diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LCSSA.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LCSSA.cpp | 346 |
1 files changed, 346 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp new file mode 100644 index 0000000..3f9b702 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/LCSSA.cpp @@ -0,0 +1,346 @@ +//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass transforms loops by placing phi nodes at the end of the loops for +// all values that are live across the loop boundary. For example, it turns +// the left into the right code: +// +// for (...) for (...) +// if (c) if (c) +// X1 = ... X1 = ... +// else else +// X2 = ... X2 = ... +// X3 = phi(X1, X2) X3 = phi(X1, X2) +// ... = X3 + 4 X4 = phi(X3) +// ... = X4 + 4 +// +// This is still valid LLVM; the extra phi nodes are purely redundant, and will +// be trivially eliminated by InstCombine. The major benefit of this +// transformation is that it makes many other loop optimizations, such as +// LoopUnswitching, simpler. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/PredIteratorCache.h" +#include "llvm/Pass.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +using namespace llvm; + +#define DEBUG_TYPE "lcssa" + +STATISTIC(NumLCSSA, "Number of live out of a loop variables"); + +/// Return true if the specified block is in the list. +static bool isExitBlock(BasicBlock *BB, + const SmallVectorImpl<BasicBlock *> &ExitBlocks) { + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) + if (ExitBlocks[i] == BB) + return true; + return false; +} + +/// Given an instruction in the loop, check to see if it has any uses that are +/// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the +/// uses. +static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, + const SmallVectorImpl<BasicBlock *> &ExitBlocks, + PredIteratorCache &PredCache, LoopInfo *LI) { + SmallVector<Use *, 16> UsesToRewrite; + + BasicBlock *InstBB = Inst.getParent(); + + for (Use &U : Inst.uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + BasicBlock *UserBB = User->getParent(); + if (PHINode *PN = dyn_cast<PHINode>(User)) + UserBB = PN->getIncomingBlock(U); + + if (InstBB != UserBB && !L.contains(UserBB)) + UsesToRewrite.push_back(&U); + } + + // If there are no uses outside the loop, exit with no change. + if (UsesToRewrite.empty()) + return false; + + ++NumLCSSA; // We are applying the transformation + + // Invoke instructions are special in that their result value is not available + // along their unwind edge. The code below tests to see whether DomBB + // dominates + // the value, so adjust DomBB to the normal destination block, which is + // effectively where the value is first usable. + BasicBlock *DomBB = Inst.getParent(); + if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) + DomBB = Inv->getNormalDest(); + + DomTreeNode *DomNode = DT.getNode(DomBB); + + SmallVector<PHINode *, 16> AddedPHIs; + SmallVector<PHINode *, 8> PostProcessPHIs; + + SSAUpdater SSAUpdate; + SSAUpdate.Initialize(Inst.getType(), Inst.getName()); + + // Insert the LCSSA phi's into all of the exit blocks dominated by the + // value, and add them to the Phi's map. + for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(), + BBE = ExitBlocks.end(); + BBI != BBE; ++BBI) { + BasicBlock *ExitBB = *BBI; + if (!DT.dominates(DomNode, DT.getNode(ExitBB))) + continue; + + // If we already inserted something for this BB, don't reprocess it. + if (SSAUpdate.HasValueForBlock(ExitBB)) + continue; + + PHINode *PN = PHINode::Create(Inst.getType(), PredCache.GetNumPreds(ExitBB), + Inst.getName() + ".lcssa", ExitBB->begin()); + + // Add inputs from inside the loop for this PHI. + for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) { + PN->addIncoming(&Inst, *PI); + + // If the exit block has a predecessor not within the loop, arrange for + // the incoming value use corresponding to that predecessor to be + // rewritten in terms of a different LCSSA PHI. + if (!L.contains(*PI)) + UsesToRewrite.push_back( + &PN->getOperandUse(PN->getOperandNumForIncomingValue( + PN->getNumIncomingValues() - 1))); + } + + AddedPHIs.push_back(PN); + + // Remember that this phi makes the value alive in this block. + SSAUpdate.AddAvailableValue(ExitBB, PN); + + // LoopSimplify might fail to simplify some loops (e.g. when indirect + // branches are involved). In such situations, it might happen that an exit + // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create + // PHIs in such an exit block, we are also inserting PHIs into L2's header. + // This could break LCSSA form for L2 because these inserted PHIs can also + // have uses outside of L2. Remember all PHIs in such situation as to + // revisit than later on. FIXME: Remove this if indirectbr support into + // LoopSimplify gets improved. + if (auto *OtherLoop = LI->getLoopFor(ExitBB)) + if (!L.contains(OtherLoop)) + PostProcessPHIs.push_back(PN); + } + + // Rewrite all uses outside the loop in terms of the new PHIs we just + // inserted. + for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) { + // If this use is in an exit block, rewrite to use the newly inserted PHI. + // This is required for correctness because SSAUpdate doesn't handle uses in + // the same block. It assumes the PHI we inserted is at the end of the + // block. + Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser()); + BasicBlock *UserBB = User->getParent(); + if (PHINode *PN = dyn_cast<PHINode>(User)) + UserBB = PN->getIncomingBlock(*UsesToRewrite[i]); + + if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { + // Tell the VHs that the uses changed. This updates SCEV's caches. + if (UsesToRewrite[i]->get()->hasValueHandle()) + ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin()); + UsesToRewrite[i]->set(UserBB->begin()); + continue; + } + + // Otherwise, do full PHI insertion. + SSAUpdate.RewriteUse(*UsesToRewrite[i]); + } + + // Post process PHI instructions that were inserted into another disjoint loop + // and update their exits properly. + for (auto *I : PostProcessPHIs) { + if (I->use_empty()) + continue; + + BasicBlock *PHIBB = I->getParent(); + Loop *OtherLoop = LI->getLoopFor(PHIBB); + SmallVector<BasicBlock *, 8> EBs; + OtherLoop->getExitBlocks(EBs); + if (EBs.empty()) + continue; + + // Recurse and re-process each PHI instruction. FIXME: we should really + // convert this entire thing to a worklist approach where we process a + // vector of instructions... + processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI); + } + + // Remove PHI nodes that did not have any uses rewritten. + for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) { + if (AddedPHIs[i]->use_empty()) + AddedPHIs[i]->eraseFromParent(); + } + + return true; +} + +/// Return true if the specified block dominates at least +/// one of the blocks in the specified list. +static bool +blockDominatesAnExit(BasicBlock *BB, + DominatorTree &DT, + const SmallVectorImpl<BasicBlock *> &ExitBlocks) { + DomTreeNode *DomNode = DT.getNode(BB); + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) + if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i]))) + return true; + + return false; +} + +bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, + ScalarEvolution *SE) { + bool Changed = false; + + // Get the set of exiting blocks. + SmallVector<BasicBlock *, 8> ExitBlocks; + L.getExitBlocks(ExitBlocks); + + if (ExitBlocks.empty()) + return false; + + PredIteratorCache PredCache; + + // Look at all the instructions in the loop, checking to see if they have uses + // outside the loop. If so, rewrite those uses. + for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end(); + BBI != BBE; ++BBI) { + BasicBlock *BB = *BBI; + + // For large loops, avoid use-scanning by using dominance information: In + // particular, if a block does not dominate any of the loop exits, then none + // of the values defined in the block could be used outside the loop. + if (!blockDominatesAnExit(BB, DT, ExitBlocks)) + continue; + + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + // Reject two common cases fast: instructions with no uses (like stores) + // and instructions with one use that is in the same block as this. + if (I->use_empty() || + (I->hasOneUse() && I->user_back()->getParent() == BB && + !isa<PHINode>(I->user_back()))) + continue; + + Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache, LI); + } + } + + // If we modified the code, remove any caches about the loop from SCEV to + // avoid dangling entries. + // FIXME: This is a big hammer, can we clear the cache more selectively? + if (SE && Changed) + SE->forgetLoop(&L); + + assert(L.isLCSSAForm(DT)); + + return Changed; +} + +/// Process a loop nest depth first. +bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, + ScalarEvolution *SE) { + bool Changed = false; + + // Recurse depth-first through inner loops. + for (Loop::iterator I = L.begin(), E = L.end(); I != E; ++I) + Changed |= formLCSSARecursively(**I, DT, LI, SE); + + Changed |= formLCSSA(L, DT, LI, SE); + return Changed; +} + +namespace { +struct LCSSA : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + LCSSA() : FunctionPass(ID) { + initializeLCSSAPass(*PassRegistry::getPassRegistry()); + } + + // Cached analysis information for the current function. + DominatorTree *DT; + LoopInfo *LI; + ScalarEvolution *SE; + + bool runOnFunction(Function &F) override; + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG. It maintains both of these, + /// as well as the CFG. It also requires dominator information. + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfo>(); + AU.addPreservedID(LoopSimplifyID); + AU.addPreserved<AliasAnalysis>(); + AU.addPreserved<ScalarEvolution>(); + } + +private: + void verifyAnalysis() const override; +}; +} + +char LCSSA::ID = 0; +INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) + +Pass *llvm::createLCSSAPass() { return new LCSSA(); } +char &llvm::LCSSAID = LCSSA::ID; + + +/// Process all loops in the function, inner-most out. +bool LCSSA::runOnFunction(Function &F) { + bool Changed = false; + LI = &getAnalysis<LoopInfo>(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + SE = getAnalysisIfAvailable<ScalarEvolution>(); + + // Simplify each loop nest in the function. + for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) + Changed |= formLCSSARecursively(**I, *DT, LI, SE); + + return Changed; +} + +static void verifyLoop(Loop &L, DominatorTree &DT) { + // Recurse depth-first through inner loops. + for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) + verifyLoop(**LI, DT); + + // Check the special guarantees that LCSSA makes. + //assert(L.isLCSSAForm(DT) && "LCSSA form not preserved!"); +} + +void LCSSA::verifyAnalysis() const { + // Verify each loop nest in the function, assuming LI still points at that + // function's loop info. + for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) + verifyLoop(**I, *DT); +} |