summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp706
1 files changed, 589 insertions, 117 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
index 36781c1..d0932f83 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -14,6 +14,7 @@
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
@@ -43,7 +44,6 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <map>
@@ -73,6 +73,22 @@ static cl::opt<bool> HoistCondStores(
"simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
cl::desc("Hoist conditional stores if an unconditional store precedes"));
+static cl::opt<bool> MergeCondStores(
+ "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
+ cl::desc("Hoist conditional stores even if an unconditional store does not "
+ "precede - hoist multiple conditional stores into a single "
+ "predicated store"));
+
+static cl::opt<bool> MergeCondStoresAggressively(
+ "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
+ cl::desc("When merging conditional stores, do so even if the resultant "
+ "basic blocks are unlikely to be if-converted as a result"));
+
+static cl::opt<bool> SpeculateOneExpensiveInst(
+ "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
+ cl::desc("Allow exactly one expensive instruction to be speculatively "
+ "executed"));
+
STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
@@ -83,13 +99,13 @@ STATISTIC(NumSpeculations, "Number of speculative executed instructions");
namespace {
// The first field contains the value that the switch produces when a certain
- // case group is selected, and the second field is a vector containing the cases
- // composing the case group.
+ // case group is selected, and the second field is a vector containing the
+ // cases composing the case group.
typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
SwitchCaseResultVectorTy;
// The first field contains the phi node that generates a result of the switch
- // and the second field contains the value generated for a certain case in the switch
- // for that PHI.
+ // and the second field contains the value generated for a certain case in the
+ // switch for that PHI.
typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
/// ValueEqualityComparisonCase - Represents a case of a switch.
@@ -124,6 +140,7 @@ class SimplifyCFGOpt {
bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
+ bool SimplifyCleanupReturn(CleanupReturnInst *RI);
bool SimplifyUnreachable(UnreachableInst *UI);
bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
bool SimplifyIndirectBr(IndirectBrInst *IBI);
@@ -226,6 +243,7 @@ static unsigned ComputeSpeculationCost(const User *I,
"Instruction is not safe to speculatively execute!");
return TTI.getUserCost(I);
}
+
/// If we have a merge point of an "if condition" as accepted above,
/// return true if the specified value dominates the block. We
/// don't handle the true generality of domination here, just a special case
@@ -246,7 +264,8 @@ static unsigned ComputeSpeculationCost(const User *I,
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
SmallPtrSetImpl<Instruction*> *AggressiveInsts,
unsigned &CostRemaining,
- const TargetTransformInfo &TTI) {
+ const TargetTransformInfo &TTI,
+ unsigned Depth = 0) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
// Non-instructions all dominate instructions, but not all constantexprs
@@ -284,15 +303,24 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
unsigned Cost = ComputeSpeculationCost(I, TTI);
- if (Cost > CostRemaining)
+ // Allow exactly one instruction to be speculated regardless of its cost
+ // (as long as it is safe to do so).
+ // This is intended to flatten the CFG even if the instruction is a division
+ // or other expensive operation. The speculation of an expensive instruction
+ // is expected to be undone in CodeGenPrepare if the speculation has not
+ // enabled further IR optimizations.
+ if (Cost > CostRemaining &&
+ (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
return false;
- CostRemaining -= Cost;
+ // Avoid unsigned wrap.
+ CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
// Okay, we can only really hoist these out if their operands do
// not take us over the cost threshold.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
- if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
+ if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
+ Depth + 1))
return false;
// Okay, it's safe to do this! Remember this instruction.
AggressiveInsts->insert(I);
@@ -970,8 +998,8 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
// Okay, at this point, we know which new successor Pred will get. Make
// sure we update the number of entries in the PHI nodes for these
// successors.
- for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
- AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
+ for (BasicBlock *NewSuccessor : NewSuccessors)
+ AddPredecessorToBlock(NewSuccessor, Pred, BB);
Builder.SetInsertPoint(PTI);
// Convert pointer to int before we switch.
@@ -984,8 +1012,8 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
PredCases.size());
NewSI->setDebugLoc(PTI->getDebugLoc());
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
+ for (ValueEqualityComparisonCase &V : PredCases)
+ NewSI->addCase(V.Value, V.Dest);
if (PredHasWeights || SuccHasWeights) {
// Halve the weights if any of them cannot fit in an uint32_t
@@ -1059,15 +1087,15 @@ static bool HoistThenElseCodeToIf(BranchInst *BI,
BasicBlock::iterator BB1_Itr = BB1->begin();
BasicBlock::iterator BB2_Itr = BB2->begin();
- Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
+ Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
// Skip debug info if it is not identical.
