diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp | 527 |
1 files changed, 527 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp new file mode 100644 index 0000000..e60a41b --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/SSAUpdater.cpp @@ -0,0 +1,527 @@ +//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the SSAUpdater class. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "ssaupdater" +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/TinyPtrVector.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Transforms/Utils/SSAUpdaterImpl.h" + +using namespace llvm; + +typedef DenseMap<BasicBlock*, Value*> AvailableValsTy; +static AvailableValsTy &getAvailableVals(void *AV) { + return *static_cast<AvailableValsTy*>(AV); +} + +SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI) + : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {} + +SSAUpdater::~SSAUpdater() { + delete &getAvailableVals(AV); +} + +/// Initialize - Reset this object to get ready for a new set of SSA +/// updates with type 'Ty'. PHI nodes get a name based on 'Name'. +void SSAUpdater::Initialize(Type *Ty, StringRef Name) { + if (AV == 0) + AV = new AvailableValsTy(); + else + getAvailableVals(AV).clear(); + ProtoType = Ty; + ProtoName = Name; +} + +/// HasValueForBlock - Return true if the SSAUpdater already has a value for +/// the specified block. +bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { + return getAvailableVals(AV).count(BB); +} + +/// AddAvailableValue - Indicate that a rewritten value is available in the +/// specified block with the specified value. +void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { + assert(ProtoType != 0 && "Need to initialize SSAUpdater"); + assert(ProtoType == V->getType() && + "All rewritten values must have the same type"); + getAvailableVals(AV)[BB] = V; +} + +/// IsEquivalentPHI - Check if PHI has the same incoming value as specified +/// in ValueMapping for each predecessor block. +static bool IsEquivalentPHI(PHINode *PHI, + DenseMap<BasicBlock*, Value*> &ValueMapping) { + unsigned PHINumValues = PHI->getNumIncomingValues(); + if (PHINumValues != ValueMapping.size()) + return false; + + // Scan the phi to see if it matches. + for (unsigned i = 0, e = PHINumValues; i != e; ++i) + if (ValueMapping[PHI->getIncomingBlock(i)] != + PHI->getIncomingValue(i)) { + return false; + } + + return true; +} + +/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is +/// live at the end of the specified block. +Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { + Value *Res = GetValueAtEndOfBlockInternal(BB); + return Res; +} + +/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that +/// is live in the middle of the specified block. +/// +/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one +/// important case: if there is a definition of the rewritten value after the +/// 'use' in BB. Consider code like this: +/// +/// X1 = ... +/// SomeBB: +/// use(X) +/// X2 = ... +/// br Cond, SomeBB, OutBB +/// +/// In this case, there are two values (X1 and X2) added to the AvailableVals +/// set by the client of the rewriter, and those values are both live out of +/// their respective blocks. However, the use of X happens in the *middle* of +/// a block. Because of this, we need to insert a new PHI node in SomeBB to +/// merge the appropriate values, and this value isn't live out of the block. +/// +Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { + // If there is no definition of the renamed variable in this block, just use + // GetValueAtEndOfBlock to do our work. + if (!HasValueForBlock(BB)) + return GetValueAtEndOfBlock(BB); + + // Otherwise, we have the hard case. Get the live-in values for each + // predecessor. + SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues; + Value *SingularValue = 0; + + // We can get our predecessor info by walking the pred_iterator list, but it + // is relatively slow. If we already have PHI nodes in this block, walk one + // of them to get the predecessor list instead. + if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { + for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { + BasicBlock *PredBB = SomePhi->getIncomingBlock(i); + Value *PredVal = GetValueAtEndOfBlock(PredBB); + PredValues.push_back(std::make_pair(PredBB, PredVal)); + + // Compute SingularValue. + if (i == 0) + SingularValue = PredVal; + else if (PredVal != SingularValue) + SingularValue = 0; + } + } else { + bool isFirstPred = true; + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + BasicBlock *PredBB = *PI; + Value *PredVal = GetValueAtEndOfBlock(PredBB); + PredValues.push_back(std::make_pair(PredBB, PredVal)); + + // Compute SingularValue. + if (isFirstPred) { + SingularValue = PredVal; + isFirstPred = false; + } else if (PredVal != SingularValue) + SingularValue = 0; + } + } + + // If there are no predecessors, just return undef. + if (PredValues.empty()) + return UndefValue::get(ProtoType); + + // Otherwise, if all the merged values are the same, just use it. + if (SingularValue != 0) + return SingularValue; + + // Otherwise, we do need a PHI: check to see if we already have one available + // in this block that produces the right value. + if (isa<PHINode>(BB->begin())) { + DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(), + PredValues.end()); + PHINode *SomePHI; + for (BasicBlock::iterator It = BB->begin(); + (SomePHI = dyn_cast<PHINode>(It)); ++It) { + if (IsEquivalentPHI(SomePHI, ValueMapping)) + return SomePHI; + } + } + + // Ok, we have no way out, insert a new one now. + PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), + ProtoName, &BB->front()); + + // Fill in all the predecessors of the PHI. + for (unsigned i = 0, e = PredValues.size(); i != e; ++i) + InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); + + // See