summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SSI.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SSI.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SSI.cpp432
1 files changed, 0 insertions, 432 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SSI.cpp b/contrib/llvm/lib/Transforms/Utils/SSI.cpp
deleted file mode 100644
index 4e813dd..0000000
--- a/contrib/llvm/lib/Transforms/Utils/SSI.cpp
+++ /dev/null
@@ -1,432 +0,0 @@
-//===------------------- SSI.cpp - Creates SSI Representation -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass converts a list of variables to the Static Single Information
-// form. This is a program representation described by Scott Ananian in his
-// Master Thesis: "The Static Single Information Form (1999)".
-// We are building an on-demand representation, that is, we do not convert
-// every single variable in the target function to SSI form. Rather, we receive
-// a list of target variables that must be converted. We also do not
-// completely convert a target variable to the SSI format. Instead, we only
-// change the variable in the points where new information can be attached
-// to its live range, that is, at branch points.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "ssi"
-
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/SSI.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/Dominators.h"
-
-using namespace llvm;
-
-static const std::string SSI_PHI = "SSI_phi";
-static const std::string SSI_SIG = "SSI_sigma";
-
-STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
-STATISTIC(NumPhiInserted, "Number of phi functions inserted");
-
-void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequiredTransitive<DominanceFrontier>();
- AU.addRequiredTransitive<DominatorTree>();
- AU.setPreservesAll();
-}
-
-bool SSI::runOnFunction(Function &F) {
- DT_ = &getAnalysis<DominatorTree>();
- return false;
-}
-
-/// This methods creates the SSI representation for the list of values
-/// received. It will only create SSI representation if a value is used
-/// to decide a branch. Repeated values are created only once.
-///
-void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
- init(value);
-
- SmallPtrSet<Instruction*, 4> needConstruction;
- for (SmallVectorImpl<Instruction*>::iterator I = value.begin(),
- E = value.end(); I != E; ++I)
- if (created.insert(*I))
- needConstruction.insert(*I);
-
- insertSigmaFunctions(needConstruction);
-
- // Test if there is a need to transform to SSI
- if (!needConstruction.empty()) {
- insertPhiFunctions(needConstruction);
- renameInit(needConstruction);
- rename(DT_->getRoot());
- fixPhis();
- }
-
- clean();
-}
-
-/// Insert sigma functions (a sigma function is a phi function with one
-/// operator)
-///
-void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) {
- for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
- E = value.end(); I != E; ++I) {
- for (Value::use_iterator begin = (*I)->use_begin(),
- end = (*I)->use_end(); begin != end; ++begin) {
- // Test if the Use of the Value is in a comparator
- if (CmpInst *CI = dyn_cast<CmpInst>(begin)) {
- // Iterates through all uses of CmpInst
- for (Value::use_iterator begin_ci = CI->use_begin(),
- end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) {
- // Test if any use of CmpInst is in a Terminator
- if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) {
- insertSigma(TI, *I);
- }
- }
- }
- }
- }
-}
-
-/// Inserts Sigma Functions in every BasicBlock successor to Terminator
-/// Instruction TI. All inserted Sigma Function are related to Instruction I.
-///
-void SSI::insertSigma(TerminatorInst *TI, Instruction *I) {
- // Basic Block of the Terminator Instruction
- BasicBlock *BB = TI->getParent();
- for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
- // Next Basic Block
- BasicBlock *BB_next = TI->getSuccessor(i);
- if (BB_next != BB &&
- BB_next->getSinglePredecessor() != NULL &&
- dominateAny(BB_next, I)) {
- PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin());
- PN->addIncoming(I, BB);
- sigmas[PN] = I;
- created.insert(PN);
- defsites[I].push_back(BB_next);
- ++NumSigmaInserted;
- }
- }
-}
-
-/// Insert phi functions when necessary
-///
-void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) {
- DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
- for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
- E = value.end(); I != E; ++I) {
- // Test if there were any sigmas for this variable
- SmallPtrSet<BasicBlock *, 16> BB_visited;
-
- // Insert phi functions if there is any sigma function
- while (!defsites[*I].empty()) {
-
- BasicBlock *BB = defsites[*I].back();
-
- defsites[*I].pop_back();
- DominanceFrontier::iterator DF_BB = DF->find(BB);
-
- // The BB is unreachable. Skip it.