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
while (isa<DbgInfoIntrinsic>(I1))
- I1 = BB1_Itr++;
+ I1 = &*BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
- I2 = BB2_Itr++;
+ I2 = &*BB2_Itr++;
}
if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
(isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
@@ -1088,31 +1116,30 @@ static bool HoistThenElseCodeToIf(BranchInst *BI,
// For a normal instruction, we just move one to right before the branch,
// then replace all uses of the other with the first. Finally, we remove
// the now redundant second instruction.
- BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
+ BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
I1->intersectOptionalDataWith(I2);
unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_fpmath,
- LLVMContext::MD_invariant_load,
- LLVMContext::MD_nonnull
- };
+ LLVMContext::MD_tbaa, LLVMContext::MD_range,
+ LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
+ LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
+ LLVMContext::MD_align, LLVMContext::MD_dereferenceable,
+ LLVMContext::MD_dereferenceable_or_null};
combineMetadata(I1, I2, KnownIDs);
I2->eraseFromParent();
Changed = true;
- I1 = BB1_Itr++;
- I2 = BB2_Itr++;
+ I1 = &*BB1_Itr++;
+ I2 = &*BB2_Itr++;
// Skip debug info if it is not identical.
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
while (isa<DbgInfoIntrinsic>(I1))
- I1 = BB1_Itr++;
+ I1 = &*BB1_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
- I2 = BB2_Itr++;
+ I2 = &*BB2_Itr++;
}
} while (I1->isIdenticalToWhenDefined(I2));
@@ -1147,7 +1174,7 @@ HoistTerminator:
// Okay, it is safe to hoist the terminator.
Instruction *NT = I1->clone();
- BIParent->getInstList().insert(BI, NT);
+ BIParent->getInstList().insert(BI->getIterator(), NT);
if (!NT->getType()->isVoidTy()) {
I1->replaceAllUsesWith(NT);
I2->replaceAllUsesWith(NT);
@@ -1265,7 +1292,7 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
- isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
+ I1->isEHPad() || I2->isEHPad() ||
isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
@@ -1324,7 +1351,7 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
if (!NewPN) {
NewPN =
PHINode::Create(DifferentOp1->getType(), 2,
- DifferentOp1->getName() + ".sink", BBEnd->begin());
+ DifferentOp1->getName() + ".sink", &BBEnd->front());
NewPN->addIncoming(DifferentOp1, BB1);
NewPN->addIncoming(DifferentOp2, BB2);
DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
@@ -1339,7 +1366,8 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
// instruction in the basic block down.
bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
// Sink the instruction.
- BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
+ BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
+ BB1->getInstList(), I1);
if (!OldPN->use_empty())
OldPN->replaceAllUsesWith(I1);
OldPN->eraseFromParent();
@@ -1355,7 +1383,7 @@ static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
RE1 = BB1->getInstList().rend();
if (UpdateRE2)
RE2 = BB2->getInstList().rend();
- FirstNonPhiInBBEnd = I1;
+ FirstNonPhiInBBEnd = &*I1;
NumSinkCommons++;
Changed = true;
}
@@ -1491,7 +1519,7 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
for (BasicBlock::iterator BBI = ThenBB->begin(),
BBE = std::prev(ThenBB->end());
BBI != BBE; ++BBI) {
- Instruction *I = BBI;
+ Instruction *I = &*BBI;
// Skip debug info.
if (isa<DbgInfoIntrinsic>(I))
continue;
@@ -1604,9 +1632,14 @@ static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
SpeculatedStore->setOperand(0, S);
}
+ // Metadata can be dependent on the condition we are hoisting above.
+ // Conservatively strip all metadata on the instruction.
+ for (auto &I: *ThenBB)
+ I.dropUnknownNonDebugMetadata();
+
// Hoist the instructions.
- BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
- std::prev(ThenBB->end()));
+ BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
+ ThenBB->begin(), std::prev(ThenBB->end()));
// Insert selects and rewrite the PHI operands.
IRBuilder<true, NoFolder> Builder(BI);
@@ -1747,13 +1780,13 @@ static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
// Check for trivial simplification.
if (Value *V = SimplifyInstruction(N, DL)) {
- TranslateMap[BBI] = V;
+ TranslateMap[&*BBI] = V;
delete N; // Instruction folded away, don't need actual inst
} else {
// Insert the new instruction into its new home.
EdgeBB->getInstList().insert(InsertPt, N);
if (!BBI->use_empty())
- TranslateMap[BBI] = N;
+ TranslateMap[&*BBI] = N;
}
}
@@ -1850,7 +1883,7 @@ static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
} else {
DomBlock = *pred_begin(IfBlock1);
for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
- if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
+ if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
// flow, so the xform is not worth it.