if the PHI node can be merged to a single value. This can happen in + // loop cases when we get a PHI of itself and one other value. + if (Value *V = SimplifyInstruction(InsertedPHI)) { + InsertedPHI->eraseFromParent(); + return V; + } + + // Set DebugLoc. + InsertedPHI->setDebugLoc(GetFirstDebugLocInBasicBlock(BB)); + + // If the client wants to know about all new instructions, tell it. + if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); + + DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); + return InsertedPHI; +} + +/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, +/// which use their value in the corresponding predecessor. +void SSAUpdater::RewriteUse(Use &U) { + Instruction *User = cast<Instruction>(U.getUser()); + + Value *V; + if (PHINode *UserPN = dyn_cast<PHINode>(User)) + V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); + else + V = GetValueInMiddleOfBlock(User->getParent()); + + U.set(V); +} + +/// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However, +/// this version of the method can rewrite uses in the same block as a +/// definition, because it assumes that all uses of a value are below any +/// inserted values. +void SSAUpdater::RewriteUseAfterInsertions(Use &U) { + Instruction *User = cast<Instruction>(U.getUser()); + + Value *V; + if (PHINode *UserPN = dyn_cast<PHINode>(User)) + V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); + else + V = GetValueAtEndOfBlock(User->getParent()); + + U.set(V); +} + +/// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator +/// in the SSAUpdaterImpl template. +namespace { + class PHIiter { + private: + PHINode *PHI; + unsigned idx; + + public: + explicit PHIiter(PHINode *P) // begin iterator + : PHI(P), idx(0) {} + PHIiter(PHINode *P, bool) // end iterator + : PHI(P), idx(PHI->getNumIncomingValues()) {} + + PHIiter &operator++() { ++idx; return *this; } + bool operator==(const PHIiter& x) const { return idx == x.idx; } + bool operator!=(const PHIiter& x) const { return !operator==(x); } + Value *getIncomingValue() { return PHI->getIncomingValue(idx); } + BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } + }; +} + +/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template, +/// specialized for SSAUpdater. +namespace llvm { +template<> +class SSAUpdaterTraits<SSAUpdater> { +public: + typedef BasicBlock BlkT; + typedef Value *ValT; + typedef PHINode PhiT; + + typedef succ_iterator BlkSucc_iterator; + static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } + static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } + + typedef PHIiter PHI_iterator; + static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } + static inline PHI_iterator PHI_end(PhiT *PHI) { + return PHI_iterator(PHI, true); + } + + /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds + /// vector, set Info->NumPreds, and allocate space in Info->Preds. + static void FindPredecessorBlocks(BasicBlock *BB, + SmallVectorImpl<BasicBlock*> *Preds) { + // We can get our predecessor info by walking the pred_iterator list, + // but it is relatively slow. If we already have PHI nodes in this + // block, walk one of them to get the predecessor list instead. + if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { + for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) + Preds->push_back(SomePhi->getIncomingBlock(PI)); + } else { + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) + Preds->push_back(*PI); + } + } + + /// GetUndefVal - Get an undefined value of the same type as the value + /// being handled. + static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { + return UndefValue::get(Updater->ProtoType); + } + + /// CreateEmptyPHI - Create a new PHI instruction in the specified block. + /// Reserve space for the operands but do not fill them in yet. + static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, + SSAUpdater *Updater) { + PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, + Updater->ProtoName, &BB->front()); + return PHI; + } + + /// AddPHIOperand - Add the specified value as an operand of the PHI for + /// the specified predecessor block. + static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { + PHI->addIncoming(Val, Pred); + } + + /// InstrIsPHI - Check if an instruction is a PHI. + /// + static PHINode *InstrIsPHI(Instruction *I) { + return dyn_cast<PHINode>(I); + } + + /// ValueIsPHI - Check if a value is a PHI. + /// + static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { + return dyn_cast<PHINode>(Val); + } + + /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source + /// operands, i.e., it was just added. + static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { + PHINode *PHI = ValueIsPHI(Val, Updater); + if (PHI && PHI->getNumIncomingValues() == 0) + return PHI; + return 0; + } + + /// GetPHIValue - For the specified PHI instruction, return the value + /// that it defines. + static Value *GetPHIValue(PHINode *PHI) { + return PHI; + } +}; + +} // End llvm namespace + +/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry +/// for the specified BB and if so, return it. If not, construct SSA form by +/// first calculating the required placement of PHIs and then inserting new +/// PHIs where needed. +Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { + AvailableValsTy &AvailableVals = getAvailableVals(AV); + if (Value *V = AvailableVals[BB]) + return V; + + SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); + return Impl.GetValue(BB); +} + +//===----------------------------------------------------------------------===// +// LoadAndStorePromoter Implementation +//===----------------------------------------------------------------------===// + +LoadAndStorePromoter:: +LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts, + SSAUpdater &S, StringRef