summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp730
1 files changed, 652 insertions, 78 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
index d2d60d7..79282a2 100644
--- a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp
@@ -13,14 +13,15 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
@@ -41,6 +42,7 @@
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
+
using namespace llvm;
static cl::opt<bool>
@@ -54,17 +56,17 @@ PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
cl::desc("Convert align attributes to assumptions during inlining."));
bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- return InlineFunction(CallSite(CI), IFI, InsertLifetime);
+ AAResults *CalleeAAR, bool InsertLifetime) {
+ return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
}
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- return InlineFunction(CallSite(II), IFI, InsertLifetime);
+ AAResults *CalleeAAR, bool InsertLifetime) {
+ return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
}
namespace {
- /// A class for recording information about inlining through an invoke.
- class InvokeInliningInfo {
+ /// A class for recording information about inlining a landing pad.
+ class LandingPadInliningInfo {
BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
@@ -72,7 +74,7 @@ namespace {
SmallVector<Value*, 8> UnwindDestPHIValues;
public:
- InvokeInliningInfo(InvokeInst *II)
+ LandingPadInliningInfo(InvokeInst *II)
: OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
// If there are PHI nodes in the unwind destination block, we need to keep
@@ -121,14 +123,14 @@ namespace {
}
}
};
-}
+} // anonymous namespace
/// Get or create a target for the branch from ResumeInsts.
-BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
+BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
if (InnerResumeDest) return InnerResumeDest;
// Split the landing pad.
- BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
+ BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
InnerResumeDest =
OuterResumeDest->splitBasicBlock(SplitPoint,
OuterResumeDest->getName() + ".body");
@@ -137,7 +139,7 @@ BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
const unsigned PHICapacity = 2;
// Create corresponding new PHIs for all the PHIs in the outer landing pad.
- BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
+ Instruction *InsertPoint = &InnerResumeDest->front();
BasicBlock::iterator I = OuterResumeDest->begin();
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
PHINode *OuterPHI = cast<PHINode>(I);
@@ -162,8 +164,8 @@ BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
/// When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
-void InvokeInliningInfo::forwardResume(ResumeInst *RI,
- SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
+void LandingPadInliningInfo::forwardResume(
+ ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
BasicBlock *Dest = getInnerResumeDest();
BasicBlock *Src = RI->getParent();
@@ -177,38 +179,300 @@ void InvokeInliningInfo::forwardResume(ResumeInst *RI,
RI->eraseFromParent();
}
+/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
+static Value *getParentPad(Value *EHPad) {
+ if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
+ return FPI->getParentPad();
+ return cast<CatchSwitchInst>(EHPad)->getParentPad();
+}
+
+typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
+
+/// Helper for getUnwindDestToken that does the descendant-ward part of
+/// the search.
+static Value *getUnwindDestTokenHelper(Instruction *EHPad,
+ UnwindDestMemoTy &MemoMap) {
+ SmallVector<Instruction *, 8> Worklist(1, EHPad);
+
+ while (!Worklist.empty()) {
+ Instruction *CurrentPad = Worklist.pop_back_val();
+ // We only put pads on the worklist that aren't in the MemoMap. When
+ // we find an unwind dest for a pad we may update its ancestors, but
+ // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
+ // so they should never get updated while queued on the worklist.
+ assert(!MemoMap.count(CurrentPad));
+ Value *UnwindDestToken = nullptr;
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
+ if (CatchSwitch->hasUnwindDest()) {
+ UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
+ } else {
+ // Catchswitch doesn't have a 'nounwind' variant, and one might be
+ // annotated as "unwinds to caller" when really it's nounwind (see
+ // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
+ // parent's unwind dest from this. We can check its catchpads'
+ // descendants, since they might include a cleanuppad with an
+ // "unwinds to caller" cleanupret, which can be trusted.
+ for (auto HI = CatchSwitch->handler_begin(),
+ HE = CatchSwitch->handler_end();
+ HI != HE && !UnwindDestToken; ++HI) {
+ BasicBlock *HandlerBlock = *HI;
+ auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
+ for (User *Child : CatchPad->users()) {
+ // Intentionally ignore invokes here -- since the catchswitch is
+ // marked "unwind to caller", it would be a verifier error if it
+ // contained an invoke which unwinds out of it, so any invoke we'd
+ // encounter must unwind to some child of the catch.