@@ -1863,7 +1896,7 @@ static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
} else {
DomBlock = *pred_begin(IfBlock2);
for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
- if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
+ if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
// This is not an aggressive instruction that we can promote.
// Because of this, we won't be able to get rid of the control
// flow, so the xform is not worth it.
@@ -1882,13 +1915,13 @@ static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
// Move all 'aggressive' instructions, which are defined in the
// conditional parts of the if's up to the dominating block.
if (IfBlock1)
- DomBlock->getInstList().splice(InsertPt,
+ DomBlock->getInstList().splice(InsertPt->getIterator(),
IfBlock1->getInstList(), IfBlock1->begin(),
- IfBlock1->getTerminator());
+ IfBlock1->getTerminator()->getIterator());
if (IfBlock2)
- DomBlock->getInstList().splice(InsertPt,
+ DomBlock->getInstList().splice(InsertPt->getIterator(),
IfBlock2->getInstList(), IfBlock2->begin(),
- IfBlock2->getTerminator());
+ IfBlock2->getTerminator()->getIterator());
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
// Change the PHI node into a select instruction.
@@ -2057,7 +2090,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
BI->getSuccessor(0) == PBI->getSuccessor(1))) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ) {
- Instruction *Curr = I++;
+ Instruction *Curr = &*I++;
if (isa<CmpInst>(Curr)) {
Cond = Curr;
break;
@@ -2077,7 +2110,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
return false;
// Make sure the instruction after the condition is the cond branch.
- BasicBlock::iterator CondIt = Cond; ++CondIt;
+ BasicBlock::iterator CondIt = ++Cond->getIterator();
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
@@ -2095,7 +2128,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
- if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
+ if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
return false;
// I has only one use and can be executed unconditionally.
Instruction *User = dyn_cast<Instruction>(I->user_back());
@@ -2192,17 +2225,17 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
Instruction *NewBonusInst = BonusInst->clone();
RemapInstruction(NewBonusInst, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
- VMap[BonusInst] = NewBonusInst;
+ VMap[&*BonusInst] = NewBonusInst;
// If we moved a load, we cannot any longer claim any knowledge about
// its potential value. The previous information might have been valid
// only given the branch precondition.
// For an analogous reason, we must also drop all the metadata whose
// semantics we don't understand.
- NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
+ NewBonusInst->dropUnknownNonDebugMetadata();
- PredBlock->getInstList().insert(PBI, NewBonusInst);
- NewBonusInst->takeName(BonusInst);
+ PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
+ NewBonusInst->takeName(&*BonusInst);
BonusInst->setName(BonusInst->getName() + ".old");
}
@@ -2211,7 +2244,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
Instruction *New = Cond->clone();
RemapInstruction(New, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
- PredBlock->getInstList().insert(PBI, New);
+ PredBlock->getInstList().insert(PBI->getIterator(), New);
New->takeName(Cond);
Cond->setName(New->getName() + ".old");
@@ -2332,11 +2365,297 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
return false;
}
+// If there is only one store in BB1 and BB2, return it, otherwise return
+// nullptr.
+static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
+ StoreInst *S = nullptr;
+ for (auto *BB : {BB1, BB2}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ if (S)
+ // Multiple stores seen.
+ return nullptr;
+ else
+ S = SI;
+ }
+ }
+ return S;
+}
+
+static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
+ Value *AlternativeV = nullptr) {
+ // PHI is going to be a PHI node that allows the value V that is defined in
+ // BB to be referenced in BB's only successor.
+ //
+ // If AlternativeV is nullptr, the only value we care about in PHI is V. It
+ // doesn't matter to us what the other operand is (it'll never get used). We
+ // could just create a new PHI with an undef incoming value, but that could
+ // increase register pressure if EarlyCSE/InstCombine can't fold it with some
+ // other PHI. So here we directly look for some PHI in BB's successor with V
+ // as an incoming operand. If we find one, we use it, else we create a new
+ // one.
+ //
+ // If AlternativeV is not nullptr, we care about both incoming values in PHI.
+ // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
+ // where OtherBB is the single other predecessor of BB's only successor.
+ PHINode *PHI = nullptr;
+ BasicBlock *Succ = BB->getSingleSuccessor();
+
+ for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
+ if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
+ PHI = cast<PHINode>(I);
+ if (!AlternativeV)
+ break;
+
+ assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
+ auto PredI = pred_begin(Succ);
+ BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
+ if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
+ break;
+ PHI = nullptr;
+ }
+ if (PHI)
+ return PHI;
+
+ // If V is not an instruction defined in BB, just return it.
