virtual ~LibCallOptimization() {} + + /// callOptimizer - This pure virtual method is implemented by base classes to + /// do various optimizations. If this returns null then no transformation was + /// performed. If it returns CI, then it transformed the call and CI is to be + /// deleted. If it returns something else, replace CI with the new value and + /// delete CI. + virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) + =0; + + /// ignoreCallingConv - Returns false if this transformation could possibly + /// change the calling convention. + virtual bool ignoreCallingConv() { return false; } + + Value *optimizeCall(CallInst *CI, const DataLayout *DL, + const TargetLibraryInfo *TLI, + const LibCallSimplifier *LCS, IRBuilder<> &B) { + Caller = CI->getParent()->getParent(); + this->DL = DL; + this->TLI = TLI; + this->LCS = LCS; + if (CI->getCalledFunction()) + Context = &CI->getCalledFunction()->getContext(); + + // We never change the calling convention. + if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C) + return nullptr; + + return callOptimizer(CI->getCalledFunction(), CI, B); + } +}; + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the +/// value is equal or not-equal to zero. +static bool isOnlyUsedInZeroEqualityComparison(Value *V) { + for (User *U : V->users()) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) + if (IC->isEquality()) + if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + // Unknown instruction. + return false; + } + return true; +} + +/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality +/// comparisons with With. +static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { + for (User *U : V->users()) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) + if (IC->isEquality() && IC->getOperand(1) == With) + continue; + // Unknown instruction. + return false; + } + return true; +} + +static bool callHasFloatingPointArgument(const CallInst *CI) { + for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); + it != e; ++it) { + if ((*it)->getType()->isFloatingPointTy()) + return true; + } + return false; +} + +/// \brief Check whether the overloaded unary floating point function +/// corresponing to \a Ty is available. +static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, + LibFunc::Func DoubleFn, LibFunc::Func FloatFn, + LibFunc::Func LongDoubleFn) { + switch (Ty->getTypeID()) { + case Type::FloatTyID: + return TLI->has(FloatFn); + case Type::DoubleTyID: + return TLI->has(DoubleFn); + default: + return TLI->has(LongDoubleFn); + } +} + +//===----------------------------------------------------------------------===// +// Fortified Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct FortifiedLibCallOptimization : public LibCallOptimization { +protected: + virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, + bool isString) const = 0; +}; + +struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { + CallInst *CI; + + bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, + bool isString) const override { + if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) + return true; + if (ConstantInt *SizeCI = + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { + if (SizeCI->isAllOnesValue()) + return true; + if (isString) { + uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); + // If the length is 0 we don't know how long it is and so we can't + // remove the check. + if (Len == 0) return false; + return SizeCI->getZExtValue() >= Len; + } + if (ConstantInt *Arg = dyn_cast<ConstantInt>( + CI->getArgOperand(SizeArgOp))) + return SizeCI->getZExtValue() >= Arg->getZExtValue(); + } + return false; + } +}; + +struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(Context) || + FT->getParamType(3) != DL->getIntPtrType(Context)) + return nullptr; + + if (isFoldable(3, 2, false)) { + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return nullptr; + } +}; + +struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(Context) || + FT->getParamType(3) != DL->getIntPtrType(Context)) + return nullptr; + + if (isFoldable(3, 2, false)) { + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return nullptr; + } +}; + +struct MemSetChkOpt : public InstFortifiedLibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + this->CI = CI; + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != DL->getIntPtrType(Context) || + FT->getParamType(3) != DL->getIntPtrType(Context)) + return nullptr; + + if (isFoldable(3, 2, false)) { + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), + false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } + return nullptr; + } +}; + +struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != DL->getIntPtrType(Context)) + return nullptr; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // __strcpy_chk(x,x) -> x + return Src; + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain strcpy. Otherwise we'll keep our + // strcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFoldable(2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __strcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; + + // This optimization require DataLayout. + if (!DL) return nullptr; + + Value *Ret = + EmitMemCpyChk(Dst, Src, + ConstantInt::get(DL->getIntPtrType(Context), Len), + CI->getArgOperand(2), B, DL, TLI); + return Ret; + } + return nullptr; + } +}; + +struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 3 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) + return nullptr; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, DL, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; + } + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain stpcpy. Otherwise we'll keep our + // stpcpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFoldable(2, 1, true)) { + Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); + return Ret; + } else { + // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; + + // This optimization require DataLayout. + if (!DL) return nullptr; + + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(Dst, + ConstantInt::get(DL->getIntPtrType(PT), + Len - 1)); + if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI)) + return nullptr; + return DstEnd; + } + return nullptr; + } +}; + +struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + this->CI = CI; + StringRef Name = Callee->getName(); + FunctionType *FT = Callee->getFunctionType(); + LLVMContext &Context = CI->getParent()->getContext(); + + // Check if this has the right signature. + if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != Type::getInt8PtrTy(Context) || + !FT->getParamType(2)->isIntegerTy() || + FT->getParamType(3) != DL->getIntPtrType(Context)) + return nullptr; + + if (isFoldable(3, 2, false)) { + Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, DL, TLI, + Name.substr(2, 7)); + return Ret; + } + return nullptr; + } +}; + +//===----------------------------------------------------------------------===// +// String and Memory Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct StrCatOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strcat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType()) + return nullptr; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; + --Len; // Unbias length. + + // Handle the simple, do-nothing case: strcat(x, "") -> x + if (Len == 0) + return Dst; + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + return emitStrLenMemCpy(Src, Dst, Len, B); + } + + Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, + IRBuilder<> &B) { + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen. + Value *DstLen = EmitStrLen(Dst, B, DL, TLI); + if (!DstLen) + return nullptr; + + // Now that we have the destination's length, we must index into the + // destination's pointer to get the actual memcpy destination (end of + // the string .. we're concatenating). + Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); + + // We have enough information to now generate the memcpy call to do the + // concatenation for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(CpyDst, Src, + ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1); + return Dst; + } +}; + +struct StrNCatOpt : public StrCatOpt { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strncat" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + FT->getParamType(1) != FT->getReturnType() || + !FT->getParamType(2)->isIntegerTy()) + return nullptr; + + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + uint64_t Len; + + // We don't do anything if length is not constant + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) + Len = LengthArg->getZExtValue(); + else + return nullptr; + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) return nullptr; + --SrcLen; // Unbias length. + + // Handle the simple, do-nothing cases: + // strncat(x, "", c) -> x + // strncat(x, c, 0) -> x + if (SrcLen == 0 || Len == 0) return Dst; + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + // We don't optimize this case + if (Len < SrcLen) return nullptr; + + // strncat(x, s, c) -> strcat(x, s) + // s is constant so the strcat can be optimized further + return emitStrLenMemCpy(Src, Dst, SrcLen, B); + } +}; + +struct StrChrOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return nullptr; + + Value *SrcStr = CI->getArgOperand(0); + + // If the second operand is non-constant, see if we can compute the length + // of the input string and turn this into memchr. + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + if (!CharC) { + // These optimizations require DataLayout. + if (!DL) return nullptr; + + uint64_t Len = GetStringLength(SrcStr); + if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. + return nullptr; + + return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. + ConstantInt::get(DL->getIntPtrType(*Context), Len), + B, DL, TLI); + } + + // Otherwise, the character is a constant, see if the first argument is + // a string literal. If so, we can constant fold. + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) + return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); + return nullptr; + } + + // Compute the offset, make sure to handle the case when we're searching for + // zero (a weird way to spell strlen). + size_t I = (0xFF & CharC->getSExtValue()) == 0 ? + Str.size() : Str.find(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. strchr returns null. + return Constant::getNullValue(CI->getType()); + + // strchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); + } +}; + +struct StrRChrOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strrchr" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != B.getInt8PtrTy() || + FT->getParamType(0) != FT->getReturnType() || + !FT->getParamType(1)->isIntegerTy(32)) + return nullptr; + + Value *SrcStr = CI->getArgOperand(0); + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + + // Cannot fold anything if we're not looking for a constant. + if (!CharC) + return nullptr; + + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + // strrchr(s, 0) -> strchr(s, 0) + if (DL && CharC->isZero()) + return EmitStrChr(SrcStr, '\0', B, DL, TLI); + return nullptr; + } + + // Compute the offset. + size_t I = (0xFF & CharC->getSExtValue()) == 0 ? + Str.size() : Str.rfind(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. Return null. + return Constant::getNullValue(CI->getType()); + + // strrchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); + } +}; + +struct StrCmpOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strcmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return nullptr; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strcmp(x,x) -> 0 + return ConstantInt::get(CI->getType(), 0); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strcmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) + return ConstantInt::get(CI->getType(), Str1.compare(Str2)); + + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x + return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), + CI->getType())); + + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + // strcmp(P, "x") -> memcmp(P, "x", 2) + uint64_t Len1 = GetStringLength(Str1P); + uint64_t Len2 = GetStringLength(Str2P); + if (Len1 && Len2) { + // These optimizations require DataLayout. + if (!DL) return nullptr; + + return EmitMemCmp(Str1P, Str2P, + ConstantInt::get(DL->getIntPtrType(*Context), + std::min(Len1, Len2)), B, DL, TLI); + } + + return nullptr; + } +}; + +struct StrNCmpOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strncmp" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || + !FT->getReturnType()->isIntegerTy(32) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return nullptr; + + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strncmp(x,x,n) -> 0 + return ConstantInt::get(CI->getType(), 0); + + // Get the length argument if it is constant. + uint64_t Length; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) + Length = LengthArg->getZExtValue(); + else + return nullptr; + + if (Length == 0) // strncmp(x,y,0) -> 0 + return ConstantInt::get(CI->getType(), 0); + + if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) + return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strncmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) { + StringRef SubStr1 = Str1.substr(0, Length); + StringRef SubStr2 = Str2.substr(0, Length); + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); + } + + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x + return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), + CI->getType())); + + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x + return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); + + return nullptr; + } +}; + +struct StrCpyOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "strcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return nullptr; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // strcpy(x,x) -> x + return Src; + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, + ConstantInt::get(DL->getIntPtrType(*Context), Len), 1); + return Dst; + } +}; + +struct StpCpyOpt: public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Verify the "stpcpy" function prototype. