diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp | 729 |
1 files changed, 729 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp new file mode 100644 index 0000000..fa958e9 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp @@ -0,0 +1,729 @@ +//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines common loop utility functions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Utils/LoopUtils.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "loop-utils" + +bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, + SmallPtrSetImpl<Instruction *> &Set) { + for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) + if (!Set.count(dyn_cast<Instruction>(*Use))) + return false; + return true; +} + +bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { + switch (Kind) { + default: + break; + case RK_IntegerAdd: + case RK_IntegerMult: + case RK_IntegerOr: + case RK_IntegerAnd: + case RK_IntegerXor: + case RK_IntegerMinMax: + return true; + } + return false; +} + +bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { + return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); +} + +bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { + switch (Kind) { + default: + break; + case RK_IntegerAdd: + case RK_IntegerMult: + case RK_FloatAdd: + case RK_FloatMult: + return true; + } + return false; +} + +Instruction * +RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, + SmallPtrSetImpl<Instruction *> &Visited, + SmallPtrSetImpl<Instruction *> &CI) { + if (!Phi->hasOneUse()) + return Phi; + + const APInt *M = nullptr; + Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); + + // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT + // with a new integer type of the corresponding bit width. + if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), + m_And(m_APInt(M), m_Instruction(I))))) { + int32_t Bits = (*M + 1).exactLogBase2(); + if (Bits > 0) { + RT = IntegerType::get(Phi->getContext(), Bits); + Visited.insert(Phi); + CI.insert(J); + return J; + } + } + return Phi; +} + +bool RecurrenceDescriptor::getSourceExtensionKind( + Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, + SmallPtrSetImpl<Instruction *> &Visited, + SmallPtrSetImpl<Instruction *> &CI) { + + SmallVector<Instruction *, 8> Worklist; + bool FoundOneOperand = false; + unsigned DstSize = RT->getPrimitiveSizeInBits(); + Worklist.push_back(Exit); + + // Traverse the instructions in the reduction expression, beginning with the + // exit value. + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + for (Use &U : I->operands()) { + + // Terminate the traversal if the operand is not an instruction, or we + // reach the starting value. + Instruction *J = dyn_cast<Instruction>(U.get()); + if (!J || J == Start) + continue; + + // Otherwise, investigate the operation if it is also in the expression. + if (Visited.count(J)) { + Worklist.push_back(J); + continue; + } + + // If the operand is not in Visited, it is not a reduction operation, but + // it does feed into one. Make sure it is either a single-use sign- or + // zero-extend instruction. + CastInst *Cast = dyn_cast<CastInst>(J); + bool IsSExtInst = isa<SExtInst>(J); + if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) + return false; + + // Ensure the source type of the extend is no larger than the reduction + // type. It is not necessary for the types to be identical. + unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); + if (SrcSize > DstSize) + return false; + + // Furthermore, ensure that all such extends are of the same kind. + if (FoundOneOperand) { + if (IsSigned != IsSExtInst) + return false; + } else { + FoundOneOperand = true; + IsSigned = IsSExtInst; + } + + // Lastly, if the source type of the extend matches the reduction type, + // add the extend to CI so that we can avoid accounting for it in the + // cost model. + if (SrcSize == DstSize) + CI.insert(Cast); + } + } + return true; +} + +bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, + Loop *TheLoop, bool HasFunNoNaNAttr, + RecurrenceDescriptor &RedDes) { + if (Phi->getNumIncomingValues() != 2) + return false; + + // Reduction variables are only found in the loop header block. + if (Phi->getParent() != TheLoop->getHeader()) + return false; + + // Obtain the reduction start value from the value that comes from the loop + // preheader. + Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); + + // ExitInstruction is the single value which is used outside the loop. + // We only allow for a single reduction value to be used outside the loop. + // This includes users of the reduction, variables (which form a cycle + // which ends in the phi node). + Instruction *ExitInstruction = nullptr; + // Indicates that we found a reduction operation in our scan. + bool FoundReduxOp = false; + + // We start with the PHI node and scan for all of the users of this + // instruction. All users must be instructions that can be used as reduction + // variables (such as ADD). We must have a single out-of-block user. The cycle + // must include the original PHI. + bool FoundStartPHI = false; + + // To recognize min/max patterns formed by a icmp select sequence, we store + // the number of instruction we saw from the recognized min/max pattern, + // to make sure we only see exactly the two instructions. + unsigned NumCmpSelectPatternInst = 0; + InstDesc ReduxDesc(false, nullptr); + + // Data used for determining if the recurrence has been type-promoted. + Type *RecurrenceType = Phi->getType(); + SmallPtrSet<Instruction *, 4> CastInsts; + Instruction *Start = Phi; + bool IsSigned = false; + + SmallPtrSet<Instruction *, 8> VisitedInsts; + SmallVector<Instruction *, 8> Worklist; + + // Return early if the recurrence kind does not match the type of Phi. If the + // recurrence kind is arithmetic, we attempt to look through AND operations + // resulting from the type promotion performed by InstCombine. Vector + // operations are not limited to the legal integer widths, so we may be able + // to evaluate the reduction in the narrower width. + if (RecurrenceType->isFloatingPointTy()) { + if (!isFloatingPointRecurrenceKind(Kind)) + return false; + } else { + if (!isIntegerRecurrenceKind(Kind)) + return false; + if (isArithmeticRecurrenceKind(Kind)) + Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); + } + + Worklist.push_back(Start); + VisitedInsts.insert(Start); + + // A value in the reduction can be used: + // - By the reduction: + // - Reduction operation: + // - One use of reduction value (safe). + // - Multiple use of reduction value (not safe). + // - PHI: + // - All uses of the PHI must be the reduction (safe). + // - Otherwise, not safe. + // - By one instruction outside of the loop (safe). + // - By further instructions outside of the loop (not safe). + // - By an instruction that is not part of the reduction (not safe). + // This is either: + // * An instruction type other than PHI or the reduction operation. + // * A PHI in the header other than the initial PHI. + while (!Worklist.empty()) { + Instruction *Cur = Worklist.back(); + Worklist.pop_back(); + + // No Users. + // If the instruction has no users then this is a broken chain and can't be + // a reduction variable. + if (Cur->use_empty()) + return false; + + bool IsAPhi = isa<PHINode>(Cur); + + // A header PHI use other than the original PHI. + if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) + return false; + + // Reductions of instructions such as Div, and Sub is only possible if the + // LHS is the reduction variable. + if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && + !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && + !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) + return false; + + // Any reduction instruction must be of one of the allowed kinds. We ignore + // the starting value (the Phi or an AND instruction if the Phi has been + // type-promoted). + if (Cur != Start) { + ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); + if (!ReduxDesc.isRecurrence()) + return false; + } + + // A reduction operation must only have one use of the reduction value. + if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && + hasMultipleUsesOf(Cur, VisitedInsts)) + return false; + + // All inputs to a PHI node must be a reduction value. + if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) + return false; + + if (Kind == RK_IntegerMinMax && + (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) + ++NumCmpSelectPatternInst; + if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) + ++NumCmpSelectPatternInst; + + // Check whether we found a reduction operator. + FoundReduxOp |= !IsAPhi && Cur != Start; + + // Process users of current instruction. Push non-PHI nodes after PHI nodes + // onto the stack. This way we are going to have seen all inputs to PHI + // nodes once we get to them. + SmallVector<Instruction *, 8> NonPHIs; + SmallVector<Instruction *, 8> PHIs; + for (User *U : Cur->users()) { + Instruction *UI = cast<Instruction>(U); + + // Check if we found the exit user. + BasicBlock *Parent = UI->getParent(); + if (!TheLoop->contains(Parent)) { + // Exit if you find multiple outside users or if the header phi node is + // being used. In this case the user uses the value of the previous + // iteration, in which case we would loose "VF-1" iterations of the + // reduction operation if we vectorize. + if (ExitInstruction != nullptr || Cur == Phi) + return false; + + // The instruction used by an outside user must be the last instruction + // before we feed back to the reduction phi. Otherwise, we loose VF-1 + // operations on the value. + if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) + return false; + + ExitInstruction = Cur; + continue; + } + + // Process instructions only once (termination). Each reduction cycle + // value must only be used once, except by phi nodes and min/max + // reductions which are represented as a cmp followed by a select. + InstDesc IgnoredVal(false, nullptr); + if (VisitedInsts.insert(UI).second) { + if (isa<PHINode>(UI)) + PHIs.push_back(UI); + else + NonPHIs.push_back(UI); + } else if (!isa<PHINode>(UI) && + ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && + !isa<SelectInst>(UI)) || + !