+ if (!AlternativeV &&
+ (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
+ return V;
+
+ PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
+ PHI->addIncoming(V, BB);
+ for (BasicBlock *PredBB : predecessors(Succ))
+ if (PredBB != BB)
+ PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
+ PredBB);
+ return PHI;
+}
+
+static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
+ BasicBlock *QTB, BasicBlock *QFB,
+ BasicBlock *PostBB, Value *Address,
+ bool InvertPCond, bool InvertQCond) {
+ auto IsaBitcastOfPointerType = [](const Instruction &I) {
+ return Operator::getOpcode(&I) == Instruction::BitCast &&
+ I.getType()->isPointerTy();
+ };
+
+ // If we're not in aggressive mode, we only optimize if we have some
+ // confidence that by optimizing we'll allow P and/or Q to be if-converted.
+ auto IsWorthwhile = [&](BasicBlock *BB) {
+ if (!BB)
+ return true;
+ // Heuristic: if the block can be if-converted/phi-folded and the
+ // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
+ // thread this store.
+ unsigned N = 0;
+ for (auto &I : *BB) {
+ // Cheap instructions viable for folding.
+ if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
+ isa<StoreInst>(I))
+ ++N;
+ // Free instructions.
+ else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
+ IsaBitcastOfPointerType(I))
+ continue;
+ else
+ return false;
+ }
+ return N <= PHINodeFoldingThreshold;
+ };
+
+ if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
+ !IsWorthwhile(PFB) ||
+ !IsWorthwhile(QTB) ||
+ !IsWorthwhile(QFB)))
+ return false;
+
+ // For every pointer, there must be exactly two stores, one coming from
+ // PTB or PFB, and the other from QTB or QFB. We don't support more than one
+ // store (to any address) in PTB,PFB or QTB,QFB.
+ // FIXME: We could relax this restriction with a bit more work and performance
+ // testing.
+ StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
+ StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
+ if (!PStore || !QStore)
+ return false;
+
+ // Now check the stores are compatible.
+ if (!QStore->isUnordered() || !PStore->isUnordered())
+ return false;
+
+ // Check that sinking the store won't cause program behavior changes. Sinking
+ // the store out of the Q blocks won't change any behavior as we're sinking
+ // from a block to its unconditional successor. But we're moving a store from
+ // the P blocks down through the middle block (QBI) and past both QFB and QTB.
+ // So we need to check that there are no aliasing loads or stores in
+ // QBI, QTB and QFB. We also need to check there are no conflicting memory
+ // operations between PStore and the end of its parent block.
+ //
+ // The ideal way to do this is to query AliasAnalysis, but we don't
+ // preserve AA currently so that is dangerous. Be super safe and just
+ // check there are no other memory operations at all.
+ for (auto &I : *QFB->getSinglePredecessor())
+ if (I.mayReadOrWriteMemory())
+ return false;
+ for (auto &I : *QFB)
+ if (&I != QStore && I.mayReadOrWriteMemory())
+ return false;
+ if (QTB)
+ for (auto &I : *QTB)
+ if (&I != QStore && I.mayReadOrWriteMemory())
+ return false;
+ for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
+ I != E; ++I)
+ if (&*I != PStore && I->mayReadOrWriteMemory())
+ return false;
+
+ // OK, we're going to sink the stores to PostBB. The store has to be
+ // conditional though, so first create the predicate.
+ Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
+ ->getCondition();
+ Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
+ ->getCondition();
+
+ Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
+ PStore->getParent());
+ Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
+ QStore->getParent(), PPHI);
+
+ IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
+
+ Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
+ Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
+
+ if (InvertPCond)
+ PPred = QB.CreateNot(PPred);
+ if (InvertQCond)
+ QPred = QB.CreateNot(QPred);
+ Value *CombinedPred = QB.CreateOr(PPred, QPred);
+
+ auto *T =
+ SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
+ QB.SetInsertPoint(T);
+ StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
+ AAMDNodes AAMD;
+ PStore->getAAMetadata(AAMD, /*Merge=*/false);
+ PStore->getAAMetadata(AAMD, /*Merge=*/true);
+ SI->setAAMetadata(AAMD);
+
+ QStore->eraseFromParent();
+ PStore->eraseFromParent();
+
+ return true;
+}
+
+static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
+ // The intention here is to find diamonds or triangles (see below) where each
+ // conditional block contains a store to the same address. Both of these
+ // stores are conditional, so they can't be unconditionally sunk. But it may
+ // be profitable to speculatively sink the stores into one merged store at the
+ // end, and predicate the merged store on the union of the two conditions of
+ // PBI and QBI.
