summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp988
1 files changed, 894 insertions, 94 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index c3ea638..c231704 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -15,12 +15,17 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
-#include "llvm/DataLayout.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/LLVMContext.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Allocator.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
@@ -48,6 +53,10 @@ public:
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
+ /// ignoreCallingConv - Returns false if this transformation could possibly
+ /// change the calling convention.
+ virtual bool ignoreCallingConv() { return false; }
+
Value *optimizeCall(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const LibCallSimplifier *LCS, IRBuilder<> &B) {
@@ -59,7 +68,7 @@ public:
Context = &CI->getCalledFunction()->getContext();
// We never change the calling convention.
- if (CI->getCallingConv() != llvm::CallingConv::C)
+ if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
return NULL;
return callOptimizer(CI->getCalledFunction(), CI, B);
@@ -100,6 +109,15 @@ static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
return true;
}
+static bool callHasFloatingPointArgument(const CallInst *CI) {
+ for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
+ it != e; ++it) {
+ if ((*it)->getType()->isFloatingPointTy())
+ return true;
+ }
+ return false;
+}
+
//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//
@@ -713,6 +731,7 @@ struct StrNCpyOpt : public LibCallOptimization {
};
struct StrLenOpt : public LibCallOptimization {
+ virtual bool ignoreCallingConv() { return true; }
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
@@ -781,8 +800,7 @@ struct StrToOpt : public LibCallOptimization {
if (isa<ConstantPointerNull>(EndPtr)) {
// With a null EndPtr, this function won't capture the main argument.
// It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attributes::get(Callee->getContext(),
- Attributes::NoCapture));
+ CI->addAttribute(1, Attribute::NoCapture);
}
return 0;
@@ -951,7 +969,14 @@ struct MemCmpOpt : public LibCallOptimization {
// Make sure we're not reading out-of-bounds memory.
if (Len > LHSStr.size() || Len > RHSStr.size())
return 0;
- uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
return ConstantInt::get(CI->getType(), Ret);
}
@@ -1016,6 +1041,630 @@ struct MemSetOpt : public LibCallOptimization {
}
};
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+struct UnaryDoubleFPOpt : public LibCallOptimization {
+ bool CheckRetType;
+ UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
+ return 0;
+
+ if (CheckRetType) {
+ // Check if all the uses for function like 'sin' are converted to float.
+ for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
+ ++UseI) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
+ if (Cast == 0 || !Cast->getType()->isFloatTy())
+ return 0;
+ }
+ }
+
+ // If this is something like 'floor((double)floatval)', convert to floorf.
+ FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
+ if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
+ return 0;
+
+ // floor((double)floatval) -> (double)floorf(floatval)
+ Value *V = Cast->getOperand(0);
+ V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
+ return B.CreateFPExt(V, B.getDoubleTy());
+ }
+};
+
+struct UnsafeFPLibCallOptimization : public LibCallOptimization {
+ bool UnsafeFPShrink;
+ UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
+ this->UnsafeFPShrink = UnsafeFPShrink;
+ }
+};
+
+struct CosOpt : public UnsafeFPLibCallOptimization {
+ CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "cos" &&
+ TLI->has(LibFunc::cosf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ // cos(-x) -> cos(x)
+ Value *Op1 = CI->getArgOperand(0);
+ if (BinaryOperator::isFNeg(Op1)) {
+ BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+ return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+ }
+ return Ret;
+ }
+};
+
+struct PowOpt : public UnsafeFPLibCallOptimization {
+ PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "pow" &&
+ TLI->has(LibFunc::powf)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+ FT->getParamType(0) != FT->getParamType(1) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
+ return Op1C;
+ if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
+ return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
+ }
+
+ ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+ if (Op2C == 0) return Ret;
+
+ if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
+ return ConstantFP::get(CI->getType(), 1.0);
+
+ if (Op2C->isExactlyValue(0.5)) {
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinity correctly.
+ // TODO: In fast-math mode, this could be just sqrt(x).
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
+ Callee->getAttributes());
+ Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
+ Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+ return Sel;
+ }
+
+ if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
+ return Op1;
+ if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
+ return B.CreateFMul(Op1, Op1, "pow2");
+ if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
+ Op1, "powrecip");
+ return 0;
+ }
+};
+
+struct Exp2Opt : public UnsafeFPLibCallOptimization {
+ Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ Value *Ret = NULL;
+ if (UnsafeFPShrink && Callee->getName() == "exp2" &&
+ TLI->has(LibFunc::exp2)) {
+ UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+ Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+ }
+
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 1 argument of FP type, which matches the
+ // result type.
