summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp5289
1 files changed, 5289 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
new file mode 100644
index 0000000..3125a2c
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -0,0 +1,5289 @@
+//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Peephole optimize the CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <map>
+#include <set>
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "simplifycfg"
+
+// Chosen as 2 so as to be cheap, but still to have enough power to fold
+// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
+// To catch this, we need to fold a compare and a select, hence '2' being the
+// minimum reasonable default.
+static cl::opt<unsigned>
+PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
+ cl::desc("Control the amount of phi node folding to perform (default = 2)"));
+
+static cl::opt<bool>
+DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
+ cl::desc("Duplicate return instructions into unconditional branches"));
+
+static cl::opt<bool>
+SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
+ cl::desc("Sink common instructions down to the end block"));
+
+static cl::opt<bool> HoistCondStores(
+ "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
+ cl::desc("Hoist conditional stores if an unconditional store precedes"));
+
+static cl::opt<bool> MergeCondStores(
+ "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
+ cl::desc("Hoist conditional stores even if an unconditional store does not "
+ "precede - hoist multiple conditional stores into a single "
+ "predicated store"));
+
+static cl::opt<bool> MergeCondStoresAggressively(
+ "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
+ cl::desc("When merging conditional stores, do so even if the resultant "
+ "basic blocks are unlikely to be if-converted as a result"));
+
+static cl::opt<bool> SpeculateOneExpensiveInst(
+ "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
+ cl::desc("Allow exactly one expensive instruction to be speculatively "
+ "executed"));
+
+STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
+STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
+STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
+STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
+STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
+STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
+STATISTIC(NumSpeculations, "Number of speculative executed instructions");
+
+namespace {
+ // The first field contains the value that the switch produces when a certain
+ // case group is selected, and the second field is a vector containing the
+ // cases composing the case group.
+ typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
+ SwitchCaseResultVectorTy;
+ // The first field contains the phi node that generates a result of the switch
+ // and the second field contains the value generated for a certain case in the
+ // switch for that PHI.
+ typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
+
+ /// ValueEqualityComparisonCase - Represents a case of a switch.
+ struct ValueEqualityComparisonCase {
+ ConstantInt *Value;
+ BasicBlock *Dest;
+
+ ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
+ : Value(Value), Dest(Dest) {}
+
+ bool operator<(ValueEqualityComparisonCase RHS) const {
+ // Comparing pointers is ok as we only rely on the order for uniquing.
+ return Value < RHS.Value;
+ }
+
+ bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
+ };
+
+class SimplifyCFGOpt {
+ const TargetTransformInfo &TTI;
+ const DataLayout &DL;
+ unsigned BonusInstThreshold;
+ AssumptionCache *AC;
+ Value *isValueEqualityComparison(TerminatorInst *TI);
+ BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
+ std::vector<ValueEqualityComparisonCase> &Cases);
+ bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
+ BasicBlock *Pred,
+ IRBuilder<> &Builder);
+ bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
+ IRBuilder<> &Builder);
+
+ bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
+ bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
+ bool SimplifySingleResume(ResumeInst *RI);
+ bool SimplifyCommonResume(ResumeInst *RI);
+ bool SimplifyCleanupReturn(CleanupReturnInst *RI);
+ bool SimplifyUnreachable(UnreachableInst *UI);
+ bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
+ bool SimplifyIndirectBr(IndirectBrInst *IBI);
+ bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
+ bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
+
+public:
+ SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
+ unsigned BonusInstThreshold, AssumptionCache *AC)
+ : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
+ bool run(BasicBlock *BB);
+};
+}
+
+/// Return true if it is safe to merge these two
+/// terminator instructions together.
+static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
+ if (SI1 == SI2) return false; // Can't merge with self!
+
+ // It is not safe to merge these two switch instructions if they have a common
+ // successor, and if that successor has a PHI node, and if *that* PHI node has
+ // conflicting incoming values from the two switch blocks.
+ BasicBlock *SI1BB = SI1->getParent();
+ BasicBlock *SI2BB = SI2->getParent();
+ SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+
+ for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
+ if (SI1Succs.count(*I))
+ for (BasicBlock::iterator BBI = (*I)->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ if (PN->getIncomingValueForBlock(SI1BB) !=
+ PN->getIncomingValueForBlock(SI2BB))
+ return false;
+ }
+
+ return true;
+}
+
+/// Return true if it is safe and profitable to merge these two terminator
+/// instructions together, where SI1 is an unconditional branch. PhiNodes will
+/// store all PHI nodes in common successors.
+static bool isProfitableToFoldUnconditional(BranchInst *SI1,
+ BranchInst *SI2,
+ Instruction *Cond,
+ SmallVectorImpl<PHINode*> &PhiNodes) {
+ if (SI1 == SI2) return false; // Can't merge with self!
+ assert(SI1->isUnconditional() && SI2->isConditional());
+
+ // We fold the unconditional branch if we can easily update all PHI nodes in
+ // common successors:
+ // 1> We have a constant incoming value for the conditional branch;
+ // 2> We have "Cond" as the incoming value for the unconditional branch;
+ // 3> SI2->getCondition() and Cond have same operands.
+ CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
+ if (!Ci2) return false;
+ if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
+ Cond->getOperand(1) == Ci2->getOperand(1)) &&
+ !(Cond->getOperand(0) == Ci2->getOperand(1) &&
+ Cond->getOperand(1) == Ci2->getOperand(0)))
+ return false;
+
+ BasicBlock *SI1BB = SI1->getParent();
+ BasicBlock *SI2BB = SI2->getParent();
+ SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+ for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
+ if (SI1Succs.count(*I))
+ for (BasicBlock::iterator BBI = (*I)->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
+ !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
+ return false;
+ PhiNodes.push_back(PN);
+ }
+ return true;
+}
+
+/// Update PHI nodes in Succ to indicate that there will now be entries in it
+/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
+/// will be the same as those coming in from ExistPred, an existing predecessor
+/// of Succ.
+static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
+ BasicBlock *ExistPred) {
+ if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
+
+ PHINode *PN;
+ for (BasicBlock::iterator I = Succ->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I)
+ PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
+}
+
+/// Compute an abstract "cost" of speculating the given instruction,
+/// which is assumed to be safe to speculate. TCC_Free means cheap,
+/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
+/// expensive.
+static unsigned ComputeSpeculationCost(const User *I,
+ const TargetTransformInfo &TTI) {
+ assert(isSafeToSpeculativelyExecute(I) &&
+ "Instruction is not safe to speculatively execute!");
+ return TTI.getUserCost(I);
+}
+
+/// If we have a merge point of an "if condition" as accepted above,
+/// return true if the specified value dominates the block. We
+/// don't handle the true generality of domination here, just a special case
+/// which works well enough for us.
+///
+/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
+/// see if V (which must be an instruction) and its recursive operands
+/// that do not dominate BB have a combined cost lower than CostRemaining and
+/// are non-trapping. If both are true, the instruction is inserted into the
+/// set and true is returned.
+///
+/// The cost for most non-trapping instructions is defined as 1 except for
+/// Select whose cost is 2.
+///
+/// After this function returns, CostRemaining is decreased by the cost of
+/// V plus its non-dominating operands. If that cost is greater than
+/// CostRemaining, false is returned and CostRemaining is undefined.
+static bool DominatesMergePoint(Value *V, BasicBlock *BB,
+ SmallPtrSetImpl<Instruction*> *AggressiveInsts,
+ unsigned &CostRemaining,
+ const TargetTransformInfo &TTI,
+ unsigned Depth = 0) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ // Non-instructions all dominate instructions, but not all constantexprs
+ // can be executed unconditionally.
+ if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
+ if (C->canTrap())
+ return false;
+ return true;
+ }
+ BasicBlock *PBB = I->getParent();
+
+ // We don't want to allow weird loops that might have the "if condition" in
+ // the bottom of this block.
+ if (PBB == BB) return false;
+
+ // If this instruction is defined in a block that contains an unconditional
+ // branch to BB, then it must be in the 'conditional' part of the "if
+ // statement". If not, it definitely dominates the region.
+ BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
+ if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
+ return true;
+
+ // If we aren't allowing aggressive promotion anymore, then don't consider
+ // instructions in the 'if region'.
+ if (!AggressiveInsts) return false;
+
+ // If we have seen this instruction before, don't count it again.
+ if (AggressiveInsts->count(I)) return true;
+
+ // Okay, it looks like the instruction IS in the "condition". Check to
+ // see if it's a cheap instruction to unconditionally compute, and if it
+ // only uses stuff defined outside of the condition. If so, hoist it out.
+ if (!isSafeToSpeculativelyExecute(I))
+ return false;
+
+ unsigned Cost = ComputeSpeculationCost(I, TTI);
+
+ // Allow exactly one instruction to be speculated regardless of its cost
+ // (as long as it is safe to do so).
+ // This is intended to flatten the CFG even if the instruction is a division
+ // or other expensive operation. The speculation of an expensive instruction
+ // is expected to be undone in CodeGenPrepare if the speculation has not
+ // enabled further IR optimizations.
+ if (Cost > CostRemaining &&
+ (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
+ return false;
+
+ // Avoid unsigned wrap.
+ CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
+
+ // Okay, we can only really hoist these out if their operands do
+ // not take us over the cost threshold.
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
+ if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
+ Depth + 1))
+ return false;
+ // Okay, it's safe to do this! Remember this instruction.
+ AggressiveInsts->insert(I);
+ return true;
+}
+
+/// Extract ConstantInt from value, looking through IntToPtr
+/// and PointerNullValue. Return NULL if value is not a constant int.
+static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
+ // Normal constant int.
+ ConstantInt *CI = dyn_cast<ConstantInt>(V);
+ if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
+ return CI;
+
+ // This is some kind of pointer constant. Turn it into a pointer-sized
+ // ConstantInt if possible.
+ IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
+
+ // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
+ if (isa<ConstantPointerNull>(V))
+ return ConstantInt::get(PtrTy, 0);
+
+ // IntToPtr const int.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::IntToPtr)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
+ // The constant is very likely to have the right type already.
+ if (CI->getType() == PtrTy)
+ return CI;
+ else
+ return cast<ConstantInt>
+ (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
+ }
+ return nullptr;
+}
+
+namespace {
+
+/// Given a chain of or (||) or and (&&) comparison of a value against a
+/// constant, this will try to recover the information required for a switch
+/// structure.
+/// It will depth-first traverse the chain of comparison, seeking for patterns
+/// like %a == 12 or %a < 4 and combine them to produce a set of integer
+/// representing the different cases for the switch.
+/// Note that if the chain is composed of '||' it will build the set of elements
+/// that matches the comparisons (i.e. any of this value validate the chain)
+/// while for a chain of '&&' it will build the set elements that make the test
+/// fail.
+struct ConstantComparesGatherer {
+ const DataLayout &DL;
+ Value *CompValue; /// Value found for the switch comparison
+ Value *Extra; /// Extra clause to be checked before the switch
+ SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
+ unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
+
+ /// Construct and compute the result for the comparison instruction Cond
+ ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
+ : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
+ gather(Cond);
+ }
+
+ /// Prevent copy
+ ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
+ ConstantComparesGatherer &
+ operator=(const ConstantComparesGatherer &) = delete;
+
+private:
+
+ /// Try to set the current value used for the comparison, it succeeds only if
+ /// it wasn't set before or if the new value is the same as the old one
+ bool setValueOnce(Value *NewVal) {
+ if(CompValue && CompValue != NewVal) return false;
+ CompValue = NewVal;
+ return (CompValue != nullptr);
+ }
+
+ /// Try to match Instruction "I" as a comparison against a constant and
+ /// populates the array Vals with the set of values that match (or do not
+ /// match depending on isEQ).
+ /// Return false on failure. On success, the Value the comparison matched
+ /// against is placed in CompValue.
+ /// If CompValue is already set, the function is expected to fail if a match
+ /// is found but the value compared to is different.
+ bool matchInstruction(Instruction *I, bool isEQ) {
+ // If this is an icmp against a constant, handle this as one of the cases.
+ ICmpInst *ICI;
+ ConstantInt *C;
+ if (!((ICI = dyn_cast<ICmpInst>(I)) &&
+ (C = GetConstantInt(I->getOperand(1), DL)))) {
+ return false;
+ }
+
+ Value *RHSVal;
+ ConstantInt *RHSC;
+
+ // Pattern match a special case
+ // (x & ~2^x) == y --> x == y || x == y|2^x
+ // This undoes a transformation done by instcombine to fuse 2 compares.
+ if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
+ if (match(ICI->getOperand(0),
+ m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
+ APInt Not = ~RHSC->getValue();
+ if (Not.isPowerOf2()) {
+ // If we already have a value for the switch, it has to match!
+ if(!setValueOnce(RHSVal))
+ return false;
+
+ Vals.push_back(C);
+ Vals.push_back(ConstantInt::get(C->getContext(),
+ C->getValue() | Not));
+ UsedICmps++;
+ return true;
+ }
+ }
+
+ // If we already have a value for the switch, it has to match!
+ if(!setValueOnce(ICI->getOperand(0)))
+ return false;
+
+ UsedICmps++;
+ Vals.push_back(C);
+ return ICI->getOperand(0);
+ }
+
+ // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
+ ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
+ ICI->getPredicate(), C->getValue());
+
+ // Shift the range if the compare is fed by an add. This is the range
+ // compare idiom as emitted by instcombine.
+ Value *CandidateVal = I->getOperand(0);
+ if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
+ Span = Span.subtract(RHSC->getValue());
+ CandidateVal = RHSVal;
+ }
+
+ // If this is an and/!= check, then we are looking to build the set of
+ // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
+ // x != 0 && x != 1.
+ if (!isEQ)
+ Span = Span.inverse();
+
+ // If there are a ton of values, we don't want to make a ginormous switch.
+ if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
+ return false;
+ }
+
+ // If we already have a value for the switch, it has to match!
+ if(!setValueOnce(CandidateVal))
+ return false;
+
+ // Add all values from the range to the set
+ for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
+ Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
+
+ UsedICmps++;
+ return true;
+
+ }
+
+ /// Given a potentially 'or'd or 'and'd together collection of icmp
+ /// eq/ne/lt/gt instructions that compare a value against a constant, extract
+ /// the value being compared, and stick the list constants into the Vals
+ /// vector.
+ /// One "Extra" case is allowed to differ from the other.
+ void gather(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ bool isEQ = (I->getOpcode() == Instruction::Or);
+
+ // Keep a stack (SmallVector for efficiency) for depth-first traversal
+ SmallVector<Value *, 8> DFT;
+
+ // Initialize
+ DFT.push_back(V);
+
+ while(!DFT.empty()) {
+ V = DFT.pop_back_val();
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If it is a || (or && depending on isEQ), process the operands.
+ if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
+ DFT.push_back(I->getOperand(1));
+ DFT.push_back(I->getOperand(0));
+ continue;
+ }
+
+ // Try to match the current instruction
+ if (matchInstruction(I, isEQ))
+ // Match succeed, continue the loop
+ continue;
+ }
+
+ // One element of the sequence of || (or &&) could not be match as a
+ // comparison against the same value as the others.
+ // We allow only one "Extra" case to be checked before the switch
+ if (!Extra) {
+ Extra = V;
+ continue;
+ }
+ // Failed to parse a proper sequence, abort now
+ CompValue = nullptr;
+ break;
+ }
+ }
+};
+
+}
+
+static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
+ Instruction *Cond = nullptr;
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cond = dyn_cast<Instruction>(SI->getCondition());
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional())
+ Cond = dyn_cast<Instruction>(BI->getCondition());
+ } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
+ Cond = dyn_cast<Instruction>(IBI->getAddress());
+ }
+
+ TI->eraseFromParent();
+ if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
+}
+
+/// Return true if the specified terminator checks
+/// to see if a value is equal to constant integer value.
+Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
+ Value *CV = nullptr;
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ // Do not permit merging of large switch instructions into their
+ // predecessors unless there is only one predecessor.
+ if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
+ pred_end(SI->getParent())) <= 128)
+ CV = SI->getCondition();
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
+ if (BI->isConditional() && BI->getCondition()->hasOneUse())
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
+ CV = ICI->getOperand(0);
+ }
+
+ // Unwrap any lossless ptrtoint cast.
+ if (CV) {
+ if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
+ Value *Ptr = PTII->getPointerOperand();
+ if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
+ CV = Ptr;
+ }
+ }
+ return CV;
+}
+
+/// Given a value comparison instruction,
+/// decode all of the 'cases' that it represents and return the 'default' block.
+BasicBlock *SimplifyCFGOpt::
+GetValueEqualityComparisonCases(TerminatorInst *TI,
+ std::vector<ValueEqualityComparisonCase>
+ &Cases) {
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cases.reserve(SI->getNumCases());
+ for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
+ Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
+ i.getCaseSuccessor()));
+ return SI->getDefaultDest();
+ }
+
+ BranchInst *BI = cast<BranchInst>(TI);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
+ Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
+ DL),
+ Succ));
+ return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
+}
+
+
+/// Given a vector of bb/value pairs, remove any entries
+/// in the list that match the specified block.
+static void EliminateBlockCases(BasicBlock *BB,
+ std::vector<ValueEqualityComparisonCase> &Cases) {
+ Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
+}
+
+/// Return true if there are any keys in C1 that exist in C2 as well.
+static bool
+ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
+ std::vector<ValueEqualityComparisonCase > &C2) {
+ std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
+
+ // Make V1 be smaller than V2.
+ if (V1->size() > V2->size())
+ std::swap(V1, V2);
+
+ if (V1->size() == 0) return false;
+ if (V1->size() == 1) {
+ // Just scan V2.
+ ConstantInt *TheVal = (*V1)[0].Value;
+ for (unsigned i = 0, e = V2->size(); i != e; ++i)
+ if (TheVal == (*V2)[i].Value)
+ return true;
+ }
+
+ // Otherwise, just sort both lists and compare element by element.
+ array_pod_sort(V1->begin(), V1->end());
+ array_pod_sort(V2->begin(), V2->end());
+ unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
+ while (i1 != e1 && i2 != e2) {
+ if ((*V1)[i1].Value == (*V2)[i2].Value)
+ return true;
+ if ((*V1)[i1].Value < (*V2)[i2].Value)
+ ++i1;
+ else
+ ++i2;
+ }
+ return false;
+}
+
+/// If TI is known to be a terminator instruction and its block is known to
+/// only have a single predecessor block, check to see if that predecessor is
+/// also a value comparison with the same value, and if that comparison
+/// determines the outcome of this comparison. If so, simplify TI. This does a
+/// very limited form of jump threading.
+bool SimplifyCFGOpt::
+SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
+ BasicBlock *Pred,
+ IRBuilder<> &Builder) {
+ Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
+ if (!PredVal) return false; // Not a value comparison in predecessor.
+
+ Value *ThisVal = isValueEqualityComparison(TI);
+ assert(ThisVal && "This isn't a value comparison!!");
+ if (ThisVal != PredVal) return false; // Different predicates.
+
+ // TODO: Preserve branch weight metadata, similarly to how
+ // FoldValueComparisonIntoPredecessors preserves it.
+
+ // Find out information about when control will move from Pred to TI's block.
+ std::vector<ValueEqualityComparisonCase> PredCases;
+ BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
+ PredCases);
+ EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
+
+ // Find information about how control leaves this block.
+ std::vector<ValueEqualityComparisonCase> ThisCases;
+ BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
+ EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
+
+ // If TI's block is the default block from Pred's comparison, potentially
+ // simplify TI based on this knowledge.
+ if (PredDef == TI->getParent()) {
+ // If we are here, we know that the value is none of those cases listed in
+ // PredCases. If there are any cases in ThisCases that are in PredCases, we
+ // can simplify TI.
+ if (!ValuesOverlap(PredCases, ThisCases))
+ return false;
+
+ if (isa<BranchInst>(TI)) {
+ // Okay, one of the successors of this condbr is dead. Convert it to a
+ // uncond br.
+ assert(ThisCases.size() == 1 && "Branch can only have one case!");
+ // Insert the new branch.
+ Instruction *NI = Builder.CreateBr(ThisDef);
+ (void) NI;
+
+ // Remove PHI node entries for the dead edge.
+ ThisCases[0].Dest->removePredecessor(TI->getParent());
+
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
+
+ EraseTerminatorInstAndDCECond(TI);
+ return true;
+ }
+
+ SwitchInst *SI = cast<SwitchInst>(TI);
+ // Okay, TI has cases that are statically dead, prune them away.