+ if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
+ continue;
+
+ Instruction *ChildPad = cast<Instruction>(Child);
+ auto Memo = MemoMap.find(ChildPad);
+ if (Memo == MemoMap.end()) {
+ // Haven't figure out this child pad yet; queue it.
+ Worklist.push_back(ChildPad);
+ continue;
+ }
+ // We've already checked this child, but might have found that
+ // it offers no proof either way.
+ Value *ChildUnwindDestToken = Memo->second;
+ if (!ChildUnwindDestToken)
+ continue;
+ // We already know the child's unwind dest, which can either
+ // be ConstantTokenNone to indicate unwind to caller, or can
+ // be another child of the catchpad. Only the former indicates
+ // the unwind dest of the catchswitch.
+ if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
+ UnwindDestToken = ChildUnwindDestToken;
+ break;
+ }
+ assert(getParentPad(ChildUnwindDestToken) == CatchPad);
+ }
+ }
+ }
+ } else {
+ auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
+ for (User *U : CleanupPad->users()) {
+ if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
+ if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
+ UnwindDestToken = RetUnwindDest->getFirstNonPHI();
+ else
+ UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
+ break;
+ }
+ Value *ChildUnwindDestToken;
+ if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
+ ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
+ } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
+ Instruction *ChildPad = cast<Instruction>(U);
+ auto Memo = MemoMap.find(ChildPad);
+ if (Memo == MemoMap.end()) {
+ // Haven't resolved this child yet; queue it and keep searching.
+ Worklist.push_back(ChildPad);
+ continue;
+ }
+ // We've checked this child, but still need to ignore it if it
+ // had no proof either way.
+ ChildUnwindDestToken = Memo->second;
+ if (!ChildUnwindDestToken)
+ continue;
+ } else {
+ // Not a relevant user of the cleanuppad
+ continue;
+ }
+ // In a well-formed program, the child/invoke must either unwind to
+ // an(other) child of the cleanup, or exit the cleanup. In the
+ // first case, continue searching.
+ if (isa<Instruction>(ChildUnwindDestToken) &&
+ getParentPad(ChildUnwindDestToken) == CleanupPad)
+ continue;
+ UnwindDestToken = ChildUnwindDestToken;
+ break;
+ }
+ }
+ // If we haven't found an unwind dest for CurrentPad, we may have queued its
+ // children, so move on to the next in the worklist.
+ if (!UnwindDestToken)
+ continue;
+
+ // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
+ // any ancestors of CurrentPad up to but not including UnwindDestToken's
+ // parent pad. Record this in the memo map, and check to see if the
+ // original EHPad being queried is one of the ones exited.
+ Value *UnwindParent;
+ if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
+ UnwindParent = getParentPad(UnwindPad);
+ else
+ UnwindParent = nullptr;
+ bool ExitedOriginalPad = false;
+ for (Instruction *ExitedPad = CurrentPad;
+ ExitedPad && ExitedPad != UnwindParent;
+ ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
+ // Skip over catchpads since they just follow their catchswitches.
+ if (isa<CatchPadInst>(ExitedPad))
+ continue;
+ MemoMap[ExitedPad] = UnwindDestToken;
+ ExitedOriginalPad |= (ExitedPad == EHPad);
+ }
+
+ if (ExitedOriginalPad)
+ return UnwindDestToken;
+
+ // Continue the search.
+ }
+
+ // No definitive information is contained within this funclet.
+ return nullptr;
+}
+
+/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
+/// return that pad instruction. If it unwinds to caller, return
+/// ConstantTokenNone. If it does not have a definitive unwind destination,
+/// return nullptr.
+///
+/// This routine gets invoked for calls in funclets in inlinees when inlining
+/// an invoke. Since many funclets don't have calls inside them, it's queried
+/// on-demand rather than building a map of pads to unwind dests up front.
+/// Determining a funclet's unwind dest may require recursively searching its
+/// descendants, and also ancestors and cousins if the descendants don't provide
+/// an answer. Since most funclets will have their unwind dest immediately
+/// available as the unwind dest of a catchswitch or cleanupret, this routine
+/// searches top-down from the given pad and then up. To avoid worst-case
+/// quadratic run-time given that approach, it uses a memo map to avoid
+/// re-processing funclet trees. The callers that rewrite the IR as they go
+/// take advantage of this, for correctness, by checking/forcing rewritten
+/// pads' entries to match the original callee view.
