summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp486
1 files changed, 486 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
new file mode 100644
index 0000000..88b39dd
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp
@@ -0,0 +1,486 @@
+//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SSAUpdater class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ssaupdater"
+
+typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
+static AvailableValsTy &getAvailableVals(void *AV) {
+ return *static_cast<AvailableValsTy*>(AV);
+}
+
+SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
+ : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
+
+SSAUpdater::~SSAUpdater() {
+ delete static_cast<AvailableValsTy*>(AV);
+}
+
+void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
+ if (!AV)
+ AV = new AvailableValsTy();
+ else
+ getAvailableVals(AV).clear();
+ ProtoType = Ty;
+ ProtoName = Name;
+}
+
+bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
+ return getAvailableVals(AV).count(BB);
+}
+
+void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
+ assert(ProtoType && "Need to initialize SSAUpdater");
+ assert(ProtoType == V->getType() &&
+ "All rewritten values must have the same type");
+ getAvailableVals(AV)[BB] = V;
+}
+
+static bool IsEquivalentPHI(PHINode *PHI,
+ SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
+ unsigned PHINumValues = PHI->getNumIncomingValues();
+ if (PHINumValues != ValueMapping.size())
+ return false;
+
+ // Scan the phi to see if it matches.
+ for (unsigned i = 0, e = PHINumValues; i != e; ++i)
+ if (ValueMapping[PHI->getIncomingBlock(i)] !=
+ PHI->getIncomingValue(i)) {
+ return false;
+ }
+
+ return true;
+}
+
+Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
+ Value *Res = GetValueAtEndOfBlockInternal(BB);
+ return Res;
+}
+
+Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
+ // If there is no definition of the renamed variable in this block, just use
+ // GetValueAtEndOfBlock to do our work.
+ if (!HasValueForBlock(BB))
+ return GetValueAtEndOfBlock(BB);
+
+ // Otherwise, we have the hard case. Get the live-in values for each
+ // predecessor.
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
+ Value *SingularValue = nullptr;
+
+ // We can get our predecessor info by walking the pred_iterator list, but it
+ // is relatively slow. If we already have PHI nodes in this block, walk one
+ // of them to get the predecessor list instead.
+ if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
+ for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
+ Value *PredVal = GetValueAtEndOfBlock(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (i == 0)
+ SingularValue = PredVal;
+ else if (PredVal != SingularValue)
+ SingularValue = nullptr;
+ }
+ } else {
+ bool isFirstPred = true;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBB = *PI;
+ Value *PredVal = GetValueAtEndOfBlock(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (isFirstPred) {
+ SingularValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != SingularValue)
+ SingularValue = nullptr;
+ }
+ }
+
+ // If there are no predecessors, just return undef.
+ if (PredValues.empty())
+ return UndefValue::get(ProtoType);
+
+ // Otherwise, if all the merged values are the same, just use it.
+ if (SingularValue)
+ return SingularValue;
+
+ // Otherwise, we do need a PHI: check to see if we already have one available
+ // in this block that produces the right value.
+ if (isa<PHINode>(BB->begin())) {
+ SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
+ PredValues.end());
+ PHINode *SomePHI;
+ for (BasicBlock::iterator It = BB->begin();
+ (SomePHI = dyn_cast<PHINode>(It)); ++It) {
+ if (IsEquivalentPHI(SomePHI, ValueMapping))
+ return SomePHI;
+ }
+ }
+
+ // Ok, we have no way out, insert a new one now.
+ PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
+ ProtoName, &BB->front());
+
+ // Fill in all the predecessors of the PHI.
+ for (const auto &PredValue : PredValues)
+ InsertedPHI->addIncoming(PredValue.second, PredValue.first);
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (Value *V =
+ SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
+ InsertedPHI->eraseFromParent();
+ return V;
+ }
+
+ // Set the DebugLoc of the inserted PHI, if available.
+ DebugLoc DL;
+ if (const Instruction *I = BB->getFirstNonPHI())
+ DL = I->getDebugLoc();
+ InsertedPHI->setDebugLoc(DL);
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ return InsertedPHI;
+}
+
+void SSAUpdater::RewriteUse(Use &U) {
+ Instruction *User = cast<Instruction>(U.getUser());
+
+ Value *V;
+ if (PHINode *UserPN = dyn_cast<PHINode>(User))
+ V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
+ else
+ V = GetValueInMiddleOfBlock(User->getParent());
+
+ // Notify that users of the existing value that it is being replaced.