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) + return false; + + // Remember that we completed the cycle. + if (UI == Phi) + FoundStartPHI = true; + } + Worklist.append(PHIs.begin(), PHIs.end()); + Worklist.append(NonPHIs.begin(), NonPHIs.end()); + } + + // This means we have seen one but not the other instruction of the + // pattern or more than just a select and cmp. + if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && + NumCmpSelectPatternInst != 2) + return false; + + if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) + return false; + + // If we think Phi may have been type-promoted, we also need to ensure that + // all source operands of the reduction are either SExtInsts or ZEstInsts. If + // so, we will be able to evaluate the reduction in the narrower bit width. + if (Start != Phi) + if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, + IsSigned, VisitedInsts, CastInsts)) + return false; + + // We found a reduction var if we have reached the original phi node and we + // only have a single instruction with out-of-loop users. + + // The ExitInstruction(Instruction which is allowed to have out-of-loop users) + // is saved as part of the RecurrenceDescriptor. + + // Save the description of this reduction variable. + RecurrenceDescriptor RD( + RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), + ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); + RedDes = RD; + + return true; +} + +/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction +/// pattern corresponding to a min(X, Y) or max(X, Y). +RecurrenceDescriptor::InstDesc +RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { + + assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && + "Expect a select instruction"); + Instruction *Cmp = nullptr; + SelectInst *Select = nullptr; + + // We must handle the select(cmp()) as a single instruction. Advance to the + // select. + if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { + if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) + return InstDesc(false, I); + return InstDesc(Select, Prev.getMinMaxKind()); + } + + // Only handle single use cases for now. + if (!(Select = dyn_cast<SelectInst>(I))) + return InstDesc(false, I); + if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && + !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) + return InstDesc(false, I); + if (!Cmp->hasOneUse()) + return InstDesc(false, I); + + Value *CmpLeft; + Value *CmpRight; + + // Look for a min/max pattern. + if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_UIntMin); + else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_UIntMax); + else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_SIntMax); + else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_SIntMin); + else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_FloatMin); + else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_FloatMax); + else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_FloatMin); + else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) + return InstDesc(Select, MRK_FloatMax); + + return InstDesc(false, I); +} + +RecurrenceDescriptor::InstDesc +RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, + InstDesc &Prev, bool HasFunNoNaNAttr) { + bool FP = I->getType()->isFloatingPointTy(); + Instruction *UAI = Prev.getUnsafeAlgebraInst(); + if (!UAI && FP && !I->hasUnsafeAlgebra()) + UAI = I; // Found an unsafe (unvectorizable) algebra instruction. + + switch (I->getOpcode()) { + default: + return InstDesc(false, I); + case Instruction::PHI: + return InstDesc(I, Prev.getMinMaxKind()); + case Instruction::Sub: + case Instruction::Add: + return InstDesc(Kind == RK_IntegerAdd, I); + case Instruction::Mul: + return InstDesc(Kind == RK_IntegerMult, I); + case Instruction::And: + return InstDesc(Kind == RK_IntegerAnd, I); + case Instruction::Or: + return InstDesc(Kind == RK_IntegerOr, I); + case Instruction::Xor: + return InstDesc(Kind == RK_IntegerXor, I); + case Instruction::FMul: + return InstDesc(Kind == RK_FloatMult, I, UAI); + case Instruction::FSub: + case Instruction::FAdd: + return InstDesc(Kind == RK_FloatAdd, I, UAI); + case Instruction::FCmp: + case Instruction::ICmp: + case Instruction::Select: + if (Kind != RK_IntegerMinMax && + (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) + return InstDesc(false, I); + return isMinMaxSelectCmpPattern(I, Prev); + } +} + +bool RecurrenceDescriptor::hasMultipleUsesOf( + Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { + unsigned NumUses = 0; + for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; + ++Use) { + if (Insts.count(dyn_cast<Instruction>(*Use))) + ++NumUses; + if (NumUses > 1) + return true; + } + + return false; +} +bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, + RecurrenceDescriptor &RedDes) { + + bool HasFunNoNaNAttr = false; + BasicBlock *Header = TheLoop->getHeader(); + Function &F = *Header->getParent(); + if (F.hasFnAttribute("no-nans-fp-math")) + HasFunNoNaNAttr = + F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; + + if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, + RedDes)) { + DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); + return true; + } + if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { + DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); + return true; + } + // Not a reduction of known type. + return false; +} + +/// This function returns the identity element (or neutral element) for +/// the operation K. +Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, + Type *Tp) { + switch (K) { + case RK_IntegerXor: + case RK_IntegerAdd: + case RK_IntegerOr: + // Adding, Xoring, Oring zero to a number does not change it. + return ConstantInt::get(Tp, 0); + case RK_IntegerMult: + // Multiplying a number by 1 does not change it. + return ConstantInt::get(Tp, 1); + case RK_IntegerAnd: + // AND-ing a number with an all-1 value does not change it. + return ConstantInt::get(Tp, -1, true); + case RK_FloatMult: + // Multiplying a number by 1 does not change it. + return ConstantFP::get(Tp, 1.0L); + case RK_FloatAdd: + // Adding zero to a number does not change it. + return ConstantFP::get(Tp, 0.0L); + default: + llvm_unreachable("Unknown recurrence kind"); + } +} + +/// This function translates the recurrence kind to an LLVM binary