+ SmallPtrSet<Constant*, 16> DeadCases;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ DeadCases.insert(PredCases[i].Value);
+
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI);
+
+ // Collect branch weights into a vector.
+ SmallVector<uint32_t, 8> Weights;
+ MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
+ bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
+ if (HasWeight)
+ for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
+ ++MD_i) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
+ Weights.push_back(CI->getValue().getZExtValue());
+ }
+ for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
+ --i;
+ if (DeadCases.count(i.getCaseValue())) {
+ if (HasWeight) {
+ std::swap(Weights[i.getCaseIndex()+1], Weights.back());
+ Weights.pop_back();
+ }
+ i.getCaseSuccessor()->removePredecessor(TI->getParent());
+ SI->removeCase(i);
+ }
+ }
+ if (HasWeight && Weights.size() >= 2)
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getParent()->getContext()).
+ createBranchWeights(Weights));
+
+ DEBUG(dbgs() << "Leaving: " << *TI << "\n");
+ return true;
+ }
+
+ // Otherwise, TI's block must correspond to some matched value. Find out
+ // which value (or set of values) this is.
+ ConstantInt *TIV = nullptr;
+ BasicBlock *TIBB = TI->getParent();
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].Dest == TIBB) {
+ if (TIV)
+ return false; // Cannot handle multiple values coming to this block.
+ TIV = PredCases[i].Value;
+ }
+ assert(TIV && "No edge from pred to succ?");
+
+ // Okay, we found the one constant that our value can be if we get into TI's
+ // BB. Find out which successor will unconditionally be branched to.
+ BasicBlock *TheRealDest = nullptr;
+ for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
+ if (ThisCases[i].Value == TIV) {
+ TheRealDest = ThisCases[i].Dest;
+ break;
+ }
+
+ // If not handled by any explicit cases, it is handled by the default case.
+ if (!TheRealDest) TheRealDest = ThisDef;
+
+ // Remove PHI node entries for dead edges.
+ BasicBlock *CheckEdge = TheRealDest;
+ for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
+ if (*SI != CheckEdge)
+ (*SI)->removePredecessor(TIBB);
+ else
+ CheckEdge = nullptr;
+
+ // Insert the new branch.
+ Instruction *NI = Builder.CreateBr(TheRealDest);
+ (void) NI;
+
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
+
+ EraseTerminatorInstAndDCECond(TI);
+ return true;
+}
+
+namespace {
+ /// This class implements a stable ordering of constant
+ /// integers that does not depend on their address. This is important for
+ /// applications that sort ConstantInt's to ensure uniqueness.
+ struct ConstantIntOrdering {
+ bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
+ return LHS->getValue().ult(RHS->getValue());
+ }
+ };
+}
+
+static int ConstantIntSortPredicate(ConstantInt *const *P1,
+ ConstantInt *const *P2) {
+ const ConstantInt *LHS = *P1;
+ const ConstantInt *RHS = *P2;
+ if (LHS->getValue().ult(RHS->getValue()))
+ return 1;
+ if (LHS->getValue() == RHS->getValue())
+ return 0;
+ return -1;
+}
+
+static inline bool HasBranchWeights(const Instruction* I) {
+ MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
+ if (ProfMD && ProfMD->getOperand(0))
+ if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
+ return MDS->getString().equals("branch_weights");
+
+ return false;
+}
+
+/// Get Weights of a given TerminatorInst, the default weight is at the front
+/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
+/// metadata.
+static void GetBranchWeights(TerminatorInst *TI,
+ SmallVectorImpl<uint64_t> &Weights) {
+ MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
+ assert(MD);
+ for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
+ Weights.push_back(CI->getValue().getZExtValue());
+ }
+
+ // If TI is a conditional eq, the default case is the false case,
+ // and the corresponding branch-weight data is at index 2. We swap the
+ // default weight to be the first entry.
+ if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
+ assert(Weights.size() == 2);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(Weights.front(), Weights.back());
+ }
+}
+
+/// Keep halving the weights until all can fit in uint32_t.
+static void FitWeights(MutableArrayRef<uint64_t> Weights) {
+ uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
+ if (Max > UINT_MAX) {
+ unsigned Offset = 32 - countLeadingZeros(Max);
+ for (uint64_t &I : Weights)
+ I >>= Offset;
+ }
+}
+
+/// The specified terminator is a value equality comparison instruction
+/// (either a switch or a branch on "X == c").
+/// See if any of the predecessors of the terminator block are value comparisons
+/// on the same value. If so, and if safe to do so, fold them together.
+bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
+ IRBuilder<> &Builder) {
+ BasicBlock *BB = TI->getParent();
+ Value *CV = isValueEqualityComparison(TI); // CondVal
+ assert(CV && "Not a comparison?");
+ bool Changed = false;
+
+ SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.pop_back_val();
+
+ // See if the predecessor is a comparison with the same value.
+ TerminatorInst *PTI = Pred->getTerminator();
+ Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
+
+ if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
+ // Figure out which 'cases' to copy from SI to PSI.
+ std::vector<ValueEqualityComparisonCase> BBCases;
+ BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
+
+ std::vector<ValueEqualityComparisonCase> PredCases;
+ BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
+
+ // Based on whether the default edge from PTI goes to BB or not, fill in
+ // PredCases and PredDefault with the new switch cases we would like to
+ // build.
+ SmallVector<BasicBlock*, 8> NewSuccessors;
+
+ // Update the branch weight metadata along the way
+ SmallVector<uint64_t, 8> Weights;
+ bool PredHasWeights = HasBranchWeights(PTI);
+ bool SuccHasWeights = HasBranchWeights(TI);
+
+ if (PredHasWeights) {
+ GetBranchWeights(PTI, Weights);
+ // branch-weight metadata is inconsistent here.
+ if (Weights.size() != 1 + PredCases.size())
+ PredHasWeights = SuccHasWeights = false;
+ } else if (SuccHasWeights)
+ // If there are no predecessor weights but there are successor weights,
+ // populate Weights with 1, which will later be scaled to the sum of
+ // successor's weights
+ Weights.assign(1 + PredCases.size(), 1);
+
+ SmallVector<uint64_t, 8> SuccWeights;
+ if (SuccHasWeights) {
+ GetBranchWeights(TI, SuccWeights);
+ // branch-weight metadata is inconsistent here.
+ if (SuccWeights.size() != 1 + BBCases.size())
+ PredHasWeights = SuccHasWeights = false;
+ } else if (PredHasWeights)
+ SuccWeights.assign(1 + BBCases.size(), 1);
+
+ if (PredDefault == BB) {
+ // If this is the default destination from PTI, only the edges in TI
+ // that don't occur in PTI, or that branch to BB will be activated.
+ std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].Dest != BB)
+ PTIHandled.insert(PredCases[i].Value);
+ else {
+ // The default destination is BB, we don't need explicit targets.
+ std::swap(PredCases[i], PredCases.back());
+
+ if (PredHasWeights || SuccHasWeights) {
+ // Increase weight for the default case.
+ Weights[0] += Weights[i+1];
+ std::swap(Weights[i+1], Weights.back());
+ Weights.pop_back();
+ }
+
+ PredCases.pop_back();
+ --i; --e;
+ }
+
+ // Reconstruct the new switch statement we will be building.
+ if (PredDefault != BBDefault) {
+ PredDefault->removePredecessor(Pred);
+ PredDefault = BBDefault;
+ NewSuccessors.push_back(BBDefault);
+ }
+
+ unsigned CasesFromPred = Weights.size();
+ uint64_t ValidTotalSuccWeight = 0;
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (!PTIHandled.count(BBCases[i].Value) &&
+ BBCases[i].Dest != BBDefault) {
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].Dest);
+ if (SuccHasWeights || PredHasWeights) {
+ // The default weight is at index 0, so weight for the ith case
+ // should be at index i+1. Scale the cases from successor by
+ // PredDefaultWeight (Weights[0]).
+ Weights.push_back(Weights[0] * SuccWeights[i+1]);
+ ValidTotalSuccWeight += SuccWeights[i+1];
+ }
+ }
+
+ if (SuccHasWeights || PredHasWeights) {
+ ValidTotalSuccWeight += SuccWeights[0];
+ // Scale the cases from predecessor by ValidTotalSuccWeight.
+ for (unsigned i = 1; i < CasesFromPred; ++i)
+ Weights[i] *= ValidTotalSuccWeight;
+ // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
+ Weights[0] *= SuccWeights[0];
+ }
+ } else {
+ // If this is not the default destination from PSI, only the edges
+ // in SI that occur in PSI with a destination of BB will be
+ // activated.
+ std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
+ std::map<ConstantInt*, uint64_t> WeightsForHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].Dest == BB) {
+ PTIHandled.insert(PredCases[i].Value);
+
+ if (PredHasWeights || SuccHasWeights) {
+ WeightsForHandled[PredCases[i].Value] = Weights[i+1];
+ std::swap(Weights[i+1], Weights.back());
+ Weights.pop_back();
+ }
+
+ std::swap(PredCases[i], PredCases.back());
+ PredCases.pop_back();
+ --i; --e;
+ }
+
+ // Okay, now we know which constants were sent to BB from the
+ // predecessor. Figure out where they will all go now.
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (PTIHandled.count(BBCases[i].Value)) {
+ // If this is one we are capable of getting...
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[BBCases[i].Value]);
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].Dest);
+ PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
+ }
+
+ // If there are any constants vectored to BB that TI doesn't handle,
+ // they must go to the default destination of TI.
+ for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
+ PTIHandled.begin(),
+ E = PTIHandled.end(); I != E; ++I) {
+ if (PredHasWeights || SuccHasWeights)
+ Weights.push_back(WeightsForHandled[*I]);
+ PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
+ NewSuccessors.push_back(BBDefault);
+ }
+ }
+
+ // Okay, at this point, we know which new successor Pred will get. Make
+ // sure we update the number of entries in the PHI nodes for these
+ // successors.
+ for (BasicBlock *NewSuccessor : NewSuccessors)
+ AddPredecessorToBlock(NewSuccessor, Pred, BB);
+
+ Builder.SetInsertPoint(PTI);
+ // Convert pointer to int before we switch.
+ if (CV->getType()->isPointerTy()) {
+ CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
+ "magicptr");
+ }
+
+ // Now that the successors are updated, create the new Switch instruction.
+ SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
+ PredCases.size());
+ NewSI->setDebugLoc(PTI->getDebugLoc());
+ for (ValueEqualityComparisonCase &V : PredCases)
+ NewSI->addCase(V.Value, V.Dest);
+
+ if (PredHasWeights || SuccHasWeights) {
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(Weights);
+
+ SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
+
+ NewSI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext()).
+ createBranchWeights(MDWeights));
+ }
+
+ EraseTerminatorInstAndDCECond(PTI);
+
+ // Okay, last check. If BB is still a successor of PSI, then we must
+ // have an infinite loop case. If so, add an infinitely looping block
+ // to handle the case to preserve the behavior of the code.
+ BasicBlock *InfLoopBlock = nullptr;
+ for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
+ if (NewSI->getSuccessor(i) == BB) {
+ if (!InfLoopBlock) {
+ // Insert it at the end of the function, because it's either code,
+ // or it won't matter if it's hot. :)
+ InfLoopBlock = BasicBlock::Create(BB->getContext(),
+ "infloop", BB->getParent());
+ BranchInst::Create(InfLoopBlock, InfLoopBlock);
+ }
+ NewSI->setSuccessor(i, InfLoopBlock);
+ }
+
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+// If we would need to insert a select that uses the value of this invoke
+// (comments in HoistThenElseCodeToIf explain why we would need to do this), we
+// can't hoist the invoke, as there is nowhere to put the select in this case.
+static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
+ Instruction *I1, Instruction *I2) {
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = SI->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
+
+/// Given a conditional branch that goes to BB1 and BB2, hoist any common code
+/// in the two blocks up into the branch block. The caller of this function
+/// guarantees that BI's block dominates BB1 and BB2.
+static bool HoistThenElseCodeToIf(BranchInst *BI,
+ const TargetTransformInfo &TTI) {
+ // This does very trivial matching, with limited scanning, to find identical
+ // instructions in the two blocks. In particular, we don't want to get into
+ // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
+ // such, we currently just scan for obviously identical instructions in an
+ // identical order.
+ BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
+ BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
+
+ BasicBlock::iterator BB1_Itr = BB1->begin();
+ BasicBlock::iterator BB2_Itr = BB2->begin();
+
+ Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
+ // Skip debug info if it is not identical.
+ DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
+ DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
+ if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
+ while (isa<DbgInfoIntrinsic>(I1))
+ I1 = &*BB1_Itr++;
+ while (isa<DbgInfoIntrinsic>(I2))
+ I2 = &*BB2_Itr++;
+ }
+ if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
+ (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
+ return false;
+
+ BasicBlock *BIParent = BI->getParent();
+
+ bool Changed = false;
+ do {
+ // If we are hoisting the terminator instruction, don't move one (making a
+ // broken BB), instead clone it, and remove BI.
+ if (isa<TerminatorInst>(I1))
+ goto HoistTerminator;
+
+ if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
+ return Changed;
+
+ // For a normal instruction, we just move one to right before the branch,
+ // then replace all uses of the other with the first. Finally, we remove
+ // the now redundant second instruction.
+ BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
+ if (!I2->use_empty())
+ I2->replaceAllUsesWith(I1);
+ I1->intersectOptionalDataWith(I2);
+ unsigned KnownIDs[] = {
+ LLVMContext::MD_tbaa, LLVMContext::MD_range,
+ LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
+ LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
+ LLVMContext::MD_align, LLVMContext::MD_dereferenceable,
+ LLVMContext::MD_dereferenceable_or_null};
+ combineMetadata(I1, I2, KnownIDs);
+ I2->eraseFromParent();
+ Changed = true;
+
+ I1 = &*BB1_Itr++;
+ I2 = &*BB2_Itr++;
+ // Skip debug info if it is not identical.
+ DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
+ DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
+ if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
+ while (isa<DbgInfoIntrinsic>(I1))
+ I1 = &*BB1_Itr++;
+ while (isa<DbgInfoIntrinsic>(I2))
+ I2 = &*BB2_Itr++;
+ }
+ } while (I1->isIdenticalToWhenDefined(I2));
+
+ return true;
+
+HoistTerminator:
+ // It may not be possible to hoist an invoke.
+ if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
+ return Changed;
+
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = SI->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ if (BB1V == BB2V)
+ continue;
+
+ // Check for passingValueIsAlwaysUndefined here because we would rather
+ // eliminate undefined control flow then converting it to a select.
+ if (passingValueIsAlwaysUndefined(BB1V, PN) ||
+ passingValueIsAlwaysUndefined(BB2V, PN))
+ return Changed;
+
+ if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
+ return Changed;
+ if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
+ return Changed;
+ }
+ }
+
+ // Okay, it is safe to hoist the terminator.
+ Instruction *NT = I1->clone();
+ BIParent->getInstList().insert(BI->getIterator(), NT);
+ if (!NT->getType()->isVoidTy()) {
+ I1->replaceAllUsesWith(NT);
+ I2->replaceAllUsesWith(NT);
+ NT->takeName(I1);
+ }
+
+ IRBuilder<true, NoFolder> Builder(NT);
+ // Hoisting one of the terminators from our successor is a great thing.
+ // Unfortunately, the successors of the if/else blocks may have PHI nodes in
+ // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
+ // nodes, so we insert select instruction to compute the final result.
+ std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = SI->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ if (BB1V == BB2V) continue;
+
+ // These values do not agree. Insert a select instruction before NT
+ // that determines the right value.
+ SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
+ if (!SI)
+ SI = cast<SelectInst>
+ (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
+ BB1V->getName()+"."+BB2V->getName()));
+
+ // Make the PHI node use the select for all incoming values for BB1/BB2
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
+ PN->setIncomingValue(i, SI);
+ }
+ }
+
+ // Update any PHI nodes in our new successors.
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
+ AddPredecessorToBlock(*SI, BIParent, BB1);
+
+ EraseTerminatorInstAndDCECond(BI);
+ return true;
+}
+
+/// Given an unconditional branch that goes to BBEnd,
+/// check whether BBEnd has only two predecessors and the other predecessor
+/// ends with an unconditional branch. If it is true, sink any common code
+/// in the two predecessors to BBEnd.
+static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
+ assert(BI1->isUnconditional());
+ BasicBlock *BB1 = BI1->getParent();
+ BasicBlock *BBEnd = BI1->getSuccessor(0);
+
+ // Check that BBEnd has two predecessors and the other predecessor ends with
+ // an unconditional branch.
+ pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
+ BasicBlock *Pred0 = *PI++;
+ if (PI == PE) // Only one predecessor.
+ return false;
+ BasicBlock *Pred1 = *PI++;
+ if (PI != PE) // More than two predecessors.
+ return false;
+ BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
+ BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
+ if (!BI2 || !BI2->isUnconditional())
+ return false;
+
+ // Gather the PHI nodes in BBEnd.
+ SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
+ Instruction *FirstNonPhiInBBEnd = nullptr;
+ for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
+ } else {
+ FirstNonPhiInBBEnd = &*I;
+ break;
+ }
+ }
+ if (!FirstNonPhiInBBEnd)
+ return false;
+
+ // This does very trivial matching, with limited scanning, to find identical
+ // instructions in the two blocks. We scan backward for obviously identical
+ // instructions in an identical order.
+ BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
+ RE1 = BB1->getInstList().rend(),
+ RI2 = BB2->getInstList().rbegin(),
+ RE2 = BB2->getInstList().rend();
+ // Skip debug info.
+ while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
+ if (RI1 == RE1)
+ return false;
+ while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
+ if (RI2 == RE2)
+ return false;
+ // Skip the unconditional branches.
+ ++RI1;
+ ++RI2;
+
+ bool Changed = false;
+ while (RI1 != RE1 && RI2 != RE2) {
+ // Skip debug info.
+ while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
+ if (RI1 == RE1)
+ return Changed;
+ while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
+ if (RI2 == RE2)
+ return Changed;
+
+ Instruction *I1 = &*RI1, *I2 = &*RI2;
+ auto InstPair = std::make_pair(I1, I2);
+ // I1 and I2 should have a single use in the same PHI node, and they
+ // perform the same operation.
+ // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+ if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
+ isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
+ I1->isEHPad() || I2->isEHPad() ||
+ isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
+ I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
+ I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
+ !I1->hasOneUse() || !I2->hasOneUse() ||
+ !JointValueMap.count(InstPair))
+ return Changed;
+
+ // Check whether we should swap the operands of ICmpInst.
+ // TODO: Add support of communativity.
+ ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
+ bool SwapOpnds = false;
+ if (ICmp1 && ICmp2 &&
+ ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
+ ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
+ (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
+ ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
+ ICmp2->swapOperands();
+ SwapOpnds = true;
+ }
+ if (!I1->isSameOperationAs(I2)) {
+ if (SwapOpnds)
+ ICmp2->swapOperands();
+ return Changed;
+ }
+
+ // The operands should be either the same or they need to be generated
+ // with a PHI node after sinking. We only handle the case where there is
+ // a single pair of different operands.
+ Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
+ unsigned Op1Idx = ~0U;
+ for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
+ if (I1->getOperand(I) == I2->getOperand(I))
+ continue;
+ // Early exit if we have more-than one pair of different operands or if
+ // we need a PHI node to replace a constant.
+ if (Op1Idx != ~0U ||
+ isa<Constant>(I1->getOperand(I)) ||
+ isa<Constant>(I2->getOperand(I))) {
+ // If we can't sink the instructions, undo the swapping.
+ if (SwapOpnds)
+ ICmp2->swapOperands();
+ return Changed;
+ }
+ DifferentOp1 = I1->getOperand(I);
+ Op1Idx = I;
+ DifferentOp2 = I2->getOperand(I);
+ }
+
+ DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
+ DEBUG(dbgs() << " " << *I2 << "\n");
+
+ // We insert the pair of different operands to JointValueMap and
+ // remove (I1, I2) from JointValueMap.
+ if (Op1Idx != ~0U) {
+ auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
+ if (!NewPN) {
+ NewPN =
+ PHINode::Create(DifferentOp1->getType(), 2,
+ DifferentOp1->getName() + ".sink", &BBEnd->front());
+ NewPN->addIncoming(DifferentOp1, BB1);
+ NewPN->addIncoming(DifferentOp2, BB2);
+ DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
+ }
+ // I1 should use NewPN instead of DifferentOp1.
