diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp new file mode 100644 index 0000000..842cf31 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp @@ -0,0 +1,414 @@ +//===-- UnrollLoopPeel.cpp - Loop peeling utilities -----------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements some loop unrolling utilities for peeling loops +// with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for +// unrolling loops with compile-time constant trip counts. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +#include <algorithm> + +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" +STATISTIC(NumPeeled, "Number of loops peeled"); + +static cl::opt<unsigned> UnrollPeelMaxCount( + "unroll-peel-max-count", cl::init(7), cl::Hidden, + cl::desc("Max average trip count which will cause loop peeling.")); + +static cl::opt<unsigned> UnrollForcePeelCount( + "unroll-force-peel-count", cl::init(0), cl::Hidden, + cl::desc("Force a peel count regardless of profiling information.")); + +// Check whether we are capable of peeling this loop. +static bool canPeel(Loop *L) { + // Make sure the loop is in simplified form + if (!L->isLoopSimplifyForm()) + return false; + + // Only peel loops that contain a single exit + if (!L->getExitingBlock() || !L->getUniqueExitBlock()) + return false; + + return true; +} + +// Return the number of iterations we want to peel off. +void llvm::computePeelCount(Loop *L, unsigned LoopSize, + TargetTransformInfo::UnrollingPreferences &UP) { + UP.PeelCount = 0; + if (!canPeel(L)) + return; + + // Only try to peel innermost loops. + if (!L->empty()) + return; + + // If the user provided a peel count, use that. + bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; + if (UserPeelCount) { + DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount + << " iterations.\n"); + UP.PeelCount = UnrollForcePeelCount; + return; + } + + // If we don't know the trip count, but have reason to believe the average + // trip count is low, peeling should be beneficial, since we will usually + // hit the peeled section. + // We only do this in the presence of profile information, since otherwise + // our estimates of the trip count are not reliable enough. + if (UP.AllowPeeling && L->getHeader()->getParent()->getEntryCount()) { + Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); + if (!PeelCount) + return; + + DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount + << "\n"); + + if (*PeelCount) { + if ((*PeelCount <= UnrollPeelMaxCount) && + (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { + DEBUG(dbgs() << "Peeling first " << *PeelCount << " iterations.\n"); + UP.PeelCount = *PeelCount; + return; + } + DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); + DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); + DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) << "\n"); + DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); + } + } + + return; +} + +/// \brief Update the branch weights of the latch of a peeled-off loop +/// iteration. +/// This sets the branch weights for the latch of the recently peeled off loop +/// iteration correctly. +/// Our goal is to make sure that: +/// a) The total weight of all the copies of the loop body is preserved. +/// b) The total weight of the loop exit is preserved. +/// c) The body weight is reasonably distributed between the peeled iterations. +/// +/// \param Header The copy of the header block that belongs to next iteration. +/// \param LatchBR The copy of the latch branch that belongs to this iteration. +/// \param IterNumber The serial number of the iteration that was just +/// peeled off. +/// \param AvgIters The average number of iterations we expect the loop to have. +/// \param[in,out] PeeledHeaderWeight The total number of dynamic loop +/// iterations that are unaccounted for. As an input, it represents the number +/// of times we expect to enter the header of the iteration currently being +/// peeled off. The output is the number of times we expect to enter the +/// header of the next iteration. +static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, + unsigned IterNumber, unsigned AvgIters, + uint64_t &PeeledHeaderWeight) { + + // FIXME: Pick a more realistic distribution. + // Currently the proportion of weight we assign to the fall-through + // side of the branch drops linearly with the iteration number, and we use + // a 0.9 fudge factor to make the drop-off less sharp... + if (PeeledHeaderWeight) { + uint64_t FallThruWeight = + PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9); + uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight; + PeeledHeaderWeight -= ExitWeight; + + unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); + MDBuilder MDB(LatchBR->getContext()); + MDNode *WeightNode = + HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight) + : MDB.createBranchWeights(FallThruWeight, ExitWeight); + LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); + } +} + +/// \brief