+static Value *getUnwindDestToken(Instruction *EHPad,
+ UnwindDestMemoTy &MemoMap) {
+ // Catchpads unwind to the same place as their catchswitch;
+ // redirct any queries on catchpads so the code below can
+ // deal with just catchswitches and cleanuppads.
+ if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
+ EHPad = CPI->getCatchSwitch();
+
+ // Check if we've already determined the unwind dest for this pad.
+ auto Memo = MemoMap.find(EHPad);
+ if (Memo != MemoMap.end())
+ return Memo->second;
+
+ // Search EHPad and, if necessary, its descendants.
+ Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
+ assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
+ if (UnwindDestToken)
+ return UnwindDestToken;
+
+ // No information is available for this EHPad from itself or any of its
+ // descendants. An unwind all the way out to a pad in the caller would
+ // need also to agree with the unwind dest of the parent funclet, so
+ // search up the chain to try to find a funclet with information. Put
+ // null entries in the memo map to avoid re-processing as we go up.
+ MemoMap[EHPad] = nullptr;
+ Instruction *LastUselessPad = EHPad;
+ Value *AncestorToken;
+ for (AncestorToken = getParentPad(EHPad);
+ auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
+ AncestorToken = getParentPad(AncestorToken)) {
+ // Skip over catchpads since they just follow their catchswitches.
+ if (isa<CatchPadInst>(AncestorPad))
+ continue;
+ assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
+ auto AncestorMemo = MemoMap.find(AncestorPad);
+ if (AncestorMemo == MemoMap.end()) {
+ UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
+ } else {
+ UnwindDestToken = AncestorMemo->second;
+ }
+ if (UnwindDestToken)
+ break;
+ LastUselessPad = AncestorPad;
+ }
+
+ // Since the whole tree under LastUselessPad has no information, it all must
+ // match UnwindDestToken; record that to avoid repeating the search.
+ SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
+ while (!Worklist.empty()) {
+ Instruction *UselessPad = Worklist.pop_back_val();
+ assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
+ MemoMap[UselessPad] = UnwindDestToken;
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
+ for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
+ for (User *U : HandlerBlock->getFirstNonPHI()->users())
+ if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
+ Worklist.push_back(cast<Instruction>(U));
+ } else {
+ assert(isa<CleanupPadInst>(UselessPad));
+ for (User *U : UselessPad->users())
+ if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
+ Worklist.push_back(cast<Instruction>(U));
+ }
+ }
+
+ return UnwindDestToken;
+}
+
/// When we inline a basic block into an invoke,
/// we have to turn all of the calls that can throw into invokes.
/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
-static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
- InvokeInliningInfo &Invoke) {
+static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
+ BasicBlock *BB, BasicBlock *UnwindEdge,
+ UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *I = BBI++;
+ Instruction *I = &*BBI++;
// We only need to check for function calls: inlined invoke
// instructions require no special handling.
CallInst *CI = dyn_cast<CallInst>(I);
- // If this call cannot unwind, don't convert it to an invoke.
- // Inline asm calls cannot throw.
if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
continue;
+ if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
+ // This call is nested inside a funclet. If that funclet has an unwind
+ // destination within the inlinee, then unwinding out of this call would
+ // be UB. Rewriting this call to an invoke which targets the inlined
+ // invoke's unwind dest would give the call's parent funclet multiple
+ // unwind destinations, which is something that subsequent EH table
+ // generation can't handle and that the veirifer rejects. So when we
+ // see such a call, leave it as a call.
+ auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
+ Value *UnwindDestToken =
+ getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
+ if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
+ continue;
+#ifndef NDEBUG
+ Instruction *MemoKey;
+ if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
+ MemoKey = CatchPad->getCatchSwitch();
+ else
+ MemoKey = FuncletPad;
+ assert(FuncletUnwindMap->count(MemoKey) &&
+ (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
+ "must get memoized to avoid confusing later searches");
+#endif // NDEBUG
+ }
+
// Convert this function call into an invoke instruction. First, split the
// basic block.
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
+ BasicBlock *Split =
+ BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
// Create the new invoke instruction.