+ I1->setOperand(Op1Idx, NewPN);
+ }
+ PHINode *OldPN = JointValueMap[InstPair];
+ JointValueMap.erase(InstPair);
+
+ // We need to update RE1 and RE2 if we are going to sink the first
+ // instruction in the basic block down.
+ bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
+ // Sink the instruction.
+ BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
+ BB1->getInstList(), I1);
+ if (!OldPN->use_empty())
+ OldPN->replaceAllUsesWith(I1);
+ OldPN->eraseFromParent();
+
+ if (!I2->use_empty())
+ I2->replaceAllUsesWith(I1);
+ I1->intersectOptionalDataWith(I2);
+ // TODO: Use combineMetadata here to preserve what metadata we can
+ // (analogous to the hoisting case above).
+ I2->eraseFromParent();
+
+ if (UpdateRE1)
+ RE1 = BB1->getInstList().rend();
+ if (UpdateRE2)
+ RE2 = BB2->getInstList().rend();
+ FirstNonPhiInBBEnd = &*I1;
+ NumSinkCommons++;
+ Changed = true;
+ }
+ return Changed;
+}
+
+/// \brief Determine if we can hoist sink a sole store instruction out of a
+/// conditional block.
+///
+/// We are looking for code like the following:
+/// BrBB:
+/// store i32 %add, i32* %arrayidx2
+/// ... // No other stores or function calls (we could be calling a memory
+/// ... // function).
+/// %cmp = icmp ult %x, %y
+/// br i1 %cmp, label %EndBB, label %ThenBB
+/// ThenBB:
+/// store i32 %add5, i32* %arrayidx2
+/// br label EndBB
+/// EndBB:
+/// ...
+/// We are going to transform this into:
+/// BrBB:
+/// store i32 %add, i32* %arrayidx2
+/// ... //
+/// %cmp = icmp ult %x, %y
+/// %add.add5 = select i1 %cmp, i32 %add, %add5
+/// store i32 %add.add5, i32* %arrayidx2
+/// ...
+///
+/// \return The pointer to the value of the previous store if the store can be
+/// hoisted into the predecessor block. 0 otherwise.
+static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
+ BasicBlock *StoreBB, BasicBlock *EndBB) {
+ StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
+ if (!StoreToHoist)
+ return nullptr;
+
+ // Volatile or atomic.
+ if (!StoreToHoist->isSimple())
+ return nullptr;
+
+ Value *StorePtr = StoreToHoist->getPointerOperand();
+
+ // Look for a store to the same pointer in BrBB.
+ unsigned MaxNumInstToLookAt = 10;
+ for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
+ RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
+ Instruction *CurI = &*RI;
+
+ // Could be calling an instruction that effects memory like free().
+ if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
+ return nullptr;
+
+ StoreInst *SI = dyn_cast<StoreInst>(CurI);
+ // Found the previous store make sure it stores to the same location.
+ if (SI && SI->getPointerOperand() == StorePtr)
+ // Found the previous store, return its value operand.
+ return SI->getValueOperand();
+ else if (SI)
+ return nullptr; // Unknown store.
+ }
+
+ return nullptr;
+}
+
+/// \brief Speculate a conditional basic block flattening the CFG.
+///
+/// Note that this is a very risky transform currently. Speculating
+/// instructions like this is most often not desirable. Instead, there is an MI
+/// pass which can do it with full awareness of the resource constraints.
+/// However, some cases are "obvious" and we should do directly. An example of
+/// this is speculating a single, reasonably cheap instruction.
+///
+/// There is only one distinct advantage to flattening the CFG at the IR level:
+/// it makes very common but simplistic optimizations such as are common in
+/// instcombine and the DAG combiner more powerful by removing CFG edges and
+/// modeling their effects with easier to reason about SSA value graphs.
+///
+///
+/// An illustration of this transform is turning this IR:
+/// \code
+/// BB:
+/// %cmp = icmp ult %x, %y
+/// br i1 %cmp, label %EndBB, label %ThenBB
+/// ThenBB:
+/// %sub = sub %x, %y
+/// br label BB2
+/// EndBB:
+/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
+/// ...
+/// \endcode
+///
+/// Into this IR:
+/// \code
+/// BB:
+/// %cmp = icmp ult %x, %y
+/// %sub = sub %x, %y
+/// %cond = select i1 %cmp, 0, %sub
+/// ...
+/// \endcode
+///
+/// \returns true if the conditional block is removed.
+static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
+ const TargetTransformInfo &TTI) {
+ // Be conservative for now. FP select instruction can often be expensive.
+ Value *BrCond = BI->getCondition();
+ if (isa<FCmpInst>(BrCond))
+ return false;
+
+ BasicBlock *BB = BI->getParent();
+ BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
+
+ // If ThenBB is actually on the false edge of the conditional branch, remember
+ // to swap the select operands later.
+ bool Invert = false;
+ if (ThenBB != BI->getSuccessor(0)) {
+ assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
+ Invert = true;
+ }
+ assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
+
+ // Keep a count of how many times instructions are used within CondBB when
+ // they are candidates for sinking into CondBB. Specifically:
+ // - They are defined in BB, and
+ // - They have no side effects, and
+ // - All of their uses are in CondBB.
+ SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
+
+ unsigned SpeculationCost = 0;
+ Value *SpeculatedStoreValue = nullptr;
+ StoreInst *SpeculatedStore = nullptr;
+ for (BasicBlock::iterator BBI = ThenBB->begin(),
+ BBE = std::prev(ThenBB->end());
+ BBI != BBE; ++BBI) {
+ Instruction *I = &*BBI;
+ // Skip debug info.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ // Only speculatively execute a single instruction (not counting the
+ // terminator) for now.
+ ++SpeculationCost;
+ if (SpeculationCost > 1)
+ return false;
+
+ // Don't hoist the instruction if it's unsafe or expensive.
+ if (!isSafeToSpeculativelyExecute(I) &&
+ !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
+ I, BB, ThenBB, EndBB))))
+ return false;
+ if (!SpeculatedStoreValue &&
+ ComputeSpeculationCost(I, TTI) >
+ PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
+ return false;
+
+ // Store the store speculation candidate.
+ if (SpeculatedStoreValue)
+ SpeculatedStore = cast<StoreInst>(I);
+
+ // Do not hoist the instruction if any of its operands are defined but not
+ // used in BB. The transformation will prevent the operand from
+ // being sunk into the use block.
+ for (User::op_iterator i = I->op_begin(), e = I->op_end();
+ i != e; ++i) {
+ Instruction *OpI = dyn_cast<Instruction>(*i);
+ if (!OpI || OpI->getParent() != BB ||
+ OpI->mayHaveSideEffects())
+ continue; // Not a candidate for sinking.
+
+ ++SinkCandidateUseCounts[OpI];
+ }
+ }
+
+ // Consider any sink candidates which are only used in CondBB as costs for
+ // speculation. Note, while we iterate over a DenseMap here, we are summing
+ // and so iteration order isn't significant.
+ for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
+ SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
+ I != E; ++I)
+ if (I->first->getNumUses() == I->second) {
+ ++SpeculationCost;
+ if (SpeculationCost > 1)
+ return false;
+ }
+
+ // Check that the PHI nodes can be converted to selects.
+ bool HaveRewritablePHIs = false;
+ for (BasicBlock::iterator I = EndBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ Value *OrigV = PN->getIncomingValueForBlock(BB);
+ Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
+
+ // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
+ // Skip PHIs which are trivial.
+ if (ThenV == OrigV)
+ continue;
+
+ // Don't convert to selects if we could remove undefined behavior instead.
+ if (passingValueIsAlwaysUndefined(OrigV, PN) ||
+ passingValueIsAlwaysUndefined(ThenV, PN))
+ return false;
+
+ HaveRewritablePHIs = true;
+ ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
+ ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
+ if (!OrigCE && !ThenCE)
+ continue; // Known safe and cheap.
+
+ if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
+ (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
+ return false;
+ unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
+ unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
+ unsigned MaxCost = 2 * PHINodeFoldingThreshold *
+ TargetTransformInfo::TCC_Basic;
+ if (OrigCost + ThenCost > MaxCost)
+ return false;
+
+ // Account for the cost of an unfolded ConstantExpr which could end up
+ // getting expanded into Instructions.
+ // FIXME: This doesn't account for how many operations are combined in the
+ // constant expression.
+ ++SpeculationCost;
+ if (SpeculationCost > 1)
+ return false;
+ }
+
+ // If there are no PHIs to process, bail early. This helps ensure idempotence
+ // as well.
+ if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
+ return false;
+
+ // If we get here, we can hoist the instruction and if-convert.
+ DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
+
+ // Insert a select of the value of the speculated store.
+ if (SpeculatedStoreValue) {
+ IRBuilder<true, NoFolder> Builder(BI);
+ Value *TrueV = SpeculatedStore->getValueOperand();
+ Value *FalseV = SpeculatedStoreValue;
+ if (Invert)
+ std::swap(TrueV, FalseV);
+ Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
+ "." + FalseV->getName());
+ SpeculatedStore->setOperand(0, S);
+ }
+
+ // Metadata can be dependent on the condition we are hoisting above.
+ // Conservatively strip all metadata on the instruction.
+ for (auto &I: *ThenBB)
+ I.dropUnknownNonDebugMetadata();
+
+ // Hoist the instructions.
+ BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
+ ThenBB->begin(), std::prev(ThenBB->end()));
+
+ // Insert selects and rewrite the PHI operands.
+ IRBuilder<true, NoFolder> Builder(BI);
+ for (BasicBlock::iterator I = EndBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ unsigned OrigI = PN->getBasicBlockIndex(BB);
+ unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
+ Value *OrigV = PN->getIncomingValue(OrigI);
+ Value *ThenV = PN->getIncomingValue(ThenI);
+
+ // Skip PHIs which are trivial.
+ if (OrigV == ThenV)
+ continue;
+
+ // Create a select whose true value is the speculatively executed value and
+ // false value is the preexisting value. Swap them if the branch
+ // destinations were inverted.
+ Value *TrueV = ThenV, *FalseV = OrigV;
+ if (Invert)
+ std::swap(TrueV, FalseV);
+ Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
+ TrueV->getName() + "." + FalseV->getName());
+ PN->setIncomingValue(OrigI, V);
+ PN->setIncomingValue(ThenI, V);
+ }
+
+ ++NumSpeculations;
+ return true;
+}
+
+/// \returns True if this block contains a CallInst with the NoDuplicate
+/// attribute.
+static bool HasNoDuplicateCall(const BasicBlock *BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ const CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI)
+ continue;
+ if (CI->cannotDuplicate())
+ return true;
+ }
+ return false;
+}
+
+/// Return true if we can thread a branch across this block.
+static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
+ BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+ unsigned Size = 0;
+
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (isa<DbgInfoIntrinsic>(BBI))
+ continue;
+ if (Size > 10) return false; // Don't clone large BB's.
+ ++Size;
+
+ // We can only support instructions that do not define values that are
+ // live outside of the current basic block.
+ for (User *U : BBI->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
+ }
+
+ // Looks ok, continue checking.
+ }
+
+ return true;
+}
+
+/// If we have a conditional branch on a PHI node value that is defined in the
+/// same block as the branch and if any PHI entries are constants, thread edges
+/// corresponding to that entry to be branches to their ultimate destination.
+static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
+ BasicBlock *BB = BI->getParent();
+ PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
+ // NOTE: we currently cannot transform this case if the PHI node is used
+ // outside of the block.
+ if (!PN || PN->getParent() != BB || !PN->hasOneUse())
+ return false;
+
+ // Degenerate case of a single entry PHI.
+ if (PN->getNumIncomingValues() == 1) {
+ FoldSingleEntryPHINodes(PN->getParent());
+ return true;
+ }
+
+ // Now we know that this block has multiple preds and two succs.
+ if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
+
+ if (HasNoDuplicateCall(BB)) return false;
+
+ // Okay, this is a simple enough basic block. See if any phi values are
+ // constants.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
+ if (!CB || !CB->getType()->isIntegerTy(1)) continue;
+
+ // Okay, we now know that all edges from PredBB should be revectored to
+ // branch to RealDest.
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
+
+ if (RealDest == BB) continue; // Skip self loops.
+ // Skip if the predecessor's terminator is an indirect branch.
+ if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
+
+ // The dest block might have PHI nodes, other predecessors and other
+ // difficult cases. Instead of being smart about this, just insert a new
+ // block that jumps to the destination block, effectively splitting
+ // the edge we are about to create.
+ BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
+ RealDest->getName()+".critedge",
+ RealDest->getParent(), RealDest);
+ BranchInst::Create(RealDest, EdgeBB);
+
+ // Update PHI nodes.
+ AddPredecessorToBlock(RealDest, EdgeBB, BB);
+
+ // BB may have instructions that are being threaded over. Clone these
+ // instructions into EdgeBB. We know that there will be no uses of the
+ // cloned instructions outside of EdgeBB.
+ BasicBlock::iterator InsertPt = EdgeBB->begin();
+ DenseMap<Value*, Value*> TranslateMap; // Track translated values.
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
+ TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
+ continue;
+ }
+ // Clone the instruction.
+ Instruction *N = BBI->clone();
+ if (BBI->hasName()) N->setName(BBI->getName()+".c");
+
+ // Update operands due to translation.
+ for (User::op_iterator i = N->op_begin(), e = N->op_end();
+ i != e; ++i) {
+ DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
+ if (PI != TranslateMap.end())
+ *i = PI->second;
+ }
+
+ // Check for trivial simplification.
+ if (Value *V = SimplifyInstruction(N, DL)) {
+ TranslateMap[&*BBI] = V;
+ delete N; // Instruction folded away, don't need actual inst
+ } else {
+ // Insert the new instruction into its new home.
+ EdgeBB->getInstList().insert(InsertPt, N);
+ if (!BBI->use_empty())
+ TranslateMap[&*BBI] = N;
+ }
+ }
+
+ // Loop over all of the edges from PredBB to BB, changing them to branch
+ // to EdgeBB instead.
+ TerminatorInst *PredBBTI = PredBB->getTerminator();
+ for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
+ if (PredBBTI->getSuccessor(i) == BB) {
+ BB->removePredecessor(PredBB);
+ PredBBTI->setSuccessor(i, EdgeBB);
+ }
+
+ // Recurse, simplifying any other constants.
+ return FoldCondBranchOnPHI(BI, DL) | true;
+ }
+
+ return false;
+}
+
+/// Given a BB that starts with the specified two-entry PHI node,
+/// see if we can eliminate it.
+static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
+ const DataLayout &DL) {
+ // Ok, this is a two entry PHI node. Check to see if this is a simple "if
+ // statement", which has a very simple dominance structure. Basically, we
+ // are trying to find the condition that is being branched on, which
+ // subsequently causes this merge to happen. We really want control
+ // dependence information for this check, but simplifycfg can't keep it up
+ // to date, and this catches most of the cases we care about anyway.
+ BasicBlock *BB = PN->getParent();
+ BasicBlock *IfTrue, *IfFalse;
+ Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
+ if (!IfCond ||
+ // Don't bother if the branch will be constant folded trivially.
+ isa<ConstantInt>(IfCond))
+ return false;
+
+ // Okay, we found that we can merge this two-entry phi node into a select.
+ // Doing so would require us to fold *all* two entry phi nodes in this block.
+ // At some point this becomes non-profitable (particularly if the target
+ // doesn't support cmov's). Only do this transformation if there are two or
+ // fewer PHI nodes in this block.
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
+ if (NumPhis > 2)
+ return false;
+
+ // Loop over the PHI's seeing if we can promote them all to select
+ // instructions. While we are at it, keep track of the instructions
+ // that need to be moved to the dominating block.
+ SmallPtrSet<Instruction*, 4> AggressiveInsts;
+ unsigned MaxCostVal0 = PHINodeFoldingThreshold,
+ MaxCostVal1 = PHINodeFoldingThreshold;
+ MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
+ MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
+
+ for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
+ PHINode *PN = cast<PHINode>(II++);
+ if (Value *V = SimplifyInstruction(PN, DL)) {
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ continue;
+ }
+
+ if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
+ MaxCostVal0, TTI) ||
+ !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
+ MaxCostVal1, TTI))
+ return false;
+ }
+
+ // If we folded the first phi, PN dangles at this point. Refresh it. If
+ // we ran out of PHIs then we simplified them all.
+ PN = dyn_cast<PHINode>(BB->begin());
+ if (!PN) return true;
+
+ // Don't fold i1 branches on PHIs which contain binary operators. These can
+ // often be turned into switches and other things.
+ if (PN->getType()->isIntegerTy(1) &&
+ (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
+ isa<BinaryOperator>(PN->getIncomingValue(1)) ||
+ isa<BinaryOperator>(IfCond)))
+ return false;
+
+ // If we all PHI nodes are promotable, check to make sure that all
+ // instructions in the predecessor blocks can be promoted as well. If
+ // not, we won't be able to get rid of the control flow, so it's not
+ // worth promoting to select instructions.
+ BasicBlock *DomBlock = nullptr;
+ BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
+ BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
+ if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
+ IfBlock1 = nullptr;
+ } else {
+ DomBlock = *pred_begin(IfBlock1);
+ for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
+ if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control
+ // flow, so the xform is not worth it.
+ return false;
+ }
+ }
+
+ if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
+ IfBlock2 = nullptr;
+ } else {
+ DomBlock = *pred_begin(IfBlock2);
+ for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
+ if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control
+ // flow, so the xform is not worth it.
+ return false;
+ }
+ }
+
+ DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
+ << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
+
+ // If we can still promote the PHI nodes after this gauntlet of tests,
+ // do all of the PHI's now.
+ Instruction *InsertPt = DomBlock->getTerminator();
+ IRBuilder<true, NoFolder> Builder(InsertPt);
+
+ // Move all 'aggressive' instructions, which are defined in the
+ // conditional parts of the if's up to the dominating block.
+ if (IfBlock1)
+ DomBlock->getInstList().splice(InsertPt->getIterator(),
+ IfBlock1->getInstList(), IfBlock1->begin(),
+ IfBlock1->getTerminator()->getIterator());
+ if (IfBlock2)
+ DomBlock->getInstList().splice(InsertPt->getIterator(),
+ IfBlock2->getInstList(), IfBlock2->begin(),
+ IfBlock2->getTerminator()->getIterator());
+
+ while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+ // Change the PHI node into a select instruction.
+ Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
+ Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
+
+ SelectInst *NV =
+ cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
+ PN->replaceAllUsesWith(NV);
+ NV->takeName(PN);
+ PN->eraseFromParent();
+ }
+
+ // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
+ // has been flattened. Change DomBlock to jump directly to our new block to
+ // avoid other simplifycfg's kicking in on the diamond.
+ TerminatorInst *OldTI = DomBlock->getTerminator();
+ Builder.SetInsertPoint(OldTI);
+ Builder.CreateBr(BB);
+ OldTI->eraseFromParent();
+ return true;
+}
+
+/// If we found a conditional branch that goes to two returning blocks,
+/// try to merge them together into one return,
+/// introducing a select if the return values disagree.
+static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
+ IRBuilder<> &Builder) {
+ assert(BI->isConditional() && "Must be a conditional branch");
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+ ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
+ ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
+
+ // Check to ensure both blocks are empty (just a return) or optionally empty
+ // with PHI nodes. If there are other instructions, merging would cause extra
+ // computation on one path or the other.
+ if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
+ return false;
+ if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
+ return false;
+
+ Builder.SetInsertPoint(BI);
+ // Okay, we found a branch that is going to two return nodes. If
+ // there is no return value for this function, just change the
+ // branch into a return.
+ if (FalseRet->getNumOperands() == 0) {
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+ Builder.CreateRetVoid();
+ EraseTerminatorInstAndDCECond(BI);
+ return true;
+ }
+
+ // Otherwise, figure out what the true and false return values are
+ // so we can insert a new select instruction.
+ Value *TrueValue = TrueRet->getReturnValue();
+ Value *FalseValue = FalseRet->getReturnValue();
+
+ // Unwrap any PHI nodes in the return blocks.
+ if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
+ if (TVPN->getParent() == TrueSucc)
+ TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
+ if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
+ if (FVPN->getParent() == FalseSucc)
+ FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
+
+ // In order for this transformation to be safe, we must be able to
+ // unconditionally execute both operands to the return. This is
+ // normally the case, but we could have a potentially-trapping
+ // constant expression that prevents this transformation from being
+ // safe.
