diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar')
23 files changed, 3675 insertions, 1794 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp index f8f18b2..9a5423f 100644 --- a/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp @@ -26,6 +26,7 @@ #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/AddrModeMatcher.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" @@ -64,11 +65,17 @@ static cl::opt<bool> DisableBranchOpts( "disable-cgp-branch-opts", cl::Hidden, cl::init(false), cl::desc("Disable branch optimizations in CodeGenPrepare")); +// FIXME: Remove this abomination once all of the tests pass without it! +static cl::opt<bool> DisableDeleteDeadBlocks( + "disable-cgp-delete-dead-blocks", cl::Hidden, cl::init(false), + cl::desc("Disable deleting dead blocks in CodeGenPrepare")); + namespace { class CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetLowering *TLI; + const TargetLibraryInfo *TLInfo; DominatorTree *DT; ProfileInfo *PFI; @@ -97,6 +104,7 @@ namespace { virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved<DominatorTree>(); AU.addPreserved<ProfileInfo>(); + AU.addRequired<TargetLibraryInfo>(); } private: @@ -116,7 +124,10 @@ namespace { } char CodeGenPrepare::ID = 0; -INITIALIZE_PASS(CodeGenPrepare, "codegenprepare", +INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare", + "Optimize for code generation", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) +INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare", "Optimize for code generation", false, false) FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) { @@ -127,6 +138,7 @@ bool CodeGenPrepare::runOnFunction(Function &F) { bool EverMadeChange = false; ModifiedDT = false; + TLInfo = &getAnalysis<TargetLibraryInfo>(); DT = getAnalysisIfAvailable<DominatorTree>(); PFI = getAnalysisIfAvailable<ProfileInfo>(); @@ -153,8 +165,22 @@ bool CodeGenPrepare::runOnFunction(Function &F) { if (!DisableBranchOpts) { MadeChange = false; - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + SmallPtrSet<BasicBlock*, 8> WorkList; + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); MadeChange |= ConstantFoldTerminator(BB, true); + if (!MadeChange) continue; + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + if (pred_begin(*II) == pred_end(*II)) + WorkList.insert(*II); + } + + if (!DisableDeleteDeadBlocks) + for (SmallPtrSet<BasicBlock*, 8>::iterator + I = WorkList.begin(), E = WorkList.end(); I != E; ++I) + DeleteDeadBlock(*I); if (MadeChange) ModifiedDT = true; @@ -541,8 +567,8 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { // happens. WeakVH IterHandle(CurInstIterator); - ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0, - ModifiedDT ? 0 : DT); + replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getTargetData() : 0, + TLInfo, ModifiedDT ? 0 : DT); // If the iterator instruction was recursively deleted, start over at the // start of the block. @@ -553,6 +579,15 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { return true; } + if (II && TLI) { + SmallVector<Value*, 2> PtrOps; + Type *AccessTy; + if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) + while (!PtrOps.empty()) + if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) + return true; + } + // From here on out we're working with named functions. if (CI->getCalledFunction() == 0) return false; @@ -612,7 +647,7 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) { // It's not safe to eliminate the sign / zero extension of the return value. // See llvm::isInTailCallPosition(). const Function *F = BB->getParent(); - unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); + Attributes CallerRetAttr = F->getAttributes().getRetAttributes(); if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) return false; @@ -667,7 +702,7 @@ bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) { // Conservatively require the attributes of the call to match those of the // return. Ignore noalias because it doesn't affect the call sequence. - unsigned CalleeRetAttr = CS.getAttributes().getRetAttributes(); + Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes(); if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) continue; diff --git a/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp b/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp index 664c3f6..5430f62 100644 --- a/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/ConstantProp.cpp @@ -24,6 +24,8 @@ #include "llvm/Constant.h" #include "llvm/Instruction.h" #include "llvm/Pass.