diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp new file mode 100644 index 0000000..c1b0645 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/LowerSwitch.cpp @@ -0,0 +1,524 @@ +//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The LowerSwitch transformation rewrites switch instructions with a sequence +// of branches, which allows targets to get away with not implementing the +// switch instruction until it is convenient. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Pass.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" +#include <algorithm> +using namespace llvm; + +#define DEBUG_TYPE "lower-switch" + +namespace { + struct IntRange { + int64_t Low, High; + }; + // Return true iff R is covered by Ranges. + static bool IsInRanges(const IntRange &R, + const std::vector<IntRange> &Ranges) { + // Note: Ranges must be sorted, non-overlapping and non-adjacent. + + // Find the first range whose High field is >= R.High, + // then check if the Low field is <= R.Low. If so, we + // have a Range that covers R. + auto I = std::lower_bound( + Ranges.begin(), Ranges.end(), R, + [](const IntRange &A, const IntRange &B) { return A.High < B.High; }); + return I != Ranges.end() && I->Low <= R.Low; + } + + /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch + /// instructions. + class LowerSwitch : public FunctionPass { + public: + static char ID; // Pass identification, replacement for typeid + LowerSwitch() : FunctionPass(ID) { + initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + // This is a cluster of orthogonal Transforms + AU.addPreserved<UnifyFunctionExitNodes>(); + AU.addPreservedID(LowerInvokePassID); + } + + struct CaseRange { + ConstantInt* Low; + ConstantInt* High; + BasicBlock* BB; + + CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) + : Low(low), High(high), BB(bb) {} + }; + + typedef std::vector<CaseRange> CaseVector; + typedef std::vector<CaseRange>::iterator CaseItr; + private: + void processSwitchInst(SwitchInst *SI); + + BasicBlock *switchConvert(CaseItr Begin, CaseItr End, + ConstantInt *LowerBound, ConstantInt *UpperBound, + Value *Val, BasicBlock *Predecessor, + BasicBlock *OrigBlock, BasicBlock *Default, + const std::vector<IntRange> &UnreachableRanges); + BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock, + BasicBlock *Default); + unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); + }; + + /// The comparison function for sorting the switch case values in the vector. + /// WARNING: Case ranges should be disjoint! + struct CaseCmp { + bool operator () (const LowerSwitch::CaseRange& C1, + const LowerSwitch::CaseRange& C2) { + + const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); + const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); + return CI1->getValue().slt(CI2->getValue()); + } + }; +} // namespace + +char LowerSwitch::ID = 0; +INITIALIZE_PASS(LowerSwitch, "lowerswitch", + "Lower SwitchInst's to branches", false, false) + +// Publicly exposed interface to pass... +char &llvm::LowerSwitchID = LowerSwitch::ID; +// createLowerSwitchPass - Interface to this file... +FunctionPass *llvm::createLowerSwitchPass() { + return new LowerSwitch(); +} + +bool LowerSwitch::runOnFunction(Function &F) { + bool Changed = false; + + for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { + BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks + + if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { + Changed = true; + processSwitchInst(SI); + } + } + + return Changed; +} + +// operator<< - Used for debugging purposes. +// +static raw_ostream& operator<<(raw_ostream &O, + const LowerSwitch::CaseVector &C) + LLVM_ATTRIBUTE_USED; +static raw_ostream& operator<<(raw_ostream &O, + const LowerSwitch::CaseVector &C) { + O << "["; + + for (LowerSwitch::CaseVector::const_iterator B = C.begin(), + E = C.end(); B != E; ) { + O << *B->Low << " -" << *B->High; + if (++B != E) O << ", "; + } + + return O << "]"; +} + +// \brief Update the first occurrence of the "switch statement" BB in the PHI +// node with the "new" BB. The other occurrences will: +// +// 1) Be updated by subsequent calls to this function. Switch statements