- if (DF_BB == DF->end())
- continue;
-
- // Iterates through all the dominance frontier of BB
- for (std::set<BasicBlock *>::iterator DF_BB_begin =
- DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
- DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
- BasicBlock *BB_dominated = *DF_BB_begin;
-
- // Test if has not yet visited this node and if the
- // original definition dominates this node
- if (BB_visited.insert(BB_dominated) &&
- DT_->properlyDominates(value_original[*I], BB_dominated) &&
- dominateAny(BB_dominated, *I)) {
- PHINode *PN = PHINode::Create(
- (*I)->getType(), SSI_PHI, BB_dominated->begin());
- phis.insert(std::make_pair(PN, *I));
- created.insert(PN);
-
- defsites[*I].push_back(BB_dominated);
- ++NumPhiInserted;
- }
- }
- }
- BB_visited.clear();
- }
-}
-
-/// Some initialization for the rename part
-///
-void SSI::renameInit(SmallPtrSet<Instruction*, 4> &value) {
- for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
- E = value.end(); I != E; ++I)
- value_stack[*I].push_back(*I);
-}
-
-/// Renames all variables in the specified BasicBlock.
-/// Only variables that need to be rename will be.
-///
-void SSI::rename(BasicBlock *BB) {
- SmallPtrSet<Instruction*, 8> defined;
-
- // Iterate through instructions and make appropriate renaming.
- // For SSI_PHI (b = PHI()), store b at value_stack as a new
- // definition of the variable it represents.
- // For SSI_SIG (b = PHI(a)), substitute a with the current
- // value of a, present in the value_stack.
- // Then store bin the value_stack as the new definition of a.
- // For all other instructions (b = OP(a, c, d, ...)), we need to substitute
- // all operands with its current value, present in value_stack.
- for (BasicBlock::iterator begin = BB->begin(), end = BB->end();
- begin != end; ++begin) {
- Instruction *I = begin;
- if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
- Instruction* position;
-
- // Treat SSI_PHI
- if ((position = getPositionPhi(PN))) {
- value_stack[position].push_back(PN);
- defined.insert(position);
- // Treat SSI_SIG
- } else if ((position = getPositionSigma(PN))) {
- substituteUse(I);
- value_stack[position].push_back(PN);
- defined.insert(position);
- }
-
- // Treat all other PHI functions
- else {
- substituteUse(I);
- }
- }
-
- // Treat all other functions
- else {
- substituteUse(I);
- }
- }
-
- // This loop iterates in all BasicBlocks that are successors of the current
- // BasicBlock. For each SSI_PHI instruction found, insert an operand.
- // This operand is the current operand in value_stack for the variable
- // in "position". And the BasicBlock this operand represents is the current
- // BasicBlock.
- for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
- BasicBlock *BB_succ = *SI;
-
- for (BasicBlock::iterator begin = BB_succ->begin(),
- notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
- Instruction *I = begin;
- PHINode *PN = dyn_cast<PHINode>(I);
- Instruction* position;
- if (PN && ((position = getPositionPhi(PN)))) {
- PN->addIncoming(value_stack[position].back(), BB);
- }
- }
- }
-
- // This loop calls rename on all children from this block. This time children
- // refers to a successor block in the dominance tree.
- DomTreeNode *DTN = DT_->getNode(BB);
- for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end();
- begin != end; ++begin) {
- DomTreeNodeBase<BasicBlock> *DTN_children = *begin;
- BasicBlock *BB_children = DTN_children->getBlock();
- rename(BB_children);
- }
-
- // Now we remove all inserted definitions of a variable from the top of
- // the stack leaving the previous one as the top.
- for (SmallPtrSet<Instruction*, 8>::iterator DI = defined.begin(),
- DE = defined.end(); DI != DE; ++DI)
- value_stack[*DI].pop_back();
-}
-
-/// Substitute any use in this instruction for the last definition of
-/// the variable
-///
-void SSI::substituteUse(Instruction *I) {
- for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
- Value *operand = I->getOperand(i);
- for (DenseMap<Instruction*, SmallVector<Instruction*, 1> >::iterator
- VI = value_stack.begin(), VE = value_stack.end(); VI != VE; ++VI) {
- if (operand == VI->second.front() &&
- I != VI->second.back()) {
- PHINode *PN_I = dyn_cast<PHINode>(I);
- PHINode *PN_vs = dyn_cast<PHINode>(VI->second.back());
-
- // If a phi created in a BasicBlock is used as an operand of another
- // created in the same BasicBlock, this step marks this second phi,
- // to fix this issue later. It cannot be fixed now, because the
- // operands of the first phi are not final yet.
- if (PN_I && PN_vs &&
- VI->second.back()->getParent() == I->getParent()) {
-
- phisToFix.insert(PN_I);
- }
-
- I->setOperand(i, VI->second.back());
- break;
- }
- }
- }
-}
-
-/// Test if the BasicBlock BB dominates any use or definition of value.
