diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SSI.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SSI.cpp | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SSI.cpp b/contrib/llvm/lib/Transforms/Utils/SSI.cpp new file mode 100644 index 0000000..4e813dd --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/SSI.cpp @@ -0,0 +1,432 @@ +//===------------------- SSI.cpp - Creates SSI Representation -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass converts a list of variables to the Static Single Information +// form. This is a program representation described by Scott Ananian in his +// Master Thesis: "The Static Single Information Form (1999)". +// We are building an on-demand representation, that is, we do not convert +// every single variable in the target function to SSI form. Rather, we receive +// a list of target variables that must be converted. We also do not +// completely convert a target variable to the SSI format. Instead, we only +// change the variable in the points where new information can be attached +// to its live range, that is, at branch points. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "ssi" + +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/SSI.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/Dominators.h" + +using namespace llvm; + +static const std::string SSI_PHI = "SSI_phi"; +static const std::string SSI_SIG = "SSI_sigma"; + +STATISTIC(NumSigmaInserted, "Number of sigma functions inserted"); +STATISTIC(NumPhiInserted, "Number of phi functions inserted"); + +void SSI::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequiredTransitive<DominanceFrontier>(); + AU.addRequiredTransitive<DominatorTree>(); + AU.setPreservesAll(); +} + +bool SSI::runOnFunction(Function &F) { + DT_ = &getAnalysis<DominatorTree>(); + return false; +} + +/// This methods creates the SSI representation for the list of values +/// received. It will only create SSI representation if a value is used +/// to decide a branch. Repeated values are created only once. +/// +void SSI::createSSI(SmallVectorImpl<Instruction *> &value) { + init(value); + + SmallPtrSet<Instruction*, 4> needConstruction; + for (SmallVectorImpl<Instruction*>::iterator I = value.begin(), + E = value.end(); I != E; ++I) + if (created.insert(*I)) + needConstruction.insert(*I); + + insertSigmaFunctions(needConstruction); + + // Test if there is a need to transform to SSI + if (!needConstruction.empty()) { + insertPhiFunctions(needConstruction); + renameInit(needConstruction); + rename(DT_->getRoot()); + fixPhis(); + } + + clean(); +} + +/// Insert sigma functions (a sigma function is a phi function with one +/// operator) +/// +void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) { + for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), + E = value.end(); I != E; ++I) { + for (Value::use_iterator begin = (*I)->use_begin(), + end = (*I)->use_end(); begin != end; ++begin) { + // Test if the Use of the Value is in a comparator + if (CmpInst *CI = dyn_cast<CmpInst>(begin)) { + // Iterates through all uses of CmpInst + for (Value::use_iterator begin_ci = CI->use_begin(), + end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) { + // Test if any use of CmpInst is in a Terminator + if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) { + insertSigma(TI, *I); + } + } + } + } + } +} + +/// Inserts Sigma Functions in every BasicBlock successor to Terminator +/// Instruction TI. All inserted Sigma Function are related to Instruction I. +/// +void SSI::insertSigma(TerminatorInst *TI, Instruction *I) { + // Basic Block of the Terminator Instruction + BasicBlock *BB = TI->getParent(); + for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { + // Next Basic Block + BasicBlock *BB_next = TI->getSuccessor(i); + if (BB_next != BB && + BB_next->getSinglePredecessor() != NULL && + dominateAny(BB_next, I)) { + PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin()); + PN->addIncoming(I, BB); + sigmas[PN] = I; + created.insert(PN); + defsites[I].push_back(BB_next); + ++NumSigmaInserted; + } + } +} + +/// Insert phi functions when necessary +/// +void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) { + DominanceFrontier *DF = &getAnalysis<DominanceFrontier>(); + for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), + E = value.end(); I != E; ++I) { + // Test if there were any sigmas for this variable + SmallPtrSet<BasicBlock *, 16> BB_visited; + + // Insert phi functions if there is any sigma function + while (!defsites[*I].empty()) { + + BasicBlock *BB = defsites[*I].back(); + + defsites[*I].pop_back(); + DominanceFrontier::iterator DF_BB = DF->find(BB); + + // The BB is unreachable. Skip it. + if (DF_BB == DF->end()) + continue; + + // Iterates through all the dominance frontier of BB + for (std::set<BasicBlock *>::iterator DF_BB_begin = + DF_BB->second.begin(), DF_BB_end = DF_BB->second.end(); + DF_BB_begin != DF_BB_end; ++DF_BB_begin) { + BasicBlock *BB_dominated = *DF_BB_begin; + + // Test if has not yet visited this node and if the + // original definition dominates this node + if (BB_visited.insert(BB_dominated) && + DT_->properlyDominates(value_original[*I], BB_dominated) && + dominateAny(BB_dominated, *I)) { + PHINode *PN = PHINode::Create( + (*I)->getType(), SSI_PHI, BB_dominated->begin()); + phis.insert(std::make_pair(PN, *I)); + created.insert(PN); + + defsites[*I].push_back(BB_dominated); + ++NumPhiInserted; + } + } + } + BB_visited.clear(); + } +} + +/// Some initialization for the rename part +/// +void SSI::renameInit(SmallPtrSet<Instruction*, 4> &value) { + for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), + E = value.end(); I != E; ++I) + value_stack[*I].push_back(*I); +} + +/// Renames all variables in the specified BasicBlock. +/// Only variables that need to be rename will be. +/// +void SSI::rename(BasicBlock *BB) { + SmallPtrSet<Instruction*, 8> defined; + + // Iterate through instructions and make appropriate renaming. + // For SSI_PHI (b = PHI()), store b at value_stack as a new + // definition of the variable it represents. + // For SSI_SIG (b = PHI(a)), substitute a with the current + // value of a, present in the value_stack. + // Then store bin the value_stack as the new definition of a. + // For all other instructions (b = OP(a, c, d, ...)), we need to substitute + // all operands with its current value, present in value_stack. + for (BasicBlock::iterator begin = BB->begin(), end = BB->end(); + begin != end; ++begin) { + Instruction *I = begin; + if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions + Instruction* position; + + // Treat SSI_PHI + if ((position = getPositionPhi(PN))) { + value_stack[position].push_back(PN); + defined.insert(position); + // Treat SSI_SIG + } else if ((position = getPositionSigma(PN))) { + substituteUse(I); + value_stack[position].push_back(PN); + defined.insert(position); + } + + // Treat all other PHI functions + else { + substituteUse(I); + } + } + + // Treat all other functions + else { + substituteUse(I); + } + } + + // This loop iterates in all BasicBlocks that are successors of the current + // BasicBlock. For each SSI_PHI instruction found, insert an operand. + // This operand is the current operand in value_stack for the variable + // in "position". And the BasicBlock this operand represents is the current + // BasicBlock. + for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { + BasicBlock *BB_succ = *SI; + + for (BasicBlock::iterator begin = BB_succ->begin(), + notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) { + Instruction *I = begin; + PHINode *PN = dyn_cast<PHINode>(I); + Instruction* position; + if (PN && ((position = getPositionPhi(PN)))) { + PN->addIncoming(value_stack[position].back(), BB); + } + } + } + + // This loop calls rename on all children from this block. This time children + // refers to a successor block in the dominance tree. + DomTreeNode *DTN = DT_->getNode(BB); + for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end(); + begin != end; ++begin) { + DomTreeNodeBase<BasicBlock> *DTN_children = *begin; + BasicBlock *BB_children = DTN_children->getBlock(); + rename(BB_children); + } + + // Now we remove all inserted definitions of a variable from the top of + // the stack leaving the previous one as the top. + for (SmallPtrSet<Instruction*, 8>::iterator DI = defined.begin(), + DE = defined.end(); DI != DE; ++DI) + value_stack[*DI].pop_back(); +} + +/// Substitute any use in this instruction for the last definition of +/// the variable +/// +void SSI::substituteUse(Instruction *I) { + for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { + Value *operand = I->getOperand(i); + for (DenseMap<Instruction*, SmallVector<Instruction*, 1> >::iterator + VI = value_stack.begin(), VE = value_stack.end(); VI != VE; ++VI) { + if (operand == VI->second.front() && + I != VI->second.back()) { + PHINode *PN_I = dyn_cast<PHINode>(I); + PHINode *PN_vs = dyn_cast<PHINode>(VI->second.back()); + + // If a phi created in a BasicBlock is used as an operand of another + // created in the same BasicBlock, this step marks this second phi, + // to fix this issue later. It cannot be fixed now, because the + // operands of the first phi are not final yet. + if (PN_I && PN_vs && + VI->second.back()->getParent() == I->getParent()) { + + phisToFix.insert(PN_I); + } + + I->setOperand(i, VI->second.back()); + break; + } + } + } +} + +/// Test if the BasicBlock BB dominates any use or definition of value. +/// If it dominates a phi instruction that is on the same BasicBlock, +/// that does not count. +/// +bool SSI::dominateAny(BasicBlock *BB, Instruction *value) { + for (Value::use_iterator begin = value->use_begin(), + end = value->use_end(); begin != end; ++begin) { + Instruction *I = cast<Instruction>(*begin); + BasicBlock *BB_father = I->getParent(); + if (BB == BB_father && isa<PHINode>(I)) + continue; + if (DT_->dominates(BB, BB_father)) { + return true; + } + } + return false; +} + +/// When there is a phi node that is created in a BasicBlock and it is used +/// as an operand of another phi function used in the same BasicBlock, +/// LLVM looks this as an error. So on the second phi, the first phi is called +/// P and the BasicBlock it incomes is B. This P will be replaced by the value +/// it has for BasicBlock B. It also includes undef values for predecessors +/// that were not included in the phi. +/// +void SSI::fixPhis() { + for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(), + end = phisToFix.end(); begin != end; ++begin) { + PHINode *PN = *begin; + for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { + PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i)); + if (PN_father && PN->getParent() == PN_father->getParent() && + !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) { + BasicBlock *BB = PN->getIncomingBlock(i); + int pos = PN_father->getBasicBlockIndex(BB); + PN->setIncomingValue(i, PN_father->getIncomingValue(pos)); + } + } + } + + for (DenseMapIterator<PHINode *, Instruction*> begin = phis.begin(), + end = phis.end(); begin != end; ++begin) { + PHINode *PN = begin->first; + BasicBlock *BB = PN->getParent(); + pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + SmallVector<BasicBlock*, 8> Preds(PI, PE); + for (unsigned size = Preds.size(); + PI != PE && PN->getNumIncomingValues() != size; ++PI) { + bool found = false; + for (unsigned i = 0, pn_end = PN->getNumIncomingValues(); + i < pn_end; ++i) { + if (PN->getIncomingBlock(i) == *PI) { + found = true; + break; + } + } + if (!found) { + PN->addIncoming(UndefValue::get(PN->getType()), *PI); + } + } + } +} + +/// Return which variable (position on the vector of variables) this phi +/// represents on the phis list. +/// +Instruction* SSI::getPositionPhi(PHINode *PN) { + DenseMap<PHINode *, Instruction*>::iterator val = phis.find(PN); + if (val == phis.end()) + return 0; + else + return val->second; +} + +/// Return which variable (position on the vector of variables) this phi +/// represents on the sigmas list. +/// +Instruction* SSI::getPositionSigma(PHINode *PN) { + DenseMap<PHINode *, Instruction*>::iterator val = sigmas.find(PN); + if (val == sigmas.end()) + return 0; + else + return val->second; +} + +/// Initializes +/// +void SSI::init(SmallVectorImpl<Instruction *> &value) { + for (SmallVectorImpl<Instruction *>::iterator I = value.begin(), + E = value.end(); I != E; ++I) { + value_original[*I] = (*I)->getParent(); + defsites[*I].push_back((*I)->getParent()); + } +} + +/// Clean all used resources in this creation of SSI +/// +void SSI::clean() { + phis.clear(); + sigmas.clear(); + phisToFix.clear(); + + defsites.clear(); + value_stack.clear(); + value_original.clear(); +} + +/// createSSIPass - The public interface to this file... +/// +FunctionPass *llvm::createSSIPass() { return new SSI(); } + +char SSI::ID = 0; +static RegisterPass<SSI> X("ssi", "Static Single Information Construction"); + +/// SSIEverything - A pass that runs createSSI on every non-void variable, +/// intended for debugging. +namespace { + struct SSIEverything : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + SSIEverything() : FunctionPass(&ID) {} + + bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<SSI>(); + } + }; +} + +bool SSIEverything::runOnFunction(Function &F) { + SmallVector<Instruction *, 16> Insts; + SSI &ssi = getAnalysis<SSI>(); + + if (F.isDeclaration() || F.isIntrinsic()) return false; + + for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) + for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) + if (!I->getType()->isVoidTy()) + Insts.push_back(I); + + ssi.createSSI(Insts); + return true; +} + +/// createSSIEverythingPass - The public interface to this file... +/// +FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); } + +char SSIEverything::ID = 0; +static RegisterPass<SSIEverything> +Y("ssi-everything", "Static Single Information Construction"); |