+ Value *OldVal = U.get();
+ if (OldVal != V && OldVal->hasValueHandle())
+ ValueHandleBase::ValueIsRAUWd(OldVal, V);
+
+ U.set(V);
+}
+
+void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
+ Instruction *User = cast<Instruction>(U.getUser());
+
+ Value *V;
+ if (PHINode *UserPN = dyn_cast<PHINode>(User))
+ V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
+ else
+ V = GetValueAtEndOfBlock(User->getParent());
+
+ U.set(V);
+}
+
+namespace llvm {
+template<>
+class SSAUpdaterTraits<SSAUpdater> {
+public:
+ typedef BasicBlock BlkT;
+ typedef Value *ValT;
+ typedef PHINode PhiT;
+
+ typedef succ_iterator BlkSucc_iterator;
+ static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
+ static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
+
+ class PHI_iterator {
+ private:
+ PHINode *PHI;
+ unsigned idx;
+
+ public:
+ explicit PHI_iterator(PHINode *P) // begin iterator
+ : PHI(P), idx(0) {}
+ PHI_iterator(PHINode *P, bool) // end iterator
+ : PHI(P), idx(PHI->getNumIncomingValues()) {}
+
+ PHI_iterator &operator++() { ++idx; return *this; }
+ bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
+ bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
+ Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
+ BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
+ };
+
+ static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
+ static PHI_iterator PHI_end(PhiT *PHI) {
+ return PHI_iterator(PHI, true);
+ }
+
+ /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
+ /// vector, set Info->NumPreds, and allocate space in Info->Preds.
+ static void FindPredecessorBlocks(BasicBlock *BB,
+ SmallVectorImpl<BasicBlock*> *Preds) {
+ // We can get our predecessor info by walking the pred_iterator list,
+ // but it is relatively slow. If we already have PHI nodes in this
+ // block, walk one of them to get the predecessor list instead.
+ if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
+ Preds->append(SomePhi->block_begin(), SomePhi->block_end());
+ } else {
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ Preds->push_back(*PI);
+ }
+ }
+
+ /// GetUndefVal - Get an undefined value of the same type as the value
+ /// being handled.
+ static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
+ return UndefValue::get(Updater->ProtoType);
+ }
+
+ /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
+ /// Reserve space for the operands but do not fill them in yet.
+ static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
+ SSAUpdater *Updater) {
+ PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
+ Updater->ProtoName, &BB->front());
+ return PHI;
+ }
+
+ /// AddPHIOperand - Add the specified value as an operand of the PHI for
+ /// the specified predecessor block.
+ static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
+ PHI->addIncoming(Val, Pred);
+ }
+
+ /// InstrIsPHI - Check if an instruction is a PHI.
+ ///
+ static PHINode *InstrIsPHI(Instruction *I) {
+ return dyn_cast<PHINode>(I);
+ }
+
+ /// ValueIsPHI - Check if a value is a PHI.
+ ///
+ static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
+ return dyn_cast<PHINode>(Val);
+ }
+
+ /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
+ /// operands, i.e., it was just added.
+ static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
+ PHINode *PHI = ValueIsPHI(Val, Updater);
+ if (PHI && PHI->getNumIncomingValues() == 0)
+ return PHI;
+ return nullptr;
+ }
+
+ /// GetPHIValue - For the specified PHI instruction, return the value
+ /// that it defines.
+ static Value *GetPHIValue(PHINode *PHI) {
+ return PHI;
+ }
+};
+
+} // End llvm namespace
+
+/// Check to see if AvailableVals has an entry for the specified BB and if so,
+/// return it. If not, construct SSA form by first calculating the required
+/// placement of PHIs and then inserting new PHIs where needed.
+Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
+ AvailableValsTy &AvailableVals = getAvailableVals(AV);
+ if (Value *V = AvailableVals[BB])
+ return V;
+
+ SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
+ return Impl.GetValue(BB);
+}
+
+//===----------------------------------------------------------------------===//
+// LoadAndStorePromoter Implementation
+//===----------------------------------------------------------------------===//
+
+LoadAndStorePromoter::
+LoadAndStorePromoter(ArrayRef<const Instruction*> Insts,
+ SSAUpdater &S, StringRef BaseName) : SSA(S) {
+ if (Insts.empty()) return;
+
+ const Value *SomeVal;
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
+ SomeVal = LI;
+ else
+ SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
+
+ if (BaseName.empty())
+ BaseName = SomeVal->getName();
+ SSA.Initialize(SomeVal->getType(), BaseName);
+}
+
+
+void LoadAndStorePromoter::
+run(const SmallVectorImpl<Instruction*> &Insts) const {
+
+ // First step: bucket up uses of the alloca by the block they occur in.
+ // This is important because we have to handle multiple defs/uses in a block
+ // ourselves: SSAUpdater is purely for cross-block references.
+ DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
+
+ for (Instruction *User : Insts)
+ UsesByBlock[User->getParent()].push_back(User);
+
+ // Okay, now we can iterate over all the blocks in the function with uses,
+ // processing them. Keep track of which loads are loading a live-in value.
