summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp502
1 files changed, 502 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
new file mode 100644
index 0000000..5f25e6b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
@@ -0,0 +1,502 @@
+//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common loop utility functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "loop-utils"
+
+bool ReductionDescriptor::areAllUsesIn(Instruction *I,
+ SmallPtrSetImpl<Instruction *> &Set) {
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
+ if (!Set.count(dyn_cast<Instruction>(*Use)))
+ return false;
+ return true;
+}
+
+bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
+ Loop *TheLoop, bool HasFunNoNaNAttr,
+ ReductionDescriptor &RedDes) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = nullptr;
+ // Indicates that we found a reduction operation in our scan.
+ bool FoundReduxOp = false;
+
+ // We start with the PHI node and scan for all of the users of this
+ // instruction. All users must be instructions that can be used as reduction
+ // variables (such as ADD). We must have a single out-of-block user. The cycle
+ // must include the original PHI.
+ bool FoundStartPHI = false;
+
+ // To recognize min/max patterns formed by a icmp select sequence, we store
+ // the number of instruction we saw from the recognized min/max pattern,
+ // to make sure we only see exactly the two instructions.
+ unsigned NumCmpSelectPatternInst = 0;
+ ReductionInstDesc ReduxDesc(false, nullptr);
+
+ SmallPtrSet<Instruction *, 8> VisitedInsts;
+ SmallVector<Instruction *, 8> Worklist;
+ Worklist.push_back(Phi);
+ VisitedInsts.insert(Phi);
+
+ // A value in the reduction can be used:
+ // - By the reduction:
+ // - Reduction operation:
+ // - One use of reduction value (safe).
+ // - Multiple use of reduction value (not safe).
+ // - PHI:
+ // - All uses of the PHI must be the reduction (safe).
+ // - Otherwise, not safe.
+ // - By one instruction outside of the loop (safe).
+ // - By further instructions outside of the loop (not safe).
+ // - By an instruction that is not part of the reduction (not safe).
+ // This is either:
+ // * An instruction type other than PHI or the reduction operation.
+ // * A PHI in the header other than the initial PHI.
+ while (!Worklist.empty()) {
+ Instruction *Cur = Worklist.back();
+ Worklist.pop_back();
+
+ // No Users.
+ // If the instruction has no users then this is a broken chain and can't be
+ // a reduction variable.
+ if (Cur->use_empty())
+ return false;
+
+ bool IsAPhi = isa<PHINode>(Cur);
+
+ // A header PHI use other than the original PHI.
+ if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only possible if the
+ // LHS is the reduction variable.
+ if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
+ !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
+ !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
+ return false;
+
+ // Any reduction instruction must be of one of the allowed kinds.
+ ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
+ if (!ReduxDesc.isReduction())
+ return false;
+
+ // A reduction operation must only have one use of the reduction value.
+ if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
+ hasMultipleUsesOf(Cur, VisitedInsts))
+ return false;
+
+ // All inputs to a PHI node must be a reduction value.
+ if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
+ return false;
+
+ if (Kind == RK_IntegerMinMax &&
+ (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+ if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+
+ // Check whether we found a reduction operator.
+ FoundReduxOp |= !IsAPhi;
+
+ // Process users of current instruction. Push non-PHI nodes after PHI nodes
+ // onto the stack. This way we are going to have seen all inputs to PHI
+ // nodes once we get to them.
+ SmallVector<Instruction *, 8> NonPHIs;
+ SmallVector<Instruction *, 8> PHIs;
+ for (User *U : Cur->users()) {
+ Instruction *UI = cast<Instruction>(U);
+
+ // Check if we found the exit user.
+ BasicBlock *Parent = UI->getParent();
+ if (!TheLoop->contains(Parent)) {
+ // Exit if you find multiple outside users or if the header phi node is
+ // being used. In this case the user uses the value of the previous
+ // iteration, in which case we would loose "VF-1" iterations of the
+ // reduction operation if we vectorize.
