summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/Local.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Local.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Local.cpp746
1 files changed, 746 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp
new file mode 100644
index 0000000..d03f7a6
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp
@@ -0,0 +1,746 @@
+//===-- Local.cpp - Functions to perform local transformations ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions perform various local transformations to the
+// program.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Constants.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Local analysis.
+//
+
+/// getUnderlyingObjectWithOffset - Strip off up to MaxLookup GEPs and
+/// bitcasts to get back to the underlying object being addressed, keeping
+/// track of the offset in bytes from the GEPs relative to the result.
+/// This is closely related to Value::getUnderlyingObject but is located
+/// here to avoid making VMCore depend on TargetData.
+static Value *getUnderlyingObjectWithOffset(Value *V, const TargetData *TD,
+ uint64_t &ByteOffset,
+ unsigned MaxLookup = 6) {
+ if (!V->getType()->isPointerTy())
+ return V;
+ for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ if (!GEP->hasAllConstantIndices())
+ return V;
+ SmallVector<Value*, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
+ ByteOffset += TD->getIndexedOffset(GEP->getPointerOperandType(),
+ &Indices[0], Indices.size());
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden())
+ return V;
+ V = GA->getAliasee();
+ } else {
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ }
+ return V;
+}
+
+/// isSafeToLoadUnconditionally - Return true if we know that executing a load
+/// from this value cannot trap. If it is not obviously safe to load from the
+/// specified pointer, we do a quick local scan of the basic block containing
+/// ScanFrom, to determine if the address is already accessed.
+bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
+ unsigned Align, const TargetData *TD) {
+ uint64_t ByteOffset = 0;
+ Value *Base = V;
+ if (TD)
+ Base = getUnderlyingObjectWithOffset(V, TD, ByteOffset);
+
+ const Type *BaseType = 0;
+ unsigned BaseAlign = 0;
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
+ // An alloca is safe to load from as load as it is suitably aligned.
+ BaseType = AI->getAllocatedType();
+ BaseAlign = AI->getAlignment();
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Base)) {
+ // Global variables are safe to load from but their size cannot be
+ // guaranteed if they are overridden.
+ if (!isa<GlobalAlias>(GV) && !GV->mayBeOverridden()) {
+ BaseType = GV->getType()->getElementType();
+ BaseAlign = GV->getAlignment();
+ }
+ }
+
+ if (BaseType && BaseType->isSized()) {
+ if (TD && BaseAlign == 0)
+ BaseAlign = TD->getPrefTypeAlignment(BaseType);
+
+ if (Align <= BaseAlign) {
+ if (!TD)
+ return true; // Loading directly from an alloca or global is OK.
+
+ // Check if the load is within the bounds of the underlying object.
+ const PointerType *AddrTy = cast<PointerType>(V->getType());
+ uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
+ if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
+ (Align == 0 || (ByteOffset % Align) == 0))
+ return true;
+ }
+ }
+
+ // Otherwise, be a little bit aggressive by scanning the local block where we
+ // want to check to see if the pointer is already being loaded or stored
+ // from/to. If so, the previous load or store would have already trapped,
+ // so there is no harm doing an extra load (also, CSE will later eliminate
+ // the load entirely).
+ BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
+
+ while (BBI != E) {
+ --BBI;
+
+ // If we see a free or a call which may write to memory (i.e. which might do
+ // a free) the pointer could be marked invalid.
+ if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
+ !isa<DbgInfoIntrinsic>(BBI))
+ return false;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+ if (LI->getOperand(0) == V) return true;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
+ if (SI->getOperand(1) == V) return true;
+ }
+ }
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Local constant propagation.
+//
+
+// ConstantFoldTerminator - If a terminator instruction is predicated on a
+// constant value, convert it into an unconditional branch to the constant
+// destination.
+//
+bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
+ TerminatorInst *T = BB->getTerminator();
+
+ // Branch - See if we are conditional jumping on constant
+ if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
+ if (BI->isUnconditional()) return false; // Can't optimize uncond branch
+ BasicBlock *Dest1 = BI->getSuccessor(0);
+ BasicBlock *Dest2 = BI->getSuccessor(1);
+
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
+ // Are we branching on constant?
+ // YES. Change to unconditional branch...
+ BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
+ BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
+
+ //cerr << "Function: " << T->getParent()->getParent()
+ // << "\nRemoving branch from " << T->getParent()
+ // << "\n\nTo: " << OldDest << endl;
+
+ // Let the basic block know that we are letting go of it. Based on this,
+ // it will adjust it's PHI nodes.