+ //
+ // This can reduce the number of stores executed if both of the conditions are
+ // true, and can allow the blocks to become small enough to be if-converted.
+ // This optimization will also chain, so that ladders of test-and-set
+ // sequences can be if-converted away.
+ //
+ // We only deal with simple diamonds or triangles:
+ //
+ // PBI or PBI or a combination of the two
+ // / \ | \
+ // PTB PFB | PFB
+ // \ / | /
+ // QBI QBI
+ // / \ | \
+ // QTB QFB | QFB
+ // \ / | /
+ // PostBB PostBB
+ //
+ // We model triangles as a type of diamond with a nullptr "true" block.
+ // Triangles are canonicalized so that the fallthrough edge is represented by
+ // a true condition, as in the diagram above.
+ //
+ BasicBlock *PTB = PBI->getSuccessor(0);
+ BasicBlock *PFB = PBI->getSuccessor(1);
+ BasicBlock *QTB = QBI->getSuccessor(0);
+ BasicBlock *QFB = QBI->getSuccessor(1);
+ BasicBlock *PostBB = QFB->getSingleSuccessor();
+
+ bool InvertPCond = false, InvertQCond = false;
+ // Canonicalize fallthroughs to the true branches.
+ if (PFB == QBI->getParent()) {
+ std::swap(PFB, PTB);
+ InvertPCond = true;
+ }
+ if (QFB == PostBB) {
+ std::swap(QFB, QTB);
+ InvertQCond = true;
+ }
+
+ // From this point on we can assume PTB or QTB may be fallthroughs but PFB
+ // and QFB may not. Model fallthroughs as a nullptr block.
+ if (PTB == QBI->getParent())
+ PTB = nullptr;
+ if (QTB == PostBB)
+ QTB = nullptr;
+
+ // Legality bailouts. We must have at least the non-fallthrough blocks and
+ // the post-dominating block, and the non-fallthroughs must only have one
+ // predecessor.
+ auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
+ return BB->getSinglePredecessor() == P &&
+ BB->getSingleSuccessor() == S;
+ };
+ if (!PostBB ||
+ !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
+ !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
+ return false;
+ if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
+ (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
+ return false;
+ if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
+ return false;
+
+ // OK, this is a sequence of two diamonds or triangles.
+ // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
+ SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
+ for (auto *BB : {PTB, PFB}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ PStoreAddresses.insert(SI->getPointerOperand());
+ }
+ for (auto *BB : {QTB, QFB}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ QStoreAddresses.insert(SI->getPointerOperand());
+ }
+
+ set_intersect(PStoreAddresses, QStoreAddresses);
+ // set_intersect mutates PStoreAddresses in place. Rename it here to make it
+ // clear what it contains.
+ auto &CommonAddresses = PStoreAddresses;
+
+ bool Changed = false;
+ for (auto *Address : CommonAddresses)
+ Changed |= mergeConditionalStoreToAddress(
+ PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
+ return Changed;
+}
+
/// If we have a conditional branch as a predecessor of another block,
/// this function tries to simplify it. We know
/// that PBI and BI are both conditional branches, and BI is in one of the
/// successor blocks of PBI - PBI branches to BI.
-static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
+static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
+ const DataLayout &DL) {
assert(PBI->isConditional() && BI->isConditional());
BasicBlock *BB = BI->getParent();
@@ -2360,10 +2679,9 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// simplifycfg will thread the block.
if (BlockIsSimpleEnoughToThreadThrough(BB)) {
pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
- PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
- std::distance(PB, PE),
- BI->getCondition()->getName() + ".pr",
- BB->begin());
+ PHINode *NewPN = PHINode::Create(
+ Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
+ BI->getCondition()->getName() + ".pr", &BB->front());
// Okay, we're going to insert the PHI node. Since PBI is not the only
// predecessor, compute the PHI'd conditional value for all of the preds.
// Any predecessor where the condition is not computable we keep symbolic.
@@ -2386,6 +2704,29 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
}
}
+ if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
+ if (CE->canTrap())
+ return false;
+
+ // If BI is reached from the true path of PBI and PBI's condition implies
+ // BI's condition, we know the direction of the BI branch.
+ if (PBI->getSuccessor(0) == BI->getParent() &&
+ isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
+ BB->getSinglePredecessor()) {
+ // Turn this into a branch on constant.
+ auto *OldCond = BI->getCondition();
+ BI->setCondition(ConstantInt::getTrue(BB->getContext()));
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+ return true; // Nuke the branch on constant.