may +// have more than one outcoming edge into the same BB if they all have the same +// value. When the switch statement is converted these incoming edges are now +// coming from multiple BBs. +// 2) Removed if subsequent incoming values now share the same case, i.e., +// multiple outcome edges are condensed into one. This is necessary to keep the +// number of phi values equal to the number of branches to SuccBB. +static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, + unsigned NumMergedCases) { + for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI(); + I != IE; ++I) { + PHINode *PN = cast<PHINode>(I); + + // Only update the first occurence. + unsigned Idx = 0, E = PN->getNumIncomingValues(); + unsigned LocalNumMergedCases = NumMergedCases; + for (; Idx != E; ++Idx) { + if (PN->getIncomingBlock(Idx) == OrigBB) { + PN->setIncomingBlock(Idx, NewBB); + break; + } + } + + // Remove additional occurences coming from condensed cases and keep the + // number of incoming values equal to the number of branches to SuccBB. + SmallVector<unsigned, 8> Indices; + for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) + if (PN->getIncomingBlock(Idx) == OrigBB) { + Indices.push_back(Idx); + LocalNumMergedCases--; + } + // Remove incoming values in the reverse order to prevent invalidating + // *successive* index. + for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III) + PN->removeIncomingValue(*III); + } +} + +// switchConvert - Convert the switch statement into a binary lookup of +// the case values. The function recursively builds this tree. +// LowerBound and UpperBound are used to keep track of the bounds for Val +// that have already been checked by a block emitted by one of the previous +// calls to switchConvert in the call stack. +BasicBlock * +LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, + ConstantInt *UpperBound, Value *Val, + BasicBlock *Predecessor, BasicBlock *OrigBlock, + BasicBlock *Default, + const std::vector<IntRange> &UnreachableRanges) { + unsigned Size = End - Begin; + + if (Size == 1) { + // Check if the Case Range is perfectly squeezed in between + // already checked Upper and Lower bounds. If it is then we can avoid + // emitting the code that checks if the value actually falls in the range + // because the bounds already tell us so. + if (Begin->Low == LowerBound && Begin->High == UpperBound) { + unsigned NumMergedCases = 0; + if (LowerBound && UpperBound) + NumMergedCases = + UpperBound->getSExtValue() - LowerBound->getSExtValue(); + fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); + return Begin->BB; + } + return newLeafBlock(*Begin, Val, OrigBlock, Default); + } + + unsigned Mid = Size / 2; + std::vector<CaseRange> LHS(Begin, Begin + Mid); + DEBUG(dbgs() << "LHS: " << LHS << "\n"); + std::vector<CaseRange> RHS(Begin + Mid, End); + DEBUG(dbgs() << "RHS: " << RHS << "\n"); + + CaseRange &Pivot = *(Begin + Mid); + DEBUG(dbgs() << "Pivot ==> " + << Pivot.Low->getValue() + << " -" << Pivot.High->getValue() << "\n"); + + // NewLowerBound here should never be the integer minimal value. + // This is because it is computed from a case range that is never + // the smallest, so there is always a case range that has at least + // a smaller value. + ConstantInt *NewLowerBound = Pivot.Low; + + // Because NewLowerBound is never the smallest representable integer + // it is safe here to subtract one. + ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), + NewLowerBound->getValue() - 1); + + if (!UnreachableRanges.empty()) { + // Check if the gap between LHS's highest and NewLowerBound is unreachable. + int64_t GapLow = LHS.back().High->getSExtValue() + 1; + int64_t GapHigh = NewLowerBound->getSExtValue() - 1; + IntRange Gap = { GapLow, GapHigh }; + if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) + NewUpperBound = LHS.back().High; + } + + DEBUG(dbgs() << "LHS Bounds ==> "; + if (LowerBound) { + dbgs() << LowerBound->getSExtValue(); + } else { + dbgs() << "NONE"; + } + dbgs() << " - " << NewUpperBound->getSExtValue() << "\n"; + dbgs() << "RHS Bounds ==> "; + dbgs() << NewLowerBound->getSExtValue() << " - "; + if (UpperBound) { + dbgs() << UpperBound->getSExtValue() << "\n"; + } else { + dbgs() << "NONE\n"; + }); + + // Create a new node that checks if the value is < pivot. Go to the + // left branch if it is and right branch if not. + Function* F = OrigBlock->getParent(); + BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); + + ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, + Val, Pivot.Low, "Pivot"); + + BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, + NewUpperBound, Val, NewNode, OrigBlock, + Default, UnreachableRanges); + BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, + UpperBound, Val, NewNode, OrigBlock, + Default, UnreachableRanges); + + Function::iterator FI = OrigBlock; + F->getBasicBlockList().insert(++FI, NewNode); + NewNode->getInstList().push_back(Comp); + + BranchInst::Create(LBranch, RBranch, Comp, NewNode); + return NewNode; +} + +// newLeafBlock - Create a new leaf block for the binary lookup tree. It +// checks if the switch's value == the case's value. If not, then it +// jumps to the default branch. At this point in the tree, the value +// can't be another valid case value, so the jump to the "default" branch +// is warranted. +// +BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, + BasicBlock* OrigBlock, + BasicBlock* Default) +{ + Function* F = OrigBlock->getParent(); + BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); + Function::iterator FI = OrigBlock; + F->getBasicBlockList().insert(++FI, NewLeaf); + + // Emit comparison + ICmpInst* Comp = nullptr; + if (Leaf.Low == Leaf.High) { + // Make the seteq instruction... + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, + Leaf.Low, "SwitchLeaf"); + } else { + // Make range comparison + if (Leaf.Low->isMinValue(true /*isSigned*/)) { + // Val >= Min && Val <= Hi --> Val <= Hi + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, + "SwitchLeaf"); + } else if (Leaf.Low->isZero()) { + // Val >= 0 && Val <= Hi --> Val <=u Hi + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, + "SwitchLeaf"); + } else { + // Emit V-Lo <=u Hi-Lo + Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); + Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, + Val->getName()+".off", + NewLeaf); + Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, + "SwitchLeaf"); + } + } + + // Make the conditional branch... + BasicBlock* Succ = Leaf.BB; + BranchInst::Create(Succ, Default, Comp, NewLeaf); + + // If there were any PHI nodes in this successor, rewrite one entry + // from OrigBlock to come from NewLeaf. + for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { + PHINode* PN = cast<PHINode>(I); + // Remove all but one incoming entries from the cluster + uint64_t Range = Leaf.High->getSExtValue() - + Leaf.Low->getSExtValue(); + for (uint64_t j = 0; j < Range; ++j) { + PN->removeIncomingValue(OrigBlock); + } + + int BlockIdx = PN->getBasicBlockIndex(OrigBlock); + assert(BlockIdx != -1 && "Switch didn't go to this successor??"); + PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); + } + + return NewLeaf; +} + +// Clusterify - Transform simple list of Cases into list of CaseRange's +unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { + unsigned numCmps = 0; + + // Start with "simple" cases + for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) + Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(), + i.getCaseSuccessor())); + + std::sort(Cases.begin(), Cases.end(), CaseCmp()); + + // Merge case into clusters + if (Cases.size() >= 2) { + CaseItr I = Cases.begin(); + for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { + int64_t nextValue = J->Low->getSExtValue(); + int64_t currentValue = I->High->getSExtValue(); + BasicBlock* nextBB = J->BB; + BasicBlock* currentBB = I->BB; + + // If the two neighboring cases go to the same destination, merge them + // into a single case. + assert(nextValue > currentValue && "Cases should be strictly ascending"); + if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { + I->High = J->High; + // FIXME: Combine branch weights. + } else if (++I != J) { + *I = *J; + } + } + Cases.erase(std::next(I), Cases.end()); + } + + for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { + if (I->Low != I->High) + // A range counts double, since it requires two compares. + ++numCmps; + } + + return numCmps; +} + +// processSwitchInst - Replace the specified switch instruction with a sequence +// of chained if-then insts in a balanced binary search. +// +void LowerSwitch::processSwitchInst(SwitchInst *SI) { + BasicBlock *CurBlock = SI->getParent(); + BasicBlock *OrigBlock = CurBlock; + Function *F = CurBlock->getParent(); + Value *Val = SI->getCondition(); // The value we are switching on... + BasicBlock* Default = SI->getDefaultDest(); + + // If there is only the default destination, just branch. + if (!SI->getNumCases()) { + BranchInst::Create(Default, CurBlock); + SI->eraseFromParent(); + return; + } + + // Prepare cases vector. + CaseVector Cases; + unsigned numCmps = Clusterify(Cases, SI); + DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() + << ". Total compares: " << numCmps << "\n"); + DEBUG(dbgs() << "Cases: " << Cases << "\n"); + (void)numCmps; + + ConstantInt *LowerBound = nullptr; + ConstantInt *UpperBound = nullptr; + std::vector<IntRange> UnreachableRanges; + + if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { + // Make the bounds tightly fitted around the case value range, becase we + // know that the value passed to the switch must be exactly one of the case + // values. + assert(!Cases.empty()); + LowerBound = Cases.front().Low; + UpperBound = Cases.back().High; + + DenseMap<BasicBlock *, unsigned> Popularity; + unsigned MaxPop = 0; + BasicBlock *PopSucc = nullptr; + + IntRange R = { INT64_MIN, INT64_MAX }; + UnreachableRanges.push_back(R); + for (const auto &I : Cases) { + int64_t Low = I.Low->getSExtValue(); + int64_t High = I.High->getSExtValue(); + + IntRange &LastRange = UnreachableRanges.back(); + if (LastRange.Low == Low) { + // There is nothing left of the previous range. + UnreachableRanges.pop_back(); + } else { + // Terminate the previous range. + assert(Low > LastRange.Low); + LastRange.High = Low - 1; + } + if (High != INT64_MAX) { + IntRange R = { High + 1, INT64_MAX }; + UnreachableRanges.push_back(R); + } + + // Count popularity. + int64_t N = High - Low + 1; + unsigned &Pop = Popularity[I.BB]; + if ((Pop += N) > MaxPop) { + MaxPop = Pop; + PopSucc = I.BB; + } + } +#ifndef NDEBUG + /* UnreachableRanges should be sorted and the ranges non-adjacent. */ + for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); + I != E; ++I) { + assert(I->Low <= I->High); + auto Next = I + 1; + if (Next != E) { + assert(Next->Low > I->High); + } + } +#endif + + // Use the most popular block as the new default, reducing the number of + // cases. + assert(MaxPop > 0 && PopSucc); + Default = PopSucc; + Cases.erase(std::remove_if( + Cases.begin(), Cases.end(), + [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }), + Cases.end()); + + // If there are no cases left, just branch. + if (Cases.empty()) { + BranchInst::Create(Default, CurBlock); + SI->eraseFromParent(); + return; + } + } + + // Create a new, empty default block so that the new hierarchy of + // if-then statements go to this and the PHI nodes are happy. + BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); + F->getBasicBlockList().insert(Default, NewDefault); + BranchInst::Create(Default, NewDefault); + + // If there is an entry in any PHI nodes for the default edge, make sure + // to update them as well. + for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + int BlockIdx = PN->getBasicBlockIndex(OrigBlock); + assert(BlockIdx != -1 && "Switch didn't go to this successor??"); + PN->setIncomingBlock((unsigned)BlockIdx, NewDefault); + } + + BasicBlock *SwitchBlock = + switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, + OrigBlock, OrigBlock, NewDefault, UnreachableRanges); + + // Branch to our shiny new if-then stuff... + BranchInst::Create(SwitchBlock, OrigBlock); + + // We are now done with the switch instruction, delete it. + BasicBlock *OldDefault = SI->getDefaultDest(); + CurBlock->getInstList().erase(SI); + + // If the Default block has no more predecessors just remove it. + if (pred_begin(OldDefault) == pred_end(OldDefault)) + DeleteDeadBlock(OldDefault); +} |