- ImmutableCallSite CS(CI);
- SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
- InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
- Invoke.getOuterResumeDest(),
- InvokeArgs, CI->getName(), BB);
+ SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
+ SmallVector<OperandBundleDef, 1> OpBundles;
+
+ CI->getOperandBundlesAsDefs(OpBundles);
+
+ // Note: we're round tripping operand bundles through memory here, and that
+ // can potentially be avoided with a cleverer API design that we do not have
+ // as of this time.
+
+ InvokeInst *II =
+ InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
+ OpBundles, CI->getName(), BB);
II->setDebugLoc(CI->getDebugLoc());
II->setCallingConv(CI->getCallingConv());
II->setAttributes(CI->getAttributes());
@@ -219,12 +483,9 @@ static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
// Delete the original call
Split->getInstList().pop_front();
-
- // Update any PHI nodes in the exceptional block to indicate that there is
- // now a new entry in them.
- Invoke.addIncomingPHIValuesFor(BB);
- return;
+ return BB;
}
+ return nullptr;
}
/// If we inlined an invoke site, we need to convert calls
@@ -233,8 +494,8 @@ static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
/// II is the invoke instruction being inlined. FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
-static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
+static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
+ ClonedCodeInfo &InlinedCodeInfo) {
BasicBlock *InvokeDest = II->getUnwindDest();
Function *Caller = FirstNewBlock->getParent();
@@ -242,11 +503,12 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
// rewrite.
- InvokeInliningInfo Invoke(II);
+ LandingPadInliningInfo Invoke(II);
// Get all of the inlined landing pad instructions.
SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
- for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
+ for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
+ I != E; ++I)
if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
InlinedLPads.insert(II->getLandingPadInst());
@@ -262,9 +524,14 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
InlinedLPad->setCleanup(true);
}
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
+ for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
+ BB != E; ++BB) {
if (InlinedCodeInfo.ContainsCalls)
- HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
+ if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
+ &*BB, Invoke.getOuterResumeDest()))
+ // Update any PHI nodes in the exceptional block to indicate that there
+ // is now a new entry in them.
+ Invoke.addIncomingPHIValuesFor(NewBB);
// Forward any resumes that are remaining here.
if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
@@ -278,6 +545,138 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
InvokeDest->removePredecessor(II->getParent());
}
+/// If we inlined an invoke site, we need to convert calls
+/// in the body of the inlined function into invokes.
+///
+/// II is the invoke instruction being inlined. FirstNewBlock is the first
+/// block of the inlined code (the last block is the end of the function),
+/// and InlineCodeInfo is information about the code that got inlined.
+static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
+ ClonedCodeInfo &InlinedCodeInfo) {
+ BasicBlock *UnwindDest = II->getUnwindDest();
+ Function *Caller = FirstNewBlock->getParent();
+
+ assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
+
+ // If there are PHI nodes in the unwind destination block, we need to keep
+ // track of which values came into them from the invoke before removing the
+ // edge from this block.
+ SmallVector<Value *, 8> UnwindDestPHIValues;
+ llvm::BasicBlock *InvokeBB = II->getParent();
+ for (Instruction &I : *UnwindDest) {
+ // Save the value to use for this edge.
+ PHINode *PHI = dyn_cast<PHINode>(&I);
+ if (!PHI)
+ break;
+ UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
+ }
+
+ // Add incoming-PHI values to the unwind destination block for the given basic
+ // block, using the values for the original invoke's source block.
+ auto UpdatePHINodes = [&](BasicBlock *Src) {
+ BasicBlock::iterator I = UnwindDest->begin();
+ for (Value *V : UnwindDestPHIValues) {
+ PHINode *PHI = cast<PHINode>(I);
+ PHI->addIncoming(V, Src);
+ ++I;
+ }
+ };
+
+ // This connects all the instructions which 'unwind to caller' to the invoke
+ // destination.
+ UnwindDestMemoTy FuncletUnwindMap;
+ for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
+ BB != E; ++BB) {
+ if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
+ if (CRI->unwindsToCaller()) {
+ auto *CleanupPad = CRI->getCleanupPad();
+ CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
+ CRI->eraseFromParent();
+ UpdatePHINodes(&*BB);
+ // Finding a cleanupret with an unwind destination would confuse
+ // subsequent calls to getUnwindDestToken, so map the cleanuppad
+ // to short-circuit any such calls and recognize this as an "unwind
+ // to caller" cleanup.