+ if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
+ if (TCV->canTrap())
+ return false;
+ if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
+ if (FCV->canTrap())
+ return false;
+
+ // Okay, we collected all the mapped values and checked them for sanity, and
+ // defined to really do this transformation. First, update the CFG.
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+
+ // Insert select instructions where needed.
+ Value *BrCond = BI->getCondition();
+ if (TrueValue) {
+ // Insert a select if the results differ.
+ if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
+ } else if (isa<UndefValue>(TrueValue)) {
+ TrueValue = FalseValue;
+ } else {
+ TrueValue = Builder.CreateSelect(BrCond, TrueValue,
+ FalseValue, "retval");
+ }
+ }
+
+ Value *RI = !TrueValue ?
+ Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
+
+ (void) RI;
+
+ DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
+ << "\n " << *BI << "NewRet = " << *RI
+ << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
+
+ EraseTerminatorInstAndDCECond(BI);
+
+ return true;
+}
+
+/// Given a conditional BranchInstruction, retrieve the probabilities of the
+/// branch taking each edge. Fills in the two APInt parameters and returns true,
+/// or returns false if no or invalid metadata was found.
+static bool ExtractBranchMetadata(BranchInst *BI,
+ uint64_t &ProbTrue, uint64_t &ProbFalse) {
+ assert(BI->isConditional() &&
+ "Looking for probabilities on unconditional branch?");
+ MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
+ if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
+ ConstantInt *CITrue =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
+ ConstantInt *CIFalse =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
+ if (!CITrue || !CIFalse) return false;
+ ProbTrue = CITrue->getValue().getZExtValue();
+ ProbFalse = CIFalse->getValue().getZExtValue();
+ return true;
+}
+
+/// Return true if the given instruction is available
+/// in its predecessor block. If yes, the instruction will be removed.
+static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
+ if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
+ return false;
+ for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
+ Instruction *PBI = &*I;
+ // Check whether Inst and PBI generate the same value.
+ if (Inst->isIdenticalTo(PBI)) {
+ Inst->replaceAllUsesWith(PBI);
+ Inst->eraseFromParent();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// If this basic block is simple enough, and if a predecessor branches to us
+/// and one of our successors, fold the block into the predecessor and use
+/// logical operations to pick the right destination.
+bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
+ BasicBlock *BB = BI->getParent();
+
+ Instruction *Cond = nullptr;
+ if (BI->isConditional())
+ Cond = dyn_cast<Instruction>(BI->getCondition());
+ else {
+ // For unconditional branch, check for a simple CFG pattern, where
+ // BB has a single predecessor and BB's successor is also its predecessor's
+ // successor. If such pattern exisits, check for CSE between BB and its
+ // predecessor.
+ if (BasicBlock *PB = BB->getSinglePredecessor())
+ if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
+ if (PBI->isConditional() &&
+ (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
+ BI->getSuccessor(0) == PBI->getSuccessor(1))) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end();
+ I != E; ) {
+ Instruction *Curr = &*I++;
+ if (isa<CmpInst>(Curr)) {
+ Cond = Curr;
+ break;
+ }
+ // Quit if we can't remove this instruction.
+ if (!checkCSEInPredecessor(Curr, PB))
+ return false;
+ }
+ }
+
+ if (!Cond)
+ return false;
+ }
+
+ if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
+ Cond->getParent() != BB || !Cond->hasOneUse())
+ return false;
+
+ // Make sure the instruction after the condition is the cond branch.
+ BasicBlock::iterator CondIt = ++Cond->getIterator();
+
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
+
+ if (&*CondIt != BI)
+ return false;
+
+ // Only allow this transformation if computing the condition doesn't involve
+ // too many instructions and these involved instructions can be executed
+ // unconditionally. We denote all involved instructions except the condition
+ // as "bonus instructions", and only allow this transformation when the
+ // number of the bonus instructions does not exceed a certain threshold.
+ unsigned NumBonusInsts = 0;
+ for (auto I = BB->begin(); Cond != I; ++I) {
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+ if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
+ return false;
+ // I has only one use and can be executed unconditionally.
+ Instruction *User = dyn_cast<Instruction>(I->user_back());
+ if (User == nullptr || User->getParent() != BB)
+ return false;
+ // I is used in the same BB. Since BI uses Cond and doesn't have more slots
+ // to use any other instruction, User must be an instruction between next(I)
+ // and Cond.
+ ++NumBonusInsts;
+ // Early exits once we reach the limit.
+ if (NumBonusInsts > BonusInstThreshold)
+ return false;
+ }
+
+ // Cond is known to be a compare or binary operator. Check to make sure that
+ // neither operand is a potentially-trapping constant expression.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
+ if (CE->canTrap())
+ return false;
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
+ if (CE->canTrap())
+ return false;
+
+ // Finally, don't infinitely unroll conditional loops.
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
+ if (TrueDest == BB || FalseDest == BB)
+ return false;
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBlock = *PI;
+ BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
+
+ // Check that we have two conditional branches. If there is a PHI node in
+ // the common successor, verify that the same value flows in from both
+ // blocks.
+ SmallVector<PHINode*, 4> PHIs;
+ if (!PBI || PBI->isUnconditional() ||
+ (BI->isConditional() &&
+ !SafeToMergeTerminators(BI, PBI)) ||
+ (!BI->isConditional() &&
+ !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
+ continue;
+
+ // Determine if the two branches share a common destination.
+ Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
+ bool InvertPredCond = false;
+
+ if (BI->isConditional()) {
+ if (PBI->getSuccessor(0) == TrueDest)
+ Opc = Instruction::Or;
+ else if (PBI->getSuccessor(1) == FalseDest)
+ Opc = Instruction::And;
+ else if (PBI->getSuccessor(0) == FalseDest)
+ Opc = Instruction::And, InvertPredCond = true;
+ else if (PBI->getSuccessor(1) == TrueDest)
+ Opc = Instruction::Or, InvertPredCond = true;
+ else
+ continue;
+ } else {
+ if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
+ continue;
+ }
+
+ DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
+ IRBuilder<> Builder(PBI);
+
+ // If we need to invert the condition in the pred block to match, do so now.
+ if (InvertPredCond) {
+ Value *NewCond = PBI->getCondition();
+
+ if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
+ CmpInst *CI = cast<CmpInst>(NewCond);
+ CI->setPredicate(CI->getInversePredicate());
+ } else {
+ NewCond = Builder.CreateNot(NewCond,
+ PBI->getCondition()->getName()+".not");
+ }
+
+ PBI->setCondition(NewCond);
+ PBI->swapSuccessors();
+ }
+
+ // If we have bonus instructions, clone them into the predecessor block.
+ // Note that there may be multiple predecessor blocks, so we cannot move
+ // bonus instructions to a predecessor block.
+ ValueToValueMapTy VMap; // maps original values to cloned values
+ // We already make sure Cond is the last instruction before BI. Therefore,
+ // all instructions before Cond other than DbgInfoIntrinsic are bonus
+ // instructions.
+ for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
+ if (isa<DbgInfoIntrinsic>(BonusInst))
+ continue;
+ Instruction *NewBonusInst = BonusInst->clone();
+ RemapInstruction(NewBonusInst, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
+ VMap[&*BonusInst] = NewBonusInst;
+
+ // If we moved a load, we cannot any longer claim any knowledge about
+ // its potential value. The previous information might have been valid
+ // only given the branch precondition.
+ // For an analogous reason, we must also drop all the metadata whose
+ // semantics we don't understand.
+ NewBonusInst->dropUnknownNonDebugMetadata();
+
+ PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
+ NewBonusInst->takeName(&*BonusInst);
+ BonusInst->setName(BonusInst->getName() + ".old");
+ }
+
+ // Clone Cond into the predecessor basic block, and or/and the
+ // two conditions together.
+ Instruction *New = Cond->clone();
+ RemapInstruction(New, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
+ PredBlock->getInstList().insert(PBI->getIterator(), New);
+ New->takeName(Cond);
+ Cond->setName(New->getName() + ".old");
+
+ if (BI->isConditional()) {
+ Instruction *NewCond =
+ cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
+ New, "or.cond"));
+ PBI->setCondition(NewCond);
+
+ uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
+ bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
+ PredFalseWeight);
+ bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
+ SuccFalseWeight);
+ SmallVector<uint64_t, 8> NewWeights;
+
+ if (PBI->getSuccessor(0) == BB) {
+ if (PredHasWeights && SuccHasWeights) {
+ // PBI: br i1 %x, BB, FalseDest
+ // BI: br i1 %y, TrueDest, FalseDest
+ //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
+ NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
+ //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
+ // TrueWeight for PBI * FalseWeight for BI.
+ // We assume that total weights of a BranchInst can fit into 32 bits.
+ // Therefore, we will not have overflow using 64-bit arithmetic.
+ NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
+ SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
+ }
+ AddPredecessorToBlock(TrueDest, PredBlock, BB);
+ PBI->setSuccessor(0, TrueDest);
+ }
+ if (PBI->getSuccessor(1) == BB) {
+ if (PredHasWeights && SuccHasWeights) {
+ // PBI: br i1 %x, TrueDest, BB
+ // BI: br i1 %y, TrueDest, FalseDest
+ //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
+ // FalseWeight for PBI * TrueWeight for BI.
+ NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
+ SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
+ //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
+ NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
+ }
+ AddPredecessorToBlock(FalseDest, PredBlock, BB);
+ PBI->setSuccessor(1, FalseDest);
+ }
+ if (NewWeights.size() == 2) {
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(NewWeights);
+
+ SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
+ PBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BI->getContext()).
+ createBranchWeights(MDWeights));
+ } else
+ PBI->setMetadata(LLVMContext::MD_prof, nullptr);
+ } else {
+ // Update PHI nodes in the common successors.
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
+ ConstantInt *PBI_C = cast<ConstantInt>(
+ PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
+ assert(PBI_C->getType()->isIntegerTy(1));
+ Instruction *MergedCond = nullptr;
+ if (PBI->getSuccessor(0) == TrueDest) {
+ // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
+ // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
+ // is false: !PBI_Cond and BI_Value
+ Instruction *NotCond =
+ cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
+ "not.cond"));
+ MergedCond =
+ cast<Instruction>(Builder.CreateBinOp(Instruction::And,
+ NotCond, New,
+ "and.cond"));
+ if (PBI_C->isOne())
+ MergedCond =
+ cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
+ PBI->getCondition(), MergedCond,
+ "or.cond"));
+ } else {
+ // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
+ // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
+ // is false: PBI_Cond and BI_Value
+ MergedCond =
+ cast<Instruction>(Builder.CreateBinOp(Instruction::And,
+ PBI->getCondition(), New,
+ "and.cond"));
+ if (PBI_C->isOne()) {
+ Instruction *NotCond =
+ cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
+ "not.cond"));
+ MergedCond =
+ cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
+ NotCond, MergedCond,
+ "or.cond"));
+ }
+ }
+ // Update PHI Node.
+ PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
+ MergedCond);
+ }
+ // Change PBI from Conditional to Unconditional.
+ BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
+ EraseTerminatorInstAndDCECond(PBI);
+ PBI = New_PBI;
+ }
+
+ // TODO: If BB is reachable from all paths through PredBlock, then we
+ // could replace PBI's branch probabilities with BI's.
+
+ // Copy any debug value intrinsics into the end of PredBlock.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (isa<DbgInfoIntrinsic>(*I))
+ I->clone()->insertBefore(PBI);
+
+ return true;
+ }
+ return false;
+}
+
+// If there is only one store in BB1 and BB2, return it, otherwise return
+// nullptr.
+static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
+ StoreInst *S = nullptr;
+ for (auto *BB : {BB1, BB2}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ if (S)
+ // Multiple stores seen.
+ return nullptr;
+ else
+ S = SI;
+ }
+ }
+ return S;
+}
+
+static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
+ Value *AlternativeV = nullptr) {
+ // PHI is going to be a PHI node that allows the value V that is defined in
+ // BB to be referenced in BB's only successor.
+ //
+ // If AlternativeV is nullptr, the only value we care about in PHI is V. It
+ // doesn't matter to us what the other operand is (it'll never get used). We
+ // could just create a new PHI with an undef incoming value, but that could
+ // increase register pressure if EarlyCSE/InstCombine can't fold it with some
+ // other PHI. So here we directly look for some PHI in BB's successor with V
+ // as an incoming operand. If we find one, we use it, else we create a new
+ // one.
+ //
+ // If AlternativeV is not nullptr, we care about both incoming values in PHI.
+ // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
+ // where OtherBB is the single other predecessor of BB's only successor.
+ PHINode *PHI = nullptr;
+ BasicBlock *Succ = BB->getSingleSuccessor();
+
+ for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
+ if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
+ PHI = cast<PHINode>(I);
+ if (!AlternativeV)
+ break;
+
+ assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
+ auto PredI = pred_begin(Succ);
+ BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
+ if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
+ break;
+ PHI = nullptr;
+ }
+ if (PHI)
+ return PHI;
+
+ // If V is not an instruction defined in BB, just return it.
+ if (!AlternativeV &&
+ (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
+ return V;
+
+ PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
+ PHI->addIncoming(V, BB);
+ for (BasicBlock *PredBB : predecessors(Succ))
+ if (PredBB != BB)
+ PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
+ PredBB);
+ return PHI;
+}
+
+static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
+ BasicBlock *QTB, BasicBlock *QFB,
+ BasicBlock *PostBB, Value *Address,
+ bool InvertPCond, bool InvertQCond) {
+ auto IsaBitcastOfPointerType = [](const Instruction &I) {
+ return Operator::getOpcode(&I) == Instruction::BitCast &&
+ I.getType()->isPointerTy();
+ };
+
+ // If we're not in aggressive mode, we only optimize if we have some
+ // confidence that by optimizing we'll allow P and/or Q to be if-converted.
+ auto IsWorthwhile = [&](BasicBlock *BB) {
+ if (!BB)
+ return true;
+ // Heuristic: if the block can be if-converted/phi-folded and the
+ // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
+ // thread this store.
+ unsigned N = 0;
+ for (auto &I : *BB) {
+ // Cheap instructions viable for folding.
+ if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
+ isa<StoreInst>(I))
+ ++N;
+ // Free instructions.
+ else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
+ IsaBitcastOfPointerType(I))
+ continue;
+ else
+ return false;
+ }
+ return N <= PHINodeFoldingThreshold;
+ };
+
+ if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
+ !IsWorthwhile(PFB) ||
+ !IsWorthwhile(QTB) ||
+ !IsWorthwhile(QFB)))
+ return false;
+
+ // For every pointer, there must be exactly two stores, one coming from
+ // PTB or PFB, and the other from QTB or QFB. We don't support more than one
+ // store (to any address) in PTB,PFB or QTB,QFB.
+ // FIXME: We could relax this restriction with a bit more work and performance
+ // testing.
+ StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
+ StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
+ if (!PStore || !QStore)
+ return false;
+
+ // Now check the stores are compatible.
+ if (!QStore->isUnordered() || !PStore->isUnordered())
+ return false;
+
+ // Check that sinking the store won't cause program behavior changes. Sinking
+ // the store out of the Q blocks won't change any behavior as we're sinking
+ // from a block to its unconditional successor. But we're moving a store from
+ // the P blocks down through the middle block (QBI) and past both QFB and QTB.
+ // So we need to check that there are no aliasing loads or stores in
+ // QBI, QTB and QFB. We also need to check there are no conflicting memory
+ // operations between PStore and the end of its parent block.
+ //
+ // The ideal way to do this is to query AliasAnalysis, but we don't
+ // preserve AA currently so that is dangerous. Be super safe and just
+ // check there are no other memory operations at all.
+ for (auto &I : *QFB->getSinglePredecessor())
+ if (I.mayReadOrWriteMemory())
+ return false;
+ for (auto &I : *QFB)
+ if (&I != QStore && I.mayReadOrWriteMemory())
+ return false;
+ if (QTB)
+ for (auto &I : *QTB)
+ if (&I != QStore && I.mayReadOrWriteMemory())
+ return false;
+ for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
+ I != E; ++I)
+ if (&*I != PStore && I->mayReadOrWriteMemory())
+ return false;
+
+ // OK, we're going to sink the stores to PostBB. The store has to be
+ // conditional though, so first create the predicate.
+ Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
+ ->getCondition();
+ Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
+ ->getCondition();
+
+ Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
+ PStore->getParent());
+ Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
+ QStore->getParent(), PPHI);
+
+ IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
+
+ Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
+ Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
+
+ if (InvertPCond)
+ PPred = QB.CreateNot(PPred);
+ if (InvertQCond)
+ QPred = QB.CreateNot(QPred);
+ Value *CombinedPred = QB.CreateOr(PPred, QPred);
+
+ auto *T =
+ SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
+ QB.SetInsertPoint(T);
+ StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
+ AAMDNodes AAMD;
+ PStore->getAAMetadata(AAMD, /*Merge=*/false);
+ PStore->getAAMetadata(AAMD, /*Merge=*/true);
+ SI->setAAMetadata(AAMD);
+
+ QStore->eraseFromParent();
+ PStore->eraseFromParent();
+
+ return true;
+}
+
+static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
+ // The intention here is to find diamonds or triangles (see below) where each
+ // conditional block contains a store to the same address. Both of these
+ // stores are conditional, so they can't be unconditionally sunk. But it may
+ // be profitable to speculatively sink the stores into one merged store at the
+ // end, and predicate the merged store on the union of the two conditions of
+ // PBI and QBI.
+ //
+ // This can reduce the number of stores executed if both of the conditions are
+ // true, and can allow the blocks to become small enough to be if-converted.
+ // This optimization will also chain, so that ladders of test-and-set
+ // sequences can be if-converted away.
+ //
+ // We only deal with simple diamonds or triangles:
+ //
+ // PBI or PBI or a combination of the two
+ // / \ | \
+ // PTB PFB | PFB
+ // \ / | /
+ // QBI QBI
+ // / \ | \
+ // QTB QFB | QFB
+ // \ / | /
+ // PostBB PostBB
+ //
+ // We model triangles as a type of diamond with a nullptr "true" block.
+ // Triangles are canonicalized so that the fallthrough edge is represented by
+ // a true condition, as in the diagram above.
+ //
+ BasicBlock *PTB = PBI->getSuccessor(0);
+ BasicBlock *PFB = PBI->getSuccessor(1);
+ BasicBlock *QTB = QBI->getSuccessor(0);
+ BasicBlock *QFB = QBI->getSuccessor(1);
+ BasicBlock *PostBB = QFB->getSingleSuccessor();
+
+ bool InvertPCond = false, InvertQCond = false;
+ // Canonicalize fallthroughs to the true branches.
+ if (PFB == QBI->getParent()) {
+ std::swap(PFB, PTB);
+ InvertPCond = true;
+ }
+ if (QFB == PostBB) {
+ std::swap(QFB, QTB);
+ InvertQCond = true;
+ }
+
+ // From this point on we can assume PTB or QTB may be fallthroughs but PFB
+ // and QFB may not. Model fallthroughs as a nullptr block.
+ if (PTB == QBI->getParent())
+ PTB = nullptr;
+ if (QTB == PostBB)
+ QTB = nullptr;
+
+ // Legality bailouts. We must have at least the non-fallthrough blocks and
+ // the post-dominating block, and the non-fallthroughs must only have one
+ // predecessor.
+ auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
+ return BB->getSinglePredecessor() == P &&
+ BB->getSingleSuccessor() == S;
+ };
+ if (!PostBB ||
+ !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
+ !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
+ return false;
+ if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
+ (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
+ return false;
+ if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
+ return false;
+
+ // OK, this is a sequence of two diamonds or triangles.
+ // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
+ SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
+ for (auto *BB : {PTB, PFB}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ PStoreAddresses.insert(SI->getPointerOperand());
+ }
+ for (auto *BB : {QTB, QFB}) {
+ if (!BB)
+ continue;
+ for (auto &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ QStoreAddresses.insert(SI->getPointerOperand());
+ }
+
+ set_intersect(PStoreAddresses, QStoreAddresses);
+ // set_intersect mutates PStoreAddresses in place. Rename it here to make it
+ // clear what it contains.
+ auto &CommonAddresses = PStoreAddresses;
+
+ bool Changed = false;
+ for (auto *Address : CommonAddresses)
+ Changed |= mergeConditionalStoreToAddress(
+ PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
+ return Changed;
+}
+
+/// If we have a conditional branch as a predecessor of another block,
+/// this function tries to simplify it. We know
+/// that PBI and BI are both conditional branches, and BI is in one of the
+/// successor blocks of PBI - PBI branches to BI.
