diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp | 533 |
1 files changed, 370 insertions, 163 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp b/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp index bc2cef2..83ec7f5 100644 --- a/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp +++ b/contrib/llvm/lib/Transforms/Utils/BypassSlowDivision.cpp @@ -17,9 +17,12 @@ #include "llvm/Transforms/Utils/BypassSlowDivision.h" #include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" +#include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; @@ -36,12 +39,21 @@ namespace { : SignedOp(InSignedOp), Dividend(InDividend), Divisor(InDivisor) {} }; - struct DivPhiNodes { - PHINode *Quotient; - PHINode *Remainder; + struct QuotRemPair { + Value *Quotient; + Value *Remainder; - DivPhiNodes(PHINode *InQuotient, PHINode *InRemainder) - : Quotient(InQuotient), Remainder(InRemainder) {} + QuotRemPair(Value *InQuotient, Value *InRemainder) + : Quotient(InQuotient), Remainder(InRemainder) {} + }; + + /// A quotient and remainder, plus a BB from which they logically "originate". + /// If you use Quotient or Remainder in a Phi node, you should use BB as its + /// corresponding predecessor. + struct QuotRemWithBB { + BasicBlock *BB = nullptr; + Value *Quotient = nullptr; + Value *Remainder = nullptr; }; } @@ -69,159 +81,376 @@ namespace llvm { } }; - typedef DenseMap<DivOpInfo, DivPhiNodes> DivCacheTy; + typedef DenseMap<DivOpInfo, QuotRemPair> DivCacheTy; + typedef DenseMap<unsigned, unsigned> BypassWidthsTy; + typedef SmallPtrSet<Instruction *, 4> VisitedSetTy; } -// insertFastDiv - Substitutes the div/rem instruction with code that checks the -// value of the operands and uses a shorter-faster div/rem instruction when -// possible and the longer-slower div/rem instruction otherwise. -static bool insertFastDiv(Instruction *I, IntegerType *BypassType, - bool UseDivOp, bool UseSignedOp, - DivCacheTy &PerBBDivCache) { - Function *F = I->getParent()->getParent(); - // Get instruction operands - Value *Dividend = I->getOperand(0); - Value *Divisor = I->getOperand(1); +namespace { +enum ValueRange { + /// Operand definitely fits into BypassType. No runtime checks are needed. + VALRNG_KNOWN_SHORT, + /// A runtime check is required, as value range is unknown. + VALRNG_UNKNOWN, + /// Operand is unlikely to fit into BypassType. The bypassing should be + /// disabled. + VALRNG_LIKELY_LONG +}; + +class FastDivInsertionTask { + bool IsValidTask = false; + Instruction *SlowDivOrRem = nullptr; + IntegerType *BypassType = nullptr; + BasicBlock *MainBB = nullptr; + + bool isHashLikeValue(Value *V, VisitedSetTy &Visited); + ValueRange getValueRange(Value *Op, VisitedSetTy &Visited); + QuotRemWithBB createSlowBB(BasicBlock *Successor); + QuotRemWithBB createFastBB(BasicBlock *Successor); + QuotRemPair createDivRemPhiNodes(QuotRemWithBB &LHS, QuotRemWithBB &RHS, + BasicBlock *PhiBB); + Value *insertOperandRuntimeCheck(Value *Op1, Value *Op2); + Optional<QuotRemPair> insertFastDivAndRem(); + + bool isSignedOp() { + return SlowDivOrRem->getOpcode() == Instruction::SDiv || + SlowDivOrRem->getOpcode() == Instruction::SRem; + } + bool isDivisionOp() { + return SlowDivOrRem->getOpcode() == Instruction::SDiv || + SlowDivOrRem->getOpcode() == Instruction::UDiv; + } + Type *getSlowType() { return SlowDivOrRem->getType(); } + +public: + FastDivInsertionTask(Instruction *I, const BypassWidthsTy &BypassWidths); + Value *getReplacement(DivCacheTy &Cache); +}; +} // anonymous namespace + +FastDivInsertionTask::FastDivInsertionTask(Instruction *I, + const BypassWidthsTy &BypassWidths) { + switch (I->getOpcode()) { + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + SlowDivOrRem = I; + break; + default: + // I