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy()) + return nullptr; + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = EmitStrLen(Src, B, DL, TLI); + return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; + } + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len == 0) return nullptr; + + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(Dst, + ConstantInt::get(DL->getIntPtrType(PT), + Len - 1)); + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy(Dst, Src, LenV, 1); + return DstEnd; + } +}; + +struct StrNCpyOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getParamType(2)->isIntegerTy()) + return nullptr; + + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + Value *LenOp = CI->getArgOperand(2); + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen == 0) return nullptr; + --SrcLen; + + if (SrcLen == 0) { + // strncpy(x, "", y) -> memset(x, '\0', y, 1) + B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); + return Dst; + } + + uint64_t Len; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) + Len = LengthArg->getZExtValue(); + else + return nullptr; + + if (Len == 0) return Dst; // strncpy(x, y, 0) -> x + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + // Let strncpy handle the zero padding + if (Len > SrcLen+1) return nullptr; + + Type *PT = FT->getParamType(0); + // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] + B.CreateMemCpy(Dst, Src, + ConstantInt::get(DL->getIntPtrType(PT), Len), 1); + + return Dst; + } +}; + +struct StrLenOpt : public LibCallOptimization { + bool ignoreCallingConv() override { return true; } + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || + FT->getParamType(0) != B.getInt8PtrTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + Value *Src = CI->getArgOperand(0); + + // Constant folding: strlen("xyz") -> 3 + if (uint64_t Len = GetStringLength(Src)) + return ConstantInt::get(CI->getType(), Len-1); + + // strlen(x?"foo":"bars") --> x ? 3 : 4 + if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { + uint64_t LenTrue = GetStringLength(SI->getTrueValue()); + uint64_t LenFalse = GetStringLength(SI->getFalseValue()); + if (LenTrue && LenFalse) { + emitOptimizationRemark(*Context, "simplify-libcalls", *Caller, + SI->getDebugLoc(), + "folded strlen(select) to select of constants"); + return B.CreateSelect(SI->getCondition(), + ConstantInt::get(CI->getType(), LenTrue-1), + ConstantInt::get(CI->getType(), LenFalse-1)); + } + } + + // strlen(x) != 0 --> *x != 0 + // strlen(x) == 0 --> *x == 0 + if (isOnlyUsedInZeroEqualityComparison(CI)) + return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); + + return nullptr; + } +}; + +struct StrPBrkOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + FT->getReturnType() != FT->getParamType(0)) + return nullptr; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strpbrk(s, "") -> NULL + // strpbrk("", s) -> NULL + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t I = S1.find_first_of(S2); + if (I == StringRef::npos) // No match. + return Constant::getNullValue(CI->getType()); + + return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); + } + + // strpbrk(s, "a") -> strchr(s, 'a') + if (DL && HasS2 && S2.size() == 1) + return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); + + return nullptr; + } +}; + +struct StrToOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy()) + return nullptr; + + Value *EndPtr = CI->getArgOperand(1); + if (isa<ConstantPointerNull>(EndPtr)) { + // With a null EndPtr, this function won't capture the main argument. + // It would be readonly too, except that it still may write to errno. + CI->addAttribute(1, Attribute::NoCapture); + } + + return nullptr; + } +}; + +struct StrSpnOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strspn(s, "") -> 0 + // strspn("", s) -> 0 + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_not_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + return nullptr; + } +}; + +struct StrCSpnOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + FT->getParamType(0) != B.getInt8PtrTy() || + FT->getParamType(1) != FT->getParamType(0) || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strcspn("", s) -> 0 + if (HasS1 && S1.empty()) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + // strcspn(s, "") -> strlen(s) + if (DL && HasS2 && S2.empty()) + return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); + + return nullptr; + } +}; + +struct StrStrOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isPointerTy()) + return nullptr; + + // fold strstr(x, x) -> x. + if (CI->getArgOperand(0) == CI->getArgOperand(1)) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 + if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { + Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); + if (!StrLen) + return nullptr; + Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), + StrLen, B, DL, TLI); + if (!StrNCmp) + return nullptr; + for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { + ICmpInst *Old = cast<ICmpInst>(*UI++); + Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, + ConstantInt::getNullValue(StrNCmp->getType()), + "cmp"); + LCS->replaceAllUsesWith(Old, Cmp); + } + return CI; + } + + // See if either input string is a constant string. + StringRef SearchStr, ToFindStr; + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); + + // fold strstr(x, "") -> x. + if (HasStr2 && ToFindStr.empty()) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // If both strings are known, constant fold it. + if (HasStr1 && HasStr2) { + size_t Offset = SearchStr.find(ToFindStr); + + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null + return Constant::getNullValue(CI->getType()); + + // strstr("abcd", "bc") -> gep((char*)"abcd", 1) + Value *Result = CastToCStr(CI->getArgOperand(0), B); + Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); + return B.CreateBitCast(Result, CI->getType()); + } + + // fold strstr(x, "y") -> strchr(x, 'y'). + if (HasStr2 && ToFindStr.size() == 1) { + Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; + } + return nullptr; + } +}; + +struct MemCmpOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy(32)) + return nullptr; + + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); + + if (LHS == RHS) // memcmp(s,s,x) -> 0 + return Constant::getNullValue(CI->getType()); + + // Make sure we have a constant length. + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + if (!LenC) return nullptr; + uint64_t Len = LenC->getZExtValue(); + + if (Len == 0) // memcmp(s1,s2,0) -> 0 + return Constant::getNullValue(CI->getType()); + + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS + if (Len == 1) { + Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), + CI->getType(), "lhsv"); + Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), + CI->getType(), "rhsv"); + return B.CreateSub(LHSV, RHSV, "chardiff"); + } + + // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) + StringRef LHSStr, RHSStr; + if (getConstantStringInfo(LHS, LHSStr) && + getConstantStringInfo(RHS, RHSStr)) { + // Make