+static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
+ const DataLayout &DL) {
+ assert(PBI->isConditional() && BI->isConditional());
+ BasicBlock *BB = BI->getParent();
+
+ // If this block ends with a branch instruction, and if there is a
+ // predecessor that ends on a branch of the same condition, make
+ // this conditional branch redundant.
+ if (PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ // Okay, the outcome of this conditional branch is statically
+ // knowable. If this block had a single pred, handle specially.
+ if (BB->getSinglePredecessor()) {
+ // Turn this into a branch on constant.
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ CondIsTrue));
+ return true; // Nuke the branch on constant.
+ }
+
+ // Otherwise, if there are multiple predecessors, insert a PHI that merges
+ // in the constant and simplify the block result. Subsequent passes of
+ // simplifycfg will thread the block.
+ if (BlockIsSimpleEnoughToThreadThrough(BB)) {
+ pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
+ PHINode *NewPN = PHINode::Create(
+ Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
+ BI->getCondition()->getName() + ".pr", &BB->front());
+ // Okay, we're going to insert the PHI node. Since PBI is not the only
+ // predecessor, compute the PHI'd conditional value for all of the preds.
+ // Any predecessor where the condition is not computable we keep symbolic.
+ for (pred_iterator PI = PB; PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
+ PBI != BI && PBI->isConditional() &&
+ PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ CondIsTrue), P);
+ } else {
+ NewPN->addIncoming(BI->getCondition(), P);
+ }
+ }
+
+ BI->setCondition(NewPN);
+ return true;
+ }
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
+ if (CE->canTrap())
+ return false;
+
+ // If BI is reached from the true path of PBI and PBI's condition implies
+ // BI's condition, we know the direction of the BI branch.
+ if (PBI->getSuccessor(0) == BI->getParent() &&
+ isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
+ BB->getSinglePredecessor()) {
+ // Turn this into a branch on constant.
+ auto *OldCond = BI->getCondition();
+ BI->setCondition(ConstantInt::getTrue(BB->getContext()));
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+ return true; // Nuke the branch on constant.
+ }
+
+ // If both branches are conditional and both contain stores to the same
+ // address, remove the stores from the conditionals and create a conditional
+ // merged store at the end.
+ if (MergeCondStores && mergeConditionalStores(PBI, BI))
+ return true;
+
+ // If this is a conditional branch in an empty block, and if any
+ // predecessors are a conditional branch to one of our destinations,
+ // fold the conditions into logical ops and one cond br.
+ BasicBlock::iterator BBI = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (&*BBI != BI)
+ return false;
+
+ int PBIOp, BIOp;
+ if (PBI->getSuccessor(0) == BI->getSuccessor(0))
+ PBIOp = BIOp = 0;
+ else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
+ PBIOp = 0, BIOp = 1;
+ else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
+ PBIOp = 1, BIOp = 0;
+ else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
+ PBIOp = BIOp = 1;
+ else
+ return false;
+
+ // Check to make sure that the other destination of this branch
+ // isn't BB itself. If so, this is an infinite loop that will
+ // keep getting unwound.
+ if (PBI->getSuccessor(PBIOp) == BB)
+ return false;
+
+ // Do not perform this transformation if it would require
+ // insertion of a large number of select instructions. For targets
+ // without predication/cmovs, this is a big pessimization.
+
+ // Also do not perform this transformation if any phi node in the common
+ // destination block can trap when reached by BB or PBB (PR17073). In that
+ // case, it would be unsafe to hoist the operation into a select instruction.
+
+ BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator II = CommonDest->begin();
+ isa<PHINode>(II); ++II, ++NumPhis) {
+ if (NumPhis > 2) // Disable this xform.
+ return false;
+
+ PHINode *PN = cast<PHINode>(II);
+ Value *BIV = PN->getIncomingValueForBlock(BB);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
+ if (CE->canTrap())
+ return false;
+
+ unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
+ Value *PBIV = PN->getIncomingValue(PBBIdx);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
+ if (CE->canTrap())
+ return false;
+ }
+
+ // Finally, if everything is ok, fold the branches to logical ops.
+ BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
+
+ DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
+ << "AND: " << *BI->getParent());
+
+
+ // If OtherDest *is* BB, then BB is a basic block with a single conditional
+ // branch in it, where one edge (OtherDest) goes back to itself but the other
+ // exits. We don't *know* that the program avoids the infinite loop
+ // (even though that seems likely). If we do this xform naively, we'll end up
+ // recursively unpeeling the loop. Since we know that (after the xform is
+ // done) that the block *is* infinite if reached, we just make it an obviously
+ // infinite loop with no cond branch.
+ if (OtherDest == BB) {
+ // Insert it at the end of the function, because it's either code,
+ // or it won't matter if it's hot. :)
+ BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
+ "infloop", BB->getParent());
+ BranchInst::Create(InfLoopBlock, InfLoopBlock);
+ OtherDest = InfLoopBlock;
+ }
+
+ DEBUG(dbgs() << *PBI->getParent()->getParent());
+
+ // BI may have other predecessors. Because of this, we leave
+ // it alone, but modify PBI.
+
+ // Make sure we get to CommonDest on True&True directions.
+ Value *PBICond = PBI->getCondition();
+ IRBuilder<true, NoFolder> Builder(PBI);
+ if (PBIOp)
+ PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
+
+ Value *BICond = BI->getCondition();
+ if (BIOp)
+ BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
+
+ // Merge the conditions.
+ Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
+
+ // Modify PBI to branch on the new condition to the new dests.
+ PBI->setCondition(Cond);
+ PBI->setSuccessor(0, CommonDest);
+ PBI->setSuccessor(1, OtherDest);
+
+ // Update branch weight for PBI.
+ uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
+ bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
+ PredFalseWeight);
+ bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
+ SuccFalseWeight);
+ if (PredHasWeights && SuccHasWeights) {
+ uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
+ uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
+ uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
+ uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
+ // The weight to CommonDest should be PredCommon * SuccTotal +
+ // PredOther * SuccCommon.
+ // The weight to OtherDest should be PredOther * SuccOther.
+ uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
+ PredOther * SuccCommon,
+ PredOther * SuccOther};
+ // Halve the weights if any of them cannot fit in an uint32_t
+ FitWeights(NewWeights);
+
+ PBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BI->getContext())
+ .createBranchWeights(NewWeights[0], NewWeights[1]));
+ }
+
+ // OtherDest may have phi nodes. If so, add an entry from PBI's
+ // block that are identical to the entries for BI's block.
+ AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
+
+ // We know that the CommonDest already had an edge from PBI to
+ // it. If it has PHIs though, the PHIs may have different
+ // entries for BB and PBI's BB. If so, insert a select to make
+ // them agree.
+ PHINode *PN;
+ for (BasicBlock::iterator II = CommonDest->begin();
+ (PN = dyn_cast<PHINode>(II)); ++II) {
+ Value *BIV = PN->getIncomingValueForBlock(BB);
+ unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
+ Value *PBIV = PN->getIncomingValue(PBBIdx);
+ if (BIV != PBIV) {
+ // Insert a select in PBI to pick the right value.
+ Value *NV = cast<SelectInst>
+ (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
+ PN->setIncomingValue(PBBIdx, NV);
+ }
+ }
+
+ DEBUG(dbgs() << "INTO: " << *PBI->getParent());
+ DEBUG(dbgs() << *PBI->getParent()->getParent());
+
+ // This basic block is probably dead. We know it has at least
+ // one fewer predecessor.
+ return true;
+}
+
+// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
+// true or to FalseBB if Cond is false.
+// Takes care of updating the successors and removing the old terminator.
+// Also makes sure not to introduce new successors by assuming that edges to
+// non-successor TrueBBs and FalseBBs aren't reachable.
+static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
+ BasicBlock *TrueBB, BasicBlock *FalseBB,
+ uint32_t TrueWeight,
+ uint32_t FalseWeight){
+ // Remove any superfluous successor edges from the CFG.
+ // First, figure out which successors to preserve.
+ // If TrueBB and FalseBB are equal, only try to preserve one copy of that
+ // successor.
+ BasicBlock *KeepEdge1 = TrueBB;
+ BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
+
+ // Then remove the rest.
+ for (BasicBlock *Succ : OldTerm->successors()) {
+ // Make sure only to keep exactly one copy of each edge.
+ if (Succ == KeepEdge1)
+ KeepEdge1 = nullptr;
+ else if (Succ == KeepEdge2)
+ KeepEdge2 = nullptr;
+ else
+ Succ->removePredecessor(OldTerm->getParent(),
+ /*DontDeleteUselessPHIs=*/true);
+ }
+
+ IRBuilder<> Builder(OldTerm);
+ Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
+
+ // Insert an appropriate new terminator.
+ if (!KeepEdge1 && !KeepEdge2) {
+ if (TrueBB == FalseBB)
+ // We were only looking for one successor, and it was present.
+ // Create an unconditional branch to it.
+ Builder.CreateBr(TrueBB);
+ else {
+ // We found both of the successors we were looking for.
+ // Create a conditional branch sharing the condition of the select.
+ BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
+ if (TrueWeight != FalseWeight)
+ NewBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(OldTerm->getContext()).
+ createBranchWeights(TrueWeight, FalseWeight));
+ }
+ } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
+ // Neither of the selected blocks were successors, so this
+ // terminator must be unreachable.
+ new UnreachableInst(OldTerm->getContext(), OldTerm);
+ } else {
+ // One of the selected values was a successor, but the other wasn't.
+ // Insert an unconditional branch to the one that was found;
+ // the edge to the one that wasn't must be unreachable.
+ if (!KeepEdge1)
+ // Only TrueBB was found.
+ Builder.CreateBr(TrueBB);
+ else
+ // Only FalseBB was found.
+ Builder.CreateBr(FalseBB);
+ }
+
+ EraseTerminatorInstAndDCECond(OldTerm);
+ return true;
+}
+
+// Replaces
+// (switch (select cond, X, Y)) on constant X, Y
+// with a branch - conditional if X and Y lead to distinct BBs,
+// unconditional otherwise.
+static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
+ // Check for constant integer values in the select.
+ ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
+ ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
+ if (!TrueVal || !FalseVal)
+ return false;
+
+ // Find the relevant condition and destinations.
+ Value *Condition = Select->getCondition();
+ BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
+ BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
+
+ // Get weight for TrueBB and FalseBB.
+ uint32_t TrueWeight = 0, FalseWeight = 0;
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeights = HasBranchWeights(SI);
+ if (HasWeights) {
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
+ getSuccessorIndex()];
+ FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
+ getSuccessorIndex()];
+ }
+ }
+
+ // Perform the actual simplification.
+ return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
+ TrueWeight, FalseWeight);
+}
+
+// Replaces
+// (indirectbr (select cond, blockaddress(@fn, BlockA),
+// blockaddress(@fn, BlockB)))
+// with
+// (br cond, BlockA, BlockB).
+static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
+ // Check that both operands of the select are block addresses.
+ BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
+ BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
+ if (!TBA || !FBA)
+ return false;
+
+ // Extract the actual blocks.
+ BasicBlock *TrueBB = TBA->getBasicBlock();
+ BasicBlock *FalseBB = FBA->getBasicBlock();
+
+ // Perform the actual simplification.
+ return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
+ 0, 0);
+}
+
+/// This is called when we find an icmp instruction
+/// (a seteq/setne with a constant) as the only instruction in a
+/// block that ends with an uncond branch. We are looking for a very specific
+/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
+/// this case, we merge the first two "or's of icmp" into a switch, but then the
+/// default value goes to an uncond block with a seteq in it, we get something
+/// like:
+///
+/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
+/// DEFAULT:
+/// %tmp = icmp eq i8 %A, 92
+/// br label %end
+/// end:
+/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
+///
+/// We prefer to split the edge to 'end' so that there is a true/false entry to
+/// the PHI, merging the third icmp into the switch.
+static bool TryToSimplifyUncondBranchWithICmpInIt(
+ ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
+ const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
+ AssumptionCache *AC) {
+ BasicBlock *BB = ICI->getParent();
+
+ // If the block has any PHIs in it or the icmp has multiple uses, it is too
+ // complex.
+ if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
+
+ Value *V = ICI->getOperand(0);
+ ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
+
+ // The pattern we're looking for is where our only predecessor is a switch on
+ // 'V' and this block is the default case for the switch. In this case we can
+ // fold the compared value into the switch to simplify things.
+ BasicBlock *Pred = BB->getSinglePredecessor();
+ if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
+
+ SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
+ if (SI->getCondition() != V)
+ return false;
+
+ // If BB is reachable on a non-default case, then we simply know the value of
+ // V in this block. Substitute it and constant fold the icmp instruction
+ // away.
+ if (SI->getDefaultDest() != BB) {
+ ConstantInt *VVal = SI->findCaseDest(BB);
+ assert(VVal && "Should have a unique destination value");
+ ICI->setOperand(0, VVal);
+
+ if (Value *V = SimplifyInstruction(ICI, DL)) {
+ ICI->replaceAllUsesWith(V);
+ ICI->eraseFromParent();
+ }
+ // BB is now empty, so it is likely to simplify away.
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+
+ // Ok, the block is reachable from the default dest. If the constant we're
+ // comparing exists in one of the other edges, then we can constant fold ICI
+ // and zap it.
+ if (SI->findCaseValue(Cst) != SI->case_default()) {
+ Value *V;
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ V = ConstantInt::getFalse(BB->getContext());
+ else
+ V = ConstantInt::getTrue(BB->getContext());
+
+ ICI->replaceAllUsesWith(V);
+ ICI->eraseFromParent();
+ // BB is now empty, so it is likely to simplify away.
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+
+ // The use of the icmp has to be in the 'end' block, by the only PHI node in
+ // the block.
+ BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
+ PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
+ if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
+ isa<PHINode>(++BasicBlock::iterator(PHIUse)))
+ return false;
+
+ // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
+ // true in the PHI.
+ Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
+ Constant *NewCst = ConstantInt::getFalse(BB->getContext());
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(DefaultCst, NewCst);
+
+ // Replace ICI (which is used by the PHI for the default value) with true or
+ // false depending on if it is EQ or NE.
+ ICI->replaceAllUsesWith(DefaultCst);
+ ICI->eraseFromParent();
+
+ // Okay, the switch goes to this block on a default value. Add an edge from
+ // the switch to the merge point on the compared value.
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
+ BB->getParent(), BB);
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeights = HasBranchWeights(SI);
+ if (HasWeights) {
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ // Split weight for default case to case for "Cst".
+ Weights[0] = (Weights[0]+1) >> 1;
+ Weights.push_back(Weights[0]);
+
+ SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getContext()).
+ createBranchWeights(MDWeights));
+ }
+ }
+ SI->addCase(Cst, NewBB);
+
+ // NewBB branches to the phi block, add the uncond branch and the phi entry.
+ Builder.SetInsertPoint(NewBB);
+ Builder.SetCurrentDebugLocation(SI->getDebugLoc());
+ Builder.CreateBr(SuccBlock);
+ PHIUse->addIncoming(NewCst, NewBB);
+ return true;
+}
+
+/// The specified branch is a conditional branch.
+/// Check to see if it is branching on an or/and chain of icmp instructions, and
+/// fold it into a switch instruction if so.
+static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
+ const DataLayout &DL) {
+ Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
+ if (!Cond) return false;
+
+ // Change br (X == 0 | X == 1), T, F into a switch instruction.
+ // If this is a bunch of seteq's or'd together, or if it's a bunch of
+ // 'setne's and'ed together, collect them.
+
+ // Try to gather values from a chain of and/or to be turned into a switch
+ ConstantComparesGatherer ConstantCompare(Cond, DL);
+ // Unpack the result
+ SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
+ Value *CompVal = ConstantCompare.CompValue;
+ unsigned UsedICmps = ConstantCompare.UsedICmps;
+ Value *ExtraCase = ConstantCompare.Extra;
+
+ // If we didn't have a multiply compared value, fail.
+ if (!CompVal) return false;
+
+ // Avoid turning single icmps into a switch.
+ if (UsedICmps <= 1)
+ return false;
+
+ bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
+
+ // There might be duplicate constants in the list, which the switch
+ // instruction can't handle, remove them now.
+ array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
+ Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
+
+ // If Extra was used, we require at least two switch values to do the
+ // transformation. A switch with one value is just a conditional branch.
+ if (ExtraCase && Values.size() < 2) return false;
+
+ // TODO: Preserve branch weight metadata, similarly to how
+ // FoldValueComparisonIntoPredecessors preserves it.
+
+ // Figure out which block is which destination.
+ BasicBlock *DefaultBB = BI->getSuccessor(1);
+ BasicBlock *EdgeBB = BI->getSuccessor(0);
+ if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
+
+ BasicBlock *BB = BI->getParent();
+
+ DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
+ << " cases into SWITCH. BB is:\n" << *BB);
+
+ // If there are any extra values that couldn't be folded into the switch
+ // then we evaluate them with an explicit branch first. Split the block
+ // right before the condbr to handle it.
+ if (ExtraCase) {
+ BasicBlock *NewBB =
+ BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
+ // Remove the uncond branch added to the old block.
+ TerminatorInst *OldTI = BB->getTerminator();
+ Builder.SetInsertPoint(OldTI);
+
+ if (TrueWhenEqual)
+ Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
+ else
+ Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
+
+ OldTI->eraseFromParent();
+
+ // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
+ // for the edge we just added.
+ AddPredecessorToBlock(EdgeBB, BB, NewBB);
+
+ DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
+ << "\nEXTRABB = " << *BB);
+ BB = NewBB;
+ }
+
+ Builder.SetInsertPoint(BI);
+ // Convert pointer to int before we switch.
+ if (CompVal->getType()->isPointerTy()) {
+ CompVal = Builder.CreatePtrToInt(
+ CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
+ }
+
+ // Create the new switch instruction now.
+ SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
+
+ // Add all of the 'cases' to the switch instruction.
+ for (unsigned i = 0, e = Values.size(); i != e; ++i)
+ New->addCase(Values[i], EdgeBB);
+
+ // We added edges from PI to the EdgeBB. As such, if there were any
+ // PHI nodes in EdgeBB, they need entries to be added corresponding to
+ // the number of edges added.
+ for (BasicBlock::iterator BBI = EdgeBB->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ Value *InVal = PN->getIncomingValueForBlock(BB);
+ for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
+ PN->addIncoming(InVal, BB);
+ }
+
+ // Erase the old branch instruction.
+ EraseTerminatorInstAndDCECond(BI);
+
+ DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
+ if (isa<PHINode>(RI->getValue()))
+ return SimplifyCommonResume(RI);
+ else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
+ RI->getValue() == RI->getParent()->getFirstNonPHI())
+ // The resume must unwind the exception that caused control to branch here.
+ return SimplifySingleResume(RI);
+
+ return false;
+}
+
+// Simplify resume that is shared by several landing pads (phi of landing pad).
+bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
+ BasicBlock *BB = RI->getParent();
+
+ // Check that there are no other instructions except for debug intrinsics
+ // between the phi of landing pads (RI->getValue()) and resume instruction.
+ BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
+ E = RI->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
+ auto *PhiLPInst = cast<PHINode>(RI->getValue());
+
+ // Check incoming blocks to see if any of them are trivial.
+ for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues();
+ Idx != End; Idx++) {
+ auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
+ auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
+
+ // If the block has other successors, we can not delete it because
+ // it has other dependents.
+ if (IncomingBB->getUniqueSuccessor() != BB)
+ continue;
+
+ auto *LandingPad =
+ dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
+ // Not the landing pad that caused the control to branch here.
+ if (IncomingValue != LandingPad)
+ continue;
+
+ bool isTrivial = true;
+
+ I = IncomingBB->getFirstNonPHI()->getIterator();
+ E = IncomingBB->getTerminator()->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I)) {
+ isTrivial = false;
+ break;
+ }
+
+ if (isTrivial)
+ TrivialUnwindBlocks.insert(IncomingBB);
+ }
+
+ // If no trivial unwind blocks, don't do any simplifications.
+ if (TrivialUnwindBlocks.empty()) return false;
+
+ // Turn all invokes that unwind here into calls.
+ for (auto *TrivialBB : TrivialUnwindBlocks) {
+ // Blocks that will be simplified should be removed from the phi node.
+ // Note there could be multiple edges to the resume block, and we need
+ // to remove them all.