+ assert(!FuncletUnwindMap.count(CleanupPad) ||
+ isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
+ FuncletUnwindMap[CleanupPad] =
+ ConstantTokenNone::get(Caller->getContext());
+ }
+ }
+
+ Instruction *I = BB->getFirstNonPHI();
+ if (!I->isEHPad())
+ continue;
+
+ Instruction *Replacement = nullptr;
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
+ if (CatchSwitch->unwindsToCaller()) {
+ Value *UnwindDestToken;
+ if (auto *ParentPad =
+ dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
+ // This catchswitch is nested inside another funclet. If that
+ // funclet has an unwind destination within the inlinee, then
+ // unwinding out of this catchswitch would be UB. Rewriting this
+ // catchswitch to unwind to the inlined invoke's unwind dest would
+ // give the parent funclet multiple unwind destinations, which is
+ // something that subsequent EH table generation can't handle and
+ // that the veirifer rejects. So when we see such a call, leave it
+ // as "unwind to caller".
+ UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
+ if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
+ continue;
+ } else {
+ // This catchswitch has no parent to inherit constraints from, and
+ // none of its descendants can have an unwind edge that exits it and
+ // targets another funclet in the inlinee. It may or may not have a
+ // descendant that definitively has an unwind to caller. In either
+ // case, we'll have to assume that any unwinds out of it may need to
+ // be routed to the caller, so treat it as though it has a definitive
+ // unwind to caller.
+ UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
+ }
+ auto *NewCatchSwitch = CatchSwitchInst::Create(
+ CatchSwitch->getParentPad(), UnwindDest,
+ CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
+ CatchSwitch);
+ for (BasicBlock *PadBB : CatchSwitch->handlers())
+ NewCatchSwitch->addHandler(PadBB);
+ // Propagate info for the old catchswitch over to the new one in
+ // the unwind map. This also serves to short-circuit any subsequent
+ // checks for the unwind dest of this catchswitch, which would get
+ // confused if they found the outer handler in the callee.
+ FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
+ Replacement = NewCatchSwitch;
+ }
+ } else if (!isa<FuncletPadInst>(I)) {
+ llvm_unreachable("unexpected EHPad!");
+ }
+
+ if (Replacement) {
+ Replacement->takeName(I);
+ I->replaceAllUsesWith(Replacement);
+ I->eraseFromParent();
+ UpdatePHINodes(&*BB);
+ }
+ }
+
+ if (InlinedCodeInfo.ContainsCalls)
+ for (Function::iterator BB = FirstNewBlock->getIterator(),
+ E = Caller->end();
+ BB != E; ++BB)
+ if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
+ &*BB, UnwindDest, &FuncletUnwindMap))
+ // Update any PHI nodes in the exceptional block to indicate that there
+ // is now a new entry in them.
+ UpdatePHINodes(NewBB);
+
+ // Now that everything is happy, we have one final detail. The PHI nodes in
+ // the exception destination block still have entries due to the original
+ // invoke instruction. Eliminate these entries (which might even delete the
+ // PHI node) now.
+ UnwindDest->removePredecessor(InvokeBB);
+}
+
/// When inlining a function that contains noalias scope metadata,
/// this metadata needs to be cloned so that the inlined blocks
/// have different "unqiue scopes" at every call site. Were this not done, then
@@ -395,17 +794,16 @@ static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
- const DataLayout &DL, AliasAnalysis *AA) {
+ const DataLayout &DL, AAResults *CalleeAAR) {
if (!EnableNoAliasConversion)
return;
const Function *CalledFunc = CS.getCalledFunction();
SmallVector<const Argument *, 4> NoAliasArgs;
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I) {
- if (I->hasNoAliasAttr() && !I->hasNUses(0))
- NoAliasArgs.push_back(I);
+ for (const Argument &I : CalledFunc->args()) {
+ if (I.hasNoAliasAttr() && !I.hasNUses(0))
+ NoAliasArgs.push_back(&I);
}
if (NoAliasArgs.empty())
@@ -480,10 +878,10 @@ static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
continue;
IsFuncCall = true;
- if (AA) {
- AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
- if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
- MRB == AliasAnalysis::OnlyReadsArgumentPointees)
+ if (CalleeAAR) {
+ FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
+ if (MRB == FMRB_OnlyAccessesArgumentPointees ||
+ MRB == FMRB_OnlyReadsArgumentPointees)
IsArgMemOnlyCall = true;
}
@@ -518,7 +916,7 @@ static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
SmallVector<Value *, 4> Objects;
GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
- Objects, DL, /* MaxLookup = */ 0);
+ Objects, DL, /* LI = */ nullptr);
for (Value *O : Objects)
ObjSet.insert(O);
@@ -646,7 +1044,7 @@ static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
// caller, then don't bother inserting the assumption.