is not a div/rem operation. + return; + } - if (isa<ConstantInt>(Divisor)) { - // Division by a constant should have been been solved and replaced earlier - // in the pipeline. - return false; + // Skip division on vector types. Only optimize integer instructions. + IntegerType *SlowType = dyn_cast<IntegerType>(SlowDivOrRem->getType()); + if (!SlowType) + return; + + // Skip if this bitwidth is not bypassed. + auto BI = BypassWidths.find(SlowType->getBitWidth()); + if (BI == BypassWidths.end()) + return; + + // Get type for div/rem instruction with bypass bitwidth. + IntegerType *BT = IntegerType::get(I->getContext(), BI->second); + BypassType = BT; + + // The original basic block. + MainBB = I->getParent(); + + // The instruction is indeed a slow div or rem operation. + IsValidTask = true; +} + +/// Reuses previously-computed dividend or remainder from the current BB if +/// operands and operation are identical. Otherwise calls insertFastDivAndRem to +/// perform the optimization and caches the resulting dividend and remainder. +/// If no replacement can be generated, nullptr is returned. +Value *FastDivInsertionTask::getReplacement(DivCacheTy &Cache) { + // First, make sure that the task is valid. + if (!IsValidTask) + return nullptr; + + // Then, look for a value in Cache. + Value *Dividend = SlowDivOrRem->getOperand(0); + Value *Divisor = SlowDivOrRem->getOperand(1); + DivOpInfo Key(isSignedOp(), Dividend, Divisor); + auto CacheI = Cache.find(Key); + + if (CacheI == Cache.end()) { + // If previous instance does not exist, try to insert fast div. + Optional<QuotRemPair> OptResult = insertFastDivAndRem(); + // Bail out if insertFastDivAndRem has failed. + if (!OptResult) + return nullptr; + CacheI = Cache.insert({Key, *OptResult}).first; } - // If the numerator is a constant, bail if it doesn't fit into BypassType. - if (ConstantInt *ConstDividend = dyn_cast<ConstantInt>(Dividend)) - if (ConstDividend->getValue().getActiveBits() > BypassType->getBitWidth()) + QuotRemPair &Value = CacheI->second; + return isDivisionOp() ? Value.Quotient : Value.Remainder; +} + +/// \brief Check if a value looks like a hash. +/// +/// The routine is expected to detect values computed using the most common hash +/// algorithms. Typically, hash computations end with one of the following +/// instructions: +/// +/// 1) MUL with a constant wider than BypassType +/// 2) XOR instruction +/// +/// And even if we are wrong and the value is not a hash, it is still quite +/// unlikely that such values will fit into BypassType. +/// +/// To detect string hash algorithms like FNV we have to look through PHI-nodes. +/// It is implemented as a depth-first search for values that look neither long +/// nor hash-like. +bool FastDivInsertionTask::isHashLikeValue(Value *V, VisitedSetTy &Visited) { + Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + switch (I->getOpcode()) { + case Instruction::Xor: + return true; + case Instruction::Mul: { + // After Constant Hoisting pass, long constants may be represented as + // bitcast instructions. As a result, some constants may look like an + // instruction at first, and an additional check is necessary to find out if + // an operand is actually a constant. + Value *Op1 = I->getOperand(1); + ConstantInt *C = dyn_cast<ConstantInt>(Op1); + if (!C && isa<BitCastInst>(Op1)) + C = dyn_cast<ConstantInt>(cast<BitCastInst>(Op1)->getOperand(0)); + return C && C->getValue().getMinSignedBits() > BypassType->getBitWidth(); + } + case Instruction::PHI: { + // Stop IR traversal in case of a crazy input code. This limits recursion + // depth. + if (Visited.size() >= 16) return false; + // Do not visit nodes that have been visited already. We return true because + // it means that we couldn't