BaseName) : SSA(S) { + if (Insts.empty()) return; + + Value *SomeVal; + if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) + SomeVal = LI; + else + SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); + + if (BaseName.empty()) + BaseName = SomeVal->getName(); + SSA.Initialize(SomeVal->getType(), BaseName); +} + + +void LoadAndStorePromoter:: +run(const SmallVectorImpl<Instruction*> &Insts) const { + + // First step: bucket up uses of the alloca by the block they occur in. + // This is important because we have to handle multiple defs/uses in a block + // ourselves: SSAUpdater is purely for cross-block references. + DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock; + + for (unsigned i = 0, e = Insts.size(); i != e; ++i) { + Instruction *User = Insts[i]; + UsesByBlock[User->getParent()].push_back(User); + } + + // Okay, now we can iterate over all the blocks in the function with uses, + // processing them. Keep track of which loads are loading a live-in value. + // Walk the uses in the use-list order to be determinstic. + SmallVector<LoadInst*, 32> LiveInLoads; + DenseMap<Value*, Value*> ReplacedLoads; + + for (unsigned i = 0, e = Insts.size(); i != e; ++i) { + Instruction *User = Insts[i]; + BasicBlock *BB = User->getParent(); + TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB]; + + // If this block has already been processed, ignore this repeat use. + if (BlockUses.empty()) continue; + + // Okay, this is the first use in the block. If this block just has a + // single user in it, we can rewrite it trivially. + if (BlockUses.size() == 1) { + // If it is a store, it is a trivial def of the value in the block. + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + updateDebugInfo(SI); + SSA.AddAvailableValue(BB, SI->getOperand(0)); + } else + // Otherwise it is a load, queue it to rewrite as a live-in load. + LiveInLoads.push_back(cast<LoadInst>(User)); + BlockUses.clear(); + continue; + } + + // Otherwise, check to see if this block is all loads. + bool HasStore = false; + for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { + if (isa<StoreInst>(BlockUses[i])) { + HasStore = true; + break; + } + } + + // If so, we can queue them all as live in loads. We don't have an + // efficient way to tell which on is first in the block and don't want to + // scan large blocks, so just add all loads as live ins. + if (!HasStore) { + for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) + LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); + BlockUses.clear(); + continue; + } + + // Otherwise, we have mixed loads and stores (or just a bunch of stores). + // Since SSAUpdater is purely for cross-block values, we need to determine + // the order of these instructions in the block. If the first use in the + // block is a load, then it uses the live in value. The last store defines + // the live out value. We handle this by doing a linear scan of the block. + Value *StoredValue = 0; + for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { + if (LoadInst *L = dyn_cast<LoadInst>(II)) { + // If this is a load from an unrelated pointer, ignore it. + if (!isInstInList(L, Insts)) continue; + + // If we haven't seen a store yet, this is a live in use, otherwise + // use the stored value. + if (StoredValue) { + replaceLoadWithValue(L, StoredValue); + L->replaceAllUsesWith(StoredValue); + ReplacedLoads[L] = StoredValue; + } else { + LiveInLoads.push_back(L); + } + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(II)) { + // If this is a store to an unrelated pointer, ignore it. + if (!isInstInList(SI, Insts)) continue; + updateDebugInfo(SI); + + // Remember that this is the active value in the block. + StoredValue = SI->getOperand(0); + } + } + + // The last stored value that happened is the live-out for the block. + assert(StoredValue && "Already checked that there is a store in block"); + SSA.AddAvailableValue(BB, StoredValue); + BlockUses.clear(); + } + + // Okay, now we rewrite all loads that use live-in values in the loop, + // inserting PHI nodes as necessary. + for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { + LoadInst *ALoad = LiveInLoads[i]; + Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); + replaceLoadWithValue(ALoad, NewVal); + + // Avoid assertions in unreachable code. + if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); + ALoad->replaceAllUsesWith(NewVal); + ReplacedLoads[ALoad] = NewVal; + } + + // Allow the client to do stuff before we start nuking things. + doExtraRewritesBeforeFinalDeletion(); + + // Now that everything is rewritten, delete the old instructions from the + // function. They should all be dead now. + for (unsigned i = 0, e = Insts.size(); i != e; ++i) { + Instruction *User = Insts[i]; + + // If this is a load that still has uses, then the load must have been added + // as a live value in the SSAUpdate data structure for a block (e.g. because + // the loaded value was stored later). In this case, we need to recursively + // propagate the updates until we get to the real value. + if (!User->use_empty()) { + Value *NewVal = ReplacedLoads[User]; + assert(NewVal && "not a replaced load?"); + + // Propagate down to the ultimate replacee. The intermediately loads + // could theoretically already have been deleted, so we don't want to + // dereference the Value*'s. + DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); + while (RLI != ReplacedLoads.end()) { + NewVal = RLI->second; + RLI = ReplacedLoads.find(NewVal); + } + + replaceLoadWithValue(cast<LoadInst>(User), NewVal); + User->replaceAllUsesWith(NewVal); + } + + instructionDeleted(User); + User->eraseFromParent(); + } +} + +bool +LoadAndStorePromoter::isInstInList(Instruction *I, + const SmallVectorImpl<Instruction*> &Insts) + const { + return std::find(Insts.begin(), Insts.end(), I) != Insts.end(); +} |