Value *Arg = CS.getArgument(I->getArgNo());
if (getKnownAlignment(Arg, DL, CS.getInstruction(),
- &IFI.ACT->getAssumptionCache(*CalledFunc),
+ &IFI.ACT->getAssumptionCache(*CS.getCaller()),
&DT) >= Align)
continue;
@@ -731,7 +1129,7 @@ static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
BasicBlock *InsertBlock,
InlineFunctionInfo &IFI) {
Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
- IRBuilder<> Builder(InsertBlock->begin());
+ IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
@@ -851,9 +1249,8 @@ updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx,
// Starting from the top, rebuild the nodes to point to the new inlined-at
// location (then rebuilding the rest of the chain behind it) and update the
// map of already-constructed inlined-at nodes.
- for (auto I = InlinedAtLocations.rbegin(), E = InlinedAtLocations.rend();
- I != E; ++I) {
- const DILocation *MD = *I;
+ for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(),
+ InlinedAtLocations.rend())) {
Last = IANodes[MD] = DILocation::getDistinct(
Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
}
@@ -917,7 +1314,7 @@ static void fixupLineNumbers(Function *Fn, Function::iterator FI,
/// exists in the instruction stream. Similarly this will inline a recursive
/// function by one level.
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
+ AAResults *CalleeAAR, bool InsertLifetime) {
Instruction *TheCall = CS.getInstruction();
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
"Instruction not in function!");
@@ -930,6 +1327,22 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
CalledFunc->isDeclaration() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
+ // The inliner does not know how to inline through calls with operand bundles
+ // in general ...
+ if (CS.hasOperandBundles()) {
+ for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
+ uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
+ // ... but it knows how to inline through "deopt" operand bundles ...
+ if (Tag == LLVMContext::OB_deopt)
+ continue;
+ // ... and "funclet" operand bundles.
+ if (Tag == LLVMContext::OB_funclet)
+ continue;
+
+ return false;
+ }
+ }
+
// If the call to the callee cannot throw, set the 'nounwind' flag on any
// calls that we inline.
bool MarkNoUnwind = CS.doesNotThrow();
@@ -950,13 +1363,17 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Get the personality function from the callee if it contains a landing pad.
Constant *CalledPersonality =
- CalledFunc->hasPersonalityFn() ? CalledFunc->getPersonalityFn() : nullptr;
+ CalledFunc->hasPersonalityFn()
+ ? CalledFunc->getPersonalityFn()->stripPointerCasts()
+ : nullptr;
// Find the personality function used by the landing pads of the caller. If it
// exists, then check to see that it matches the personality function used in
// the callee.
Constant *CallerPersonality =
- Caller->hasPersonalityFn() ? Caller->getPersonalityFn() : nullptr;
+ Caller->hasPersonalityFn()
+ ? Caller->getPersonalityFn()->stripPointerCasts()
+ : nullptr;
if (CalledPersonality) {
if (!CallerPersonality)
Caller->setPersonalityFn(CalledPersonality);
@@ -968,9 +1385,46 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
return false;
}
+ // We need to figure out which funclet the callsite was in so that we may
+ // properly nest the callee.
+ Instruction *CallSiteEHPad = nullptr;
+ if (CallerPersonality) {
+ EHPersonality Personality = classifyEHPersonality(CallerPersonality);
+ if (isFuncletEHPersonality(Personality)) {
+ Optional<OperandBundleUse> ParentFunclet =
+ CS.getOperandBundle(LLVMContext::OB_funclet);
+ if (ParentFunclet)
+ CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
+
+ // OK, the inlining site is legal. What about the target function?
+
+ if (CallSiteEHPad) {
+ if (Personality == EHPersonality::MSVC_CXX) {
+ // The MSVC personality cannot tolerate catches getting inlined into
+ // cleanup funclets.
+ if (isa<CleanupPadInst>(CallSiteEHPad)) {
+ // Ok, the call site is within a cleanuppad. Let's check the callee
+ // for catchpads.