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isFloatingPointTy())
+ return Ret;
+
+ Value *Op = CI->getArgOperand(0);
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ Value *LdExpArg = 0;
+ if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+ LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+ } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+ if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+ LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
+ }
+
+ if (LdExpArg) {
+ const char *Name;
+ if (Op->getType()->isFloatTy())
+ Name = "ldexpf";
+ else if (Op->getType()->isDoubleTy())
+ Name = "ldexp";
+ else
+ Name = "ldexpl";
+
+ Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
+
+ Module *M = Caller->getParent();
+ Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
+ Op->getType(),
+ B.getInt32Ty(), NULL);
+ CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+ if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+ CI->setCallingConv(F->getCallingConv());
+
+ return CI;
+ }
+ return Ret;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Integer Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct FFSOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // Just make sure this has 2 arguments of the same FP type, which match the
+ // result type.
+ if (FT->getNumParams() != 1 ||
+ !FT->getReturnType()->isIntegerTy(32) ||
+ !FT->getParamType(0)->isIntegerTy())
+ return 0;
+
+ Value *Op = CI->getArgOperand(0);
+
+ // Constant fold.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->isZero()) // ffs(0) -> 0.
+ return B.getInt32(0);
+ // ffs(c) -> cttz(c)+1
+ return B.getInt32(CI->getValue().countTrailingZeros() + 1);
+ }
+
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Type *ArgType = Op->getType();
+ Value *F = Intrinsic::getDeclaration(Callee->getParent(),
+ Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+ }
+};
+
+struct AbsOpt : public LibCallOptimization {
+ virtual bool ignoreCallingConv() { return true; }
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(integer) where the types agree.
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ FT->getParamType(0) != FT->getReturnType())
+ return 0;
+
+ // abs(x) -> x >s -1 ? x : -x
+ Value *Op = CI->getArgOperand(0);
+ Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
+ "ispos");
+ Value *Neg = B.CreateNeg(Op, "neg");
+ return B.CreateSelect(Pos, Op, Neg);
+ }
+};
+
+struct IsDigitOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct IsAsciiOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require integer(i32)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+ }
+};
+
+struct ToAsciiOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ FunctionType *FT = Callee->getFunctionType();
+ // We require i32(i32)
+ if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+ !FT->getParamType(0)->isIntegerTy(32))
+ return 0;
+
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(),0x7F));
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+struct PrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return 0;
+
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 0);
+
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return 0;
+
+ // printf("x") -> putchar('x'), even for '%'.
+ if (FormatStr.size() == 1) {
+ Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size()-1] == '\n' &&
+ FormatStr.find('%') == std::string::npos) { // no format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ Value *NewCI = EmitPutS(GV, B, TD, TLI);
+ return (CI->use_empty() || !NewCI) ?
+ NewCI :
+ ConstantInt::get(CI->getType(), FormatStr.size()+1);
+ }
+
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy()) {
+ Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
+
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy()) {
+ return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return 0;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct SPrintFOpt : public LibCallOptimization {
+ Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return 0;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%')
+ return 0; // we found a format specifier, bail out.
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
+ FormatStr.size() + 1), 1); // nul byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return 0;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
+
+ Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
+ if (!Len)
+ return 0;
+ Value *IncLen = B.CreateAdd(Len,
+ ConstantInt::get(Len->getType(), 1),
+ "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require two fixed pointer arguments and an integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct FPrintFOpt : public LibCallOptimization {
+ Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
+ IRBuilder<> &B) {
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return 0;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+ if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
+ return 0; // We found a format specifier.
+
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ Value *NewCI = EmitFWrite(CI->getArgOperand(1),
+ ConstantInt::get(TD->getIntPtrType(*Context),
+ FormatStr.size()),
+ CI->getArgOperand(0), B, TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return 0;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
+ Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
+ TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
+ }
+
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
+ return 0;
+ return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
+ }
+ return 0;
+ }
+
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require two fixed paramters as pointers and integer result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
+ return V;
+ }
+
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ Constant *FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+ return 0;
+ }
+};
+
+struct FWriteOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require a pointer, an integer, an integer, a pointer, returning integer.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isIntegerTy() ||
+ !FT->getParamType(2)->isIntegerTy() ||
+ !FT->getParamType(3)->isPointerTy() ||
+ !FT->getReturnType()->isIntegerTy())
+ return 0;
+
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (!SizeC || !CountC) return 0;
+ uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
+
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
+
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
+ }
+
+ return 0;
+ }
+};
+
+struct FPutsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require DataLayout.