+ }
+
+ // If both branches are conditional and both contain stores to the same
+ // address, remove the stores from the conditionals and create a conditional
+ // merged store at the end.
+ if (MergeCondStores && mergeConditionalStores(PBI, BI))
+ return true;
+
// If this is a conditional branch in an empty block, and if any
// predecessors are a conditional branch to one of our destinations,
// fold the conditions into logical ops and one cond br.
@@ -2396,11 +2737,6 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
if (&*BBI != BI)
return false;
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
- if (CE->canTrap())
- return false;
-
int PBIOp, BIOp;
if (PBI->getSuccessor(0) == BI->getSuccessor(0))
PBIOp = BIOp = 0;
@@ -2565,15 +2901,15 @@ static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
// Then remove the rest.
- for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
- BasicBlock *Succ = OldTerm->getSuccessor(I);
+ for (BasicBlock *Succ : OldTerm->successors()) {
// Make sure only to keep exactly one copy of each edge.
if (Succ == KeepEdge1)
KeepEdge1 = nullptr;
else if (Succ == KeepEdge2)
KeepEdge2 = nullptr;
else
- Succ->removePredecessor(OldTerm->getParent());
+ Succ->removePredecessor(OldTerm->getParent(),
+ /*DontDeleteUselessPHIs=*/true);
}
IRBuilder<> Builder(OldTerm);
@@ -2827,7 +3163,7 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
// If Extra was used, we require at least two switch values to do the
- // transformation. A switch with one value is just an cond branch.
+ // transformation. A switch with one value is just a conditional branch.
if (ExtraCase && Values.size() < 2) return false;
// TODO: Preserve branch weight metadata, similarly to how
@@ -2847,7 +3183,8 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
// then we evaluate them with an explicit branch first. Split the block
// right before the condbr to handle it.
if (ExtraCase) {
- BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
+ BasicBlock *NewBB =
+ BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
// Remove the uncond branch added to the old block.
TerminatorInst *OldTI = BB->getTerminator();
Builder.SetInsertPoint(OldTI);
@@ -2911,34 +3248,15 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
return false;
// Check that there are no other instructions except for debug intrinsics.
- BasicBlock::iterator I = LPInst, E = RI;
+ BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
while (++I != E)
if (!isa<DbgInfoIntrinsic>(I))
return false;
// Turn all invokes that unwind here into calls and delete the basic block.
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
- InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
- // Insert a call instruction before the invoke.
- CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
- Call->takeName(II);
- Call->setCallingConv(II->getCallingConv());
- Call->setAttributes(II->getAttributes());
- Call->setDebugLoc(II->getDebugLoc());
-
- // Anything that used the value produced by the invoke instruction now uses
- // the value produced by the call instruction. Note that we do this even
- // for void functions and calls with no uses so that the callgraph edge is
- // updated.
- II->replaceAllUsesWith(Call);
- BB->removePredecessor(II->getParent());
-
- // Insert a branch to the normal destination right before the invoke.
- BranchInst::Create(II->getNormalDest(), II);
-
- // Finally, delete the invoke instruction!
- II->eraseFromParent();
+ BasicBlock *Pred = *PI++;
+ removeUnwindEdge(Pred);
}
// The landingpad is now unreachable. Zap it.
@@ -2946,6 +3264,124 @@ bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
return true;
}
+bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
+ // If this is a trivial cleanup pad that executes no instructions, it can be
+ // eliminated. If the cleanup pad continues to the caller, any predecessor
+ // that is an EH pad will be updated to continue to the caller and any
+ // predecessor that terminates with an invoke instruction will have its invoke
+ // instruction converted to a call instruction. If the cleanup pad being
+ // simplified does not continue to the caller, each predecessor will be
+ // updated to continue to the unwind destination of the cleanup pad being
+ // simplified.
+ BasicBlock *BB = RI->getParent();
+ CleanupPadInst *CPInst = RI->getCleanupPad();
+ if (CPInst->getParent() != BB)
+ // This isn't an empty cleanup.
+ return false;
+
+ // Check that there are no other instructions except for debug intrinsics.
+ BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // If the cleanup return we are simplifying unwinds to the caller, this will
+ // set UnwindDest to nullptr.
+ BasicBlock *UnwindDest = RI->getUnwindDest();
+ Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
+
+ // We're about to remove BB from the control flow. Before we do, sink any
+ // PHINodes into the unwind destination. Doing this before changing the
+ // control flow avoids some potentially slow checks, since we can currently
+ // be certain that UnwindDest and BB have no common predecessors (since they
+ // are both EH pads).