find any value that doesn't look hash-like. + if (Visited.find(I) != Visited.end()) + return true; + Visited.insert(I); + return llvm::all_of(cast<PHINode>(I)->incoming_values(), [&](Value *V) { + // Ignore undef values as they probably don't affect the division + // operands. + return getValueRange(V, Visited) == VALRNG_LIKELY_LONG || + isa<UndefValue>(V); + }); + } + default: + return false; + } +} + +/// Check if an integer value fits into our bypass type. +ValueRange FastDivInsertionTask::getValueRange(Value *V, + VisitedSetTy &Visited) { + unsigned ShortLen = BypassType->getBitWidth(); + unsigned LongLen = V->getType()->getIntegerBitWidth(); + + assert(LongLen > ShortLen && "Value type must be wider than BypassType"); + unsigned HiBits = LongLen - ShortLen; + + const DataLayout &DL = SlowDivOrRem->getModule()->getDataLayout(); + KnownBits Known(LongLen); - // Basic Block is split before divide - BasicBlock *MainBB = &*I->getParent(); - BasicBlock *SuccessorBB = MainBB->splitBasicBlock(I); - - // Add new basic block for slow divide operation - BasicBlock *SlowBB = - BasicBlock::Create(F->getContext(), "", MainBB->getParent(), SuccessorBB); - SlowBB->moveBefore(SuccessorBB); - IRBuilder<> SlowBuilder(SlowBB, SlowBB->begin()); - Value *SlowQuotientV; - Value *SlowRemainderV; - if (UseSignedOp) { - SlowQuotientV = SlowBuilder.CreateSDiv(Dividend, Divisor); - SlowRemainderV = SlowBuilder.CreateSRem(Dividend, Divisor); + computeKnownBits(V, Known, DL); + + if (Known.countMinLeadingZeros() >= HiBits) + return VALRNG_KNOWN_SHORT; + + if (Known.countMaxLeadingZeros() < HiBits) + return VALRNG_LIKELY_LONG; + + // Long integer divisions are often used in hashtable implementations. It's + // not worth bypassing such divisions because hash values are extremely + // unlikely to have enough leading zeros. The call below tries to detect + // values that are unlikely to fit BypassType (including hashes). + if (isHashLikeValue(V, Visited)) + return VALRNG_LIKELY_LONG; + + return VALRNG_UNKNOWN; +} + +/// Add new basic block for slow div and rem operations and put it before +/// SuccessorBB. +QuotRemWithBB FastDivInsertionTask::createSlowBB(BasicBlock *SuccessorBB) { + QuotRemWithBB DivRemPair; + DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "", + MainBB->getParent(), SuccessorBB); + IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin()); + + Value *Dividend = SlowDivOrRem->getOperand(0); + Value *Divisor = SlowDivOrRem->getOperand(1); + + if (isSignedOp()) { + DivRemPair.Quotient = Builder.CreateSDiv(Dividend, Divisor); + DivRemPair.Remainder = Builder.CreateSRem(Dividend, Divisor); } else { - SlowQuotientV = SlowBuilder.CreateUDiv(Dividend, Divisor); - SlowRemainderV = SlowBuilder.CreateURem(Dividend, Divisor); + DivRemPair.Quotient = Builder.CreateUDiv(Dividend, Divisor); + DivRemPair.Remainder = Builder.CreateURem(Dividend, Divisor); } - SlowBuilder.CreateBr(SuccessorBB); - - // Add new basic block for fast divide operation - BasicBlock *FastBB = - BasicBlock::Create(F->getContext(), "", MainBB->getParent(), SuccessorBB); - FastBB->moveBefore(SlowBB); - IRBuilder<> FastBuilder(FastBB, FastBB->begin()); - Value *ShortDivisorV = FastBuilder.CreateCast(Instruction::Trunc, Divisor, - BypassType); - Value *ShortDividendV = FastBuilder.CreateCast(Instruction::Trunc, Dividend, - BypassType); - - // udiv/urem because optimization only handles positive numbers - Value *ShortQuotientV = FastBuilder.CreateUDiv(ShortDividendV, ShortDivisorV); - Value *ShortRemainderV = FastBuilder.CreateURem(ShortDividendV, - ShortDivisorV); - Value *FastQuotientV = FastBuilder.CreateCast(Instruction::ZExt, - ShortQuotientV, - Dividend->getType()); - Value *FastRemainderV = FastBuilder.CreateCast(Instruction::ZExt, - ShortRemainderV, - Dividend->getType()); - FastBuilder.CreateBr(SuccessorBB); - - // Phi nodes for result of div and rem - IRBuilder<> SuccessorBuilder(SuccessorBB, SuccessorBB->begin()); - PHINode *QuoPhi = SuccessorBuilder.CreatePHI(I->getType(), 2); - QuoPhi->addIncoming(SlowQuotientV, SlowBB); - QuoPhi->addIncoming(FastQuotientV, FastBB); - PHINode *RemPhi = SuccessorBuilder.CreatePHI(I->getType(), 2); - RemPhi->addIncoming(SlowRemainderV, SlowBB); - RemPhi->addIncoming(FastRemainderV, FastBB); - - // Replace I with appropriate phi node - if (UseDivOp) - I->replaceAllUsesWith(QuoPhi); - else - I->replaceAllUsesWith(RemPhi); - I->eraseFromParent(); - // Combine operands into a single value with OR for value testing below - MainBB->getInstList().back().eraseFromParent(); - IRBuilder<> MainBuilder(MainBB, MainBB->end()); + Builder.CreateBr(SuccessorBB); + return DivRemPair; +} + +/// Add new basic block for fast div and rem operations and put it before +/// SuccessorBB. +QuotRemWithBB FastDivInsertionTask::createFastBB(BasicBlock *SuccessorBB) { + QuotRemWithBB DivRemPair; + DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "", + MainBB->getParent(), SuccessorBB); + IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin()); + + Value *Dividend = SlowDivOrRem->getOperand(0); + Value *Divisor = SlowDivOrRem->getOperand(1); + Value *ShortDivisorV = + Builder.CreateCast(Instruction::Trunc, Divisor, BypassType); + Value *ShortDividendV = + Builder.CreateCast(Instruction::Trunc, Dividend, BypassType); + + // udiv/urem because this optimization only handles positive numbers. + Value *ShortQV = Builder.CreateUDiv(ShortDividendV, ShortDivisorV); + Value *ShortRV = Builder.CreateURem(ShortDividendV, ShortDivisorV); + DivRemPair.Quotient = + Builder.CreateCast(Instruction::ZExt, ShortQV, getSlowType()); + DivRemPair.Remainder = + Builder.CreateCast(Instruction::ZExt, ShortRV, getSlowType()); + Builder.CreateBr(SuccessorBB); + + return DivRemPair; +} - // We should have bailed out above if the divisor is a constant, but the - // dividend may still be a constant. Set OrV to our non-constant operands - // OR'ed together. - assert(!isa<ConstantInt>(Divisor)); +/// Creates Phi nodes for result of Div and Rem. +QuotRemPair FastDivInsertionTask::createDivRemPhiNodes(QuotRemWithBB &LHS, + QuotRemWithBB &RHS, + BasicBlock *PhiBB) { + IRBuilder<> Builder(PhiBB, PhiBB->begin()); + PHINode *QuoPhi = Builder.CreatePHI(getSlowType(), 2); + QuoPhi->addIncoming(LHS.Quotient, LHS.BB); + QuoPhi->addIncoming(RHS.Quotient, RHS.BB); + PHINode *RemPhi = Builder.CreatePHI(getSlowType(), 2); + RemPhi->addIncoming(LHS.Remainder, LHS.BB); + RemPhi->addIncoming(RHS.Remainder, RHS.BB); + return QuotRemPair(QuoPhi, RemPhi); +} + +/// Creates a runtime check to test whether both the divisor and dividend fit +/// into BypassType. The check is inserted at the end of MainBB. True return +/// value means that the operands fit. Either of the operands may be NULL if it +/// doesn't need a runtime check. +Value *FastDivInsertionTask::insertOperandRuntimeCheck(Value *Op1, Value *Op2) { + assert((Op1 || Op2) && "Nothing to check"); + IRBuilder<> Builder(MainBB, MainBB->end()); Value *OrV; - if (!isa<ConstantInt>(Dividend)) - OrV = MainBuilder.CreateOr(Dividend, Divisor); + if (Op1 && Op2) + OrV = Builder.CreateOr(Op1, Op2); else - OrV = Divisor; + OrV = Op1 ? Op1 : Op2; // BitMask is inverted to check if the operands are // larger than the bypass type uint64_t BitMask = ~BypassType->getBitMask(); - Value *AndV = MainBuilder.CreateAnd(OrV, BitMask); - - // Compare operand values and branch - Value *ZeroV = ConstantInt::getSigned(Dividend->getType(), 0); - Value *CmpV = MainBuilder.CreateICmpEQ(AndV, ZeroV); - MainBuilder.CreateCondBr(CmpV, FastBB, SlowBB); - - // Cache