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Support/InstIterator.h" #include "llvm/ADT/Statistic.h" #include <set> @@ -42,19 +44,22 @@ namespace { virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); + AU.addRequired<TargetLibraryInfo>(); } }; } char ConstantPropagation::ID = 0; -INITIALIZE_PASS(ConstantPropagation, "constprop", +INITIALIZE_PASS_BEGIN(ConstantPropagation, "constprop", + "Simple constant propagation", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) +INITIALIZE_PASS_END(ConstantPropagation, "constprop", "Simple constant propagation", false, false) FunctionPass *llvm::createConstantPropagationPass() { return new ConstantPropagation(); } - bool ConstantPropagation::runOnFunction(Function &F) { // Initialize the worklist to all of the instructions ready to process... std::set<Instruction*> WorkList; @@ -62,13 +67,15 @@ bool ConstantPropagation::runOnFunction(Function &F) { WorkList.insert(&*i); } bool Changed = false; + TargetData *TD = getAnalysisIfAvailable<TargetData>(); + TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); while (!WorkList.empty()) { Instruction *I = *WorkList.begin(); WorkList.erase(WorkList.begin()); // Get an element from the worklist... if (!I->use_empty()) // Don't muck with dead instructions... - if (Constant *C = ConstantFoldInstruction(I)) { + if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) { // Add all of the users of this instruction to the worklist, they might // be constant propagatable now... for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); diff --git a/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp b/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp index e275268..9b0aadb 100644 --- a/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp @@ -28,6 +28,7 @@ STATISTIC(NumPhis, "Number of phis propagated"); STATISTIC(NumSelects, "Number of selects propagated"); STATISTIC(NumMemAccess, "Number of memory access targets propagated"); STATISTIC(NumCmps, "Number of comparisons propagated"); +STATISTIC(NumDeadCases, "Number of switch cases removed"); namespace { class CorrelatedValuePropagation : public FunctionPass { @@ -37,6 +38,7 @@ namespace { bool processPHI(PHINode *P); bool processMemAccess(Instruction *I); bool processCmp(CmpInst *C); + bool processSwitch(SwitchInst *SI); public: static char ID; @@ -110,7 +112,8 @@ bool CorrelatedValuePropagation::processPHI(PHINode *P) { Changed = true; } - ++NumPhis; + if (Changed) + ++NumPhis; return Changed; } @@ -173,6 +176,86 @@ bool CorrelatedValuePropagation::processCmp(CmpInst *C) { return true; } +/// processSwitch - Simplify a switch instruction by removing cases which can +/// never fire. If the uselessness of a case could be determined locally then +/// constant propagation would already have figured it out. Instead, walk the +/// predecessors and statically evaluate cases based on information available +/// on that edge. Cases that cannot fire no matter what the incoming edge can +/// safely be removed. If a case fires on every incoming edge then the entire +/// switch can be removed and replaced with a branch to the case destination. +bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) { + Value *Cond = SI->getCondition(); + BasicBlock *BB = SI->getParent(); + + // If the condition was defined in same block as the switch then LazyValueInfo + // currently won't say anything useful about it, though in theory it could. + if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) + return false; + + // If the switch is unreachable then trying to improve it is a waste of time. + pred_iterator PB = pred_begin(BB), PE = pred_end(BB); + if (PB == PE) return false; + + // Analyse each switch case in turn. This is done in reverse order so that + // removing a case doesn't cause trouble for the iteration. + bool Changed = false; + for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE; + ) { + ConstantInt *Case = CI.getCaseValue(); + + // Check to see if the switch condition is equal to/not equal to the case + // value on every incoming edge, equal/not equal being the same each time. + LazyValueInfo::Tristate State = LazyValueInfo::Unknown; + for (pred_iterator PI = PB; PI != PE; ++PI) { + // Is the switch condition equal to the case value? + LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, + Cond, Case, *PI, BB); + // Give up on this case if nothing is known. + if (Value == LazyValueInfo::Unknown) { + State = LazyValueInfo::Unknown; + break; + } + + // If this was the first edge to be visited, record that all other edges + // need to give the same result. + if (PI == PB) { + State = Value; + continue; + } + + // If this case is known to fire for some edges and known not to fire for + // others then there is nothing we can do - give up. + if (Value != State) { + State = LazyValueInfo::Unknown; + break; + } + } + + if (State == LazyValueInfo::False) { + // This case never fires - remove it. + CI.getCaseSuccessor()->removePredecessor(BB); + SI->removeCase(CI); // Does not invalidate the iterator. + ++NumDeadCases; + Changed = true; + } else if (State == LazyValueInfo::True) { + // This case always fires. Arrange for the switch to be turned into an + // unconditional branch by replacing the switch condition with the case + // value. + SI->setCondition(Case); + NumDeadCases += SI->getNumCases(); + Changed = true; + break; + } + } + + if (Changed) + // If the switch has been simplified to the point where it can be replaced + // by a branch then do so now. + ConstantFoldTerminator(BB); + + return Changed; +} + bool CorrelatedValuePropagation::runOnFunction(Function &F) { LVI = &getAnalysis<LazyValueInfo>(); @@ -200,6 +283,13 @@ bool CorrelatedValuePropagation::runOnFunction(Function &F) { } } + Instruction *Term = FI->getTerminator(); + switch (Term->getOpcode()) { + case Instruction::Switch: + BBChanged |= processSwitch(cast<SwitchInst>(Term)); + break; + } + FnChanged |= BBChanged; } diff --git a/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp index a593d0f..c8c5360 100644 --- a/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp @@ -24,6 +24,7 @@ #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" @@ -33,6 +34,7 @@ #include "llvm/Support/Debug.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" using namespace llvm; STATISTIC(NumFastStores, "Number of stores deleted"); @@ -42,25 +44,26 @@ namespace { struct DSE : public FunctionPass { AliasAnalysis *AA; MemoryDependenceAnalysis *MD; + DominatorTree *DT; static char ID; // Pass identification, replacement for typeid - DSE() : FunctionPass(ID), AA(0), MD(0) { + DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) { initializeDSEPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F) { AA = &getAnalysis<AliasAnalysis>(); MD = &getAnalysis<MemoryDependenceAnalysis>(); - DominatorTree &DT = getAnalysis<DominatorTree>(); + DT = &getAnalysis<DominatorTree>(); bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) // Only check non-dead blocks. Dead blocks may have strange pointer // cycles that will confuse alias analysis. - if (DT.isReachableFromEntry(I)) + if (DT->isReachableFromEntry(I)) Changed |= runOnBasicBlock(*I); - AA = 0; MD = 0; + AA = 0; MD = 0; DT = 0; return Changed; } @@ -221,7 +224,7 @@ static bool isRemovable(Instruction *I) { IntrinsicInst *II = cast<IntrinsicInst>(I); switch (II->getIntrinsicID()) { - default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate"); + default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate"); case Intrinsic::lifetime_end: // Never remove dead lifetime_end's, e.g. because it is followed by a // free. @@ -238,6 +241,24 @@ static bool isRemovable(Instruction *I) { } } + +/// isShortenable - Returns true if this instruction can be safely shortened in +/// length. +static bool isShortenable(Instruction *I) { + // Don't shorten stores for now + if (isa<StoreInst>(I)) + return false; + + IntrinsicInst *II = cast<IntrinsicInst>(I); + switch (II->getIntrinsicID()) { + default: return false; + case Intrinsic::memset: + case Intrinsic::memcpy: + // Do shorten memory intrinsics. + return true; + } +} + /// getStoredPointerOperand - Return the pointer that is