+ while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
+ BB->removePredecessor(TrivialBB, true);
+
+ for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
+ PI != PE;) {
+ BasicBlock *Pred = *PI++;
+ removeUnwindEdge(Pred);
+ }
+
+ // In each SimplifyCFG run, only the current processed block can be erased.
+ // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
+ // of erasing TrivialBB, we only remove the branch to the common resume
+ // block so that we can later erase the resume block since it has no
+ // predecessors.
+ TrivialBB->getTerminator()->eraseFromParent();
+ new UnreachableInst(RI->getContext(), TrivialBB);
+ }
+
+ // Delete the resume block if all its predecessors have been removed.
+ if (pred_empty(BB))
+ BB->eraseFromParent();
+
+ return !TrivialUnwindBlocks.empty();
+}
+
+// Simplify resume that is only used by a single (non-phi) landing pad.
+bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
+ BasicBlock *BB = RI->getParent();
+ LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
+ assert (RI->getValue() == LPInst &&
+ "Resume must unwind the exception that caused control to here");
+
+ // Check that there are no other instructions except for debug intrinsics.
+ BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // Turn all invokes that unwind here into calls and delete the basic block.
+ for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
+ BasicBlock *Pred = *PI++;
+ removeUnwindEdge(Pred);
+ }
+
+ // The landingpad is now unreachable. Zap it.
+ BB->eraseFromParent();
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
+ // If this is a trivial cleanup pad that executes no instructions, it can be
+ // eliminated. If the cleanup pad continues to the caller, any predecessor
+ // that is an EH pad will be updated to continue to the caller and any
+ // predecessor that terminates with an invoke instruction will have its invoke
+ // instruction converted to a call instruction. If the cleanup pad being
+ // simplified does not continue to the caller, each predecessor will be
+ // updated to continue to the unwind destination of the cleanup pad being
+ // simplified.
+ BasicBlock *BB = RI->getParent();
+ CleanupPadInst *CPInst = RI->getCleanupPad();
+ if (CPInst->getParent() != BB)
+ // This isn't an empty cleanup.
+ return false;
+
+ // Check that there are no other instructions except for debug intrinsics.
+ BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
+ while (++I != E)
+ if (!isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // If the cleanup return we are simplifying unwinds to the caller, this will
+ // set UnwindDest to nullptr.
+ BasicBlock *UnwindDest = RI->getUnwindDest();
+ Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
+
+ // We're about to remove BB from the control flow. Before we do, sink any
+ // PHINodes into the unwind destination. Doing this before changing the
+ // control flow avoids some potentially slow checks, since we can currently
+ // be certain that UnwindDest and BB have no common predecessors (since they
+ // are both EH pads).
+ if (UnwindDest) {
+ // First, go through the PHI nodes in UnwindDest and update any nodes that
+ // reference the block we are removing
+ for (BasicBlock::iterator I = UnwindDest->begin(),
+ IE = DestEHPad->getIterator();
+ I != IE; ++I) {
+ PHINode *DestPN = cast<PHINode>(I);
+
+ int Idx = DestPN->getBasicBlockIndex(BB);
+ // Since BB unwinds to UnwindDest, it has to be in the PHI node.
+ assert(Idx != -1);
+ // This PHI node has an incoming value that corresponds to a control
+ // path through the cleanup pad we are removing. If the incoming
+ // value is in the cleanup pad, it must be a PHINode (because we
+ // verified above that the block is otherwise empty). Otherwise, the
+ // value is either a constant or a value that dominates the cleanup
+ // pad being removed.
+ //
+ // Because BB and UnwindDest are both EH pads, all of their
+ // predecessors must unwind to these blocks, and since no instruction
+ // can have multiple unwind destinations, there will be no overlap in
+ // incoming blocks between SrcPN and DestPN.
+ Value *SrcVal = DestPN->getIncomingValue(Idx);
+ PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
+
+ // Remove the entry for the block we are deleting.
+ DestPN->removeIncomingValue(Idx, false);
+
+ if (SrcPN && SrcPN->getParent() == BB) {
+ // If the incoming value was a PHI node in the cleanup pad we are
+ // removing, we need to merge that PHI node's incoming values into
+ // DestPN.
+ for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
+ SrcIdx != SrcE; ++SrcIdx) {
+ DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
+ SrcPN->getIncomingBlock(SrcIdx));
+ }
+ } else {
+ // Otherwise, the incoming value came from above BB and
+ // so we can just reuse it. We must associate all of BB's
+ // predecessors with this value.
+ for (auto *pred : predecessors(BB)) {
+ DestPN->addIncoming(SrcVal, pred);
+ }
+ }
+ }
+
+ // Sink any remaining PHI nodes directly into UnwindDest.
+ Instruction *InsertPt = DestEHPad;
+ for (BasicBlock::iterator I = BB->begin(),
+ IE = BB->getFirstNonPHI()->getIterator();
+ I != IE;) {
+ // The iterator must be incremented here because the instructions are
+ // being moved to another block.
+ PHINode *PN = cast<PHINode>(I++);
+ if (PN->use_empty())
+ // If the PHI node has no uses, just leave it. It will be erased
+ // when we erase BB below.
+ continue;
+
+ // Otherwise, sink this PHI node into UnwindDest.
+ // Any predecessors to UnwindDest which are not already represented
+ // must be back edges which inherit the value from the path through
+ // BB. In this case, the PHI value must reference itself.
+ for (auto *pred : predecessors(UnwindDest))
+ if (pred != BB)
+ PN->addIncoming(PN, pred);
+ PN->moveBefore(InsertPt);
+ }
+ }
+
+ for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
+ // The iterator must be updated here because we are removing this pred.
+ BasicBlock *PredBB = *PI++;
+ if (UnwindDest == nullptr) {
+ removeUnwindEdge(PredBB);
+ } else {
+ TerminatorInst *TI = PredBB->getTerminator();
+ TI->replaceUsesOfWith(BB, UnwindDest);
+ }
+ }
+
+ // The cleanup pad is now unreachable. Zap it.
+ BB->eraseFromParent();
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
+ BasicBlock *BB = RI->getParent();
+ if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
+
+ // Find predecessors that end with branches.
+ SmallVector<BasicBlock*, 8> UncondBranchPreds;
+ SmallVector<BranchInst*, 8> CondBranchPreds;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *P = *PI;
+ TerminatorInst *PTI = P->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
+ if (BI->isUnconditional())
+ UncondBranchPreds.push_back(P);
+ else
+ CondBranchPreds.push_back(BI);
+ }
+ }
+
+ // If we found some, do the transformation!
+ if (!UncondBranchPreds.empty() && DupRet) {
+ while (!UncondBranchPreds.empty()) {
+ BasicBlock *Pred = UncondBranchPreds.pop_back_val();
+ DEBUG(dbgs() << "FOLDING: " << *BB
+ << "INTO UNCOND BRANCH PRED: " << *Pred);
+ (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
+ }
+
+ // If we eliminated all predecessors of the block, delete the block now.
+ if (pred_empty(BB))
+ // We know there are no successors, so just nuke the block.
+ BB->eraseFromParent();
+
+ return true;
+ }
+
+ // Check out all of the conditional branches going to this return
+ // instruction. If any of them just select between returns, change the
+ // branch itself into a select/return pair.
+ while (!CondBranchPreds.empty()) {
+ BranchInst *BI = CondBranchPreds.pop_back_val();
+
+ // Check to see if the non-BB successor is also a return block.
+ if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
+ isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
+ SimplifyCondBranchToTwoReturns(BI, Builder))
+ return true;
+ }
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
+ BasicBlock *BB = UI->getParent();
+
+ bool Changed = false;
+
+ // If there are any instructions immediately before the unreachable that can
+ // be removed, do so.
+ while (UI->getIterator() != BB->begin()) {
+ BasicBlock::iterator BBI = UI->getIterator();
+ --BBI;
+ // Do not delete instructions that can have side effects which might cause
+ // the unreachable to not be reachable; specifically, calls and volatile
+ // operations may have this effect.
+ if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
+
+ if (BBI->mayHaveSideEffects()) {
+ if (auto *SI = dyn_cast<StoreInst>(BBI)) {
+ if (SI->isVolatile())
+ break;
+ } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
+ if (LI->isVolatile())
+ break;
+ } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
+ if (RMWI->isVolatile())
+ break;
+ } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
+ if (CXI->isVolatile())
+ break;
+ } else if (isa<CatchPadInst>(BBI)) {
+ // A catchpad may invoke exception object constructors and such, which
+ // in some languages can be arbitrary code, so be conservative by
+ // default.
+ // For CoreCLR, it just involves a type test, so can be removed.
+ if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
+ EHPersonality::CoreCLR)
+ break;
+ } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
+ !isa<LandingPadInst>(BBI)) {
+ break;
+ }
+ // Note that deleting LandingPad's here is in fact okay, although it
+ // involves a bit of subtle reasoning. If this inst is a LandingPad,
+ // all the predecessors of this block will be the unwind edges of Invokes,
+ // and we can therefore guarantee this block will be erased.
+ }
+
+ // Delete this instruction (any uses are guaranteed to be dead)
+ if (!BBI->use_empty())
+ BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
+ BBI->eraseFromParent();
+ Changed = true;
+ }
+
+ // If the unreachable instruction is the first in the block, take a gander
+ // at all of the predecessors of this instruction, and simplify them.
+ if (&BB->front() != UI) return Changed;
+
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ TerminatorInst *TI = Preds[i]->getTerminator();
+ IRBuilder<> Builder(TI);
+ if (auto *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional()) {
+ if (BI->getSuccessor(0) == BB) {
+ new UnreachableInst(TI->getContext(), TI);
+ TI->eraseFromParent();
+ Changed = true;
+ }
+ } else {
+ if (BI->getSuccessor(0) == BB) {
+ Builder.CreateBr(BI->getSuccessor(1));
+ EraseTerminatorInstAndDCECond(BI);
+ } else if (BI->getSuccessor(1) == BB) {
+ Builder.CreateBr(BI->getSuccessor(0));
+ EraseTerminatorInstAndDCECond(BI);
+ Changed = true;
+ }
+ }
+ } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
+ for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
+ i != e; ++i)
+ if (i.getCaseSuccessor() == BB) {
+ BB->removePredecessor(SI->getParent());
+ SI->removeCase(i);
+ --i; --e;
+ Changed = true;
+ }
+ } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
+ if (II->getUnwindDest() == BB) {
+ removeUnwindEdge(TI->getParent());
+ Changed = true;
+ }
+ } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
+ if (CSI->getUnwindDest() == BB) {
+ removeUnwindEdge(TI->getParent());
+ Changed = true;
+ continue;
+ }
+
+ for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
+ E = CSI->handler_end();
+ I != E; ++I) {
+ if (*I == BB) {
+ CSI->removeHandler(I);
+ --I;
+ --E;
+ Changed = true;
+ }
+ }
+ if (CSI->getNumHandlers() == 0) {
+ BasicBlock *CatchSwitchBB = CSI->getParent();
+ if (CSI->hasUnwindDest()) {
+ // Redirect preds to the unwind dest
+ CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
+ } else {
+ // Rewrite all preds to unwind to caller (or from invoke to call).
+ SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
+ for (BasicBlock *EHPred : EHPreds)
+ removeUnwindEdge(EHPred);
+ }
+ // The catchswitch is no longer reachable.
+ new UnreachableInst(CSI->getContext(), CSI);
+ CSI->eraseFromParent();
+ Changed = true;
+ }
+ } else if (isa<CleanupReturnInst>(TI)) {
+ new UnreachableInst(TI->getContext(), TI);
+ TI->eraseFromParent();
+ Changed = true;
+ }
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_empty(BB) &&
+ BB != &BB->getParent()->getEntryBlock()) {
+ // We know there are no successors, so just nuke the block.
+ BB->eraseFromParent();
+ return true;
+ }
+
+ return Changed;
+}
+
+static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
+ assert(Cases.size() >= 1);
+
+ array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
+ for (size_t I = 1, E = Cases.size(); I != E; ++I) {
+ if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
+ return false;
+ }
+ return true;
+}
+
+/// Turn a switch with two reachable destinations into an integer range
+/// comparison and branch.
+static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
+ assert(SI->getNumCases() > 1 && "Degenerate switch?");
+
+ bool HasDefault =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+
+ // Partition the cases into two sets with different destinations.
+ BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
+ BasicBlock *DestB = nullptr;
+ SmallVector <ConstantInt *, 16> CasesA;
+ SmallVector <ConstantInt *, 16> CasesB;
+
+ for (SwitchInst::CaseIt I : SI->cases()) {
+ BasicBlock *Dest = I.getCaseSuccessor();
+ if (!DestA) DestA = Dest;
+ if (Dest == DestA) {
+ CasesA.push_back(I.getCaseValue());
+ continue;
+ }
+ if (!DestB) DestB = Dest;
+ if (Dest == DestB) {
+ CasesB.push_back(I.getCaseValue());
+ continue;
+ }
+ return false; // More than two destinations.
+ }
+
+ assert(DestA && DestB && "Single-destination switch should have been folded.");
+ assert(DestA != DestB);
+ assert(DestB != SI->getDefaultDest());
+ assert(!CasesB.empty() && "There must be non-default cases.");
+ assert(!CasesA.empty() || HasDefault);
+
+ // Figure out if one of the sets of cases form a contiguous range.
+ SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
+ BasicBlock *ContiguousDest = nullptr;
+ BasicBlock *OtherDest = nullptr;
+ if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
+ ContiguousCases = &CasesA;
+ ContiguousDest = DestA;
+ OtherDest = DestB;
+ } else if (CasesAreContiguous(CasesB)) {
+ ContiguousCases = &CasesB;
+ ContiguousDest = DestB;
+ OtherDest = DestA;
+ } else
+ return false;
+
+ // Start building the compare and branch.
+
+ Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
+ Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
+
+ Value *Sub = SI->getCondition();
+ if (!Offset->isNullValue())
+ Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
+
+ Value *Cmp;
+ // If NumCases overflowed, then all possible values jump to the successor.
+ if (NumCases->isNullValue() && !ContiguousCases->empty())
+ Cmp = ConstantInt::getTrue(SI->getContext());
+ else
+ Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
+ BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
+
+ // Update weight for the newly-created conditional branch.
+ if (HasBranchWeights(SI)) {
+ SmallVector<uint64_t, 8> Weights;
+ GetBranchWeights(SI, Weights);
+ if (Weights.size() == 1 + SI->getNumCases()) {
+ uint64_t TrueWeight = 0;
+ uint64_t FalseWeight = 0;
+ for (size_t I = 0, E = Weights.size(); I != E; ++I) {
+ if (SI->getSuccessor(I) == ContiguousDest)
+ TrueWeight += Weights[I];
+ else
+ FalseWeight += Weights[I];
+ }
+ while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
+ TrueWeight /= 2;
+ FalseWeight /= 2;
+ }
+ NewBI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getContext()).createBranchWeights(
+ (uint32_t)TrueWeight, (uint32_t)FalseWeight));
+ }
+ }
+
+ // Prune obsolete incoming values off the successors' PHI nodes.
+ for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
+ unsigned PreviousEdges = ContiguousCases->size();
+ if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
+ for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
+ cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
+ }
+ for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
+ unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
+ if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
+ for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
+ cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
+ }
+
+ // Drop the switch.
+ SI->eraseFromParent();
+
+ return true;
+}
+
+/// Compute masked bits for the condition of a switch
+/// and use it to remove dead cases.
+static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
+ const DataLayout &DL) {
+ Value *Cond = SI->getCondition();
+ unsigned Bits = Cond->getType()->getIntegerBitWidth();
+ APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
+ computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
+
+ // Gather dead cases.
+ SmallVector<ConstantInt*, 8> DeadCases;
+ for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
+ if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
+ (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
+ DeadCases.push_back(I.getCaseValue());
+ DEBUG(dbgs() << "SimplifyCFG: switch case '"
+ << I.getCaseValue() << "' is dead.\n");
+ }
+ }
+
+ // If we can prove that the cases must cover all possible values, the
+ // default destination becomes dead and we can remove it. If we know some
+ // of the bits in the value, we can use that to more precisely compute the
+ // number of possible unique case values.
+ bool HasDefault =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+ const unsigned NumUnknownBits = Bits -
+ (KnownZero.Or(KnownOne)).countPopulation();
+ assert(NumUnknownBits <= Bits);
+ if (HasDefault && DeadCases.empty() &&
+ NumUnknownBits < 64 /* avoid overflow */ &&
+ SI->getNumCases() == (1ULL << NumUnknownBits)) {
+ DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
+ BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
+ SI->getParent(), "");
+ SI->setDefaultDest(&*NewDefault);
+ SplitBlock(&*NewDefault, &NewDefault->front());
+ auto *OldTI = NewDefault->getTerminator();
+ new UnreachableInst(SI->getContext(), OldTI);
+ EraseTerminatorInstAndDCECond(OldTI);
+ return true;
+ }
+
+ SmallVector<uint64_t, 8> Weights;
+ bool HasWeight = HasBranchWeights(SI);
+ if (HasWeight) {
+ GetBranchWeights(SI, Weights);
+ HasWeight = (Weights.size() == 1 + SI->getNumCases());
+ }
+
+ // Remove dead cases from the switch.
+ for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
+ SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
+ assert(Case != SI->case_default() &&
+ "Case was not found. Probably mistake in DeadCases forming.");
+ if (HasWeight) {
+ std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
+ Weights.pop_back();
+ }
+
+ // Prune unused values from PHI nodes.
+ Case.getCaseSuccessor()->removePredecessor(SI->getParent());
+ SI->removeCase(Case);
+ }
+ if (HasWeight && Weights.size() >= 2) {
+ SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(SI->getParent()->getContext()).
+ createBranchWeights(MDWeights));
+ }
+
+ return !DeadCases.empty();
+}
+
+/// If BB would be eligible for simplification by
+/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
+/// by an unconditional branch), look at the phi node for BB in the successor
+/// block and see if the incoming value is equal to CaseValue. If so, return
+/// the phi node, and set PhiIndex to BB's index in the phi node.
+static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
+ BasicBlock *BB,
+ int *PhiIndex) {
+ if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
+ return nullptr; // BB must be empty to be a candidate for simplification.
+ if (!BB->getSinglePredecessor())
+ return nullptr; // BB must be dominated by the switch.
+
+ BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!Branch || !Branch->isUnconditional())
+ return nullptr; // Terminator must be unconditional branch.
+
+ BasicBlock *Succ = Branch->getSuccessor(0);
+
+ BasicBlock::iterator I = Succ->begin();
+ while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
+ int Idx = PHI->getBasicBlockIndex(BB);
+ assert(Idx >= 0 && "PHI has no entry for predecessor?");
+
+ Value *InValue = PHI->getIncomingValue(Idx);
+ if (InValue != CaseValue) continue;
+
+ *PhiIndex = Idx;
+ return PHI;
+ }
+
+ return nullptr;
+}
+
+/// Try to forward the condition of a switch instruction to a phi node
+/// dominated by the switch, if that would mean that some of the destination
+/// blocks of the switch can be folded away.
+/// Returns true if a change is made.
+static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
+ typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
+ ForwardingNodesMap ForwardingNodes;
+
+ for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
+ ConstantInt *CaseValue = I.getCaseValue();
+ BasicBlock *CaseDest = I.getCaseSuccessor();
+
+ int PhiIndex;
+ PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
+ &PhiIndex);
+ if (!PHI) continue;
+
+ ForwardingNodes[PHI].push_back(PhiIndex);
+ }
+
+ bool Changed = false;
+
+ for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
+ E = ForwardingNodes.end(); I != E; ++I) {
+ PHINode *Phi = I->first;
+ SmallVectorImpl<int> &Indexes = I->second;
+
+ if (Indexes.size() < 2) continue;
+
+ for (size_t I = 0, E = Indexes.size(); I != E; ++I)
+ Phi->setIncomingValue(Indexes[I], SI->getCondition());
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+/// Return true if the backend will be able to handle
+/// initializing an array of constants like C.
+static bool ValidLookupTableConstant(Constant *C) {
+ if (C->isThreadDependent())
+ return false;
+ if (C->isDLLImportDependent())
+ return false;
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ return CE->isGEPWithNoNotionalOverIndexing();
+
+ return isa<ConstantFP>(C) ||
+ isa<ConstantInt>(C) ||
+ isa<ConstantPointerNull>(C) ||
+ isa<GlobalValue>(C) ||
+ isa<UndefValue>(C);
+}
+
+/// If V is a Constant, return it. Otherwise, try to look up
+/// its constant value in ConstantPool, returning 0 if it's not there.