+ assert(BI->getParent() && "Terminator not inserted in block!");
+ OldDest->removePredecessor(BI->getParent());
+
+ // Set the unconditional destination, and change the insn to be an
+ // unconditional branch.
+ BI->setUnconditionalDest(Destination);
+ return true;
+ }
+
+ if (Dest2 == Dest1) { // Conditional branch to same location?
+ // This branch matches something like this:
+ // br bool %cond, label %Dest, label %Dest
+ // and changes it into: br label %Dest
+
+ // Let the basic block know that we are letting go of one copy of it.
+ assert(BI->getParent() && "Terminator not inserted in block!");
+ Dest1->removePredecessor(BI->getParent());
+
+ // Change a conditional branch to unconditional.
+ BI->setUnconditionalDest(Dest1);
+ return true;
+ }
+ return false;
+ }
+
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
+ // If we are switching on a constant, we can convert the switch into a
+ // single branch instruction!
+ ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
+ BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
+ BasicBlock *DefaultDest = TheOnlyDest;
+ assert(TheOnlyDest == SI->getDefaultDest() &&
+ "Default destination is not successor #0?");
+
+ // Figure out which case it goes to.
+ for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
+ // Found case matching a constant operand?
+ if (SI->getSuccessorValue(i) == CI) {
+ TheOnlyDest = SI->getSuccessor(i);
+ break;
+ }
+
+ // Check to see if this branch is going to the same place as the default
+ // dest. If so, eliminate it as an explicit compare.
+ if (SI->getSuccessor(i) == DefaultDest) {
+ // Remove this entry.
+ DefaultDest->removePredecessor(SI->getParent());
+ SI->removeCase(i);
+ --i; --e; // Don't skip an entry...
+ continue;
+ }
+
+ // Otherwise, check to see if the switch only branches to one destination.
+ // We do this by reseting "TheOnlyDest" to null when we find two non-equal
+ // destinations.
+ if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
+ }
+
+ if (CI && !TheOnlyDest) {
+ // Branching on a constant, but not any of the cases, go to the default
+ // successor.
+ TheOnlyDest = SI->getDefaultDest();
+ }
+
+ // If we found a single destination that we can fold the switch into, do so
+ // now.
+ if (TheOnlyDest) {
+ // Insert the new branch.
+ BranchInst::Create(TheOnlyDest, SI);
+ BasicBlock *BB = SI->getParent();
+
+ // Remove entries from PHI nodes which we no longer branch to...
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
+ // Found case matching a constant operand?
+ BasicBlock *Succ = SI->getSuccessor(i);
+ if (Succ == TheOnlyDest)
+ TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
+ else
+ Succ->removePredecessor(BB);
+ }
+
+ // Delete the old switch.
+ BB->getInstList().erase(SI);
+ return true;
+ }
+
+ if (SI->getNumSuccessors() == 2) {
+ // Otherwise, we can fold this switch into a conditional branch
+ // instruction if it has only one non-default destination.
+ Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
+ SI->getSuccessorValue(1), "cond");
+ // Insert the new branch.
+ BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
+
+ // Delete the old switch.
+ SI->eraseFromParent();
+ return true;
+ }
+ return false;
+ }
+
+ if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
+ // indirectbr blockaddress(@F, @BB) -> br label @BB
+ if (BlockAddress *BA =
+ dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
+ BasicBlock *TheOnlyDest = BA->getBasicBlock();
+ // Insert the new branch.
+ BranchInst::Create(TheOnlyDest, IBI);
+
+ for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
+ if (IBI->getDestination(i) == TheOnlyDest)
+ TheOnlyDest = 0;
+ else
+ IBI->getDestination(i)->removePredecessor(IBI->getParent());
+ }
+ IBI->eraseFromParent();
+
+ // If we didn't find our destination in the IBI successor list, then we
+ // have undefined behavior. Replace the unconditional branch with an
+ // 'unreachable' instruction.
+ if (TheOnlyDest) {
+ BB->getTerminator()->eraseFromParent();
+ new UnreachableInst(BB->getContext(), BB);
+ }
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Local dead code elimination.
+//
+
+/// isInstructionTriviallyDead - Return true if the result produced by the
+/// instruction is not used, and the instruction has no side effects.
+///
+bool llvm::isInstructionTriviallyDead(Instruction *I) {
+ if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
+
+ // We don't want debug info removed by anything this general.
+ if (isa<DbgInfoIntrinsic>(I)) return false;
+
+ // Likewise for memory use markers.
+ if (isa<MemoryUseIntrinsic>(I)) return false;
+
+ if (!I->mayHaveSideEffects()) return true;
+
+ // Special case intrinsics that "may have side effects" but can be deleted
+ // when dead.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ // Safe to delete llvm.stacksave if dead.