+ // Walk the uses in the use-list order to be determinstic.
+ SmallVector<LoadInst*, 32> LiveInLoads;
+ DenseMap<Value*, Value*> ReplacedLoads;
+
+ for (Instruction *User : Insts) {
+ BasicBlock *BB = User->getParent();
+ TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
+
+ // If this block has already been processed, ignore this repeat use.
+ if (BlockUses.empty()) continue;
+
+ // Okay, this is the first use in the block. If this block just has a
+ // single user in it, we can rewrite it trivially.
+ if (BlockUses.size() == 1) {
+ // If it is a store, it is a trivial def of the value in the block.
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ updateDebugInfo(SI);
+ SSA.AddAvailableValue(BB, SI->getOperand(0));
+ } else
+ // Otherwise it is a load, queue it to rewrite as a live-in load.
+ LiveInLoads.push_back(cast<LoadInst>(User));
+ BlockUses.clear();
+ continue;
+ }
+
+ // Otherwise, check to see if this block is all loads.
+ bool HasStore = false;
+ for (Instruction *I : BlockUses) {
+ if (isa<StoreInst>(I)) {
+ HasStore = true;
+ break;
+ }
+ }
+
+ // If so, we can queue them all as live in loads. We don't have an
+ // efficient way to tell which on is first in the block and don't want to
+ // scan large blocks, so just add all loads as live ins.
+ if (!HasStore) {
+ for (Instruction *I : BlockUses)
+ LiveInLoads.push_back(cast<LoadInst>(I));
+ BlockUses.clear();
+ continue;
+ }
+
+ // Otherwise, we have mixed loads and stores (or just a bunch of stores).
+ // Since SSAUpdater is purely for cross-block values, we need to determine
+ // the order of these instructions in the block. If the first use in the
+ // block is a load, then it uses the live in value. The last store defines
+ // the live out value. We handle this by doing a linear scan of the block.
+ Value *StoredValue = nullptr;
+ for (Instruction &I : *BB) {
+ if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
+ // If this is a load from an unrelated pointer, ignore it.
+ if (!isInstInList(L, Insts)) continue;
+
+ // If we haven't seen a store yet, this is a live in use, otherwise
+ // use the stored value.
+ if (StoredValue) {
+ replaceLoadWithValue(L, StoredValue);
+ L->replaceAllUsesWith(StoredValue);
+ ReplacedLoads[L] = StoredValue;
+ } else {
+ LiveInLoads.push_back(L);
+ }
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ // If this is a store to an unrelated pointer, ignore it.
+ if (!isInstInList(SI, Insts)) continue;
+ updateDebugInfo(SI);
+
+ // Remember that this is the active value in the block.
+ StoredValue = SI->getOperand(0);
+ }
+ }
+
+ // The last stored value that happened is the live-out for the block.
+ assert(StoredValue && "Already checked that there is a store in block");
+ SSA.AddAvailableValue(BB, StoredValue);
+ BlockUses.clear();
+ }
+
+ // Okay, now we rewrite all loads that use live-in values in the loop,
+ // inserting PHI nodes as necessary.
+ for (LoadInst *ALoad : LiveInLoads) {
+ Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
+ replaceLoadWithValue(ALoad, NewVal);
+
+ // Avoid assertions in unreachable code.
+ if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
+ ALoad->replaceAllUsesWith(NewVal);
+ ReplacedLoads[ALoad] = NewVal;
+ }
+
+ // Allow the client to do stuff before we start nuking things.
+ doExtraRewritesBeforeFinalDeletion();
+
+ // Now that everything is rewritten, delete the old instructions from the
+ // function. They should all be dead now.
+ for (Instruction *User : Insts) {
+ // If this is a load that still has uses, then the load must have been added
+ // as a live value in the SSAUpdate data structure for a block (e.g. because
+ // the loaded value was stored later). In this case, we need to recursively
+ // propagate the updates until we get to the real value.
+ if (!User->use_empty()) {
+ Value *NewVal = ReplacedLoads[User];
+ assert(NewVal && "not a replaced load?");
+
+ // Propagate down to the ultimate replacee. The intermediately loads
+ // could theoretically already have been deleted, so we don't want to
+ // dereference the Value*'s.
+ DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
+ while (RLI != ReplacedLoads.end()) {
+ NewVal = RLI->second;
+ RLI = ReplacedLoads.find(NewVal);
+ }
+
+ replaceLoadWithValue(cast<LoadInst>(User), NewVal);
+ User->replaceAllUsesWith(NewVal);
+ }
+
+ instructionDeleted(User);
+ User->eraseFromParent();
+ }
+}
+
+bool
+LoadAndStorePromoter::isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction*> &Insts)
+ const {
+ return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
+}
OpenPOWER on IntegriCloud