+ for (const BasicBlock &CalledBB : *CalledFunc) {
+ if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
+ return false;
+ }
+ }
+ } else if (isAsynchronousEHPersonality(Personality)) {
+ // SEH is even less tolerant, there may not be any sort of exceptional
+ // funclet in the callee.
+ for (const BasicBlock &CalledBB : *CalledFunc) {
+ if (CalledBB.isEHPad())
+ return false;
+ }
+ }
+ }
+ }
+ }
+
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
- Function::iterator LastBlock = &Caller->back();
+ Function::iterator LastBlock = --Caller->end();
// Make sure to capture all of the return instructions from the cloned
// function.
@@ -1007,7 +1461,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
}
- VMap[I] = ActualArg;
+ VMap[&*I] = ActualArg;
}
// Add alignment assumptions if necessary. We do this before the inlined
@@ -1029,7 +1483,61 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Inject byval arguments initialization.
for (std::pair<Value*, Value*> &Init : ByValInit)
HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
- FirstNewBlock, IFI);
+ &*FirstNewBlock, IFI);
+
+ Optional<OperandBundleUse> ParentDeopt =
+ CS.getOperandBundle(LLVMContext::OB_deopt);
+ if (ParentDeopt) {
+ SmallVector<OperandBundleDef, 2> OpDefs;
+
+ for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
+ Instruction *I = dyn_cast_or_null<Instruction>(VH);
+ if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
+
+ OpDefs.clear();
+
+ CallSite ICS(I);
+ OpDefs.reserve(ICS.getNumOperandBundles());
+
+ for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
+ auto ChildOB = ICS.getOperandBundleAt(i);
+ if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
+ // If the inlined call has other operand bundles, let them be
+ OpDefs.emplace_back(ChildOB);
+ continue;
+ }
+
+ // It may be useful to separate this logic (of handling operand
+ // bundles) out to a separate "policy" component if this gets crowded.
+ // Prepend the parent's deoptimization continuation to the newly
+ // inlined call's deoptimization continuation.
+ std::vector<Value *> MergedDeoptArgs;
+ MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
+ ChildOB.Inputs.size());
+
+ MergedDeoptArgs.insert(MergedDeoptArgs.end(),
+ ParentDeopt->Inputs.begin(),
+ ParentDeopt->Inputs.end());
+ MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
+ ChildOB.Inputs.end());
+
+ OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
+ }
+
+ Instruction *NewI = nullptr;
+ if (isa<CallInst>(I))
+ NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
+ else
+ NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
+
+ // Note: the RAUW does the appropriate fixup in VMap, so we need to do
+ // this even if the call returns void.
+ I->replaceAllUsesWith(NewI);
+
+ VH = nullptr;
+ I->eraseFromParent();
+ }
+ }
// Update the callgraph if requested.
if (IFI.CG)
@@ -1042,7 +1550,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
CloneAliasScopeMetadata(CS, VMap);
// Add noalias metadata if necessary.
- AddAliasScopeMetadata(CS, VMap, DL, IFI.AA);
+ AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
// FIXME: We could register any cloned assumptions instead of clearing the
// whole function's cache.
@@ -1085,9 +1593,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Transfer all of the allocas over in a block. Using splice means
// that the instructions aren't removed from the symbol table, then
// reinserted.
- Caller->getEntryBlock().getInstList().splice(InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
+ Caller->getEntryBlock().getInstList().splice(
+ InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
}
// Move any dbg.declares describing the allocas into the entry basic block.
DIBuilder DIB(*Caller->getParent());
@@ -1137,7 +1644,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Leave lifetime markers for the static alloca's, scoping them to the
// function we just inlined.
if (InsertLifetime && !IFI.StaticAllocas.empty()) {
- IRBuilder<> builder(FirstNewBlock->begin());
+ IRBuilder<> builder(&FirstNewBlock->front());
for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
AllocaInst *AI = IFI.StaticAllocas[ai];
@@ -1189,7 +1696,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
// Insert the llvm.stacksave.
- CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
+ CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
.CreateCall(StackSave, {}, "savedstack");
// Insert a call to llvm.stackrestore before any return instructions in the
@@ -1204,9 +1711,75 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
- // any call instructions into invoke instructions.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
+ // any call instructions into invoke instructions. This is sensitive to which
+ // funclet pads were top-level in the inlinee, so must be done before
+ // rewriting the "parent pad" links.