being written to. static Value *getStoredPointerOperand(Instruction *I) { if (StoreInst *SI = dyn_cast<StoreInst>(I)) @@ -247,46 +268,61 @@ static Value *getStoredPointerOperand(Instruction *I) { IntrinsicInst *II = cast<IntrinsicInst>(I); switch (II->getIntrinsicID()) { - default: assert(false && "Unexpected intrinsic!"); + default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::init_trampoline: return II->getArgOperand(0); } } -static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) { +static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) { const TargetData *TD = AA.getTargetData(); + + if (const CallInst *CI = extractMallocCall(V)) { + if (const ConstantInt *C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) + return C->getZExtValue(); + } + if (TD == 0) return AliasAnalysis::UnknownSize; - if (AllocaInst *A = dyn_cast<AllocaInst>(V)) { + if (const AllocaInst *A = dyn_cast<AllocaInst>(V)) { // Get size information for the alloca - if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize())) + if (const ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize())) return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType()); - return AliasAnalysis::UnknownSize; } - assert(isa<Argument>(V) && "Expected AllocaInst or Argument!"); - PointerType *PT = cast<PointerType>(V->getType()); - return TD->getTypeAllocSize(PT->getElementType()); + if (const Argument *A = dyn_cast<Argument>(V)) { + if (A->hasByValAttr()) + if (PointerType *PT = dyn_cast<PointerType>(A->getType())) + return TD->getTypeAllocSize(PT->getElementType()); + } + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { + if (!GV->mayBeOverridden()) + return TD->getTypeAllocSize(GV->getType()->getElementType()); + } + + return AliasAnalysis::UnknownSize; } -/// isObjectPointerWithTrustworthySize - Return true if the specified Value* is -/// pointing to an object with a pointer size we can trust. -static bool isObjectPointerWithTrustworthySize(const Value *V) { - if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) - return !AI->isArrayAllocation(); - if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) - return !GV->mayBeOverridden(); - if (const Argument *A = dyn_cast<Argument>(V)) - return A->hasByValAttr(); - return false; +namespace { + enum OverwriteResult + { + OverwriteComplete, + OverwriteEnd, + OverwriteUnknown + }; } -/// isCompleteOverwrite - Return true if a store to the 'Later' location +/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location /// completely overwrites a store to the 'Earlier' location. -static bool isCompleteOverwrite(const AliasAnalysis::Location &Later, - const AliasAnalysis::Location &Earlier, - AliasAnalysis &AA) { +/// 'OverwriteEnd' if the end of the 'Earlier' location is completely +/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined +static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later, + const AliasAnalysis::Location &Earlier, + AliasAnalysis &AA, + int64_t &EarlierOff, + int64_t &LaterOff) { const Value *P1 = Earlier.Ptr->stripPointerCasts(); const Value *P2 = Later.Ptr->stripPointerCasts(); @@ -300,23 +336,24 @@ static bool isCompleteOverwrite(const AliasAnalysis::Location &Later, // If we have no TargetData information around, then the size of the store // is inferrable from the pointee type. If they are the same type, then // we know that the store is safe. - if (AA.getTargetData() == 0) - return Later.Ptr->getType() == Earlier.Ptr->getType(); - return false; + if (AA.getTargetData() == 0 && + Later.Ptr->getType() == Earlier.Ptr->getType()) + return OverwriteComplete; + + return OverwriteUnknown; } // Make sure that the Later size is >= the Earlier size. - if (Later.Size < Earlier.Size) - return false; - return true; + if (Later.Size >= Earlier.Size) + return OverwriteComplete; } // Otherwise, we have to have size information, and the later store has to be // larger than the earlier one. if (Later.Size == AliasAnalysis::UnknownSize || Earlier.Size == AliasAnalysis::UnknownSize || - Later.Size <= Earlier.Size || AA.getTargetData() == 0) - return false; + AA.getTargetData() == 0) + return OverwriteUnknown; // Check to see if the later store is to the entire object (either a global, // an alloca, or