diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp | 502 |
1 files changed, 502 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp new file mode 100644 index 0000000..5f25e6b --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp @@ -0,0 +1,502 @@ +//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines common loop utility functions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Debug.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/IR/Module.h" +#include "llvm/Transforms/Utils/LoopUtils.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "loop-utils" + +bool ReductionDescriptor::areAllUsesIn(Instruction *I, + SmallPtrSetImpl<Instruction *> &Set) { + for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) + if (!Set.count(dyn_cast<Instruction>(*Use))) + return false; + return true; +} + +bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind, + Loop *TheLoop, bool HasFunNoNaNAttr, + ReductionDescriptor &RedDes) { + if (Phi->getNumIncomingValues() != 2) + return false; + + // Reduction variables are only found in the loop header block. + if (Phi->getParent() != TheLoop->getHeader()) + return false; + + // Obtain the reduction start value from the value that comes from the loop + // preheader. + Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); + + // ExitInstruction is the single value which is used outside the loop. + // We only allow for a single reduction value to be used outside the loop. + // This includes users of the reduction, variables (which form a cycle + // which ends in the phi node). + Instruction *ExitInstruction = nullptr; + // Indicates that we found a reduction operation in our scan. + bool FoundReduxOp = false; + + // We start with the PHI node and scan for all of the users of this + // instruction. All users must be instructions that can be used as reduction + // variables (such as ADD). We must have a single out-of-block user. The cycle + // must include the original PHI. + bool FoundStartPHI = false; + + // To recognize min/max patterns formed by a icmp select sequence, we store + // the number of instruction we saw from the recognized min/max pattern, + // to make sure we only see exactly the two instructions. + unsigned NumCmpSelectPatternInst = 0; + ReductionInstDesc ReduxDesc(false, nullptr); + + SmallPtrSet<Instruction *, 8> VisitedInsts; + SmallVector<Instruction *, 8> Worklist; + Worklist.push_back(Phi); + VisitedInsts.insert(Phi); + + // A value in the reduction can be used: + // - By the reduction: + // - Reduction operation: + // - One use of reduction value (safe). + // - Multiple use of reduction value (not safe). + // - PHI: + // - All uses of the PHI must be the reduction (safe). + // - Otherwise, not safe. + // - By one instruction outside of the loop (safe). + // - By further instructions outside of the loop (not safe). + // - By an instruction that is not part of the reduction (not safe). + // This is either: + // * An instruction type other than PHI or the reduction operation. + // * A PHI in the header other than the initial PHI. + while (!Worklist.empty()) { + Instruction *Cur = Worklist.back(); + Worklist.pop_back(); + + // No Users. + // If the instruction has no users then this is a broken chain and can't be + // a reduction variable. + if (Cur->use_empty()) + return false; + + bool IsAPhi = isa<PHINode>(Cur); + + // A header PHI use other than the original PHI. + if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) + return false; + + // Reductions of instructions such as Div, and Sub is only possible if the + // LHS is the reduction variable. + if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && + !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && + !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) + return false; + + // Any reduction instruction must be of one of the allowed kinds. + ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); + if (!ReduxDesc.isReduction()) + return false; + + // A reduction operation must only have one use of the reduction value. + if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && + hasMultipleUsesOf(Cur, VisitedInsts)) + return false; + + // All inputs to a PHI node must be a reduction value. + if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) + return false; + + if (Kind == RK_IntegerMinMax && + (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) + ++NumCmpSelectPatternInst; + if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) + ++NumCmpSelectPatternInst; + + // Check whether we found a reduction operator. + FoundReduxOp |= !IsAPhi; + + // Process users of current instruction. Push non-PHI nodes after PHI nodes + // onto the stack. This way we are going to have seen all inputs to PHI + // nodes once we get to them. + SmallVector<Instruction *, 8> NonPHIs; + SmallVector<Instruction *, 8> PHIs; + for (User *U : Cur->users()) { + Instruction *UI = cast<Instruction>(U); + + // Check if we found the exit user. + BasicBlock *Parent = UI->getParent(); + if (!TheLoop->contains(Parent)) { + // Exit if you find multiple outside users or if the header phi node is + // being used. In this case the user uses the value of the previous + // iteration, in which case we would loose "VF-1" iterations of the + // reduction operation if we vectorize. + if (ExitInstruction != nullptr || Cur == Phi) + return false; + + // The instruction used by an outside user must be the last instruction + // before we feed back to the reduction phi. Otherwise, we loose VF-1 + // operations on the value. + if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) + return false; + + ExitInstruction = Cur; + continue; + } + + // Process instructions only once (termination). Each reduction cycle + // value must only be used once, except by phi nodes and min/max + // reductions which are represented as a cmp followed by a select. + ReductionInstDesc IgnoredVal(false, nullptr); + if (VisitedInsts.insert(UI).second) { + if (isa<PHINode>(UI)) + PHIs.push_back(UI); + else + NonPHIs.push_back(UI); + } else if (!isa<PHINode>(UI) && + ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && + !isa<SelectInst>(UI)) || + !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction())) + return false; + + // Remember that we completed the cycle. + if (UI == Phi) + FoundStartPHI = true; + } + Worklist.append(PHIs.begin(), PHIs.end()); + Worklist.append(NonPHIs.begin(), NonPHIs.end()); + } + + // This means we have seen one but not the other instruction of the + // pattern or more than just a select and cmp. + if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && + NumCmpSelectPatternInst != 2) + return false; + + if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) + return false; + + // We found a reduction var if we have reached the original phi node and we + // only have a single instruction with out-of-loop users. + + // The ExitInstruction(Instruction which is allowed to have out-of-loop users) + // is saved as part of the ReductionDescriptor. + + // Save the description of this reduction variable. + ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, + ReduxDesc.getMinMaxKind()); + + RedDes = RD; + + return true; +} + +/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction +/// pattern corresponding to a min(X, Y) or max(X, Y). +ReductionInstDesc +ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I, + ReductionInstDesc &Prev) { + + assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && + "Expect a select instruction"); + Instruction *Cmp = nullptr; + SelectInst *Select = nullptr; + + // We must handle the select(cmp()) as a single instruction. Advance to the + // select. + if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { + if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) + return ReductionInstDesc(false, I); + return ReductionInstDesc(Select, Prev.getMinMaxKind()); + } + + // Only handle single use cases for now. + if (!(Select = dyn_cast<SelectInst>(I))) + return ReductionInstDesc(false, I); + if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && + !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) + return ReductionInstDesc(false, I); + if (!Cmp->hasOneUse()) + return ReductionInstDesc(false, I); + + Value *CmpLeft; + Value *CmpRight; + + // Look for a min/max pattern. + if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin); + else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax); + else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax); + else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin); + else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin); + else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax); + else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin); + else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax); + + return ReductionInstDesc(false, I); +} + +ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I, + ReductionKind Kind, + ReductionInstDesc &Prev, + bool HasFunNoNaNAttr) { + bool FP = I->getType()->isFloatingPointTy(); + bool FastMath = FP && I->hasUnsafeAlgebra(); + switch (I->getOpcode()) { + default: + return ReductionInstDesc(false, I); + case Instruction::PHI: + if (FP && + (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax)) + return ReductionInstDesc(false, I); + return ReductionInstDesc(I, Prev.getMinMaxKind()); + case Instruction::Sub: + case Instruction::Add: + return ReductionInstDesc(Kind == RK_IntegerAdd, I); + case Instruction::Mul: + return ReductionInstDesc(Kind == RK_IntegerMult, I); + case Instruction::And: + return ReductionInstDesc(Kind == RK_IntegerAnd, I); + case Instruction::Or: + return ReductionInstDesc(Kind == RK_IntegerOr, I); + case Instruction::Xor: + return ReductionInstDesc(Kind == RK_IntegerXor, I); + case Instruction::FMul: + return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); + case Instruction::FSub: + case Instruction::FAdd: + return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); + case Instruction::FCmp: + case Instruction::ICmp: + case Instruction::Select: + if (Kind != RK_IntegerMinMax && + (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) + return ReductionInstDesc(false, I); + return isMinMaxSelectCmpPattern(I, Prev); + } +} + +bool ReductionDescriptor::hasMultipleUsesOf( + Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { + unsigned NumUses = 0; + for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; + ++Use) { + if (Insts.count(dyn_cast<Instruction>(*Use))) + ++NumUses; + if (NumUses > 1) + return true; + } + + return false; +} +bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, + ReductionDescriptor &RedDes) { + + bool HasFunNoNaNAttr = false; + BasicBlock *Header = TheLoop->getHeader(); + Function &F = *Header->getParent(); + if (F.hasFnAttribute("no-nans-fp-math")) + HasFunNoNaNAttr = + F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; + + if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, + RedDes)) { + DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); + return true; + } + // Not a reduction of known type. + return false; +} + +/// This function returns the identity element (or neutral element) for +/// the operation K. +Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) { + switch (K) { + case RK_IntegerXor: + case RK_IntegerAdd: + case RK_IntegerOr: + // Adding, Xoring, Oring zero to a number does not change it. + return ConstantInt::get(Tp, 0); + case RK_IntegerMult: + // Multiplying a number by 1 does not change it. + return ConstantInt::get(Tp, 1); + case RK_IntegerAnd: + // AND-ing a number with an all-1 value does not change it. + return ConstantInt::get(Tp, -1, true); + case RK_FloatMult: + // Multiplying a number by 1 does not change it. + return ConstantFP::get(Tp, 1.0L); + case RK_FloatAdd: + // Adding zero to a number does not change it. + return ConstantFP::get(Tp, 0.0L); + default: + llvm_unreachable("Unknown reduction kind"); + } +} + +/// This function translates the reduction kind to an LLVM binary operator. +unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) { + switch (Kind) { + case RK_IntegerAdd: + return Instruction::Add; + case RK_IntegerMult: + return Instruction::Mul; + case RK_IntegerOr: + return Instruction::Or; + case RK_IntegerAnd: + return Instruction::And; + case RK_IntegerXor: + return Instruction::Xor; + case RK_FloatMult: + return Instruction::FMul; + case RK_FloatAdd: + return Instruction::FAdd; + case RK_IntegerMinMax: + return Instruction::ICmp; + case RK_FloatMinMax: + return Instruction::FCmp; + default: + llvm_unreachable("Unknown reduction operation"); + } +} + +Value * +ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder, + ReductionInstDesc::MinMaxReductionKind RK, + Value *Left, Value *Right) { + CmpInst::Predicate P = CmpInst::ICMP_NE; + switch (RK) { + default: + llvm_unreachable("Unknown min/max reduction kind"); + case ReductionInstDesc::MRK_UIntMin: + P = CmpInst::ICMP_ULT; + break; + case ReductionInstDesc::MRK_UIntMax: + P = CmpInst::ICMP_UGT; + break; + case ReductionInstDesc::MRK_SIntMin: + P = CmpInst::ICMP_SLT; + break; + case ReductionInstDesc::MRK_SIntMax: + P = CmpInst::ICMP_SGT; + break; + case ReductionInstDesc::MRK_FloatMin: + P = CmpInst::FCMP_OLT; + break; + case ReductionInstDesc::MRK_FloatMax: + P = CmpInst::FCMP_OGT; + break; + } + + Value *Cmp; + if (RK == ReductionInstDesc::MRK_FloatMin || + RK == ReductionInstDesc::MRK_FloatMax) + Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); + else + Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); + + Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); + return Select; +} + +bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, + ConstantInt *&StepValue) { + Type *PhiTy = Phi->getType(); + // We only handle integer and pointer inductions variables. + if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) + return false; + + // Check that the PHI is consecutive. + const SCEV *PhiScev = SE->getSCEV(Phi); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); + if (!AR) { + DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); + return false; + } + + const SCEV *Step = AR->getStepRecurrence(*SE); + // Calculate the pointer stride and check if it is consecutive. + const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); + if (!C) + return false; + + ConstantInt *CV = C->getValue(); + if (PhiTy->isIntegerTy()) { + StepValue = CV; + return true; + } + + assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); + Type *PointerElementType = PhiTy->getPointerElementType(); + // The pointer stride cannot be determined if the pointer element type is not + // sized. + if (!PointerElementType->isSized()) + return false; + + const DataLayout &DL = Phi->getModule()->getDataLayout(); + int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); + if (!Size) + return false; + + int64_t CVSize = CV->getSExtValue(); + if (CVSize % Size) + return false; + StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); + return true; +} |