+ if (II->getIntrinsicID() == Intrinsic::stacksave)
+ return true;
+ return false;
+}
+
+/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
+/// trivially dead instruction, delete it. If that makes any of its operands
+/// trivially dead, delete them too, recursively. Return true if any
+/// instructions were deleted.
+bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
+ return false;
+
+ SmallVector<Instruction*, 16> DeadInsts;
+ DeadInsts.push_back(I);
+
+ do {
+ I = DeadInsts.pop_back_val();
+
+ // Null out all of the instruction's operands to see if any operand becomes
+ // dead as we go.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ Value *OpV = I->getOperand(i);
+ I->setOperand(i, 0);
+
+ if (!OpV->use_empty()) continue;
+
+ // If the operand is an instruction that became dead as we nulled out the
+ // operand, and if it is 'trivially' dead, delete it in a future loop
+ // iteration.
+ if (Instruction *OpI = dyn_cast<Instruction>(OpV))
+ if (isInstructionTriviallyDead(OpI))
+ DeadInsts.push_back(OpI);
+ }
+
+ I->eraseFromParent();
+ } while (!DeadInsts.empty());
+
+ return true;
+}
+
+/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
+/// dead PHI node, due to being a def-use chain of single-use nodes that
+/// either forms a cycle or is terminated by a trivially dead instruction,
+/// delete it. If that makes any of its operands trivially dead, delete them
+/// too, recursively. Return true if the PHI node is actually deleted.
+bool
+llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
+ // We can remove a PHI if it is on a cycle in the def-use graph
+ // where each node in the cycle has degree one, i.e. only one use,
+ // and is an instruction with no side effects.
+ if (!PN->hasOneUse())
+ return false;
+
+ bool Changed = false;
+ SmallPtrSet<PHINode *, 4> PHIs;
+ PHIs.insert(PN);
+ for (Instruction *J = cast<Instruction>(*PN->use_begin());
+ J->hasOneUse() && !J->mayHaveSideEffects();
+ J = cast<Instruction>(*J->use_begin()))
+ // If we find a PHI more than once, we're on a cycle that
+ // won't prove fruitful.
+ if (PHINode *JP = dyn_cast<PHINode>(J))
+ if (!PHIs.insert(cast<PHINode>(JP))) {
+ // Break the cycle and delete the PHI and its operands.
+ JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
+ (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
+ Changed = true;
+ break;
+ }
+ return Changed;
+}
+
+/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
+/// simplify any instructions in it and recursively delete dead instructions.
+///
+/// This returns true if it changed the code, note that it can delete
+/// instructions in other blocks as well in this block.
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
+ bool MadeChange = false;
+ for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
+ Instruction *Inst = BI++;
+
+ if (Value *V = SimplifyInstruction(Inst, TD)) {
+ WeakVH BIHandle(BI);
+ ReplaceAndSimplifyAllUses(Inst, V, TD);
+ MadeChange = true;
+ if (BIHandle == 0)
+ BI = BB->begin();
+ continue;
+ }
+
+ MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
+ }
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Graph Restructuring.
+//
+
+
+/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
+/// method is called when we're about to delete Pred as a predecessor of BB. If
+/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
+///
+/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
+/// nodes that collapse into identity values. For example, if we have:
+/// x = phi(1, 0, 0, 0)
+/// y = and x, z
+///
+/// .. and delete the predecessor corresponding to the '1', this will attempt to
+/// recursively fold the and to 0.
+void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
+ TargetData *TD) {
+ // This only adjusts blocks with PHI nodes.
+ if (!isa<PHINode>(BB->begin()))
+ return;
+
+ // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
+ // them down. This will leave us with single entry phi nodes and other phis
+ // that can be removed.
+ BB->removePredecessor(Pred, true);
+
+ WeakVH PhiIt = &BB->front();
+ while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
+ PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
+
+ Value *PNV = PN->hasConstantValue();
+ if (PNV == 0) continue;
+
+ // If we're able to simplify the phi to a single value, substitute the new
+ // value into all of its uses.
+ assert(PNV != PN && "hasConstantValue broken");
+
+ ReplaceAndSimplifyAllUses(PN, PNV, TD);
+
+ // If recursive simplification ended up deleting the next PHI node we would
+ // iterate to, then our iterator is invalid, restart scanning from the top
+ // of the block.
+ if (PhiIt == 0) PhiIt = &BB->front();
+ }
+}
+
+
+/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
+/// predecessor is known to have one successor (DestBB!). Eliminate the edge
+/// between them, moving the instructions in the predecessor into DestBB and
+/// deleting the predecessor block.