+ if (UnwindDest) {
+ // First, go through the PHI nodes in UnwindDest and update any nodes that
+ // reference the block we are removing
+ for (BasicBlock::iterator I = UnwindDest->begin(),
+ IE = DestEHPad->getIterator();
+ I != IE; ++I) {
+ PHINode *DestPN = cast<PHINode>(I);
+
+ int Idx = DestPN->getBasicBlockIndex(BB);
+ // Since BB unwinds to UnwindDest, it has to be in the PHI node.
+ assert(Idx != -1);
+ // This PHI node has an incoming value that corresponds to a control
+ // path through the cleanup pad we are removing. If the incoming
+ // value is in the cleanup pad, it must be a PHINode (because we
+ // verified above that the block is otherwise empty). Otherwise, the
+ // value is either a constant or a value that dominates the cleanup
+ // pad being removed.
+ //
+ // Because BB and UnwindDest are both EH pads, all of their
+ // predecessors must unwind to these blocks, and since no instruction
+ // can have multiple unwind destinations, there will be no overlap in
+ // incoming blocks between SrcPN and DestPN.
+ Value *SrcVal = DestPN->getIncomingValue(Idx);
+ PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
+
+ // Remove the entry for the block we are deleting.
+ DestPN->removeIncomingValue(Idx, false);
+
+ if (SrcPN && SrcPN->getParent() == BB) {
+ // If the incoming value was a PHI node in the cleanup pad we are
+ // removing, we need to merge that PHI node's incoming values into
+ // DestPN.
+ for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
+ SrcIdx != SrcE; ++SrcIdx) {
+ DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
+ SrcPN->getIncomingBlock(SrcIdx));
+ }
+ } else {
+ // Otherwise, the incoming value came from above BB and
+ // so we can just reuse it. We must associate all of BB's
+ // predecessors with this value.
+ for (auto *pred : predecessors(BB)) {
+ DestPN->addIncoming(SrcVal, pred);
+ }
+ }
+ }
+
+ // Sink any remaining PHI nodes directly into UnwindDest.
+ Instruction *InsertPt = DestEHPad;
+ for (BasicBlock::iterator I = BB->begin(),
+ IE = BB->getFirstNonPHI()->getIterator();
+ I != IE;) {
+ // The iterator must be incremented here because the instructions are
+ // being moved to another block.
+ PHINode *PN = cast<PHINode>(I++);
+ if (PN->use_empty())
+ // If the PHI node has no uses, just leave it. It will be erased
+ // when we erase BB below.
+ continue;
+
+ // Otherwise, sink this PHI node into UnwindDest.
+ // Any predecessors to UnwindDest which are not already represented
+ // must be back edges which inherit the value from the path through
+ // BB. In this case, the PHI value must reference itself.
+ for (auto *pred : predecessors(UnwindDest))
+ if (pred != BB)
+ PN->addIncoming(PN, pred);
+ PN->moveBefore(InsertPt);
+ }
+ }
+
+ for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
+ // The iterator must be updated here because we are removing this pred.
+ BasicBlock *PredBB = *PI++;
+ if (UnwindDest == nullptr) {
+ removeUnwindEdge(PredBB);
+ } else {
+ TerminatorInst *TI = PredBB->getTerminator();
+ TI->replaceUsesOfWith(BB, UnwindDest);
+ }
+ }
+
+ // The cleanup pad is now unreachable. Zap it.
+ BB->eraseFromParent();
+ return true;
+}
+
bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
BasicBlock *BB = RI->getParent();
if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
@@ -3003,8 +3439,8 @@ bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
// If there are any instructions immediately before the unreachable that can
// be removed, do so.
- while (UI != BB->begin()) {
- BasicBlock::iterator BBI = UI;
+ while (UI->getIterator() != BB->begin()) {
+ BasicBlock::iterator BBI = UI->getIterator();
--BBI;
// Do not delete instructions that can have side effects which might cause
// the unreachable to not be reachable; specifically, calls and volatile
@@ -3075,26 +3511,18 @@ bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
--i; --e;
Changed = true;
}
- } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
- if (II->getUnwindDest() == BB) {
- // Convert the invoke to a call instruction. This would be a good
- // place to note that the call does not throw though.
- BranchInst *BI = Builder.CreateBr(II->getNormalDest());
- II->removeFromParent(); // Take out of symbol table
-
- // Insert the call now...
- SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
- Builder.SetInsertPoint(BI);
- CallInst *CI = Builder.CreateCall(II->getCalledValue(),
- Args, II->getName());
- CI->setCallingConv(II->getCallingConv());
- CI->setAttributes(II->getAttributes());
- // If the invoke produced a value, the call does now instead.
