diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SSI.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SSI.cpp | 432 |
1 files changed, 0 insertions, 432 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SSI.cpp b/contrib/llvm/lib/Transforms/Utils/SSI.cpp deleted file mode 100644 index 4e813dd..0000000 --- a/contrib/llvm/lib/Transforms/Utils/SSI.cpp +++ /dev/null @@ -1,432 +0,0 @@ -//===------------------- SSI.cpp - Creates SSI Representation -------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This pass converts a list of variables to the Static Single Information -// form. This is a program representation described by Scott Ananian in his -// Master Thesis: "The Static Single Information Form (1999)". -// We are building an on-demand representation, that is, we do not convert -// every single variable in the target function to SSI form. Rather, we receive -// a list of target variables that must be converted. We also do not -// completely convert a target variable to the SSI format. Instead, we only -// change the variable in the points where new information can be attached -// to its live range, that is, at branch points. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "ssi" - -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/SSI.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/Dominators.h" - -using namespace llvm; - -static const std::string SSI_PHI = "SSI_phi"; -static const std::string SSI_SIG = "SSI_sigma"; - -STATISTIC(NumSigmaInserted, "Number of sigma functions inserted"); -STATISTIC(NumPhiInserted, "Number of phi functions inserted"); - -void SSI::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequiredTransitive<DominanceFrontier>(); - AU.addRequiredTransitive<DominatorTree>(); - AU.setPreservesAll(); -} - -bool SSI::runOnFunction(Function &F) { - DT_ = &getAnalysis<DominatorTree>(); - return false; -} - -/// This methods creates the SSI representation for the list of values -/// received. It will only create SSI representation if a value is used -/// to decide a branch. Repeated values are created only once. -/// -void SSI::createSSI(SmallVectorImpl<Instruction *> &value) { - init(value); - - SmallPtrSet<Instruction*, 4> needConstruction; - for (SmallVectorImpl<Instruction*>::iterator I = value.begin(), - E = value.end(); I != E; ++I) - if (created.insert(*I)) - needConstruction.insert(*I); - - insertSigmaFunctions(needConstruction); - - // Test if there is a need to transform to SSI - if (!needConstruction.empty()) { - insertPhiFunctions(needConstruction); - renameInit(needConstruction); - rename(DT_->getRoot()); - fixPhis(); - } - - clean(); -} - -/// Insert sigma functions (a sigma function is a phi function with one -/// operator) -/// -void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) { - for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), - E = value.end(); I != E; ++I) { - for (Value::use_iterator begin = (*I)->use_begin(), - end = (*I)->use_end(); begin != end; ++begin) { - // Test if the Use of the Value is in a comparator - if (CmpInst *CI = dyn_cast<CmpInst>(begin)) { - // Iterates through all uses of CmpInst - for (Value::use_iterator begin_ci = CI->use_begin(), - end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) { - // Test if any use of CmpInst is in a Terminator - if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) { - insertSigma(TI, *I); - } - } - } - } - } -} - -/// Inserts Sigma Functions in every BasicBlock successor to Terminator -/// Instruction TI. All inserted Sigma Function are related to Instruction I. -/// -void SSI::insertSigma(TerminatorInst *TI, Instruction *I) { - // Basic Block of the Terminator Instruction - BasicBlock *BB = TI->getParent(); - for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { - // Next Basic Block - BasicBlock *BB_next = TI->getSuccessor(i); - if (BB_next != BB && - BB_next->getSinglePredecessor() != NULL && - dominateAny(BB_next, I)) { - PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin()); - PN->addIncoming(I, BB); - sigmas[PN] = I; - created.insert(PN); - defsites[I].push_back(BB_next); - ++NumSigmaInserted; - } - } -} - -/// Insert phi functions when necessary -/// -void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) { - DominanceFrontier *DF = &getAnalysis<DominanceFrontier>(); - for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), - E = value.end(); I != E; ++I) { - // Test if there were any sigmas for this variable - SmallPtrSet<BasicBlock *, 16> BB_visited; - - // Insert phi functions if there is any sigma function - while (!defsites[*I].empty()) { - - BasicBlock *BB = defsites[*I].back(); - - defsites[*I].pop_back(); - DominanceFrontier::iterator