Clones the body of the loop L, putting it between \p InsertTop and \p +/// InsertBot. +/// \param IterNumber The serial number of the iteration currently being +/// peeled off. +/// \param Exit The exit block of the original loop. +/// \param[out] NewBlocks A list of the the blocks in the newly created clone +/// \param[out] VMap The value map between the loop and the new clone. +/// \param LoopBlocks A helper for DFS-traversal of the loop. +/// \param LVMap A value-map that maps instructions from the original loop to +/// instructions in the last peeled-off iteration. +static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop, + BasicBlock *InsertBot, BasicBlock *Exit, + SmallVectorImpl<BasicBlock *> &NewBlocks, + LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, + ValueToValueMapTy &LVMap, LoopInfo *LI) { + + BasicBlock *Header = L->getHeader(); + BasicBlock *Latch = L->getLoopLatch(); + BasicBlock *PreHeader = L->getLoopPreheader(); + + Function *F = Header->getParent(); + LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); + LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); + Loop *ParentLoop = L->getParentLoop(); + + // For each block in the original loop, create a new copy, + // and update the value map with the newly created values. + for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { + BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); + NewBlocks.push_back(NewBB); + + if (ParentLoop) + ParentLoop->addBasicBlockToLoop(NewBB, *LI); + + VMap[*BB] = NewBB; + } + + // Hook-up the control flow for the newly inserted blocks. + // The new header is hooked up directly to the "top", which is either + // the original loop preheader (for the first iteration) or the previous + // iteration's exiting block (for every other iteration) + InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); + + // Similarly, for the latch: + // The original exiting edge is still hooked up to the loop exit. + // The backedge now goes to the "bottom", which is either the loop's real + // header (for the last peeled iteration) or the copied header of the next + // iteration (for every other iteration) + BranchInst *LatchBR = + cast<BranchInst>(cast<BasicBlock>(VMap[Latch])->getTerminator()); + unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); + LatchBR->setSuccessor(HeaderIdx, InsertBot); + LatchBR->setSuccessor(1 - HeaderIdx, Exit); + + // The new copy of the loop body starts with a bunch of PHI nodes + // that pick an incoming value from either the preheader, or the previous + // loop iteration. Since this copy is no longer part of the loop, we + // resolve this statically: + // For the first iteration, we use the value from the preheader directly. + // For any other iteration, we replace the phi with the value generated by + // the immediately preceding clone of the loop body (which represents + // the previous iteration). + for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { + PHINode *NewPHI = cast<PHINode>(VMap[&*I]); + if (IterNumber == 0) { + VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); + } else { + Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); + Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); + if (LatchInst && L->contains(LatchInst)) + VMap[&*I] = LVMap[LatchInst]; + else + VMap[&*I] = LatchVal; + } + cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); + } + + // Fix up the outgoing values - we need to add a value for the iteration + // we've just created. Note that this must happen *after* the incoming + // values are adjusted, since the value going out of the latch may also be + // a value coming into the header. + for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) { + PHINode *PHI = cast<PHINode>(I); + Value *LatchVal = PHI->getIncomingValueForBlock(Latch); + Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); + if (LatchInst && L->contains(LatchInst)) + LatchVal = VMap[LatchVal]; + PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch])); + } + + // LastValueMap is updated with the values for the current loop + // which are used the next time this function is called. + for (const auto &KV : VMap) + LVMap[KV.first] = KV.second; +} + +/// \brief Peel off the first \p PeelCount iterations of loop \p L. +/// +/// Note that this does not peel them off as a single straight-line block. +/// Rather, each iteration is peeled off separately, and needs to check the +/// exit condition. +/// For loops that dynamically execute \p PeelCount iterations or less +/// this provides a benefit, since the peeled off iterations, which account +/// for the bulk of dynamic execution, can be further simplified by scalar +/// optimizations. +bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, + ScalarEvolution *SE, DominatorTree *DT, + bool PreserveLCSSA) { + if (!canPeel(L)) + return