+///
+void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
+ // If BB has single-entry PHI nodes, fold them.
+ while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
+ Value *NewVal = PN->getIncomingValue(0);
+ // Replace self referencing PHI with undef, it must be dead.
+ if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
+ PN->replaceAllUsesWith(NewVal);
+ PN->eraseFromParent();
+ }
+
+ BasicBlock *PredBB = DestBB->getSinglePredecessor();
+ assert(PredBB && "Block doesn't have a single predecessor!");
+
+ // Splice all the instructions from PredBB to DestBB.
+ PredBB->getTerminator()->eraseFromParent();
+ DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
+
+ // Zap anything that took the address of DestBB. Not doing this will give the
+ // address an invalid value.
+ if (DestBB->hasAddressTaken()) {
+ BlockAddress *BA = BlockAddress::get(DestBB);
+ Constant *Replacement =
+ ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
+ BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
+ BA->getType()));
+ BA->destroyConstant();
+ }
+
+ // Anything that branched to PredBB now branches to DestBB.
+ PredBB->replaceAllUsesWith(DestBB);
+
+ if (P) {
+ ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
+ if (PI) {
+ PI->replaceAllUses(PredBB, DestBB);
+ PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
+ }
+ }
+ // Nuke BB.
+ PredBB->eraseFromParent();
+}
+
+/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
+/// almost-empty BB ending in an unconditional branch to Succ, into succ.
+///
+/// Assumption: Succ is the single successor for BB.
+///
+static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
+ assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
+
+ DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
+ << Succ->getName() << "\n");
+ // Shortcut, if there is only a single predecessor it must be BB and merging
+ // is always safe
+ if (Succ->getSinglePredecessor()) return true;
+
+ // Make a list of the predecessors of BB
+ typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
+ BlockSet BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Use that list to make another list of common predecessors of BB and Succ
+ BlockSet CommonPreds;
+ for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
+ PI != PE; ++PI)
+ if (BBPreds.count(*PI))
+ CommonPreds.insert(*PI);
+
+ // Shortcut, if there are no common predecessors, merging is always safe
+ if (CommonPreds.empty())
+ return true;
+
+ // Look at all the phi nodes in Succ, to see if they present a conflict when
+ // merging these blocks
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+
+ // If the incoming value from BB is again a PHINode in
+ // BB which has the same incoming value for *PI as PN does, we can
+ // merge the phi nodes and then the blocks can still be merged
+ PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
+ if (BBPN && BBPN->getParent() == BB) {
+ for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
+ PI != PE; PI++) {
+ if (BBPN->getIncomingValueForBlock(*PI)
+ != PN->getIncomingValueForBlock(*PI)) {
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with "
+ << BBPN->getName() << " with regard to common predecessor "
+ << (*PI)->getName() << "\n");
+ return false;
+ }
+ }
+ } else {
+ Value* Val = PN->getIncomingValueForBlock(BB);
+ for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
+ PI != PE; PI++) {
+ // See if the incoming value for the common predecessor is equal to the
+ // one for BB, in which case this phi node will not prevent the merging
+ // of the block.
+ if (Val != PN->getIncomingValueForBlock(*PI)) {
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with regard to common "
+ << "predecessor " << (*PI)->getName() << "\n");
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
+/// unconditional branch, and contains no instructions other than PHI nodes,
+/// potential debug intrinsics and the branch. If possible, eliminate BB by
+/// rewriting all the predecessors to branch to the successor block and return
+/// true. If we can't transform, return false.
+bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
+ // We can't eliminate infinite loops.
+ BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
+ if (BB == Succ) return false;
+
+ // Check to see if merging these blocks would cause conflicts for any of the
+ // phi nodes in BB or Succ. If not, we can safely merge.
+ if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
+
+ // Check for cases where Succ has multiple predecessors and a PHI node in BB
+ // has uses which will not disappear when the PHI nodes are merged. It is
+ // possible to handle such cases, but difficult: it requires checking whether
+ // BB dominates Succ, which is non-trivial to calculate in the case where
+ // Succ has multiple predecessors. Also, it requires checking whether
+ // constructing the necessary self-referential PHI node doesn't intoduce any
+ // conflicts; this isn't too difficult, but the previous code for doing this
+ // was incorrect.
+ //
+ // Note that if this check finds a live use, BB dominates Succ, so BB is
+ // something like a loop pre-header (or rarely, a part of an irreducible CFG);
+ // folding the branch isn't profitable in that case anyway.