operator. +unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { + switch (Kind) { + case RK_IntegerAdd: + return Instruction::Add; + case RK_IntegerMult: + return Instruction::Mul; + case RK_IntegerOr: + return Instruction::Or; + case RK_IntegerAnd: + return Instruction::And; + case RK_IntegerXor: + return Instruction::Xor; + case RK_FloatMult: + return Instruction::FMul; + case RK_FloatAdd: + return Instruction::FAdd; + case RK_IntegerMinMax: + return Instruction::ICmp; + case RK_FloatMinMax: + return Instruction::FCmp; + default: + llvm_unreachable("Unknown recurrence operation"); + } +} + +Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, + MinMaxRecurrenceKind RK, + Value *Left, Value *Right) { + CmpInst::Predicate P = CmpInst::ICMP_NE; + switch (RK) { + default: + llvm_unreachable("Unknown min/max recurrence kind"); + case MRK_UIntMin: + P = CmpInst::ICMP_ULT; + break; + case MRK_UIntMax: + P = CmpInst::ICMP_UGT; + break; + case MRK_SIntMin: + P = CmpInst::ICMP_SLT; + break; + case MRK_SIntMax: + P = CmpInst::ICMP_SGT; + break; + case MRK_FloatMin: + P = CmpInst::FCMP_OLT; + break; + case MRK_FloatMax: + P = CmpInst::FCMP_OGT; + break; + } + + // We only match FP sequences with unsafe algebra, so we can unconditionally + // set it on any generated instructions. + IRBuilder<>::FastMathFlagGuard FMFG(Builder); + FastMathFlags FMF; + FMF.setUnsafeAlgebra(); + Builder.setFastMathFlags(FMF); + + Value *Cmp; + if (RK == MRK_FloatMin || RK == MRK_FloatMax) + Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); + else + Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); + + Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); + return Select; +} + +InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, + ConstantInt *Step) + : StartValue(Start), IK(K), StepValue(Step) { + assert(IK != IK_NoInduction && "Not an induction"); + assert(StartValue && "StartValue is null"); + assert(StepValue && !StepValue->isZero() && "StepValue is zero"); + assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && + "StartValue is not a pointer for pointer induction"); + assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && + "StartValue is not an integer for integer induction"); + assert(StepValue->getType()->isIntegerTy() && + "StepValue is not an integer"); +} + +int InductionDescriptor::getConsecutiveDirection() const { + if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) + return StepValue->getSExtValue(); + return 0; +} + +Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const { + switch (IK) { + case IK_IntInduction: + assert(Index->getType() == StartValue->getType() && + "Index type does not match StartValue type"); + if (StepValue->isMinusOne()) + return B.CreateSub(StartValue, Index); + if (!StepValue->isOne()) + Index = B.CreateMul(Index, StepValue); + return B.CreateAdd(StartValue, Index); + + case IK_PtrInduction: + assert(Index->getType() == StepValue->getType() && + "Index type does not match StepValue type"); + if (StepValue->isMinusOne()) + Index = B.CreateNeg(Index); + else if (!StepValue->isOne()) + Index = B.CreateMul(Index, StepValue); + return B.CreateGEP(nullptr, StartValue, Index); + + case IK_NoInduction: + return nullptr; + } + llvm_unreachable("invalid enum"); +} + +bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, + InductionDescriptor &D) { + Type *PhiTy = Phi->getType(); + // We only handle integer and pointer inductions variables. + if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) + return false; + + // Check that the PHI is consecutive. + const SCEV *PhiScev = SE->getSCEV(Phi); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); + if (!AR) { + DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); + return false; + } + + assert(AR->getLoop()->getHeader() == Phi->getParent() && + "PHI is an AddRec for a different loop?!"); + Value *StartValue = + Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); + const SCEV *Step = AR->getStepRecurrence(*SE); + // Calculate the pointer stride and check if it is consecutive. + const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); + if (!C) + return false; + + ConstantInt *CV = C->getValue(); + if (PhiTy->isIntegerTy()) { + D = InductionDescriptor(StartValue, IK_IntInduction, CV); + return true; + } + + assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); + Type *PointerElementType = PhiTy->getPointerElementType(); + // The pointer stride cannot be determined if the pointer element type is not + // sized. + if (!PointerElementType->isSized()) + return false; + + const DataLayout &DL = Phi->getModule()->getDataLayout(); + int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); + if (!Size) + return false; + + int64_t CVSize = CV->getSExtValue(); + if (CVSize % Size) + return false; + auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); + + D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); + return true; +} + +/// \brief Returns the instructions that use values defined in the loop. +SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { + SmallVector<Instruction *, 8> UsedOutside; + + for (auto *Block : L->getBlocks()) + // FIXME: I believe that this could use copy_if if the Inst reference could + // be adapted into a pointer. + for (auto &Inst : *Block) { + auto Users = Inst.users(); + if (std::any_of(Users.begin(), Users.end(), [&](User *U) { + auto *Use = cast<Instruction>(U); + return !L->contains(Use->getParent()); + })) + UsedOutside.push_back(&Inst); + } + + return UsedOutside; +} |