+static Constant *LookupConstant(Value *V,
+ const SmallDenseMap<Value*, Constant*>& ConstantPool) {
+ if (Constant *C = dyn_cast<Constant>(V))
+ return C;
+ return ConstantPool.lookup(V);
+}
+
+/// Try to fold instruction I into a constant. This works for
+/// simple instructions such as binary operations where both operands are
+/// constant or can be replaced by constants from the ConstantPool. Returns the
+/// resulting constant on success, 0 otherwise.
+static Constant *
+ConstantFold(Instruction *I, const DataLayout &DL,
+ const SmallDenseMap<Value *, Constant *> &ConstantPool) {
+ if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
+ Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
+ if (!A)
+ return nullptr;
+ if (A->isAllOnesValue())
+ return LookupConstant(Select->getTrueValue(), ConstantPool);
+ if (A->isNullValue())
+ return LookupConstant(Select->getFalseValue(), ConstantPool);
+ return nullptr;
+ }
+
+ SmallVector<Constant *, 4> COps;
+ for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
+ if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
+ COps.push_back(A);
+ else
+ return nullptr;
+ }
+
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
+ return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
+ COps[1], DL);
+ }
+
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
+}
+
+/// Try to determine the resulting constant values in phi nodes
+/// at the common destination basic block, *CommonDest, for one of the case
+/// destionations CaseDest corresponding to value CaseVal (0 for the default
+/// case), of a switch instruction SI.
+static bool
+GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
+ BasicBlock **CommonDest,
+ SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
+ const DataLayout &DL) {
+ // The block from which we enter the common destination.
+ BasicBlock *Pred = SI->getParent();
+
+ // If CaseDest is empty except for some side-effect free instructions through
+ // which we can constant-propagate the CaseVal, continue to its successor.
+ SmallDenseMap<Value*, Constant*> ConstantPool;
+ ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
+ for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
+ ++I) {
+ if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
+ // If the terminator is a simple branch, continue to the next block.
+ if (T->getNumSuccessors() != 1)
+ return false;
+ Pred = CaseDest;
+ CaseDest = T->getSuccessor(0);
+ } else if (isa<DbgInfoIntrinsic>(I)) {
+ // Skip debug intrinsic.
+ continue;
+ } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
+ // Instruction is side-effect free and constant.
+
+ // If the instruction has uses outside this block or a phi node slot for
+ // the block, it is not safe to bypass the instruction since it would then
+ // no longer dominate all its uses.
+ for (auto &Use : I->uses()) {
+ User *User = Use.getUser();
+ if (Instruction *I = dyn_cast<Instruction>(User))
+ if (I->getParent() == CaseDest)
+ continue;
+ if (PHINode *Phi = dyn_cast<PHINode>(User))
+ if (Phi->getIncomingBlock(Use) == CaseDest)
+ continue;
+ return false;
+ }
+
+ ConstantPool.insert(std::make_pair(&*I, C));
+ } else {
+ break;
+ }
+ }
+
+ // If we did not have a CommonDest before, use the current one.
+ if (!*CommonDest)
+ *CommonDest = CaseDest;
+ // If the destination isn't the common one, abort.
+ if (CaseDest != *CommonDest)
+ return false;
+
+ // Get the values for this case from phi nodes in the destination block.
+ BasicBlock::iterator I = (*CommonDest)->begin();
+ while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
+ int Idx = PHI->getBasicBlockIndex(Pred);
+ if (Idx == -1)
+ continue;
+
+ Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
+ ConstantPool);
+ if (!ConstVal)
+ return false;
+
+ // Be conservative about which kinds of constants we support.
+ if (!ValidLookupTableConstant(ConstVal))
+ return false;
+
+ Res.push_back(std::make_pair(PHI, ConstVal));
+ }
+
+ return Res.size() > 0;
+}
+
+// Helper function used to add CaseVal to the list of cases that generate
+// Result.
+static void MapCaseToResult(ConstantInt *CaseVal,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *Result) {
+ for (auto &I : UniqueResults) {
+ if (I.first == Result) {
+ I.second.push_back(CaseVal);
+ return;
+ }
+ }
+ UniqueResults.push_back(std::make_pair(Result,
+ SmallVector<ConstantInt*, 4>(1, CaseVal)));
+}
+
+// Helper function that initializes a map containing
+// results for the PHI node of the common destination block for a switch
+// instruction. Returns false if multiple PHI nodes have been found or if
+// there is not a common destination block for the switch.
+static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
+ BasicBlock *&CommonDest,
+ SwitchCaseResultVectorTy &UniqueResults,
+ Constant *&DefaultResult,
+ const DataLayout &DL) {
+ for (auto &I : SI->cases()) {
+ ConstantInt *CaseVal = I.getCaseValue();
+
+ // Resulting value at phi nodes for this case value.
+ SwitchCaseResultsTy Results;
+ if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
+ DL))
+ return false;
+
+ // Only one value per case is permitted
+ if (Results.size() > 1)
+ return false;
+ MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
+
+ // Check the PHI consistency.
+ if (!PHI)
+ PHI = Results[0].first;
+ else if (PHI != Results[0].first)
+ return false;
+ }
+ // Find the default result value.
+ SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
+ BasicBlock *DefaultDest = SI->getDefaultDest();
+ GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
+ DL);
+ // If the default value is not found abort unless the default destination
+ // is unreachable.
+ DefaultResult =
+ DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
+ if ((!DefaultResult &&
+ !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
+ return false;
+
+ return true;
+}
+
+// Helper function that checks if it is possible to transform a switch with only
+// two cases (or two cases + default) that produces a result into a select.
+// Example:
+// switch (a) {
+// case 10: %0 = icmp eq i32 %a, 10
+// return 10; %1 = select i1 %0, i32 10, i32 4
+// case 20: ----> %2 = icmp eq i32 %a, 20
+// return 2; %3 = select i1 %2, i32 2, i32 %1
+// default:
+// return 4;
+// }
+static Value *
+ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
+ Constant *DefaultResult, Value *Condition,
+ IRBuilder<> &Builder) {
+ assert(ResultVector.size() == 2 &&
+ "We should have exactly two unique results at this point");
+ // If we are selecting between only two cases transform into a simple
+ // select or a two-way select if default is possible.
+ if (ResultVector[0].second.size() == 1 &&
+ ResultVector[1].second.size() == 1) {
+ ConstantInt *const FirstCase = ResultVector[0].second[0];
+ ConstantInt *const SecondCase = ResultVector[1].second[0];
+
+ bool DefaultCanTrigger = DefaultResult;
+ Value *SelectValue = ResultVector[1].first;
+ if (DefaultCanTrigger) {
+ Value *const ValueCompare =
+ Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
+ SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
+ DefaultResult, "switch.select");
+ }
+ Value *const ValueCompare =
+ Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
+ return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
+ "switch.select");
+ }
+
+ return nullptr;
+}
+
+// Helper function to cleanup a switch instruction that has been converted into
+// a select, fixing up PHI nodes and basic blocks.
+static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
+ Value *SelectValue,
+ IRBuilder<> &Builder) {
+ BasicBlock *SelectBB = SI->getParent();
+ while (PHI->getBasicBlockIndex(SelectBB) >= 0)
+ PHI->removeIncomingValue(SelectBB);
+ PHI->addIncoming(SelectValue, SelectBB);
+
+ Builder.CreateBr(PHI->getParent());
+
+ // Remove the switch.
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
+ BasicBlock *Succ = SI->getSuccessor(i);
+
+ if (Succ == PHI->getParent())
+ continue;
+ Succ->removePredecessor(SelectBB);
+ }
+ SI->eraseFromParent();
+}
+
+/// If the switch is only used to initialize one or more
+/// phi nodes in a common successor block with only two different
+/// constant values, replace the switch with select.
+static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
+ AssumptionCache *AC, const DataLayout &DL) {
+ Value *const Cond = SI->getCondition();
+ PHINode *PHI = nullptr;
+ BasicBlock *CommonDest = nullptr;
+ Constant *DefaultResult;
+ SwitchCaseResultVectorTy UniqueResults;
+ // Collect all the cases that will deliver the same value from the switch.
+ if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
+ DL))
+ return false;
+ // Selects choose between maximum two values.
+ if (UniqueResults.size() != 2)
+ return false;
+ assert(PHI != nullptr && "PHI for value select not found");
+
+ Builder.SetInsertPoint(SI);
+ Value *SelectValue = ConvertTwoCaseSwitch(
+ UniqueResults,
+ DefaultResult, Cond, Builder);
+ if (SelectValue) {
+ RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
+ return true;
+ }
+ // The switch couldn't be converted into a select.
+ return false;
+}
+
+namespace {
+ /// This class represents a lookup table that can be used to replace a switch.
+ class SwitchLookupTable {
+ public:
+ /// Create a lookup table to use as a switch replacement with the contents
+ /// of Values, using DefaultValue to fill any holes in the table.
+ SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL);
+
+ /// Build instructions with Builder to retrieve the value at
+ /// the position given by Index in the lookup table.
+ Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
+
+ /// Return true if a table with TableSize elements of
+ /// type ElementType would fit in a target-legal register.
+ static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
+ Type *ElementType);
+
+ private:
+ // Depending on the contents of the table, it can be represented in
+ // different ways.
+ enum {
+ // For tables where each element contains the same value, we just have to
+ // store that single value and return it for each lookup.
+ SingleValueKind,
+
+ // For tables where there is a linear relationship between table index
+ // and values. We calculate the result with a simple multiplication
+ // and addition instead of a table lookup.
+ LinearMapKind,
+
+ // For small tables with integer elements, we can pack them into a bitmap
+ // that fits into a target-legal register. Values are retrieved by
+ // shift and mask operations.
+ BitMapKind,
+
+ // The table is stored as an array of values. Values are retrieved by load
+ // instructions from the table.
+ ArrayKind
+ } Kind;
+
+ // For SingleValueKind, this is the single value.
+ Constant *SingleValue;
+
+ // For BitMapKind, this is the bitmap.
+ ConstantInt *BitMap;
+ IntegerType *BitMapElementTy;
+
+ // For LinearMapKind, these are the constants used to derive the value.
+ ConstantInt *LinearOffset;
+ ConstantInt *LinearMultiplier;
+
+ // For ArrayKind, this is the array.
+ GlobalVariable *Array;
+ };
+}
+
+SwitchLookupTable::SwitchLookupTable(
+ Module &M, uint64_t TableSize, ConstantInt *Offset,
+ const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
+ Constant *DefaultValue, const DataLayout &DL)
+ : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
+ LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
+ assert(Values.size() && "Can't build lookup table without values!");
+ assert(TableSize >= Values.size() && "Can't fit values in table!");
+
+ // If all values in the table are equal, this is that value.
+ SingleValue = Values.begin()->second;
+
+ Type *ValueType = Values.begin()->second->getType();
+
+ // Build up the table contents.
+ SmallVector<Constant*, 64> TableContents(TableSize);
+ for (size_t I = 0, E = Values.size(); I != E; ++I) {
+ ConstantInt *CaseVal = Values[I].first;
+ Constant *CaseRes = Values[I].second;
+ assert(CaseRes->getType() == ValueType);
+
+ uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
+ .getLimitedValue();
+ TableContents[Idx] = CaseRes;
+
+ if (CaseRes != SingleValue)
+ SingleValue = nullptr;
+ }
+
+ // Fill in any holes in the table with the default result.
+ if (Values.size() < TableSize) {
+ assert(DefaultValue &&
+ "Need a default value to fill the lookup table holes.");
+ assert(DefaultValue->getType() == ValueType);
+ for (uint64_t I = 0; I < TableSize; ++I) {
+ if (!TableContents[I])
+ TableContents[I] = DefaultValue;
+ }
+
+ if (DefaultValue != SingleValue)
+ SingleValue = nullptr;
+ }
+
+ // If each element in the table contains the same value, we only need to store
+ // that single value.
+ if (SingleValue) {
+ Kind = SingleValueKind;
+ return;
+ }
+
+ // Check if we can derive the value with a linear transformation from the
+ // table index.
+ if (isa<IntegerType>(ValueType)) {
+ bool LinearMappingPossible = true;
+ APInt PrevVal;
+ APInt DistToPrev;
+ assert(TableSize >= 2 && "Should be a SingleValue table.");
+ // Check if there is the same distance between two consecutive values.
+ for (uint64_t I = 0; I < TableSize; ++I) {
+ ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
+ if (!ConstVal) {
+ // This is an undef. We could deal with it, but undefs in lookup tables
+ // are very seldom. It's probably not worth the additional complexity.
+ LinearMappingPossible = false;
+ break;
+ }
+ APInt Val = ConstVal->getValue();
+ if (I != 0) {
+ APInt Dist = Val - PrevVal;
+ if (I == 1) {
+ DistToPrev = Dist;
+ } else if (Dist != DistToPrev) {
+ LinearMappingPossible = false;
+ break;
+ }
+ }
+ PrevVal = Val;
+ }
+ if (LinearMappingPossible) {
+ LinearOffset = cast<ConstantInt>(TableContents[0]);
+ LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
+ Kind = LinearMapKind;
+ ++NumLinearMaps;
+ return;
+ }
+ }
+
+ // If the type is integer and the table fits in a register, build a bitmap.
+ if (WouldFitInRegister(DL, TableSize, ValueType)) {
+ IntegerType *IT = cast<IntegerType>(ValueType);
+ APInt TableInt(TableSize * IT->getBitWidth(), 0);
+ for (uint64_t I = TableSize; I > 0; --I) {
+ TableInt <<= IT->getBitWidth();
+ // Insert values into the bitmap. Undef values are set to zero.
+ if (!isa<UndefValue>(TableContents[I - 1])) {
+ ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
+ TableInt |= Val->getValue().zext(TableInt.getBitWidth());
+ }
+ }
+ BitMap = ConstantInt::get(M.getContext(), TableInt);
+ BitMapElementTy = IT;
+ Kind = BitMapKind;
+ ++NumBitMaps;
+ return;
+ }
+
+ // Store the table in an array.
+ ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
+ Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
+
+ Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
+ GlobalVariable::PrivateLinkage,
+ Initializer,
+ "switch.table");
+ Array->setUnnamedAddr(true);
+ Kind = ArrayKind;
+}
+
+Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
+ switch (Kind) {
+ case SingleValueKind:
+ return SingleValue;
+ case LinearMapKind: {
+ // Derive the result value from the input value.
+ Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
+ false, "switch.idx.cast");
+ if (!LinearMultiplier->isOne())
+ Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
+ if (!LinearOffset->isZero())
+ Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
+ return Result;
+ }
+ case BitMapKind: {
+ // Type of the bitmap (e.g. i59).
+ IntegerType *MapTy = BitMap->getType();
+
+ // Cast Index to the same type as the bitmap.
+ // Note: The Index is <= the number of elements in the table, so
+ // truncating it to the width of the bitmask is safe.
+ Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
+
+ // Multiply the shift amount by the element width.
+ ShiftAmt = Builder.CreateMul(ShiftAmt,
+ ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
+ "switch.shiftamt");
+
+ // Shift down.
+ Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
+ "switch.downshift");
+ // Mask off.
+ return Builder.CreateTrunc(DownShifted, BitMapElementTy,
+ "switch.masked");
+ }
+ case ArrayKind: {
+ // Make sure the table index will not overflow when treated as signed.
+ IntegerType *IT = cast<IntegerType>(Index->getType());
+ uint64_t TableSize = Array->getInitializer()->getType()
+ ->getArrayNumElements();
+ if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
+ Index = Builder.CreateZExt(Index,
+ IntegerType::get(IT->getContext(),
+ IT->getBitWidth() + 1),
+ "switch.tableidx.zext");
+
+ Value *GEPIndices[] = { Builder.getInt32(0), Index };
+ Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
+ GEPIndices, "switch.gep");
+ return Builder.CreateLoad(GEP, "switch.load");
+ }
+ }
+ llvm_unreachable("Unknown lookup table kind!");
+}
+
+bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
+ uint64_t TableSize,
+ Type *ElementType) {
+ auto *IT = dyn_cast<IntegerType>(ElementType);
+ if (!IT)
+ return false;
+ // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
+ // are <= 15, we could try to narrow the type.
+
+ // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
+ if (TableSize >= UINT_MAX/IT->getBitWidth())
+ return false;
+ return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
+}
+
+/// Determine whether a lookup table should be built for this switch, based on
+/// the number of cases, size of the table, and the types of the results.
+static bool
+ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
+ const TargetTransformInfo &TTI, const DataLayout &DL,
+ const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
+ if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
+ return false; // TableSize overflowed, or mul below might overflow.
+
+ bool AllTablesFitInRegister = true;
+ bool HasIllegalType = false;
+ for (const auto &I : ResultTypes) {
+ Type *Ty = I.second;
+
+ // Saturate this flag to true.
+ HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
+
+ // Saturate this flag to false.
+ AllTablesFitInRegister = AllTablesFitInRegister &&
+ SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
+
+ // If both flags saturate, we're done. NOTE: This *only* works with
+ // saturating flags, and all flags have to saturate first due to the
+ // non-deterministic behavior of iterating over a dense map.
+ if (HasIllegalType && !AllTablesFitInRegister)
+ break;
+ }
+
+ // If each table would fit in a register, we should build it anyway.
+ if (AllTablesFitInRegister)
+ return true;
+
+ // Don't build a table that doesn't fit in-register if it has illegal types.
+ if (HasIllegalType)
+ return false;
+
+ // The table density should be at least 40%. This is the same criterion as for
+ // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
+ // FIXME: Find the best cut-off.
+ return SI->getNumCases() * 10 >= TableSize * 4;
+}
+
+/// Try to reuse the switch table index compare. Following pattern:
+/// \code
+/// if (idx < tablesize)
+/// r = table[idx]; // table does not contain default_value
+/// else
+/// r = default_value;
+/// if (r != default_value)
+/// ...
+/// \endcode
+/// Is optimized to:
+/// \code
+/// cond = idx < tablesize;
+/// if (cond)
+/// r = table[idx];
+/// else
+/// r = default_value;
+/// if (cond)
+/// ...
+/// \endcode
+/// Jump threading will then eliminate the second if(cond).
+static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
+ BranchInst *RangeCheckBranch, Constant *DefaultValue,
+ const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
+
+ ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
+ if (!CmpInst)
+ return;
+
+ // We require that the compare is in the same block as the phi so that jump
+ // threading can do its work afterwards.
+ if (CmpInst->getParent() != PhiBlock)
+ return;
+
+ Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
+ if (!CmpOp1)
+ return;
+
+ Value *RangeCmp = RangeCheckBranch->getCondition();
+ Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
+ Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
+
+ // Check if the compare with the default value is constant true or false.
+ Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
+ DefaultValue, CmpOp1, true);
+ if (DefaultConst != TrueConst && DefaultConst != FalseConst)
+ return;
+
+ // Check if the compare with the case values is distinct from the default
+ // compare result.
+ for (auto ValuePair : Values) {
+ Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
+ ValuePair.second, CmpOp1, true);
+ if (!CaseConst || CaseConst == DefaultConst)
+ return;
+ assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
+ "Expect true or false as compare result.");
+ }
+
+ // Check if the branch instruction dominates the phi node. It's a simple
+ // dominance check, but sufficient for our needs.
+ // Although this check is invariant in the calling loops, it's better to do it
+ // at this late stage. Practically we do it at most once for a switch.
+ BasicBlock *BranchBlock = RangeCheckBranch->getParent();
+ for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
+ return;
+ }
+
+ if (DefaultConst == FalseConst) {
+ // The compare yields the same result. We can replace it.
+ CmpInst->replaceAllUsesWith(RangeCmp);
+ ++NumTableCmpReuses;
+ } else {
+ // The compare yields the same result, just inverted. We can replace it.
+ Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
+ ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
+ RangeCheckBranch);
+ CmpInst->replaceAllUsesWith(InvertedTableCmp);
+ ++NumTableCmpReuses;
+ }
+}
+
+/// If the switch is only used to initialize one or more phi nodes in a common
+/// successor block with different constant values, replace the switch with
+/// lookup tables.
+static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
+ const DataLayout &DL,
+ const TargetTransformInfo &TTI) {
+ assert(SI->getNumCases() > 1 && "Degenerate switch?");
+
+ // Only build lookup table when we have a target that supports it.
+ if (!TTI.shouldBuildLookupTables())
+ return false;
+
+ // FIXME: If the switch is too sparse for a lookup table, perhaps we could
+ // split off a dense part and build a lookup table for that.