-/// If it dominates a phi instruction that is on the same BasicBlock,
-/// that does not count.
-///
-bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
- for (Value::use_iterator begin = value->use_begin(),
- end = value->use_end(); begin != end; ++begin) {
- Instruction *I = cast<Instruction>(*begin);
- BasicBlock *BB_father = I->getParent();
- if (BB == BB_father && isa<PHINode>(I))
- continue;
- if (DT_->dominates(BB, BB_father)) {
- return true;
- }
- }
- return false;
-}
-
-/// When there is a phi node that is created in a BasicBlock and it is used
-/// as an operand of another phi function used in the same BasicBlock,
-/// LLVM looks this as an error. So on the second phi, the first phi is called
-/// P and the BasicBlock it incomes is B. This P will be replaced by the value
-/// it has for BasicBlock B. It also includes undef values for predecessors
-/// that were not included in the phi.
-///
-void SSI::fixPhis() {
- for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
- end = phisToFix.end(); begin != end; ++begin) {
- PHINode *PN = *begin;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
- PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i));
- if (PN_father && PN->getParent() == PN_father->getParent() &&
- !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- int pos = PN_father->getBasicBlockIndex(BB);
- PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
- }
- }
- }
-
- for (DenseMapIterator<PHINode *, Instruction*> begin = phis.begin(),
- end = phis.end(); begin != end; ++begin) {
- PHINode *PN = begin->first;
- BasicBlock *BB = PN->getParent();
- pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
- SmallVector<BasicBlock*, 8> Preds(PI, PE);
- for (unsigned size = Preds.size();
- PI != PE && PN->getNumIncomingValues() != size; ++PI) {
- bool found = false;
- for (unsigned i = 0, pn_end = PN->getNumIncomingValues();
- i < pn_end; ++i) {
- if (PN->getIncomingBlock(i) == *PI) {
- found = true;
- break;
- }
- }
- if (!found) {
- PN->addIncoming(UndefValue::get(PN->getType()), *PI);
- }
- }
- }
-}
-
-/// Return which variable (position on the vector of variables) this phi
-/// represents on the phis list.
-///
-Instruction* SSI::getPositionPhi(PHINode *PN) {
- DenseMap<PHINode *, Instruction*>::iterator val = phis.find(PN);
- if (val == phis.end())
- return 0;
- else
- return val->second;
-}
-
-/// Return which variable (position on the vector of variables) this phi
-/// represents on the sigmas list.
-///
-Instruction* SSI::getPositionSigma(PHINode *PN) {
- DenseMap<PHINode *, Instruction*>::iterator val = sigmas.find(PN);
- if (val == sigmas.end())
- return 0;
- else
- return val->second;
-}
-
-/// Initializes
-///
-void SSI::init(SmallVectorImpl<Instruction *> &value) {
- for (SmallVectorImpl<Instruction *>::iterator I = value.begin(),
- E = value.end(); I != E; ++I) {
- value_original[*I] = (*I)->getParent();
- defsites[*I].push_back((*I)->getParent());
- }
-}
-
-/// Clean all used resources in this creation of SSI
-///
-void SSI::clean() {
- phis.clear();
- sigmas.clear();
- phisToFix.clear();
-
- defsites.clear();
- value_stack.clear();
- value_original.clear();
-}
-
-/// createSSIPass - The public interface to this file...
-///
-FunctionPass *llvm::createSSIPass() { return new SSI(); }
-
-char SSI::ID = 0;
-static RegisterPass<SSI> X("ssi", "Static Single Information Construction");
-
-/// SSIEverything - A pass that runs createSSI on every non-void variable,
-/// intended for debugging.
-namespace {
- struct SSIEverything : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- SSIEverything() : FunctionPass(&ID) {}
-
- bool runOnFunction(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<SSI>();
- }
- };
-}
-
-bool SSIEverything::runOnFunction(Function &F) {
- SmallVector<Instruction *, 16> Insts;
- SSI &ssi = getAnalysis<SSI>();
-
- if (F.isDeclaration() || F.isIntrinsic()) return false;
-
- for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
- for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
- if (!I->getType()->isVoidTy())
- Insts.push_back(I);
-
- ssi.createSSI(Insts);
- return true;
-}
-
-/// createSSIEverythingPass - The public interface to this file...
-///
-FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
-
-char SSIEverything::ID = 0;
-static RegisterPass<SSIEverything>
-Y("ssi-everything", "Static Single Information Construction");
OpenPOWER on IntegriCloud