+ if (!TD) return 0;
+
+ // Require two pointers. Also, we can't optimize if return value is used.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
+ !FT->getParamType(1)->isPointerTy() ||
+ !CI->use_empty())
+ return 0;
+
+ // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len) return 0;
+ // Known to have no uses (see above).
+ return EmitFWrite(CI->getArgOperand(0),
+ ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
+ CI->getArgOperand(1), B, TD, TLI);
+ }
+};
+
+struct PutsOpt : public LibCallOptimization {
+ virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // Require one fixed pointer argument and an integer/void result.
+ FunctionType *FT = Callee->getFunctionType();
+ if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
+ !(FT->getReturnType()->isIntegerTy() ||
+ FT->getReturnType()->isVoidTy()))
+ return 0;
+
+ // Check for a constant string.
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return 0;
+
+ if (Str.empty() && CI->use_empty()) {
+ // puts("") -> putchar('\n')
+ Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
+ if (CI->use_empty() || !Res) return Res;
+ return B.CreateIntCast(Res, CI->getType(), true);
+ }
+
+ return 0;
+ }
+};
+
} // End anonymous namespace.
namespace llvm {
@@ -1024,98 +1673,252 @@ class LibCallSimplifierImpl {
const DataLayout *TD;
const TargetLibraryInfo *TLI;
const LibCallSimplifier *LCS;
- StringMap<LibCallOptimization*> Optimizations;
-
- // Fortified library call optimizations.
- MemCpyChkOpt MemCpyChk;
- MemMoveChkOpt MemMoveChk;
- MemSetChkOpt MemSetChk;
- StrCpyChkOpt StrCpyChk;
- StpCpyChkOpt StpCpyChk;
- StrNCpyChkOpt StrNCpyChk;
-
- // String library call optimizations.
- StrCatOpt StrCat;
- StrNCatOpt StrNCat;
- StrChrOpt StrChr;
- StrRChrOpt StrRChr;
- StrCmpOpt StrCmp;
- StrNCmpOpt StrNCmp;
- StrCpyOpt StrCpy;
- StpCpyOpt StpCpy;
- StrNCpyOpt StrNCpy;
- StrLenOpt StrLen;
- StrPBrkOpt StrPBrk;
- StrToOpt StrTo;
- StrSpnOpt StrSpn;
- StrCSpnOpt StrCSpn;
- StrStrOpt StrStr;
-
- // Memory library call optimizations.
- MemCmpOpt MemCmp;
- MemCpyOpt MemCpy;
- MemMoveOpt MemMove;
- MemSetOpt MemSet;
-
- void initOptimizations();
- void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
+ bool UnsafeFPShrink;
+
+ // Math library call optimizations.
+ CosOpt Cos;
+ PowOpt Pow;
+ Exp2Opt Exp2;
public:
LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
- const LibCallSimplifier *LCS) {
+ const LibCallSimplifier *LCS,
+ bool UnsafeFPShrink = false)
+ : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
this->TD = TD;
this->TLI = TLI;
this->LCS = LCS;
+ this->UnsafeFPShrink = UnsafeFPShrink;
}
Value *optimizeCall(CallInst *CI);
+ LibCallOptimization *lookupOptimization(CallInst *CI);
+ bool hasFloatVersion(StringRef FuncName);
};
-void LibCallSimplifierImpl::initOptimizations() {
- // Fortified library call optimizations.
- Optimizations["__memcpy_chk"] = &MemCpyChk;
- Optimizations["__memmove_chk"] = &MemMoveChk;
- Optimizations["__memset_chk"] = &MemSetChk;
- Optimizations["__strcpy_chk"] = &StrCpyChk;
- Optimizations["__stpcpy_chk"] = &StpCpyChk;
- Optimizations["__strncpy_chk"] = &StrNCpyChk;
- Optimizations["__stpncpy_chk"] = &StrNCpyChk;
-
- // String library call optimizations.