sure we're not reading out-of-bounds memory. + if (Len > LHSStr.size() || Len > RHSStr.size()) + return nullptr; + // Fold the memcmp and normalize the result. This way we get consistent + // results across multiple platforms. + uint64_t Ret = 0; + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); + if (Cmp < 0) + Ret = -1; + else if (Cmp > 0) + Ret = 1; + return ConstantInt::get(CI->getType(), Ret); + } + + return nullptr; + } +}; + +struct MemCpyOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // These optimizations require DataLayout. + if (!DL) return nullptr; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(*Context)) + return nullptr; + + // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +struct MemMoveOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // These optimizations require DataLayout. + if (!DL) return nullptr; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + FT->getParamType(2) != DL->getIntPtrType(*Context)) + return nullptr; + + // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) + B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +struct MemSetOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // These optimizations require DataLayout. + if (!DL) return nullptr; + + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) + return nullptr; + + // memset(p, v, n) -> llvm.memset(p, v, n, 1) + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); + return CI->getArgOperand(0); + } +}; + +//===----------------------------------------------------------------------===// +// Math Library Optimizations +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Double -> Float Shrinking Optimizations for Unary Functions like 'floor' + +struct UnaryDoubleFPOpt : public LibCallOptimization { + bool CheckRetType; + UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || + !FT->getParamType(0)->isDoubleTy()) + return nullptr; + + if (CheckRetType) { + // Check if all the uses for function like 'sin' are converted to float. + for (User *U : CI->users()) { + FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); + if (!Cast || !Cast->getType()->isFloatTy()) + return nullptr; + } + } + + // If this is something like 'floor((double)floatval)', convert to floorf. + FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); + if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy()) + return nullptr; + + // floor((double)floatval) -> (double)floorf(floatval) + Value *V = Cast->getOperand(0); + V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); + return B.CreateFPExt(V, B.getDoubleTy()); + } +}; + +// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' +struct BinaryDoubleFPOpt : public LibCallOptimization { + bool CheckRetType; + BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {} + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + !FT->getParamType(0)->isFloatingPointTy()) + return nullptr; + + if (CheckRetType) { + // Check if all the uses for function like 'fmin/fmax' are converted to + // float. + for (User *U : CI->users()) { + FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); + if (!Cast || !Cast->getType()->isFloatTy()) + return nullptr; + } + } + + // If this is something like 'fmin((double)floatval1, (double)floatval2)', + // we convert it to fminf. + FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0)); + FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1)); + if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || + !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy()) + return nullptr; + + // fmin((double)floatval1, (double)floatval2) + // -> (double)fmin(floatval1, floatval2) + Value *V = nullptr; + Value *V1 = Cast1->getOperand(0); + Value *V2 = Cast2->getOperand(0); + V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, + Callee->getAttributes()); + return B.CreateFPExt(V, B.getDoubleTy()); + } +}; + +struct UnsafeFPLibCallOptimization : public LibCallOptimization { + bool UnsafeFPShrink; + UnsafeFPLibCallOptimization(bool UnsafeFPShrink) { + this->UnsafeFPShrink = UnsafeFPShrink; + } +}; + +struct CosOpt : public UnsafeFPLibCallOptimization { + CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + Value *Ret = nullptr; + if (UnsafeFPShrink && Callee->getName() == "cos" && + TLI->has(LibFunc::cosf)) { + UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); + Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); + } + + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; + + // cos(-x) -> cos(x) + Value *Op1 = CI->getArgOperand(0); + if (BinaryOperator::isFNeg(Op1)) { + BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); + } + return Ret; + } +}; + +struct PowOpt : public UnsafeFPLibCallOptimization { + PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + Value *Ret = nullptr; + if (UnsafeFPShrink && Callee->getName() == "pow" && + TLI->has(LibFunc::powf)) { + UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); + Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); + } + + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || + FT->getParamType(0) != FT->getParamType(1) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; + + Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); + if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { + // pow(1.0, x) -> 1.0 + if (Op1C->isExactlyValue(1.0)) + return Op1C; + // pow(2.0, x) -> exp2(x) + if (Op1C->isExactlyValue(2.0) && + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, + LibFunc::exp2l)) + return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); + // pow(10.0, x) -> exp10(x) + if (Op1C->isExactlyValue(10.0) && + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, + LibFunc::exp10l)) + return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, + Callee->getAttributes()); + } + + ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); + if (!Op2C) return Ret; + + if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 + return ConstantFP::get(CI->getType(), 1.0); + + if (Op2C->isExactlyValue(0.5) && + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, + LibFunc::sqrtl) && + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, + LibFunc::fabsl)) { + // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). + // This is faster than calling pow, and still handles negative zero + // and negative infinity correctly. + // TODO: In fast-math mode, this could be just sqrt(x). + // TODO: In finite-only mode, this could be just fabs(sqrt(x)). + Value *Inf = ConstantFP::getInfinity(CI->getType()); + Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); + Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, + Callee->getAttributes()); + Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, + Callee->getAttributes()); + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); + Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); + return Sel; + } + + if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x + return Op1; + if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x + return B.CreateFMul(Op1, Op1, "pow2"); + if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x + return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), + Op1, "powrecip"); + return nullptr; + } +}; + +struct Exp2Opt : public UnsafeFPLibCallOptimization { + Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {} + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + Value *Ret = nullptr; + if (UnsafeFPShrink && Callee->getName() == "exp2" && + TLI->has(LibFunc::exp2f)) { + UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); + Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B); + } + + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) + return Ret; + + Value *Op = CI->getArgOperand(0); + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 + LibFunc::Func LdExp = LibFunc::ldexpl; + if (Op->getType()->isFloatTy()) + LdExp = LibFunc::ldexpf; + else if (Op->getType()->isDoubleTy()) + LdExp = LibFunc::ldexp; + + if (TLI->has(LdExp)) { + Value *LdExpArg = nullptr; + if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) + LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); + } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { + if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) + LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); + } + + if (LdExpArg) { + Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); + if (!Op->getType()->isFloatTy()) + One = ConstantExpr::getFPExtend(One, Op->getType()); + + Module *M = Caller->getParent(); + Value *Callee = + M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), + Op->getType(), B.getInt32Ty(), NULL); + CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); + if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) + CI->setCallingConv(F->getCallingConv()); + + return CI; + } + } + return Ret; + } +}; + +struct SinCosPiOpt : public LibCallOptimization { + SinCosPiOpt() {} + + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Make sure the prototype is as expected, otherwise the rest of the + // function is probably invalid and likely to abort. + if (!isTrigLibCall(CI)) + return nullptr; + + Value *Arg = CI->getArgOperand(0); + SmallVector<CallInst *, 1> SinCalls; + SmallVector<CallInst *, 1> CosCalls; + SmallVector<CallInst *, 1> SinCosCalls; + + bool IsFloat = Arg->getType()->isFloatTy(); + + // Look for all compatible sinpi, cospi and sincospi calls with the same + // argument. If there are enough (in some sense) we can make the + // substitution. + for (User *U : Arg->users()) + classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, + SinCosCalls); + + // It's only worthwhile if both sinpi and cospi are actually used. + if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) + return nullptr; + + Value *Sin, *Cos, *SinCos; + insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, + SinCos); + + replaceTrigInsts(SinCalls, Sin); + replaceTrigInsts(CosCalls, Cos); + replaceTrigInsts(SinCosCalls, SinCos); + + return nullptr; + } + + bool isTrigLibCall(CallInst *CI) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + + // We can only hope to do anything useful if we can ignore things like errno + // and floating-point exceptions. + bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) && + CI->hasFnAttr(Attribute::ReadNone); + + // Other than that we need float(float) or double(double) + return AttributesSafe && FT->getNumParams() == 1 && + FT->getReturnType() == FT->getParamType(0) && + (FT->getParamType(0)->isFloatTy() || + FT->getParamType(0)->isDoubleTy()); + } + + void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, + SmallVectorImpl<CallInst *> &SinCalls, + SmallVectorImpl<CallInst *> &CosCalls, + SmallVectorImpl<CallInst *> &SinCosCalls) { + CallInst *CI = dyn_cast<CallInst>(Val); + + if (!CI) + return; + + Function *Callee = CI->getCalledFunction(); + StringRef FuncName = Callee->getName(); + LibFunc::Func Func; + if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || + !isTrigLibCall(CI)) + return; + + if (IsFloat) { + if (Func == LibFunc::sinpif) + SinCalls.push_back(CI); + else if (Func == LibFunc::cospif) + CosCalls.push_back(CI); + else if (Func == LibFunc::sincospif_stret) + SinCosCalls.push_back(CI); + } else { + if (Func == LibFunc::sinpi) + SinCalls.push_back(CI); + else if (Func == LibFunc::cospi) + CosCalls.push_back(CI); + else if (Func == LibFunc::sincospi_stret) + SinCosCalls.push_back(CI); + } + } + + void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) { + for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(), + E = Calls.end(); + I != E; ++I) { + LCS->replaceAllUsesWith(*I, Res); + } + } + + void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, + bool UseFloat, Value *&Sin, Value *&Cos, + Value *&SinCos) { + Type *ArgTy = Arg->getType(); + Type *ResTy; + StringRef Name; + + Triple T(OrigCallee->getParent()->getTargetTriple()); + if (UseFloat) { + Name = "__sincospif_stret"; + + assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); + // x86_64 can't use {float, float} since that would be returned in both + // xmm0 and xmm1, which isn't what a real struct would do. + ResTy = T.getArch() == Triple::x86_64 + ? static_cast<Type *>(VectorType::get(ArgTy, 2)) + : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL)); + } else { + Name = "__sincospi_stret"; + ResTy = StructType::get(ArgTy, ArgTy, NULL); + } + + Module *M = OrigCallee->getParent(); + Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), + ResTy, ArgTy, NULL); + + if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { + // If the argument is an instruction, it must dominate all uses so put our + // sincos call there. + BasicBlock::iterator Loc = ArgInst; + B.SetInsertPoint(ArgInst->getParent(), ++Loc); + } else { + // Otherwise (e.g. for a constant) the beginning of the function is as + // good a place as any. + BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); + B.SetInsertPoint(&EntryBB, EntryBB.begin()); + } + + SinCos = B.CreateCall(Callee, Arg, "sincospi"); + + if (SinCos->getType()->isStructTy()) { + Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); + Cos = B.CreateExtractValue(SinCos, 1, "cospi"); + } else { + Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), + "sinpi"); + Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), + "cospi"); + } + } + +}; + +//===----------------------------------------------------------------------===// +// Integer Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct FFSOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 2 arguments of the same FP type, which match the + // result type. + if (FT->getNumParams() != 1 || + !FT->getReturnType()->isIntegerTy(32) || + !FT->getParamType(0)->isIntegerTy()) + return nullptr; + + Value *Op = CI->getArgOperand(0); + + // Constant fold. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + if (CI->isZero()) // ffs(0) -> 0. + return B.getInt32(0); + // ffs(c) -> cttz(c)+1 + return B.getInt32(CI->getValue().countTrailingZeros() + 1); + } + + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 + Type *ArgType = Op->getType(); + Value *F = Intrinsic::getDeclaration(Callee->getParent(), + Intrinsic::cttz, ArgType); + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); + V = B.CreateIntCast(V, B.getInt32Ty(), false); + + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); + return B.CreateSelect(Cond, V, B.getInt32(0)); + } +}; + +struct AbsOpt : public LibCallOptimization { + bool ignoreCallingConv() override { return true; } + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + // We require integer(integer) where the types agree. + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + FT->getParamType(0) != FT->getReturnType()) + return nullptr; + + // abs(x) -> x >s -1 ? x : -x + Value *Op = CI->getArgOperand(0); + Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), + "ispos"); + Value *Neg = B.CreateNeg(Op, "neg"); + return B.CreateSelect(Pos, Op, Neg); + } +}; + +struct IsDigitOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + // We require integer(i32) + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + !FT->getParamType(0)->isIntegerTy(32)) + return nullptr; + + // isdigit(c) -> (c-'0') <u 10 + Value *Op = CI->getArgOperand(0); + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); + return B.CreateZExt(Op, CI->getType()); + } +}; + +struct IsAsciiOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + // We require integer(i32) + if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || + !FT->getParamType(0)->isIntegerTy(32)) + return nullptr; + + // isascii(c) -> c <u 128 + Value *Op = CI->getArgOperand(0); + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); + return B.CreateZExt(Op, CI->getType()); + } +}; + +struct ToAsciiOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + FunctionType *FT = Callee->getFunctionType(); + // We require i32(i32) + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isIntegerTy(32)) + return nullptr; + + // toascii(c) -> c & 0x7f + return B.CreateAnd(CI->getArgOperand(0), + ConstantInt::get(CI->getType(),0x7F)); + } +}; + +//===----------------------------------------------------------------------===// +// Formatting and IO Library Call Optimizations +//===----------------------------------------------------------------------===// + +struct ErrorReportingOpt : public LibCallOptimization { + ErrorReportingOpt(int S = -1) : StreamArg(S) {} + + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &) override { + // Error reporting calls should be cold, mark them as such. + // This applies even to non-builtin calls: it is only a hint and applies to + // functions that the frontend might not understand as builtins. + + // This heuristic was suggested in: + // Improving Static Branch Prediction in a Compiler + // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu + // Proceedings of PACT'98, Oct. 1998, IEEE + + if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) { + CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); + } + + return nullptr; + } + +protected: + bool isReportingError(Function *Callee, CallInst *CI) { + if (!ColdErrorCalls) + return false; + + if (!Callee || !Callee->isDeclaration()) + return false; + + if (StreamArg < 0) + return true; + + // These functions might be considered cold, but only if their stream + // argument is stderr. + + if (StreamArg >= (int) CI->getNumArgOperands()) + return false; + LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); + if (!LI) + return false; + GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); + if (!GV || !GV->isDeclaration()) + return false; + return GV->getName() == "stderr"; + } + + int StreamArg; +}; + +struct PrintFOpt : public LibCallOptimization { + Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, + IRBuilder<> &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) + return nullptr; + + // Empty format string -> noop. + if (FormatStr.empty()) // Tolerate printf's declared void. + return CI->use_empty() ? (Value*)CI : + ConstantInt::get(CI->getType(), 0); + + // Do not do any of the following transformations if the printf return value + // is used, in general the printf return value is not compatible with either + // putchar() or puts(). + if (!CI->use_empty()) + return nullptr; + + // printf("x") -> putchar('x'), even for '%'. + if (FormatStr.size() == 1) { + Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); + if (CI->use_empty() || !Res) return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + // printf("foo\n") --> puts("foo") + if (FormatStr[FormatStr.size()-1] == '\n' && + FormatStr.find('%') == StringRef::npos) { // No format characters. + // Create a string literal with no \n on it. We expect the constant merge + // pass to be run after this pass, to merge duplicate strings. + FormatStr = FormatStr.drop_back(); + Value *GV = B.CreateGlobalString(FormatStr, "str"); + Value *NewCI = EmitPutS(GV, B, DL, TLI); + return (CI->use_empty() || !NewCI) ? + NewCI : + ConstantInt::get(CI->getType(), FormatStr.size()+1); + } + + // Optimize specific format strings. + // printf("%c", chr) --> putchar(chr) + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isIntegerTy()) { + Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); + + if (CI->use_empty() || !Res) return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + // printf("%s\n", str) --> puts(str) + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isPointerTy()) { + return EmitPutS(CI->getArgOperand(1), B, DL, TLI); + } + return nullptr; + } + + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Require one fixed pointer argument and an integer/void result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || + !(FT->getReturnType()->isIntegerTy() || + FT->getReturnType()->isVoidTy())) + return nullptr; + + if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { + return V; + } + + // printf(format, ...) -> iprintf(format, ...) if no floating point + // arguments. + if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *IPrintFFn = + M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(IPrintFFn); + B.Insert(New); + return New; + } + return nullptr; + } +}; + +struct SPrintFOpt : public LibCallOptimization { + Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, + IRBuilder<> &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return nullptr; + + // If we just have a format string (nothing else crazy) transform it. + if (CI->getNumArgOperands() == 2) { + // Make sure there's no % in the constant array. We could try to handle + // %% -> % in the future if we cared. + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') + return nullptr; // we found a format specifier, bail out. + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), + ConstantInt::get(DL->getIntPtrType(*Context), // Copy the + FormatStr.size() + 1), 1); // nul byte. + return ConstantInt::get(CI->getType(), FormatStr.size()); + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return nullptr; + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); + Value *Ptr = CastToCStr(CI->getArgOperand(0), B); + B.CreateStore(V, Ptr); + Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); + B.CreateStore(B.getInt8(0), Ptr); + + return ConstantInt::get(CI->getType(), 1); + } + + if (FormatStr[1] == 's') { + // These