+ if (ExitInstruction != nullptr || Cur == Phi)
+ return false;
+
+ // The instruction used by an outside user must be the last instruction
+ // before we feed back to the reduction phi. Otherwise, we loose VF-1
+ // operations on the value.
+ if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
+ return false;
+
+ ExitInstruction = Cur;
+ continue;
+ }
+
+ // Process instructions only once (termination). Each reduction cycle
+ // value must only be used once, except by phi nodes and min/max
+ // reductions which are represented as a cmp followed by a select.
+ ReductionInstDesc IgnoredVal(false, nullptr);
+ if (VisitedInsts.insert(UI).second) {
+ if (isa<PHINode>(UI))
+ PHIs.push_back(UI);
+ else
+ NonPHIs.push_back(UI);
+ } else if (!isa<PHINode>(UI) &&
+ ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
+ !isa<SelectInst>(UI)) ||
+ !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
+ return false;
+
+ // Remember that we completed the cycle.
+ if (UI == Phi)
+ FoundStartPHI = true;
+ }
+ Worklist.append(PHIs.begin(), PHIs.end());
+ Worklist.append(NonPHIs.begin(), NonPHIs.end());
+ }
+
+ // This means we have seen one but not the other instruction of the
+ // pattern or more than just a select and cmp.
+ if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
+ NumCmpSelectPatternInst != 2)
+ return false;
+
+ if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
+ return false;
+
+ // We found a reduction var if we have reached the original phi node and we
+ // only have a single instruction with out-of-loop users.
+
+ // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
+ // is saved as part of the ReductionDescriptor.
+
+ // Save the description of this reduction variable.
+ ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
+ ReduxDesc.getMinMaxKind());
+
+ RedDes = RD;
+
+ return true;
+}
+
+/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+/// pattern corresponding to a min(X, Y) or max(X, Y).
+ReductionInstDesc
+ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
+ ReductionInstDesc &Prev) {
+
+ assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
+ "Expect a select instruction");
+ Instruction *Cmp = nullptr;
+ SelectInst *Select = nullptr;
+
+ // We must handle the select(cmp()) as a single instruction. Advance to the
+ // select.
+ if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
+ if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
+ return ReductionInstDesc(false, I);
+ return ReductionInstDesc(Select, Prev.getMinMaxKind());
+ }
+
+ // Only handle single use cases for now.
+ if (!(Select = dyn_cast<SelectInst>(I)))
+ return ReductionInstDesc(false, I);
+ if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
+ !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
+ return ReductionInstDesc(false, I);
+ if (!Cmp->hasOneUse())
+ return ReductionInstDesc(false, I);
+
+ Value *CmpLeft;
+ Value *CmpRight;
+
+ // Look for a min/max pattern.
+ if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
+ else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
+ else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
+ else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
+ else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+ else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+ else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+ else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+
+ return ReductionInstDesc(false, I);
+}
+
+ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
+ ReductionKind Kind,
+ ReductionInstDesc &Prev,
+ bool HasFunNoNaNAttr) {
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = FP && I->hasUnsafeAlgebra();
+ switch (I->getOpcode()) {
+ default:
+ return ReductionInstDesc(false, I);
+ case Instruction::PHI:
+ if (FP &&
+ (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
+ return ReductionInstDesc(false, I);
+ return ReductionInstDesc(I, Prev.getMinMaxKind());
+ case Instruction::Sub:
+ case Instruction::Add:
+ return ReductionInstDesc(Kind == RK_IntegerAdd, I);
+ case Instruction::Mul:
+ return ReductionInstDesc(Kind == RK_IntegerMult, I);
+ case Instruction::And:
+ return ReductionInstDesc(Kind == RK_IntegerAnd, I);
+ case Instruction::Or:
+ return ReductionInstDesc(Kind == RK_IntegerOr, I);
+ case Instruction::Xor:
+ return ReductionInstDesc(Kind == RK_IntegerXor, I);
+ case Instruction::FMul:
+ return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
+ case Instruction::FSub:
+ case Instruction::FAdd:
+ return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select:
+ if (Kind != RK_IntegerMinMax &&
+ (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
+ return ReductionInstDesc(false, I);
+ return isMinMaxSelectCmpPattern(I, Prev);
+ }
+}
+
+bool ReductionDescriptor::hasMultipleUsesOf(
+ Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
+ unsigned NumUses = 0;
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
+ ++Use) {
+ if (Insts.count(dyn_cast<Instruction>(*Use)))
+ ++NumUses;
+ if (NumUses > 1)
+ return true;
+ }
+
+ return false;
+}
+bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
+ ReductionDescriptor &RedDes) {
+
+ bool HasFunNoNaNAttr = false;
+ BasicBlock *Header = TheLoop->getHeader();
+ Function &F = *Header->getParent();
+ if (F.hasFnAttribute("no-nans-fp-math"))
+ HasFunNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+ if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
+ RedDes)) {
+ DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ // Not a reduction of known type.