- addOpt(LibFunc::strcat, &StrCat);
- addOpt(LibFunc::strncat, &StrNCat);
- addOpt(LibFunc::strchr, &StrChr);
- addOpt(LibFunc::strrchr, &StrRChr);
- addOpt(LibFunc::strcmp, &StrCmp);
- addOpt(LibFunc::strncmp, &StrNCmp);
- addOpt(LibFunc::strcpy, &StrCpy);
- addOpt(LibFunc::stpcpy, &StpCpy);
- addOpt(LibFunc::strncpy, &StrNCpy);
- addOpt(LibFunc::strlen, &StrLen);
- addOpt(LibFunc::strpbrk, &StrPBrk);
- addOpt(LibFunc::strtol, &StrTo);
- addOpt(LibFunc::strtod, &StrTo);
- addOpt(LibFunc::strtof, &StrTo);
- addOpt(LibFunc::strtoul, &StrTo);
- addOpt(LibFunc::strtoll, &StrTo);
- addOpt(LibFunc::strtold, &StrTo);
- addOpt(LibFunc::strtoull, &StrTo);
- addOpt(LibFunc::strspn, &StrSpn);
- addOpt(LibFunc::strcspn, &StrCSpn);
- addOpt(LibFunc::strstr, &StrStr);
-
- // Memory library call optimizations.
- addOpt(LibFunc::memcmp, &MemCmp);
- addOpt(LibFunc::memcpy, &MemCpy);
- addOpt(LibFunc::memmove, &MemMove);
- addOpt(LibFunc::memset, &MemSet);
+bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
+ LibFunc::Func Func;
+ SmallString<20> FloatFuncName = FuncName;
+ FloatFuncName += 'f';
+ if (TLI->getLibFunc(FloatFuncName, Func))
+ return TLI->has(Func);
+ return false;
}
-Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
- if (Optimizations.empty())
- initOptimizations();
-
+// Fortified library call optimizations.
+static MemCpyChkOpt MemCpyChk;
+static MemMoveChkOpt MemMoveChk;
+static MemSetChkOpt MemSetChk;
+static StrCpyChkOpt StrCpyChk;
+static StpCpyChkOpt StpCpyChk;
+static StrNCpyChkOpt StrNCpyChk;
+
+// String library call optimizations.
+static StrCatOpt StrCat;
+static StrNCatOpt StrNCat;
+static StrChrOpt StrChr;
+static StrRChrOpt StrRChr;
+static StrCmpOpt StrCmp;
+static StrNCmpOpt StrNCmp;
+static StrCpyOpt StrCpy;
+static StpCpyOpt StpCpy;
+static StrNCpyOpt StrNCpy;
+static StrLenOpt StrLen;
+static StrPBrkOpt StrPBrk;
+static StrToOpt StrTo;
+static StrSpnOpt StrSpn;
+static StrCSpnOpt StrCSpn;
+static StrStrOpt StrStr;
+
+// Memory library call optimizations.
+static MemCmpOpt MemCmp;
+static MemCpyOpt MemCpy;
+static MemMoveOpt MemMove;
+static MemSetOpt MemSet;
+
+// Math library call optimizations.
+static UnaryDoubleFPOpt UnaryDoubleFP(false);
+static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+
+ // Integer library call optimizations.
+static FFSOpt FFS;
+static AbsOpt Abs;
+static IsDigitOpt IsDigit;
+static IsAsciiOpt IsAscii;
+static ToAsciiOpt ToAscii;
+
+// Formatting and IO library call optimizations.
+static PrintFOpt PrintF;
+static SPrintFOpt SPrintF;
+static FPrintFOpt FPrintF;
+static FWriteOpt FWrite;
+static FPutsOpt FPuts;
+static PutsOpt Puts;
+
+LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
+ LibFunc::Func Func;
Function *Callee = CI->getCalledFunction();
- LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
+ StringRef FuncName = Callee->getName();
+
+ // Next check for intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::pow:
+ return &Pow;
+ case Intrinsic::exp2:
+ return &Exp2;
+ default:
+ return 0;
+ }
+ }
+
+ // Then check for known library functions.