- II->replaceAllUsesWith(CI);
- delete II;
- Changed = true;
- }
+ } else if ((isa<InvokeInst>(TI) &&
+ cast<InvokeInst>(TI)->getUnwindDest() == BB) ||
+ isa<CatchSwitchInst>(TI)) {
+ removeUnwindEdge(TI->getParent());
+ Changed = true;
+ } else if (isa<CleanupReturnInst>(TI)) {
+ new UnreachableInst(TI->getContext(), TI);
+ TI->eraseFromParent();
+ Changed = true;
}
+ // TODO: We can remove a catchswitch if all it's catchpads end in
+ // unreachable.
}
// If this block is now dead, remove it.
@@ -3249,6 +3677,29 @@ static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
}
}
+ // If we can prove that the cases must cover all possible values, the
+ // default destination becomes dead and we can remove it. If we know some
+ // of the bits in the value, we can use that to more precisely compute the
+ // number of possible unique case values.
+ bool HasDefault =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+ const unsigned NumUnknownBits = Bits -
+ (KnownZero.Or(KnownOne)).countPopulation();
+ assert(NumUnknownBits <= Bits);
+ if (HasDefault && DeadCases.empty() &&
+ NumUnknownBits < 64 /* avoid overflow */ &&
+ SI->getNumCases() == (1ULL << NumUnknownBits)) {
+ DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
+ BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
+ SI->getParent(), "");
+ SI->setDefaultDest(&*NewDefault);
+ SplitBlock(&*NewDefault, &NewDefault->front());
+ auto *OldTI = NewDefault->getTerminator();
+ new UnreachableInst(SI->getContext(), OldTI);
+ EraseTerminatorInstAndDCECond(OldTI);
+ return true;
+ }
+
SmallVector<uint64_t, 8> Weights;
bool HasWeight = HasBranchWeights(SI);
if (HasWeight) {
@@ -3439,7 +3890,7 @@ GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
} else if (isa<DbgInfoIntrinsic>(I)) {
// Skip debug intrinsic.
continue;
- } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
+ } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
// Instruction is side-effect free and constant.
// If the instruction has uses outside this block or a phi node slot for
@@ -3456,7 +3907,7 @@ GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
return false;
}
- ConstantPool.insert(std::make_pair(I, C));
+ ConstantPool.insert(std::make_pair(&*I, C));
} else {
break;
}
@@ -3664,7 +4115,7 @@ namespace {
/// Return true if a table with TableSize elements of
/// type ElementType would fit in a target-legal register.
static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
- const Type *ElementType);
+ Type *ElementType);
private:
// Depending on the contents of the table, it can be represented in
@@ -3880,8 +4331,8 @@ Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
uint64_t TableSize,
- const Type *ElementType) {
- const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
+ Type *ElementType) {
+ auto *IT = dyn_cast<IntegerType>(ElementType);
if (!IT)
return false;
// FIXME: If the type is wider than it needs to be, e.g. i8 but all values
@@ -3992,7 +4443,7 @@ static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
"Expect true or false as compare result.");
}
-
+
// Check if the branch instruction dominates the phi node. It's a simple
// dominance check, but sufficient for our needs.
// Although this check is invariant in the calling loops, it's better to do it
@@ -4422,7 +4873,7 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
return true;
// If the Terminator is the only non-phi instruction, simplify the block.
- BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
+ BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
TryToSimplifyUncondBranchFromEmptyBlock(BB))
return true;
@@ -4457,6 +4908,16 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
return false;
}
+static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
+ BasicBlock *PredPred = nullptr;
+ for (auto *P : predecessors(BB)) {
+ BasicBlock *PPred = P->getSinglePredecessor();
+ if (!PPred || (PredPred && PredPred != PPred))
+ return nullptr;
+ PredPred = PPred;
+ }
+ return PredPred;
+}
bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
BasicBlock *BB = BI->getParent();
@@ -4537,9 +4998,17 @@ bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI != BI && PBI->isConditional())
- if (SimplifyCondBranchToCondBranch(PBI, BI))
+ if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ // Look for diamond patterns.
+ if (MergeCondStores)
+ if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
+ if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (mergeConditionalStores(PBI, BI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
return false;
}
@@ -4663,6 +5132,9 @@ bool SimplifyCFGOpt::run(BasicBlock *BB) {
if (SimplifyReturn(RI, Builder)) return true;
} else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
if (SimplifyResume(RI, Builder)) return true;
+ } else if (CleanupReturnInst *RI =
+ dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
+ if (SimplifyCleanupReturn(RI)) return true;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
if (SimplifySwitch(SI, Builder)) return true;
} else if (UnreachableInst *UI =
OpenPOWER on IntegriCloud