optimizations require DataLayout. + if (!DL) return nullptr; + + // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr; + + Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); + if (!Len) + return nullptr; + Value *IncLen = B.CreateAdd(Len, + ConstantInt::get(Len->getType(), 1), + "leninc"); + B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); + + // The sprintf result is the unincremented number of bytes in the string. + return B.CreateIntCast(Len, CI->getType(), false); + } + return nullptr; + } + + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Require two fixed pointer arguments and an integer result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { + return V; + } + + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating + // point arguments. + if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *SIPrintFFn = + M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(SIPrintFFn); + B.Insert(New); + return New; + } + return nullptr; + } +}; + +struct FPrintFOpt : public LibCallOptimization { + Value *optimizeFixedFormatString(Function *Callee, CallInst *CI, + IRBuilder<> &B) { + ErrorReportingOpt ER(/* StreamArg = */ 0); + (void) ER.callOptimizer(Callee, CI, B); + + // All the optimizations depend on the format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return nullptr; + + // Do not do any of the following transformations if the fprintf return + // value is used, in general the fprintf return value is not compatible + // with fwrite(), fputc() or fputs(). + if (!CI->use_empty()) + return nullptr; + + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) + if (CI->getNumArgOperands() == 2) { + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') // Could handle %% -> % if we cared. + return nullptr; // We found a format specifier. + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + return EmitFWrite(CI->getArgOperand(1), + ConstantInt::get(DL->getIntPtrType(*Context), + FormatStr.size()), + CI->getArgOperand(0), B, DL, TLI); + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return nullptr; + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // fprintf(F, "%c", chr) --> fputc(chr, F) + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr; + return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); + } + + if (FormatStr[1] == 's') { + // fprintf(F, "%s", str) --> fputs(str, F) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) + return nullptr; + return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); + } + return nullptr; + } + + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Require two fixed paramters as pointers and integer result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + if (Value *V = optimizeFixedFormatString(Callee, CI, B)) { + return V; + } + + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no + // floating point arguments. + if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + Constant *FIPrintFFn = + M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(FIPrintFFn); + B.Insert(New); + return New; + } + return nullptr; + } +}; + +struct FWriteOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + ErrorReportingOpt ER(/* StreamArg = */ 3); + (void) ER.callOptimizer(Callee, CI, B); + + // Require a pointer, an integer, an integer, a pointer, returning integer. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isIntegerTy() || + !FT->getParamType(2)->isIntegerTy() || + !FT->getParamType(3)->isPointerTy() || + !FT->getReturnType()->isIntegerTy()) + return nullptr; + + // Get the element size and count. + ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + if (!SizeC || !CountC) return nullptr; + uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); + + // If this is writing zero records, remove the call (it's a noop). + if (Bytes == 0) + return ConstantInt::get(CI->getType(), 0); + + // If this is writing one byte, turn it into fputc. + // This optimisation is only valid, if the return value is unused. + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) + Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); + Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); + return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; + } + + return nullptr; + } +}; + +struct FPutsOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + ErrorReportingOpt ER(/* StreamArg = */ 1); + (void) ER.callOptimizer(Callee, CI, B); + + // These optimizations require DataLayout. + if (!DL) return nullptr; + + // Require two pointers. Also, we can't optimize if return value is used. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || + !FT->getParamType(1)->isPointerTy() || + !CI->use_empty()) + return nullptr; + + // fputs(s,F) --> fwrite(s,1,strlen(s),F) + uint64_t Len = GetStringLength(CI->getArgOperand(0)); + if (!Len) return nullptr; + // Known to have no uses (see above). + return EmitFWrite(CI->getArgOperand(0), + ConstantInt::get(DL->getIntPtrType(*Context), Len-1), + CI->getArgOperand(1), B, DL, TLI); + } +}; + +struct PutsOpt : public LibCallOptimization { + Value *callOptimizer(Function *Callee, CallInst *CI, + IRBuilder<> &B) override { + // Require one fixed pointer argument and an integer/void result. + FunctionType *FT = Callee->getFunctionType(); + if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || + !(FT->getReturnType()->isIntegerTy() || + FT->getReturnType()->isVoidTy())) + return nullptr; + + // Check for a constant string. + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(0), Str)) + return nullptr; + + if (Str.empty() && CI->use_empty()) { + // puts("") -> putchar('\n') + Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); + if (CI->use_empty() || !Res) return Res; + return B.CreateIntCast(Res, CI->getType(), true); + } + + return nullptr; + } +}; + +} // End anonymous namespace. + +namespace llvm { + +class LibCallSimplifierImpl { + const DataLayout *DL; + const TargetLibraryInfo *TLI; + const LibCallSimplifier *LCS; + bool UnsafeFPShrink; + + // Math library call optimizations. + CosOpt Cos; + PowOpt Pow; + Exp2Opt Exp2; +public: + LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI, + const LibCallSimplifier *LCS, + bool UnsafeFPShrink = false) + : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) { + this->DL = DL; + this->TLI = TLI; + this->LCS = LCS; + this->UnsafeFPShrink = UnsafeFPShrink; + } + + Value *optimizeCall(CallInst *CI); + LibCallOptimization *lookupOptimization(CallInst *CI); + bool hasFloatVersion(StringRef FuncName); +}; + +bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) { + LibFunc::Func Func; + SmallString<20> FloatFuncName = FuncName; + FloatFuncName += 'f'; + if (TLI->getLibFunc(FloatFuncName, Func)) + return TLI->has(Func); + return false; +} + +// Fortified library call optimizations. +static MemCpyChkOpt MemCpyChk; +static MemMoveChkOpt MemMoveChk; +static MemSetChkOpt MemSetChk; +static StrCpyChkOpt StrCpyChk; +static StpCpyChkOpt StpCpyChk; +static StrNCpyChkOpt StrNCpyChk; + +// String library call optimizations. +static StrCatOpt StrCat; +static StrNCatOpt StrNCat; +static StrChrOpt