+
+ // FIXME: This creates arrays of GEPs to constant strings, which means each
+ // GEP needs a runtime relocation in PIC code. We should just build one big
+ // string and lookup indices into that.
+
+ // Ignore switches with less than three cases. Lookup tables will not make them
+ // faster, so we don't analyze them.
+ if (SI->getNumCases() < 3)
+ return false;
+
+ // Figure out the corresponding result for each case value and phi node in the
+ // common destination, as well as the min and max case values.
+ assert(SI->case_begin() != SI->case_end());
+ SwitchInst::CaseIt CI = SI->case_begin();
+ ConstantInt *MinCaseVal = CI.getCaseValue();
+ ConstantInt *MaxCaseVal = CI.getCaseValue();
+
+ BasicBlock *CommonDest = nullptr;
+ typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
+ SmallDenseMap<PHINode*, ResultListTy> ResultLists;
+ SmallDenseMap<PHINode*, Constant*> DefaultResults;
+ SmallDenseMap<PHINode*, Type*> ResultTypes;
+ SmallVector<PHINode*, 4> PHIs;
+
+ for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
+ ConstantInt *CaseVal = CI.getCaseValue();
+ if (CaseVal->getValue().slt(MinCaseVal->getValue()))
+ MinCaseVal = CaseVal;
+ if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
+ MaxCaseVal = CaseVal;
+
+ // Resulting value at phi nodes for this case value.
+ typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
+ ResultsTy Results;
+ if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
+ Results, DL))
+ return false;
+
+ // Append the result from this case to the list for each phi.
+ for (const auto &I : Results) {
+ PHINode *PHI = I.first;
+ Constant *Value = I.second;
+ if (!ResultLists.count(PHI))
+ PHIs.push_back(PHI);
+ ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
+ }
+ }
+
+ // Keep track of the result types.
+ for (PHINode *PHI : PHIs) {
+ ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
+ }
+
+ uint64_t NumResults = ResultLists[PHIs[0]].size();
+ APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
+ uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
+ bool TableHasHoles = (NumResults < TableSize);
+
+ // If the table has holes, we need a constant result for the default case
+ // or a bitmask that fits in a register.
+ SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
+ bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
+ &CommonDest, DefaultResultsList, DL);
+
+ bool NeedMask = (TableHasHoles && !HasDefaultResults);
+ if (NeedMask) {
+ // As an extra penalty for the validity test we require more cases.
+ if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
+ return false;
+ if (!DL.fitsInLegalInteger(TableSize))
+ return false;
+ }
+
+ for (const auto &I : DefaultResultsList) {
+ PHINode *PHI = I.first;
+ Constant *Result = I.second;
+ DefaultResults[PHI] = Result;
+ }
+
+ if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
+ return false;
+
+ // Create the BB that does the lookups.
+ Module &Mod = *CommonDest->getParent()->getParent();
+ BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
+ "switch.lookup",
+ CommonDest->getParent(),
+ CommonDest);
+
+ // Compute the table index value.
+ Builder.SetInsertPoint(SI);
+ Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
+ "switch.tableidx");
+
+ // Compute the maximum table size representable by the integer type we are
+ // switching upon.
+ unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
+ uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
+ assert(MaxTableSize >= TableSize &&
+ "It is impossible for a switch to have more entries than the max "
+ "representable value of its input integer type's size.");
+
+ // If the default destination is unreachable, or if the lookup table covers
+ // all values of the conditional variable, branch directly to the lookup table
+ // BB. Otherwise, check that the condition is within the case range.
+ const bool DefaultIsReachable =
+ !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
+ const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
+ BranchInst *RangeCheckBranch = nullptr;
+
+ if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
+ Builder.CreateBr(LookupBB);
+ // Note: We call removeProdecessor later since we need to be able to get the
+ // PHI value for the default case in case we're using a bit mask.
+ } else {
+ Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
+ MinCaseVal->getType(), TableSize));
+ RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
+ }
+
+ // Populate the BB that does the lookups.
+ Builder.SetInsertPoint(LookupBB);
+
+ if (NeedMask) {
+ // Before doing the lookup we do the hole check.
+ // The LookupBB is therefore re-purposed to do the hole check
+ // and we create a new LookupBB.
+ BasicBlock *MaskBB = LookupBB;
+ MaskBB->setName("switch.hole_check");
+ LookupBB = BasicBlock::Create(Mod.getContext(),
+ "switch.lookup",
+ CommonDest->getParent(),
+ CommonDest);
+
+ // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
+ // unnecessary illegal types.
+ uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
+ APInt MaskInt(TableSizePowOf2, 0);
+ APInt One(TableSizePowOf2, 1);
+ // Build bitmask; fill in a 1 bit for every case.
+ const ResultListTy &ResultList = ResultLists[PHIs[0]];
+ for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
+ uint64_t Idx = (ResultList[I].first->getValue() -
+ MinCaseVal->getValue()).getLimitedValue();
+ MaskInt |= One << Idx;
+ }
+ ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
+
+ // Get the TableIndex'th bit of the bitmask.
+ // If this bit is 0 (meaning hole) jump to the default destination,
+ // else continue with table lookup.
+ IntegerType *MapTy = TableMask->getType();
+ Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
+ "switch.maskindex");
+ Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
+ "switch.shifted");
+ Value *LoBit = Builder.CreateTrunc(Shifted,
+ Type::getInt1Ty(Mod.getContext()),
+ "switch.lobit");
+ Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
+
+ Builder.SetInsertPoint(LookupBB);
+ AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
+ }
+
+ if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
+ // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
+ // do not delete PHINodes here.
+ SI->getDefaultDest()->removePredecessor(SI->getParent(),
+ /*DontDeleteUselessPHIs=*/true);
+ }
+
+ bool ReturnedEarly = false;
+ for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
+ PHINode *PHI = PHIs[I];
+ const ResultListTy &ResultList = ResultLists[PHI];
+
+ // If using a bitmask, use any value to fill the lookup table holes.
+ Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
+ SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
+
+ Value *Result = Table.BuildLookup(TableIndex, Builder);
+
+ // If the result is used to return immediately from the function, we want to
+ // do that right here.
+ if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
+ PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
+ Builder.CreateRet(Result);
+ ReturnedEarly = true;
+ break;
+ }
+
+ // Do a small peephole optimization: re-use the switch table compare if
+ // possible.
+ if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
+ BasicBlock *PhiBlock = PHI->getParent();
+ // Search for compare instructions which use the phi.
+ for (auto *User : PHI->users()) {
+ reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
+ }
+ }
+
+ PHI->addIncoming(Result, LookupBB);
+ }
+
+ if (!ReturnedEarly)
+ Builder.CreateBr(CommonDest);
+
+ // Remove the switch.
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
+ BasicBlock *Succ = SI->getSuccessor(i);
+
+ if (Succ == SI->getDefaultDest())
+ continue;
+ Succ->removePredecessor(SI->getParent());
+ }
+ SI->eraseFromParent();
+
+ ++NumLookupTables;
+ if (NeedMask)
+ ++NumLookupTablesHoles;
+ return true;
+}
+
+bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
+ BasicBlock *BB = SI->getParent();
+
+ if (isValueEqualityComparison(SI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ Value *Cond = SI->getCondition();
+ if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
+ if (SimplifySwitchOnSelect(SI, Select))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ // If the block only contains the switch, see if we can fold the block
+ // away into any preds.
+ BasicBlock::iterator BBI = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(BBI))
+ ++BBI;
+ if (SI == &*BBI)
+ if (FoldValueComparisonIntoPredecessors(SI, Builder))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+
+ // Try to transform the switch into an icmp and a branch.
+ if (TurnSwitchRangeIntoICmp(SI, Builder))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ // Remove unreachable cases.
+ if (EliminateDeadSwitchCases(SI, AC, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ if (SwitchToSelect(SI, Builder, AC, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ if (ForwardSwitchConditionToPHI(SI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ if (SwitchToLookupTable(SI, Builder, DL, TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
+ BasicBlock *BB = IBI->getParent();
+ bool Changed = false;
+
+ // Eliminate redundant destinations.
+ SmallPtrSet<Value *, 8> Succs;
+ for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
+ BasicBlock *Dest = IBI->getDestination(i);
+ if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
+ Dest->removePredecessor(BB);
+ IBI->removeDestination(i);
+ --i; --e;
+ Changed = true;
+ }
+ }
+
+ if (IBI->getNumDestinations() == 0) {
+ // If the indirectbr has no successors, change it to unreachable.
+ new UnreachableInst(IBI->getContext(), IBI);
+ EraseTerminatorInstAndDCECond(IBI);
+ return true;
+ }
+
+ if (IBI->getNumDestinations() == 1) {
+ // If the indirectbr has one successor, change it to a direct branch.
+ BranchInst::Create(IBI->getDestination(0), IBI);
+ EraseTerminatorInstAndDCECond(IBI);
+ return true;
+ }
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
+ if (SimplifyIndirectBrOnSelect(IBI, SI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+ return Changed;
+}
+
+/// Given an block with only a single landing pad and a unconditional branch
+/// try to find another basic block which this one can be merged with. This
+/// handles cases where we have multiple invokes with unique landing pads, but
+/// a shared handler.
+///
+/// We specifically choose to not worry about merging non-empty blocks
+/// here. That is a PRE/scheduling problem and is best solved elsewhere. In
+/// practice, the optimizer produces empty landing pad blocks quite frequently
+/// when dealing with exception dense code. (see: instcombine, gvn, if-else
+/// sinking in this file)
+///
+/// This is primarily a code size optimization. We need to avoid performing
+/// any transform which might inhibit optimization (such as our ability to
+/// specialize a particular handler via tail commoning). We do this by not
+/// merging any blocks which require us to introduce a phi. Since the same
+/// values are flowing through both blocks, we don't loose any ability to
+/// specialize. If anything, we make such specialization more likely.
+///
+/// TODO - This transformation could remove entries from a phi in the target
+/// block when the inputs in the phi are the same for the two blocks being
+/// merged. In some cases, this could result in removal of the PHI entirely.
+static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
+ BasicBlock *BB) {
+ auto Succ = BB->getUniqueSuccessor();
+ assert(Succ);
+ // If there's a phi in the successor block, we'd likely have to introduce
+ // a phi into the merged landing pad block.
+ if (isa<PHINode>(*Succ->begin()))
+ return false;
+
+ for (BasicBlock *OtherPred : predecessors(Succ)) {
+ if (BB == OtherPred)
+ continue;
+ BasicBlock::iterator I = OtherPred->begin();
+ LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
+ if (!LPad2 || !LPad2->isIdenticalTo(LPad))
+ continue;
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
+ BranchInst *BI2 = dyn_cast<BranchInst>(I);
+ if (!BI2 || !BI2->isIdenticalTo(BI))
+ continue;
+
+ // We've found an identical block. Update our predeccessors to take that
+ // path instead and make ourselves dead.
+ SmallSet<BasicBlock *, 16> Preds;
+ Preds.insert(pred_begin(BB), pred_end(BB));
+ for (BasicBlock *Pred : Preds) {
+ InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
+ assert(II->getNormalDest() != BB &&
+ II->getUnwindDest() == BB && "unexpected successor");
+ II->setUnwindDest(OtherPred);
+ }
+
+ // The debug info in OtherPred doesn't cover the merged control flow that
+ // used to go through BB. We need to delete it or update it.
+ for (auto I = OtherPred->begin(), E = OtherPred->end();
+ I != E;) {
+ Instruction &Inst = *I; I++;
+ if (isa<DbgInfoIntrinsic>(Inst))
+ Inst.eraseFromParent();
+ }
+
+ SmallSet<BasicBlock *, 16> Succs;
+ Succs.insert(succ_begin(BB), succ_end(BB));
+ for (BasicBlock *Succ : Succs) {
+ Succ->removePredecessor(BB);
+ }
+
+ IRBuilder<> Builder(BI);
+ Builder.CreateUnreachable();
+ BI->eraseFromParent();
+ return true;
+ }
+ return false;
+}
+
+bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
+ BasicBlock *BB = BI->getParent();
+
+ if (SinkCommon && SinkThenElseCodeToEnd(BI))
+ return true;
+
+ // If the Terminator is the only non-phi instruction, simplify the block.
+ BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
+ if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
+ TryToSimplifyUncondBranchFromEmptyBlock(BB))
+ return true;
+
+ // If the only instruction in the block is a seteq/setne comparison
+ // against a constant, try to simplify the block.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
+ if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I)
+ ;
+ if (I->isTerminator() &&
+ TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
+ BonusInstThreshold, AC))
+ return true;
+ }
+
+ // See if we can merge an empty landing pad block with another which is
+ // equivalent.
+ if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
+ for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
+ if (I->isTerminator() &&
+ TryToMergeLandingPad(LPad, BI, BB))
+ return true;
+ }
+
+ // If this basic block is ONLY a compare and a branch, and if a predecessor
+ // branches to us and our successor, fold the comparison into the
+ // predecessor and use logical operations to update the incoming value
+ // for PHI nodes in common successor.
+ if (FoldBranchToCommonDest(BI, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ return false;
+}
+
+static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
+ BasicBlock *PredPred = nullptr;
+ for (auto *P : predecessors(BB)) {
+ BasicBlock *PPred = P->getSinglePredecessor();
+ if (!PPred || (PredPred && PredPred != PPred))
+ return nullptr;
+ PredPred = PPred;
+ }
+ return PredPred;
+}
+
+bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
+ BasicBlock *BB = BI->getParent();
+
+ // Conditional branch
+ if (isValueEqualityComparison(BI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this
+ // switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ // This block must be empty, except for the setcond inst, if it exists.
+ // Ignore dbg intrinsics.
+ BasicBlock::iterator I = BB->begin();
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(I))
+ ++I;
+ if (&*I == BI) {
+ if (FoldValueComparisonIntoPredecessors(BI, Builder))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ } else if (&*I == cast<Instruction>(BI->getCondition())){
+ ++I;
+ // Ignore dbg intrinsics.
+ while (isa<DbgInfoIntrinsic>(I))
+ ++I;
+ if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+ }
+
+ // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
+ if (SimplifyBranchOnICmpChain(BI, Builder, DL))
+ return true;
+
+ // If this basic block is ONLY a compare and a branch, and if a predecessor
+ // branches to us and one of our successors, fold the comparison into the
+ // predecessor and use logical operations to pick the right destination.
+ if (FoldBranchToCommonDest(BI, BonusInstThreshold))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ // We have a conditional branch to two blocks that are only reachable
+ // from BI. We know that the condbr dominates the two blocks, so see if
+ // there is any identical code in the "then" and "else" blocks. If so, we
+ // can hoist it up to the branching block.
+ if (BI->getSuccessor(0)->getSinglePredecessor()) {
+ if (BI->getSuccessor(1)->getSinglePredecessor()) {
+ if (HoistThenElseCodeToIf(BI, TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ } else {
+ // If Successor #1 has multiple preds, we may be able to conditionally
+ // execute Successor #0 if it branches to Successor #1.
+ TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
+ if (Succ0TI->getNumSuccessors() == 1 &&
+ Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+ } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
+ // If Successor #0 has multiple preds, we may be able to conditionally
+ // execute Successor #1 if it branches to Successor #0.
+ TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
+ if (Succ1TI->getNumSuccessors() == 1 &&
+ Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
+ if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+ }
+
+ // If this is a branch on a phi node in the current block, thread control
+ // through this block if any PHI node entries are constants.
+ if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
+ if (PN->getParent() == BI->getParent())
+ if (FoldCondBranchOnPHI(BI, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ // Scan predecessor blocks for conditional branches.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ // Look for diamond patterns.
+ if (MergeCondStores)
+ if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
+ if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
+ if (PBI != BI && PBI->isConditional())
+ if (mergeConditionalStores(PBI, BI))
+ return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
+
+ return false;
+}
+
+/// Check if passing a value to an instruction will cause undefined behavior.
+static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C)
+ return false;
+
+ if (I->use_empty())
+ return false;
+
+ if (C->isNullValue()) {
+ // Only look at the first use, avoid hurting compile time with long uselists
+ User *Use = *I->user_begin();
+
+ // Now make sure that there are no instructions in between that can alter
+ // control flow (eg. calls)
+ for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
+ if (i == I->getParent()->end() || i->mayHaveSideEffects())
+ return false;
+
+ // Look through GEPs. A load from a GEP derived from NULL is still undefined
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
+ if (GEP->getPointerOperand() == I)
+ return passingValueIsAlwaysUndefined(V, GEP);
+
+ // Look through bitcasts.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
+ return passingValueIsAlwaysUndefined(V, BC);
+
+ // Load from null is undefined.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Use))
+ if (!LI->isVolatile())
+ return LI->getPointerAddressSpace() == 0;
+
+ // Store to null is undefined.
+ if (StoreInst *SI = dyn_cast<StoreInst>(Use))
+ if (!SI->isVolatile())
+ return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
+ }
+ return false;
+}
+
+/// If BB has an incoming value that will always trigger undefined behavior
+/// (eg. null pointer dereference), remove the branch leading here.
+static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
+ for (BasicBlock::iterator i = BB->begin();
+ PHINode *PHI = dyn_cast<PHINode>(i); ++i)
+ for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
+ if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
+ TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
+ IRBuilder<> Builder(T);
+ if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
+ BB->removePredecessor(PHI->getIncomingBlock(i));
+ // Turn uncoditional branches into unreachables and remove the dead
+ // destination from conditional branches.
+ if (BI->isUnconditional())
+ Builder.CreateUnreachable();
+ else
+ Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
+ BI->getSuccessor(0));
+ BI->eraseFromParent();
+ return true;
+ }
+ // TODO: SwitchInst.
+ }
+
+ return false;
+}
+
+bool SimplifyCFGOpt::run(BasicBlock *BB) {
+ bool Changed = false;
+
+ assert(BB && BB->getParent() && "Block not embedded in function!");
+ assert(BB->getTerminator() && "Degenerate basic block encountered!");
+
+ // Remove basic blocks that have no predecessors (except the entry block)...
+ // or that just have themself as a predecessor. These are unreachable.
+ if ((pred_empty(BB) &&
+ BB != &BB->getParent()->getEntryBlock()) ||
+ BB->getSinglePredecessor() == BB) {
+ DEBUG(dbgs() << "Removing BB: \n" << *BB);
+ DeleteDeadBlock(BB);
+ return true;
+ }
+
+ // Check to see if we can constant propagate this terminator instruction
+ // away...
+ Changed |= ConstantFoldTerminator(BB, true);
+
+ // Check for and eliminate duplicate PHI nodes in this block.
+ Changed |= EliminateDuplicatePHINodes(BB);
+
+ // Check for and remove branches that will always cause undefined behavior.
+ Changed |= removeUndefIntroducingPredecessor(BB);
+
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ //
+ if (MergeBlockIntoPredecessor(BB))
+ return true;
+
+ IRBuilder<> Builder(BB);
+
+ // If there is a trivial two-entry PHI node in this basic block, and we can
+ // eliminate it, do so now.
+ if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
+ if (PN->getNumIncomingValues() == 2)
+ Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
+
+ Builder.SetInsertPoint(BB->getTerminator());
+ if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+ if (BI->isUnconditional()) {
+ if (SimplifyUncondBranch(BI, Builder)) return true;
+ } else {
+ if (SimplifyCondBranch(BI, Builder)) return true;
+ }
+ } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ if (SimplifyReturn(RI, Builder)) return true;
+ } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
+ if (SimplifyResume(RI, Builder)) return true;
+ } else if (CleanupReturnInst *RI =
+ dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
+ if (SimplifyCleanupReturn(RI)) return true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ if (SimplifySwitch(SI, Builder)) return true;
+ } else if (UnreachableInst *UI =
+ dyn_cast<UnreachableInst>(BB->getTerminator())) {
+ if (SimplifyUnreachable(UI)) return true;
+ } else if (IndirectBrInst *IBI =
+ dyn_cast<IndirectBrInst>(BB->getTerminator())) {
+ if (SimplifyIndirectBr(IBI)) return true;
+ }
+
+ return Changed;
+}
+
+/// This function is used to do simplification of a CFG.
+/// For example, it adjusts branches to branches to eliminate the extra hop,
+/// eliminates unreachable basic blocks, and does other "peephole" optimization
+/// of the CFG. It returns true if a modification was made.
+///
+bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
+ unsigned BonusInstThreshold, AssumptionCache *AC) {
+ return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
+ BonusInstThreshold, AC).run(BB);
+}
OpenPOWER on IntegriCloud