phi nodes to be used later in place of other instances - // of div or rem with the same sign, dividend, and divisor - DivOpInfo Key(UseSignedOp, Dividend, Divisor); - DivPhiNodes Value(QuoPhi, RemPhi); - PerBBDivCache.insert(std::pair<DivOpInfo, DivPhiNodes>(Key, Value)); - return true; + Value *AndV = Builder.CreateAnd(OrV, BitMask); + + // Compare operand values + Value *ZeroV = ConstantInt::getSigned(getSlowType(), 0); + return Builder.CreateICmpEQ(AndV, ZeroV); } -// reuseOrInsertFastDiv - Reuses previously computed dividend or remainder from -// the current BB if operands and operation are identical. Otherwise calls -// insertFastDiv to perform the optimization and caches the resulting dividend -// and remainder. -static bool reuseOrInsertFastDiv(Instruction *I, IntegerType *BypassType, - bool UseDivOp, bool UseSignedOp, - DivCacheTy &PerBBDivCache) { - // Get instruction operands - DivOpInfo Key(UseSignedOp, I->getOperand(0), I->getOperand(1)); - DivCacheTy::iterator CacheI = PerBBDivCache.find(Key); - - if (CacheI == PerBBDivCache.end()) { - // If previous instance does not exist, insert fast div - return insertFastDiv(I, BypassType, UseDivOp, UseSignedOp, PerBBDivCache); +/// Substitutes the div/rem instruction with code that checks the value of the +/// operands and uses a shorter-faster div/rem instruction when possible. +Optional<QuotRemPair> FastDivInsertionTask::insertFastDivAndRem() { + Value *Dividend = SlowDivOrRem->getOperand(0); + Value *Divisor = SlowDivOrRem->getOperand(1); + + if (isa<ConstantInt>(Divisor)) { + // Keep division by a constant for DAGCombiner. + return None; } - // Replace operation value with previously generated phi node - DivPhiNodes &Value = CacheI->second; - if (UseDivOp) { - // Replace all uses of div instruction with quotient phi node - I->replaceAllUsesWith(Value.Quotient); + VisitedSetTy SetL; + ValueRange DividendRange = getValueRange(Dividend, SetL); + if (DividendRange == VALRNG_LIKELY_LONG) + return None; + + VisitedSetTy SetR; + ValueRange DivisorRange = getValueRange(Divisor, SetR); + if (DivisorRange == VALRNG_LIKELY_LONG) + return None; + + bool DividendShort = (DividendRange == VALRNG_KNOWN_SHORT); + bool DivisorShort = (DivisorRange == VALRNG_KNOWN_SHORT); + + if (DividendShort && DivisorShort) { + // If both operands are known to be short then just replace the long + // division with a short one in-place. + + IRBuilder<> Builder(SlowDivOrRem); + Value *TruncDividend = Builder.CreateTrunc(Dividend, BypassType); + Value *TruncDivisor = Builder.CreateTrunc(Divisor, BypassType); + Value *TruncDiv = Builder.CreateUDiv(TruncDividend, TruncDivisor); + Value *TruncRem = Builder.CreateURem(TruncDividend, TruncDivisor); + Value *ExtDiv = Builder.CreateZExt(TruncDiv, getSlowType()); + Value *ExtRem = Builder.CreateZExt(TruncRem, getSlowType()); + return QuotRemPair(ExtDiv, ExtRem); + } else if (DividendShort && !isSignedOp()) { + // If the division is unsigned and Dividend is known to be short, then + // either + // 1) Divisor is less or equal to Dividend, and the result can be computed + // with a short division. + // 2) Divisor is greater than Dividend. In this case, no division is needed + // at all: The quotient is 0 and the remainder is equal to Dividend. + // + // So instead of checking at runtime whether Divisor fits into BypassType, + // we emit a runtime check to differentiate between these two cases. This + // lets us entirely avoid a long div. + + // Split the basic block before the div/rem. + BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem); + // Remove the unconditional branch from MainBB to SuccessorBB. + MainBB->getInstList().back().eraseFromParent(); + QuotRemWithBB