StrChr; +static StrRChrOpt StrRChr; +static StrCmpOpt StrCmp; +static StrNCmpOpt StrNCmp; +static StrCpyOpt StrCpy; +static StpCpyOpt StpCpy; +static StrNCpyOpt StrNCpy; +static StrLenOpt StrLen; +static StrPBrkOpt StrPBrk; +static StrToOpt StrTo; +static StrSpnOpt StrSpn; +static StrCSpnOpt StrCSpn; +static StrStrOpt StrStr; + +// Memory library call optimizations. +static MemCmpOpt MemCmp; +static MemCpyOpt MemCpy; +static MemMoveOpt MemMove; +static MemSetOpt MemSet; + +// Math library call optimizations. +static UnaryDoubleFPOpt UnaryDoubleFP(false); +static BinaryDoubleFPOpt BinaryDoubleFP(false); +static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true); +static SinCosPiOpt SinCosPi; + + // Integer library call optimizations. +static FFSOpt FFS; +static AbsOpt Abs; +static IsDigitOpt IsDigit; +static IsAsciiOpt IsAscii; +static ToAsciiOpt ToAscii; + +// Formatting and IO library call optimizations. +static ErrorReportingOpt ErrorReporting; +static ErrorReportingOpt ErrorReporting0(0); +static ErrorReportingOpt ErrorReporting1(1); +static PrintFOpt PrintF; +static SPrintFOpt SPrintF; +static FPrintFOpt FPrintF; +static FWriteOpt FWrite; +static FPutsOpt FPuts; +static PutsOpt Puts; + +LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) { + LibFunc::Func Func; + Function *Callee = CI->getCalledFunction(); + StringRef FuncName = Callee->getName(); + + // Next check for intrinsics. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { + switch (II->getIntrinsicID()) { + case Intrinsic::pow: + return &Pow; + case Intrinsic::exp2: + return &Exp2; + default: + return nullptr; + } + } + + // Then check for known library functions. + if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { + switch (Func) { + case LibFunc::strcat: + return &StrCat; + case LibFunc::strncat: + return &StrNCat; + case LibFunc::strchr: + return &StrChr; + case LibFunc::strrchr: + return &StrRChr; + case LibFunc::strcmp: + return &StrCmp; + case LibFunc::strncmp: + return &StrNCmp; + case LibFunc::strcpy: + return &StrCpy; + case LibFunc::stpcpy: + return &StpCpy; + case LibFunc::strncpy: + return &StrNCpy; + case LibFunc::strlen: + return &StrLen; + case LibFunc::strpbrk: + return &StrPBrk; + case LibFunc::strtol: + case LibFunc::strtod: + case LibFunc::strtof: + case LibFunc::strtoul: + case LibFunc::strtoll: + case LibFunc::strtold: + case LibFunc::strtoull: + return &StrTo; + case LibFunc::strspn: + return &StrSpn; + case LibFunc::strcspn: + return &StrCSpn; + case LibFunc::strstr: + return &StrStr; + case LibFunc::memcmp: + return &MemCmp; + case LibFunc::memcpy: + return &MemCpy; + case LibFunc::memmove: + return &MemMove; + case LibFunc::memset: + return &MemSet; + case LibFunc::cosf: + case LibFunc::cos: + case LibFunc::cosl: + return &Cos; + case LibFunc::sinpif: + case LibFunc::sinpi: + case LibFunc::cospif: + case LibFunc::cospi: + return &SinCosPi; + case LibFunc::powf: + case LibFunc::pow: + case LibFunc::powl: + return &Pow; + case LibFunc::exp2l: + case LibFunc::exp2: + case LibFunc::exp2f: + return &Exp2; + case LibFunc::ffs: + case LibFunc::ffsl: + case LibFunc::ffsll: + return &FFS; + case LibFunc::abs: + case LibFunc::labs: + case LibFunc::llabs: + return &Abs; + case LibFunc::isdigit: + return &IsDigit; + case LibFunc::isascii: + return &IsAscii; + case LibFunc::toascii: + return &ToAscii; + case LibFunc::printf: + return &PrintF; + case LibFunc::sprintf: + return &SPrintF; + case LibFunc::fprintf: + return &FPrintF; + case LibFunc::fwrite: + return &FWrite; + case LibFunc::fputs: + return &FPuts; + case LibFunc::puts: + return &Puts; + case LibFunc::perror: + return &ErrorReporting; + case LibFunc::vfprintf: + case LibFunc::fiprintf: + return &ErrorReporting0; + case LibFunc::fputc: + return &ErrorReporting1; + case LibFunc::ceil: + case LibFunc::fabs: + case LibFunc::floor: + case LibFunc::rint: + case LibFunc::round: + case LibFunc::nearbyint: + case LibFunc::trunc: + if (hasFloatVersion(FuncName)) + return &UnaryDoubleFP; + return nullptr; + case LibFunc::acos: + case LibFunc::acosh: + case LibFunc::asin: + case LibFunc::asinh: + case LibFunc::atan: + case LibFunc::atanh: + case LibFunc::cbrt: + case LibFunc::cosh: + case LibFunc::exp: + case LibFunc::exp10: + case LibFunc::expm1: + case LibFunc::log: + case LibFunc::log10: + case LibFunc::log1p: + case LibFunc::log2: + case LibFunc::logb: + case LibFunc::sin: + case LibFunc::sinh: + case LibFunc::sqrt: + case LibFunc::tan: + case LibFunc::tanh: + if (UnsafeFPShrink && hasFloatVersion(FuncName)) + return &UnsafeUnaryDoubleFP; + return nullptr; + case LibFunc::fmin: + case LibFunc::fmax: + if (hasFloatVersion(FuncName)) + return &BinaryDoubleFP; + return nullptr; + case LibFunc::memcpy_chk: + return &MemCpyChk; + default: + return nullptr; + } + } + + // Finally check for fortified library calls. + if (FuncName.endswith("_chk")) { + if (FuncName == "__memmove_chk") + return &MemMoveChk; + else if (FuncName == "__memset_chk") + return &MemSetChk; + else if (FuncName == "__strcpy_chk") + return &StrCpyChk; + else if (FuncName == "__stpcpy_chk") + return &StpCpyChk; + else if (FuncName == "__strncpy_chk") + return &StrNCpyChk; + else if (FuncName == "__stpncpy_chk") + return &StrNCpyChk; + } + + return nullptr; + +} + +Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { + LibCallOptimization *LCO = lookupOptimization(CI); + if (LCO) { + IRBuilder<> Builder(CI); + return LCO->optimizeCall(CI, DL, TLI, LCS, Builder); + } + return nullptr; +} + +LibCallSimplifier::LibCallSimplifier(const DataLayout *DL, + const TargetLibraryInfo *TLI, + bool UnsafeFPShrink) { + Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink); +} + +LibCallSimplifier::~LibCallSimplifier() { + delete Impl; +} + +Value *LibCallSimplifier::optimizeCall(CallInst *CI) { + if (CI->isNoBuiltin()) return nullptr; + return Impl->optimizeCall(CI); +} + +void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { + I->replaceAllUsesWith(With); + I->eraseFromParent(); +} + +} + +// TODO: +// Additional cases that we need to add to this file: +// +// cbrt: +// * cbrt(expN(X)) -> expN(x/3) +// * cbrt(sqrt(x)) -> pow(x,1/6) +// * cbrt(sqrt(x)) -> pow(x,1/9) +// +// exp, expf, expl: +// * exp(log(x)) -> x +// +// log, logf, logl: +// * log(exp(x)) -> x +// * log(x**y) -> y*log(x) +// * log(exp(y)) -> y*log(e) +// * log(exp2(y)) -> y*log(2) +// * log(exp10(y)) -> y*log(10) +// * log(sqrt(x)) -> 0.5*log(x) +// * log(pow(x,y)) -> y*log(x) +// +// lround, lroundf, lroundl: +// * lround(cnst) -> cnst' +// +// pow, powf, powl: +// * pow(exp(x),y) -> exp(x*y) +// * pow(sqrt(x),y) -> pow(x,y*0.5) +// * pow(pow(x,y),z)-> pow(x,y*z) +// +// round, roundf, roundl: +// * round(cnst) -> cnst' +// +// signbit: +// * signbit(cnst) -> cnst' +// * signbit(nncst) -> 0 (if pstv is a non-negative constant) +// +// sqrt, sqrtf, sqrtl: +// * sqrt(expN(x)) -> expN(x*0.5) +// * sqrt(Nroot(x)) -> pow(x,1/(2*N)) +// * sqrt(pow(x,y)) -> pow(|x|,y*0.5) +// +// tan, tanf, tanl: +// * tan(atan(x)) -> x +// +// trunc, truncf, truncl: +// * trunc(cnst) -> cnst' +// +// |