+ if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
+ BasicBlock *UnwindDest = II->getUnwindDest();
+ Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
+ if (isa<LandingPadInst>(FirstNonPHI)) {
+ HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
+ } else {
+ HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
+ }
+ }
+
+ // Update the lexical scopes of the new funclets and callsites.
+ // Anything that had 'none' as its parent is now nested inside the callsite's
+ // EHPad.
+
+ if (CallSiteEHPad) {
+ for (Function::iterator BB = FirstNewBlock->getIterator(),
+ E = Caller->end();
+ BB != E; ++BB) {
+ // Add bundle operands to any top-level call sites.
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
+ Instruction *I = &*BBI++;
+ CallSite CS(I);
+ if (!CS)
+ continue;
+
+ // Skip call sites which are nounwind intrinsics.
+ auto *CalledFn =
+ dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
+ if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
+ continue;
+
+ // Skip call sites which already have a "funclet" bundle.
+ if (CS.getOperandBundle(LLVMContext::OB_funclet))
+ continue;
+
+ CS.getOperandBundlesAsDefs(OpBundles);
+ OpBundles.emplace_back("funclet", CallSiteEHPad);
+
+ Instruction *NewInst;
+ if (CS.isCall())
+ NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
+ else
+ NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
+ NewInst->setDebugLoc(I->getDebugLoc());
+ NewInst->takeName(I);
+ I->replaceAllUsesWith(NewInst);
+ I->eraseFromParent();
+
+ OpBundles.clear();
+ }
+
+ Instruction *I = BB->getFirstNonPHI();
+ if (!I->isEHPad())
+ continue;
+
+ if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
+ if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
+ CatchSwitch->setParentPad(CallSiteEHPad);
+ } else {
+ auto *FPI = cast<FuncletPadInst>(I);
+ if (isa<ConstantTokenNone>(FPI->getParentPad()))
+ FPI->setParentPad(CallSiteEHPad);
+ }
+ }
+ }
// Handle any inlined musttail call sites. In order for a new call site to be
// musttail, the source of the clone and the inlined call site must have been
@@ -1250,7 +1823,8 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// the calling basic block.
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
// Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
+ OrigBB->getInstList().splice(TheCall->getIterator(),
+ FirstNewBlock->getInstList(),
FirstNewBlock->begin(), FirstNewBlock->end());
// Remove the cloned basic block.
Caller->getBasicBlockList().pop_back();
@@ -1297,15 +1871,16 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Split the basic block. This guarantees that no PHI nodes will have to be
// updated due to new incoming edges, and make the invoke case more
// symmetric to the call case.
- AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
- CalledFunc->getName()+".exit");
+ AfterCallBB =
+ OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
+ CalledFunc->getName() + ".exit");
} else { // It's a call
// If this is a call instruction, we need to split the basic block that
// the call lives in.
//
- AfterCallBB = OrigBB->splitBasicBlock(TheCall,
- CalledFunc->getName()+".exit");
+ AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
+ CalledFunc->getName() + ".exit");
}
// Change the branch that used to go to AfterCallBB to branch to the first
@@ -1314,14 +1889,14 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
- Br->setOperand(0, FirstNewBlock);
-
+ Br->setOperand(0, &*FirstNewBlock);
// Now that the function is correct, make it a little bit nicer. In
// particular, move the basic blocks inserted from the end of the function
// into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
- FirstNewBlock, Caller->end());
+ Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
+ Caller->getBasicBlockList(), FirstNewBlock,
+ Caller->end());
// Handle all of the return instructions that we just cloned in, and eliminate
// any users of the original call/invoke instruction.
@@ -1333,7 +1908,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// possible incoming values.
if (!TheCall->use_empty()) {
PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
- AfterCallBB->begin());
+ &AfterCallBB->front());
// Anything that used the result of the function call should now use the
// PHI node as their operand.
TheCall->replaceAllUsesWith(PHI);
@@ -1350,7 +1925,6 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
}
}
-
// Add a branch to the merge points and remove return instructions.
DebugLoc Loc;
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
@@ -1413,7 +1987,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
// Splice the code entry block into calling block, right before the
// unconditional branch.
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
+ OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
// Remove the unconditional branch.
OrigBB->getInstList().erase(Br);
OpenPOWER on IntegriCloud