+ return false;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
+ switch (K) {
+ case RK_IntegerXor:
+ case RK_IntegerAdd:
+ case RK_IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return ConstantInt::get(Tp, 0);
+ case RK_IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantInt::get(Tp, 1);
+ case RK_IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return ConstantInt::get(Tp, -1, true);
+ case RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
+ default:
+ llvm_unreachable("Unknown reduction kind");
+ }
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
+ switch (Kind) {
+ case RK_IntegerAdd:
+ return Instruction::Add;
+ case RK_IntegerMult:
+ return Instruction::Mul;
+ case RK_IntegerOr:
+ return Instruction::Or;
+ case RK_IntegerAnd:
+ return Instruction::And;
+ case RK_IntegerXor:
+ return Instruction::Xor;
+ case RK_FloatMult:
+ return Instruction::FMul;
+ case RK_FloatAdd:
+ return Instruction::FAdd;
+ case RK_IntegerMinMax:
+ return Instruction::ICmp;
+ case RK_FloatMinMax:
+ return Instruction::FCmp;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+}
+
+Value *
+ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
+ ReductionInstDesc::MinMaxReductionKind RK,
+ Value *Left, Value *Right) {
+ CmpInst::Predicate P = CmpInst::ICMP_NE;
+ switch (RK) {
+ default:
+ llvm_unreachable("Unknown min/max reduction kind");
+ case ReductionInstDesc::MRK_UIntMin:
+ P = CmpInst::ICMP_ULT;
+ break;
+ case ReductionInstDesc::MRK_UIntMax:
+ P = CmpInst::ICMP_UGT;
+ break;
+ case ReductionInstDesc::MRK_SIntMin:
+ P = CmpInst::ICMP_SLT;
+ break;
+ case ReductionInstDesc::MRK_SIntMax:
+ P = CmpInst::ICMP_SGT;
+ break;
+ case ReductionInstDesc::MRK_FloatMin:
+ P = CmpInst::FCMP_OLT;
+ break;
+ case ReductionInstDesc::MRK_FloatMax:
+ P = CmpInst::FCMP_OGT;
+ break;
+ }
+
+ Value *Cmp;
+ if (RK == ReductionInstDesc::MRK_FloatMin ||
+ RK == ReductionInstDesc::MRK_FloatMax)
+ Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
+ else
+ Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
+
+ Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
+ return Select;
+}
+
+bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
+ ConstantInt *&StepValue) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return false;
+
+ // Check that the PHI is consecutive.
+ const SCEV *PhiScev = SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ return false;
+
+ ConstantInt *CV = C->getValue();
+ if (PhiTy->isIntegerTy()) {
+ StepValue = CV;
+ return true;
+ }
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ Type *PointerElementType = PhiTy->getPointerElementType();
+ // The pointer stride cannot be determined if the pointer element type is not
+ // sized.
+ if (!PointerElementType->isSized())
+ return false;
+
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+ int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
+ if (!Size)
+ return false;
+
+ int64_t CVSize = CV->getSExtValue();
+ if (CVSize % Size)
+ return false;
+ StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
+ return true;
+}
OpenPOWER on IntegriCloud