DF_BB = DF->find(BB); - - // The BB is unreachable. Skip it. - if (DF_BB == DF->end()) - continue; - - // Iterates through all the dominance frontier of BB - for (std::set<BasicBlock *>::iterator DF_BB_begin = - DF_BB->second.begin(), DF_BB_end = DF_BB->second.end(); - DF_BB_begin != DF_BB_end; ++DF_BB_begin) { - BasicBlock *BB_dominated = *DF_BB_begin; - - // Test if has not yet visited this node and if the - // original definition dominates this node - if (BB_visited.insert(BB_dominated) && - DT_->properlyDominates(value_original[*I], BB_dominated) && - dominateAny(BB_dominated, *I)) { - PHINode *PN = PHINode::Create( - (*I)->getType(), SSI_PHI, BB_dominated->begin()); - phis.insert(std::make_pair(PN, *I)); - created.insert(PN); - - defsites[*I].push_back(BB_dominated); - ++NumPhiInserted; - } - } - } - BB_visited.clear(); - } -} - -/// Some initialization for the rename part -/// -void SSI::renameInit(SmallPtrSet<Instruction*, 4> &value) { - for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(), - E = value.end(); I != E; ++I) - value_stack[*I].push_back(*I); -} - -/// Renames all variables in the specified BasicBlock. -/// Only variables that need to be rename will be. -/// -void SSI::rename(BasicBlock *BB) { - SmallPtrSet<Instruction*, 8> defined; - - // Iterate through instructions and make appropriate renaming. - // For SSI_PHI (b = PHI()), store b at value_stack as a new - // definition of the variable it represents. - // For SSI_SIG (b = PHI(a)), substitute a with the current - // value of a, present in the value_stack. - // Then store bin the value_stack as the new definition of a. - // For all other instructions (b = OP(a, c, d, ...)), we need to substitute - // all operands with its current value, present in value_stack. - for (BasicBlock::iterator begin = BB->begin(), end = BB->end(); - begin != end; ++begin) { - Instruction *I = begin; - if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions - Instruction* position; - - // Treat SSI_PHI - if ((position = getPositionPhi(PN))) { - value_stack[position].push_back(PN); - defined.insert(position); - // Treat SSI_SIG - } else if ((position = getPositionSigma(PN))) { - substituteUse(I); - value_stack[position].push_back(PN); - defined.insert(position); - } - - // Treat all other PHI functions - else { - substituteUse(I); - } - } - - // Treat all other functions - else { - substituteUse(I); - } - } - - // This loop iterates in all BasicBlocks that are successors of the current - // BasicBlock. For each SSI_PHI instruction found, insert an operand. - // This operand is the current operand in value_stack for the variable - // in "position". And the BasicBlock this operand represents is the current - // BasicBlock. - for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { - BasicBlock *BB_succ = *SI; - - for (BasicBlock::iterator begin = BB_succ->begin(), - notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) { - Instruction *I = begin; - PHINode *PN = dyn_cast<PHINode>(I); - Instruction* position; - if (PN && ((position = getPositionPhi(PN)))) { - PN->addIncoming(value_stack[position].back(), BB); - } - } - } - - // This loop calls rename on all children from this block. This time children - // refers to a successor block in the dominance tree. - DomTreeNode *DTN = DT_->getNode(BB); - for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end(); - begin != end; ++begin) { - DomTreeNodeBase<BasicBlock> *DTN_children = *begin; - BasicBlock *BB_children = DTN_children->getBlock(); - rename(BB_children); - } - - // Now we remove all inserted definitions of a variable from the top of - // the stack leaving the previous one as the top. - for (SmallPtrSet<Instruction*, 8>::iterator DI = defined.begin(), - DE = defined.end(); DI != DE; ++DI) - value_stack[*DI].pop_back(); -} - -/// Substitute any use in this instruction for the last definition of -/// the variable -/// -void SSI::substituteUse(Instruction *I) { - for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { - Value *operand = I->getOperand(i); - for (DenseMap<Instruction*, SmallVector<Instruction*, 1> >::iterator - VI = value_stack.begin(), VE = value_stack.end(); VI != VE; ++VI) { - if (operand == VI->second.front() && - I != VI->second.back()) { - PHINode *PN_I = dyn_cast<PHINode>(I); - PHINode *PN_vs = dyn_cast<PHINode>(VI->second.back()); - - // If a phi created in a BasicBlock is used as an operand of another - // created in the same BasicBlock, this step marks this second phi, - // to fix this issue later. It cannot be fixed now, because the - // operands of the first phi are not final yet. - if (PN_I && PN_vs && - VI->second.back()->getParent() == I->getParent()) { - - phisToFix.insert(PN_I); - } - - I->setOperand(i, VI->second.back()); - break; - } - } - } -} - -/// Test if the BasicBlock BB dominates any use or definition of value. -/// If it dominates a phi instruction that is on the same BasicBlock, -/// that does not count. -/// -bool SSI::dominateAny(BasicBlock *BB, Instruction *value) { - for (Value::use_iterator begin = value->use_begin(), - end = value->use_end(); begin != end; ++begin) { - Instruction *I = cast<Instruction>(*begin); - BasicBlock *BB_father = I->getParent(); - if (BB == BB_father && isa<PHINode>(I)) - continue; - if (DT_->dominates(BB, BB_father)) { - return true; - } - } - return false; -} - -/// When there is a phi node that is created in a BasicBlock and it is used -/// as an operand of another phi function used in the same BasicBlock, -/// LLVM looks this as an error. So on the second phi, the first phi is called -/// P and the BasicBlock it incomes is B. This P will be replaced by the value -/// it has for BasicBlock B. It also includes undef values for predecessors -/// that were not included in the phi. -/// -void SSI::fixPhis() { - for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(), - end = phisToFix.end(); begin != end; ++begin) { - PHINode *PN = *begin; - for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { - PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i)); - if (PN_father && PN->getParent() == PN_father->getParent() && - !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) { - BasicBlock *BB = PN->getIncomingBlock(i); - int pos = PN_father->getBasicBlockIndex(BB); - PN->setIncomingValue(i, PN_father->getIncomingValue(pos)); - } - } - } - - for (DenseMapIterator<PHINode *, Instruction*> begin = phis.begin(), - end = phis.end(); begin != end; ++begin) { - PHINode *PN = begin->first; - BasicBlock *BB = PN->getParent(); - pred_iterator PI = pred_begin(BB), PE = pred_end(BB); - SmallVector<BasicBlock*, 8> Preds(PI, PE); - for (unsigned size = Preds.size(); - PI != PE && PN->getNumIncomingValues() != size; ++PI) { - bool found = false; - for (unsigned i = 0, pn_end = PN->getNumIncomingValues(); - i < pn_end; ++i) { - if (PN->getIncomingBlock(i) == *PI) { - found = true; - break; - } - } - if (!found) { - PN->addIncoming(UndefValue::get(PN->getType()), *PI); - } - } - } -} - -/// Return which variable (position on the vector of variables) this phi -/// represents on the phis list. -/// -Instruction* SSI::getPositionPhi(PHINode *PN) { - DenseMap<PHINode *, Instruction*>::iterator val = phis.find(PN); - if (val == phis.end()) - return 0; - else - return val->second; -} - -/// Return which variable (position on the vector of variables) this phi -/// represents on the sigmas list. -/// -Instruction* SSI::getPositionSigma(PHINode *PN) { - DenseMap<PHINode *, Instruction*>::iterator val = sigmas.find(PN); - if (val == sigmas.end()) - return 0; - else - return val->second; -} - -/// Initializes -/// -void SSI::init(SmallVectorImpl<Instruction *> &value) { - for (SmallVectorImpl<Instruction *>::iterator I = value.begin(), - E = value.end(); I != E; ++I) { - value_original[*I] = (*I)->getParent(); - defsites[*I].push_back((*I)->getParent()); - } -} - -/// Clean all used resources in this creation of SSI -/// -void SSI::clean() { - phis.clear(); - sigmas.clear(); - phisToFix.clear(); - - defsites.clear(); - value_stack.clear(); - value_original.clear(); -} - -/// createSSIPass - The public interface to this file... -/// -FunctionPass *llvm::createSSIPass() { return new SSI(); } - -char SSI::ID = 0; -static RegisterPass<SSI> X("ssi", "Static Single Information Construction"); - -/// SSIEverything - A pass that runs createSSI on every non-void variable, -/// intended for debugging. -namespace { - struct SSIEverything : public FunctionPass { - static char ID; // Pass identification, replacement for typeid - SSIEverything() : FunctionPass(&ID) {} - - bool runOnFunction(Function &F); - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<SSI>(); - } - }; -} - -bool SSIEverything::runOnFunction(Function &F) { - SmallVector<Instruction *, 16> Insts; - SSI &ssi = getAnalysis<SSI>(); - - if (F.isDeclaration() || F.isIntrinsic()) return false; - - for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) - for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) - if (!I->getType()->isVoidTy()) - Insts.push_back(I); - - ssi.createSSI(Insts); - return true; -} - -/// createSSIEverythingPass - The public interface to this file... -/// -FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); } - -char SSIEverything::ID = 0; -static RegisterPass<SSIEverything> -Y("ssi-everything", "Static Single Information Construction"); |