false; + + LoopBlocksDFS LoopBlocks(L); + LoopBlocks.perform(LI); + + BasicBlock *Header = L->getHeader(); + BasicBlock *PreHeader = L->getLoopPreheader(); + BasicBlock *Latch = L->getLoopLatch(); + BasicBlock *Exit = L->getUniqueExitBlock(); + + Function *F = Header->getParent(); + + // Set up all the necessary basic blocks. It is convenient to split the + // preheader into 3 parts - two blocks to anchor the peeled copy of the loop + // body, and a new preheader for the "real" loop. + + // Peeling the first iteration transforms. + // + // PreHeader: + // ... + // Header: + // LoopBody + // If (cond) goto Header + // Exit: + // + // into + // + // InsertTop: + // LoopBody + // If (!cond) goto Exit + // InsertBot: + // NewPreHeader: + // ... + // Header: + // LoopBody + // If (cond) goto Header + // Exit: + // + // Each following iteration will split the current bottom anchor in two, + // and put the new copy of the loop body between these two blocks. That is, + // after peeling another iteration from the example above, we'll split + // InsertBot, and get: + // + // InsertTop: + // LoopBody + // If (!cond) goto Exit + // InsertBot: + // LoopBody + // If (!cond) goto Exit + // InsertBot.next: + // NewPreHeader: + // ... + // Header: + // LoopBody + // If (cond) goto Header + // Exit: + + BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); + BasicBlock *InsertBot = + SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); + BasicBlock *NewPreHeader = + SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); + + InsertTop->setName(Header->getName() + ".peel.begin"); + InsertBot->setName(Header->getName() + ".peel.next"); + NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); + + ValueToValueMapTy LVMap; + + // If we have branch weight information, we'll want to update it for the + // newly created branches. + BranchInst *LatchBR = + cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); + unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); + + uint64_t TrueWeight, FalseWeight; + uint64_t ExitWeight = 0, CurHeaderWeight = 0; + if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { + ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; + // The # of times the loop body executes is the sum of the exit block + // weight and the # of times the backedges are taken. + CurHeaderWeight = TrueWeight + FalseWeight; + } + + // For each peeled-off iteration, make a copy of the loop. + for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { + SmallVector<BasicBlock *, 8> NewBlocks; + ValueToValueMapTy VMap; + + // Subtract the exit weight from the current header weight -- the exit + // weight is exactly the weight of the previous iteration's header. + // FIXME: due to the way the distribution is constructed, we need a + // guard here to make sure we don't end up with non-positive weights. + if (ExitWeight < CurHeaderWeight) + CurHeaderWeight -= ExitWeight; + else + CurHeaderWeight = 1; + + cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit, + NewBlocks, LoopBlocks, VMap, LVMap, LI); + updateBranchWeights(InsertBot, cast<BranchInst>(VMap[LatchBR]), Iter, + PeelCount, ExitWeight); + + InsertTop = InsertBot; + InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); + InsertBot->setName(Header->getName() + ".peel.next"); + + F->getBasicBlockList().splice(InsertTop->getIterator(), + F->getBasicBlockList(), + NewBlocks[0]->getIterator(), F->end()); + + // Remap to use values from the current iteration instead of the + // previous one. + remapInstructionsInBlocks(NewBlocks, VMap); + } + + // Now adjust the phi nodes in the loop header to get their initial values + // from the last peeled-off iteration instead of the preheader. + for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { + PHINode *PHI = cast<PHINode>(I); + Value *NewVal = PHI->getIncomingValueForBlock(Latch); + Instruction *LatchInst = dyn_cast<Instruction>(NewVal); + if (LatchInst && L->contains(LatchInst)) + NewVal = LVMap[LatchInst]; + + PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal); + } + + // Adjust the branch weights on the loop exit. + if (ExitWeight) { + // The backedge count is the difference of current header weight and + // current loop exit weight. If the current header weight is smaller than + // the current loop exit weight, we mark the loop backedge weight as 1. + uint64_t BackEdgeWeight = 0; + if (ExitWeight < CurHeaderWeight) + BackEdgeWeight = CurHeaderWeight - ExitWeight; + else + BackEdgeWeight = 1; + MDBuilder MDB(LatchBR->getContext()); + MDNode *WeightNode = + HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) + : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); + LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); + } + + // If the loop is nested, we changed the parent loop, update SE. + if (Loop *ParentLoop = L->getParentLoop()) + SE->forgetLoop(ParentLoop); + + NumPeeled++; + + return true; +} |