+ if (!Succ->getSinglePredecessor()) {
+ BasicBlock::iterator BBI = BB->begin();
+ while (isa<PHINode>(*BBI)) {
+ for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
+ UI != E; ++UI) {
+ if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
+ if (PN->getIncomingBlock(UI) != BB)
+ return false;
+ } else {
+ return false;
+ }
+ }
+ ++BBI;
+ }
+ }
+
+ DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
+
+ if (isa<PHINode>(Succ->begin())) {
+ // If there is more than one pred of succ, and there are PHI nodes in
+ // the successor, then we need to add incoming edges for the PHI nodes
+ //
+ const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Loop over all of the PHI nodes in the successor of BB.
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ Value *OldVal = PN->removeIncomingValue(BB, false);
+ assert(OldVal && "No entry in PHI for Pred BB!");
+
+ // If this incoming value is one of the PHI nodes in BB, the new entries
+ // in the PHI node are the entries from the old PHI.
+ if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
+ PHINode *OldValPN = cast<PHINode>(OldVal);
+ for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
+ // Note that, since we are merging phi nodes and BB and Succ might
+ // have common predecessors, we could end up with a phi node with
+ // identical incoming branches. This will be cleaned up later (and
+ // will trigger asserts if we try to clean it up now, without also
+ // simplifying the corresponding conditional branch).
+ PN->addIncoming(OldValPN->getIncomingValue(i),
+ OldValPN->getIncomingBlock(i));
+ } else {
+ // Add an incoming value for each of the new incoming values.
+ for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
+ PN->addIncoming(OldVal, BBPreds[i]);
+ }
+ }
+ }
+
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
+ if (Succ->getSinglePredecessor()) {
+ // BB is the only predecessor of Succ, so Succ will end up with exactly
+ // the same predecessors BB had.
+ Succ->getInstList().splice(Succ->begin(),
+ BB->getInstList(), BB->begin());
+ } else {
+ // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
+ assert(PN->use_empty() && "There shouldn't be any uses here!");
+ PN->eraseFromParent();
+ }
+ }
+
+ // Everything that jumped to BB now goes to Succ.
+ BB->replaceAllUsesWith(Succ);
+ if (!Succ->hasName()) Succ->takeName(BB);
+ BB->eraseFromParent(); // Delete the old basic block.
+ return true;
+}
+
+/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
+/// nodes in this block. This doesn't try to be clever about PHI nodes
+/// which differ only in the order of the incoming values, but instcombine
+/// orders them so it usually won't matter.
+///
+bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
+ bool Changed = false;
+
+ // This implementation doesn't currently consider undef operands
+ // specially. Theroetically, two phis which are identical except for
+ // one having an undef where the other doesn't could be collapsed.
+
+ // Map from PHI hash values to PHI nodes. If multiple PHIs have
+ // the same hash value, the element is the first PHI in the
+ // linked list in CollisionMap.
+ DenseMap<uintptr_t, PHINode *> HashMap;
+
+ // Maintain linked lists of PHI nodes with common hash values.
+ DenseMap<PHINode *, PHINode *> CollisionMap;
+
+ // Examine each PHI.
+ for (BasicBlock::iterator I = BB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I++); ) {
+ // Compute a hash value on the operands. Instcombine will likely have sorted
+ // them, which helps expose duplicates, but we have to check all the
+ // operands to be safe in case instcombine hasn't run.
+ uintptr_t Hash = 0;
+ for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
+ // This hash algorithm is quite weak as hash functions go, but it seems
+ // to do a good enough job for this particular purpose, and is very quick.
+ Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
+ Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
+ }
+ // If we've never seen this hash value before, it's a unique PHI.
+ std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
+ HashMap.insert(std::make_pair(Hash, PN));
+ if (Pair.second) continue;
+ // Otherwise it's either a duplicate or a hash collision.
+ for (PHINode *OtherPN = Pair.first->second; ; ) {
+ if (OtherPN->isIdenticalTo(PN)) {
+ // A duplicate. Replace this PHI with its duplicate.
+ PN->replaceAllUsesWith(OtherPN);
+ PN->eraseFromParent();
+ Changed = true;
+ break;
+ }
+ // A non-duplicate hash collision.
+ DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
+ if (I == CollisionMap.end()) {
+ // Set this PHI to be the head of the linked list of colliding PHIs.
+ PHINode *Old = Pair.first->second;
+ Pair.first->second = PN;
+ CollisionMap[PN] = Old;
+ break;
+ }
+ // Procede to the next PHI in the list.
+ OtherPN = I->second;
+ }
+ }
+
+ return Changed;
+}
OpenPOWER on IntegriCloud