Long; + Long.BB = MainBB; + Long.Quotient = ConstantInt::get(getSlowType(), 0); + Long.Remainder = Dividend; + QuotRemWithBB Fast = createFastBB(SuccessorBB); + QuotRemPair Result = createDivRemPhiNodes(Fast, Long, SuccessorBB); + IRBuilder<> Builder(MainBB, MainBB->end()); + Value *CmpV = Builder.CreateICmpUGE(Dividend, Divisor); + Builder.CreateCondBr(CmpV, Fast.BB, SuccessorBB); + return Result; } else { - // Replace all uses of rem instruction with remainder phi node - I->replaceAllUsesWith(Value.Remainder); + // General case. Create both slow and fast div/rem pairs and choose one of + // them at runtime. + + // Split the basic block before the div/rem. + BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem); + // Remove the unconditional branch from MainBB to SuccessorBB. + MainBB->getInstList().back().eraseFromParent(); + QuotRemWithBB Fast = createFastBB(SuccessorBB); + QuotRemWithBB Slow = createSlowBB(SuccessorBB); + QuotRemPair Result = createDivRemPhiNodes(Fast, Slow, SuccessorBB); + Value *CmpV = insertOperandRuntimeCheck(DividendShort ? nullptr : Dividend, + DivisorShort ? nullptr : Divisor); + IRBuilder<> Builder(MainBB, MainBB->end()); + Builder.CreateCondBr(CmpV, Fast.BB, Slow.BB); + return Result; } - - // Remove redundant operation - I->eraseFromParent(); - return true; } -// bypassSlowDivision - This optimization identifies DIV instructions in a BB -// that can be profitably bypassed and carried out with a shorter, faster -// divide. -bool llvm::bypassSlowDivision( - BasicBlock *BB, const DenseMap<unsigned int, unsigned int> &BypassWidths) { - DivCacheTy DivCache; +/// This optimization identifies DIV/REM instructions in a BB that can be +/// profitably bypassed and carried out with a shorter, faster divide. +bool llvm::bypassSlowDivision(BasicBlock *BB, + const BypassWidthsTy &BypassWidths) { + DivCacheTy PerBBDivCache; bool MadeChange = false; Instruction* Next = &*BB->begin(); @@ -231,42 +460,20 @@ bool llvm::bypassSlowDivision( Instruction* I = Next; Next = Next->getNextNode(); - // Get instruction details - unsigned Opcode = I->getOpcode(); - bool UseDivOp = Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; - bool UseRemOp = Opcode == Instruction::SRem || Opcode == Instruction::URem; - bool UseSignedOp = Opcode == Instruction::SDiv || - Opcode == Instruction::SRem; - - // Only optimize div or rem ops - if (!UseDivOp && !UseRemOp) - continue; - - // Skip division on vector types, only optimize integer instructions - if (!I->getType()->isIntegerTy()) - continue; - - // Get bitwidth of div/rem instruction - IntegerType *T = cast<IntegerType>(I->getType()); - unsigned int bitwidth = T->getBitWidth(); - - // Continue if bitwidth is not bypassed - DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth); - if (BI == BypassWidths.end()) - continue; - - // Get type for div/rem instruction with bypass bitwidth - IntegerType *BT = IntegerType::get(I->getContext(), BI->second); - - MadeChange |= reuseOrInsertFastDiv(I, BT, UseDivOp, UseSignedOp, DivCache); + FastDivInsertionTask Task(I, BypassWidths); + if (Value *Replacement = Task.getReplacement(PerBBDivCache)) { + I->replaceAllUsesWith(Replacement); + I->eraseFromParent(); + MadeChange = true; + } } // Above we eagerly create divs and rems, as pairs, so that we can efficiently // create divrem machine instructions. Now erase any unused divs / rems so we // don't leave extra instructions sitting around. - for (auto &KV : DivCache) - for (Instruction *Phi : {KV.second.Quotient, KV.second.Remainder}) - RecursivelyDeleteTriviallyDeadInstructions(Phi); + for (auto &KV : PerBBDivCache) + for (Value *V : {KV.second.Quotient, KV.second.Remainder}) + RecursivelyDeleteTriviallyDeadInstructions(V); return MadeChange; } |