+ if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
+ switch (Func) {
+ case LibFunc::strcat:
+ return &StrCat;
+ case LibFunc::strncat:
+ return &StrNCat;
+ case LibFunc::strchr:
+ return &StrChr;
+ case LibFunc::strrchr:
+ return &StrRChr;
+ case LibFunc::strcmp:
+ return &StrCmp;
+ case LibFunc::strncmp:
+ return &StrNCmp;
+ case LibFunc::strcpy:
+ return &StrCpy;
+ case LibFunc::stpcpy:
+ return &StpCpy;
+ case LibFunc::strncpy:
+ return &StrNCpy;
+ case LibFunc::strlen:
+ return &StrLen;
+ case LibFunc::strpbrk:
+ return &StrPBrk;
+ case LibFunc::strtol:
+ case LibFunc::strtod:
+ case LibFunc::strtof:
+ case LibFunc::strtoul:
+ case LibFunc::strtoll:
+ case LibFunc::strtold:
+ case LibFunc::strtoull:
+ return &StrTo;
+ case LibFunc::strspn:
+ return &StrSpn;
+ case LibFunc::strcspn:
+ return &StrCSpn;
+ case LibFunc::strstr:
+ return &StrStr;
+ case LibFunc::memcmp:
+ return &MemCmp;
+ case LibFunc::memcpy:
+ return &MemCpy;
+ case LibFunc::memmove:
+ return &MemMove;
+ case LibFunc::memset:
+ return &MemSet;
+ case LibFunc::cosf:
+ case LibFunc::cos:
+ case LibFunc::cosl:
+ return &Cos;
+ case LibFunc::powf:
+ case LibFunc::pow:
+ case LibFunc::powl:
+ return &Pow;
+ case LibFunc::exp2l:
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ return &Exp2;
+ case LibFunc::ffs:
+ case LibFunc::ffsl:
+ case LibFunc::ffsll:
+ return &FFS;
+ case LibFunc::abs:
+ case LibFunc::labs:
+ case LibFunc::llabs:
+ return &Abs;
+ case LibFunc::isdigit:
+ return &IsDigit;
+ case LibFunc::isascii:
+ return &IsAscii;
+ case LibFunc::toascii:
+ return &ToAscii;
+ case LibFunc::printf:
+ return &PrintF;
+ case LibFunc::sprintf:
+ return &SPrintF;
+ case LibFunc::fprintf:
+ return &FPrintF;
+ case LibFunc::fwrite:
+ return &FWrite;
+ case LibFunc::fputs:
+ return &FPuts;
+ case LibFunc::puts:
+ return &Puts;
+ case LibFunc::ceil:
+ case LibFunc::fabs:
+ case LibFunc::floor:
+ case LibFunc::rint:
+ case LibFunc::round:
+ case LibFunc::nearbyint:
+ case LibFunc::trunc:
+ if (hasFloatVersion(FuncName))
+ return &UnaryDoubleFP;
+ return 0;
+ case LibFunc::acos:
+ case LibFunc::acosh:
+ case LibFunc::asin:
+ case LibFunc::asinh:
+ case LibFunc::atan:
+ case LibFunc::atanh:
+ case LibFunc::cbrt:
+ case LibFunc::cosh:
+ case LibFunc::exp:
+ case LibFunc::exp10:
+ case LibFunc::expm1:
+ case LibFunc::log:
+ case LibFunc::log10:
+ case LibFunc::log1p:
+ case LibFunc::log2:
+ case LibFunc::logb:
+ case LibFunc::sin:
+ case LibFunc::sinh:
+ case LibFunc::sqrt:
+ case LibFunc::tan:
+ case LibFunc::tanh:
+ if (UnsafeFPShrink && hasFloatVersion(FuncName))
+ return &UnsafeUnaryDoubleFP;
+ return 0;
+ case LibFunc::memcpy_chk:
+ return &MemCpyChk;
+ default:
+ return 0;
+ }
+ }
+
+ // Finally check for fortified library calls.
+ if (FuncName.endswith("_chk")) {
+ if (FuncName == "__memmove_chk")
+ return &MemMoveChk;
+ else if (FuncName == "__memset_chk")
+ return &MemSetChk;
+ else if (FuncName == "__strcpy_chk")
+ return &StrCpyChk;
+ else if (FuncName == "__stpcpy_chk")
+ return &StpCpyChk;
+ else if (FuncName == "__strncpy_chk")
+ return &StrNCpyChk;
+ else if (FuncName == "__stpncpy_chk")
+ return &StrNCpyChk;
+ }
+
+ return 0;
+
+}
+
+Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
+ LibCallOptimization *LCO = lookupOptimization(CI);
if (LCO) {
IRBuilder<> Builder(CI);
return LCO->optimizeCall(CI, TD, TLI, LCS, Builder);
@@ -1123,14 +1926,10 @@ Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
return 0;
}
-void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) {
- if (TLI->has(F))
- Optimizations[TLI->getName(F)] = Opt;
-}
-
LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
- Impl = new LibCallSimplifierImpl(TD, TLI, this);
+ const TargetLibraryInfo *TLI,
+ bool UnsafeFPShrink) {
+ Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
}
LibCallSimplifier::~LibCallSimplifier() {
@@ -1138,6 +1937,7 @@ LibCallSimplifier::~LibCallSimplifier() {
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
+ if (CI->hasFnAttr(Attribute::NoBuiltin)) return 0;
return Impl->optimizeCall(CI);
}
OpenPOWER on IntegriCloud