a byval argument). If so, then it clearly overwrites any @@ -329,26 +366,25 @@ static bool isCompleteOverwrite(const AliasAnalysis::Location &Later, // If we can't resolve the same pointers to the same object, then we can't // analyze them at all. if (UO1 != UO2) - return false; + return OverwriteUnknown; // If the "Later" store is to a recognizable object, get its size. - if (isObjectPointerWithTrustworthySize(UO2)) { - uint64_t ObjectSize = - TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType()); - if (ObjectSize == Later.Size) - return true; - } + uint64_t ObjectSize = getPointerSize(UO2, AA); + if (ObjectSize != AliasAnalysis::UnknownSize) + if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size) + return OverwriteComplete; // Okay, we have stores to two completely different pointers. Try to // decompose the pointer into a "base + constant_offset" form. If the base // pointers are equal, then we can reason about the two stores. - int64_t EarlierOff = 0, LaterOff = 0; + EarlierOff = 0; + LaterOff = 0; const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD); const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD); // If the base pointers still differ, we have two completely different stores. if (BP1 != BP2) - return false; + return OverwriteUnknown; // The later store completely overlaps the earlier store if: // @@ -366,11 +402,25 @@ static bool isCompleteOverwrite(const AliasAnalysis::Location &Later, // // We have to be careful here as *Off is signed while *.Size is unsigned. if (EarlierOff >= LaterOff && + Later.Size > Earlier.Size && uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size) - return true; + return OverwriteComplete; + + // The other interesting case is if the later store overwrites the end of + // the earlier store + // + // |--earlier--| + // |-- later --| + // + // In this case we may want to trim the size of earlier to avoid generating + // writes to addresses which will definitely be overwritten later + if (LaterOff > EarlierOff && + LaterOff < int64_t(EarlierOff + Earlier.Size) && + int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size)) + return OverwriteEnd; // Otherwise, they don't completely overlap. - return false; + return OverwriteUnknown; } /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a @@ -494,22 +544,52 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) { // If we find a write that is a) removable (i.e., non-volatile), b) is // completely obliterated by the store to 'Loc', and c) which we know that // 'Inst' doesn't load from, then we can remove it. - if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) && + if (isRemovable(DepWrite) && !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) { - DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " - << *DepWrite << "\n KILLER: " << *Inst << '\n'); - - // Delete the store and now-dead instructions that feed it. - DeleteDeadInstruction(DepWrite, *MD); - ++NumFastStores; - MadeChange = true; - - // DeleteDeadInstruction can delete the current instruction in loop - // cases, reset BBI. - BBI = Inst; - if (BBI != BB.begin()) - --BBI; - break; + int64_t InstWriteOffset, DepWriteOffset; + OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA, + DepWriteOffset, InstWriteOffset); + if (OR == OverwriteComplete) { + DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " + << *DepWrite << "\n KILLER: " << *Inst << '\n'); + + // Delete the store and now-dead instructions that feed it. + DeleteDeadInstruction(DepWrite, *MD); + ++NumFastStores; + MadeChange = true; + + // DeleteDeadInstruction can delete the current instruction in loop + // cases, reset BBI. + BBI = Inst; + if (BBI != BB.begin()) + --BBI; + break; + } else if (OR == OverwriteEnd && isShortenable(DepWrite)) { + // TODO: base this on the target vector size so that if the earlier + // store was too small to get vector writes anyway then its likely + // a good idea to shorten it + // Power of 2 vector writes are probably always a bad idea to optimize + // as any store/memset/memcpy is likely using vector instructions so + // shortening it to not vector size is likely to be slower + MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite); + unsigned DepWriteAlign = DepIntrinsic->getAlignment(); + if (llvm::isPowerOf2_64(InstWriteOffset) || + ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) { + + DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW END: " + << *DepWrite << "\n KILLER (offset " + << InstWriteOffset << ", " + << DepLoc.Size << ")" + << *Inst << '\n'); + + Value* DepWriteLength = DepIntrinsic->getLength(); + Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(), + InstWriteOffset - + DepWriteOffset); + DepIntrinsic->setLength(TrimmedLength); + MadeChange = true; + } + } } // If this is a may-aliased store that is clobbering the store value, we @@ -538,37 +618,67 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) { return MadeChange; } +/// Find all blocks that will unconditionally lead to the block BB and append +/// them to F. +static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks, + BasicBlock *BB, DominatorTree *DT) { + for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { + BasicBlock *Pred = *I; + if (Pred == BB) continue; + TerminatorInst *PredTI = Pred->getTerminator(); + if (PredTI->getNumSuccessors() != 1) + continue; + + if (DT->isReachableFromEntry(Pred)) + Blocks.push_back(Pred); + } +} + /// HandleFree - Handle frees of entire structures whose dependency is a store /// to a field of that structure. bool DSE::HandleFree(CallInst *F) { bool MadeChange = false; - MemDepResult Dep = MD->getDependency(F); + AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0)); + SmallVector<BasicBlock *, 16> Blocks; + Blocks.push_back(F->getParent()); - while (Dep.isDef() || Dep.isClobber()) { - Instruction *Dependency = Dep.getInst(); - if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency)) - return MadeChange; + while (!Blocks.empty()) { + BasicBlock *BB = Blocks.pop_back_val(); + Instruction *InstPt = BB->getTerminator(); + if (BB == F->getParent()) InstPt = F; - Value *DepPointer = - GetUnderlyingObject(getStoredPointerOperand(Dependency)); + MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB); + while (Dep.isDef() || Dep.isClobber()) { + Instruction *Dependency = Dep.getInst(); + if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency)) + break; - // Check for aliasing. - if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) - return MadeChange; + Value *DepPointer = + GetUnderlyingObject(getStoredPointerOperand(Dependency)); - // DCE instructions only used to calculate that store - DeleteDeadInstruction(Dependency, *MD); - ++NumFastStores; - MadeChange = true; + // Check for aliasing. + if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) + break; - // Inst's old Dependency is now deleted. Compute the next dependency, - // which may also be dead, as in - // s[0] = 0; - // s[1] = 0; // This has just been deleted. - // free(s); - Dep = MD->getDependency(F); - }; + Instruction *Next = llvm::next(BasicBlock::iterator(Dependency)); + + // DCE instructions only used to calculate that store + DeleteDeadInstruction(Dependency, *MD); + ++NumFastStores; + MadeChange = true; + + // Inst's old Dependency is now deleted. Compute the next dependency, + // which may also be dead, as in + // s[0] = 0; + // s[1] = 0; // This has just been deleted. + // free(s); + Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB); + } + + if (Dep.isNonLocal()) + FindUnconditionalPreds(Blocks, BB, DT); + } return MadeChange; } @@ -588,10 +698,17 @@ bool DSE::handleEndBlock(BasicBlock &BB) { // Find all of the alloca'd pointers in the entry block. BasicBlock *Entry = BB.getParent()->begin(); - for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) + for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) { if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) DeadStackObjects.insert(AI); + // Okay, so these are dead heap objects, but if the pointer never escapes + // then it's leaked by this function anyways. + if (CallInst *CI = extractMallocCall(I)) + if (!PointerMayBeCaptured(CI, true, true)) + DeadStackObjects.insert(CI); + } + // Treat byval arguments the same, stores to them are dead at the end of the // function. for (Function::arg_iterator AI = BB.getParent()->arg_begin(), @@ -637,6 +754,11 @@ bool DSE::handleEndBlock(BasicBlock &BB) { continue; } + if (CallInst *CI = extractMallocCall(BBI)) { + DeadStackObjects.erase(CI); + continue; + } + if (CallSite CS = cast<Value>(BBI)) { // If this call does not access memory, it can't be loading any of our // pointers. @@ -732,4 +854,3 @@ void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc, I != E; ++I) DeadStackObjects.erase(*I); } - diff --git a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp index c0223d2..f3c92d6 100644 --- a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp @@ -19,11 +19,13 @@ #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/Statistic.h" +#include <deque> using namespace llvm; STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); @@ -215,6 +217,7 @@ namespace { class EarlyCSE : public FunctionPass { public: const TargetData *TD; + const TargetLibraryInfo *TLI; DominatorTree *DT; typedef RecyclingAllocator<BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy; @@ -257,12 +260,77 @@ public: bool runOnFunction(Function &F); private: - + + // NodeScope - almost a POD, but needs to call the constructors for the + // scoped hash tables so that a new scope gets pushed on. These are RAII so + // that the scope gets popped when the NodeScope is destroyed. + class NodeScope { + public: + NodeScope(ScopedHTType *availableValues, + LoadHTType *availableLoads, + CallHTType *availableCalls) : + Scope(*availableValues), + LoadScope(*availableLoads), + CallScope(*availableCalls) {} + + private: + NodeScope(const NodeScope&); // DO NOT IMPLEMENT + + ScopedHTType::ScopeTy Scope; + LoadHTType::ScopeTy LoadScope; + CallHTType::ScopeTy CallScope; + }; + + // StackNode - contains all the needed information to create a stack for + // doing a depth first tranversal of the tree. This includes scopes for + // values, loads, and calls as well as the generation. There is a child + // iterator so that the children do not need to be store spearately. + class StackNode { + public: + StackNode(ScopedHTType *availableValues, + LoadHTType *availableLoads, + CallHTType *availableCalls, + unsigned cg, DomTreeNode *n, + DomTreeNode::iterator child, DomTreeNode::iterator end) : + CurrentGeneration(cg), ChildGeneration(cg), Node(n), + ChildIter(child), EndIter(end), + Scopes(availableValues, availableLoads, availableCalls), + Processed(false) {} + + // Accessors. + unsigned currentGeneration() { return CurrentGeneration; } + unsigned childGeneration() { return ChildGeneration; } + void childGeneration(unsigned generation) { ChildGeneration = generation; } + DomTreeNode *node() { return Node; } + DomTreeNode::iterator childIter() { return ChildIter; } + DomTreeNode *nextChild() { + DomTreeNode *child = *ChildIter; + ++ChildIter; + return child; + } + DomTreeNode::iterator end() { return EndIter; } + bool isProcessed() { return Processed; } + void process() { Processed = true; } + + private: + StackNode(const StackNode&); // DO NOT IMPLEMENT + + // Members. + unsigned CurrentGeneration; + unsigned ChildGeneration; + DomTreeNode *Node; + DomTreeNode::iterator ChildIter; + DomTreeNode::iterator EndIter; + NodeScope Scopes; + bool Processed; + }; + bool processNode(DomTreeNode *Node); // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<DominatorTree>(); + AU.addRequired<TargetLibraryInfo>(); AU.setPreservesCFG(); } }; @@ -277,22 +345,10 @@ FunctionPass *llvm::createEarlyCSEPass() { INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false) bool EarlyCSE::processNode(DomTreeNode *Node) { - // Define a scope in the scoped hash table. When we are done processing this - // domtree node and recurse back up to our parent domtree node, this will pop - // off all the values we install. - ScopedHTType::ScopeTy Scope(*AvailableValues); - - // Define a scope for the load values so that anything we add will get - // popped when we recurse back up to our parent domtree node. - LoadHTType::ScopeTy LoadScope(*AvailableLoads); - - // Define a scope for the call values so that anything we add will get - // popped when we recurse back up to our parent domtree node. - CallHTType::ScopeTy CallScope(*AvailableCalls); - BasicBlock *BB = Node->getBlock(); // If this block has a single predecessor, then the predecessor is the parent @@ -328,7 +384,7 @@ bool EarlyCSE::processNode(DomTreeNode *Node) { // If the instruction can be simplified (e.g. X+0 = X) then replace it with // its simpler value. - if (Value *V = SimplifyInstruction(Inst, TD, DT)) { + if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) { DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); @@ -442,19 +498,16 @@ bool EarlyCSE::processNode(DomTreeNode *Node) { } } } - - unsigned LiveOutGeneration = CurrentGeneration; - for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) { - Changed |= processNode(*I); - // Pop any generation changes off the stack from the recursive walk. - CurrentGeneration = LiveOutGeneration; - } + return Changed; } bool EarlyCSE::runOnFunction(Function &F) { + std::deque<StackNode *> nodesToProcess; + TD = getAnalysisIfAvailable<TargetData>(); + TLI = &getAnalysis<TargetLibraryInfo>(); DT = &getAnalysis<DominatorTree>(); // Tables that the pass uses when walking the domtree. @@ -466,5 +519,52 @@ bool EarlyCSE::runOnFunction(Function &F) { AvailableCalls = &CallTable; CurrentGeneration = 0; - return processNode(DT->getRootNode()); + bool Changed = false; + + // Process the root node. + nodesToProcess.push_front( + new StackNode(AvailableValues, AvailableLoads, AvailableCalls, + CurrentGeneration, DT->getRootNode(), + DT->getRootNode()->begin(), + DT->getRootNode()->end())); + + // Save the current generation. + unsigned LiveOutGeneration = CurrentGeneration; + + // Process the stack. + while (!nodesToProcess.empty()) { + // Grab the first item off the stack. Set the current generation, remove + // the node from the stack, and process it. + StackNode *NodeToProcess = nodesToProcess.front(); + + // Initialize class members. + CurrentGeneration = NodeToProcess->currentGeneration(); + + // Check if the node needs to be processed. + if (!NodeToProcess->isProcessed()) { + // Process the node. + Changed |= processNode(NodeToProcess->node()); + NodeToProcess->childGeneration(CurrentGeneration); + NodeToProcess->process(); + } else if (NodeToProcess->childIter() != NodeToProcess->end()) { + // Push the next child onto the stack. + DomTreeNode *child = NodeToProcess->nextChild(); + nodesToProcess.push_front( + new StackNode(AvailableValues, + AvailableLoads, + AvailableCalls, + NodeToProcess->childGeneration(), child, + child->begin(), child->end())); + } else { + // It has been processed, and there are no more children to process, + // so delete it and pop it off the stack. + delete NodeToProcess; + nodesToProcess.pop_front(); + } + } // while (!nodes...) + + // Reset the current generation. + CurrentGeneration = LiveOutGeneration; + + return Changed; } diff --git a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp index cbfdbcd..fb733ad 100644 --- a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp @@ -31,10 +31,12 @@ #include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Allocator.h" @@ -83,6 +85,12 @@ namespace { return false; return true; } + + friend hash_code hash_value(const Expression &Value) { + return hash_combine(Value.opcode, Value.type, + hash_combine_range(Value.varargs.begin(), + Value.varargs.end())); + } }; class ValueTable { @@ -95,12 +103,17 @@ namespace { uint32_t nextValueNumber; Expression create_expression(Instruction* I); + Expression create_cmp_expression(unsigned Opcode, + CmpInst::Predicate Predicate, + Value *LHS, Value *RHS); Expression create_extractvalue_expression(ExtractValueInst* EI); uint32_t lookup_or_add_call(CallInst* C); public: ValueTable() : nextValueNumber(1) { } uint32_t lookup_or_add(Value *V); uint32_t lookup(Value *V) const; + uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred, + Value *LHS, Value *RHS); void add(Value *V, uint32_t num); void clear(); void erase(Value *v); @@ -124,16 +137,8 @@ template <> struct DenseMapInfo<Expression> { } static unsigned getHashValue(const Expression e) { - unsigned hash = e.opcode; - - hash = ((unsigned)((uintptr_t)e.type >> 4) ^ - (unsigned)((uintptr_t)e.type >> 9)); - - for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(), - E = e.varargs.end(); I != E; ++I) - hash = *I + hash * 37; - - return hash; + using llvm::hash_value; + return static_cast<unsigned>(hash_value(e)); } static bool isEqual(const Expression &LHS, const Expression &RHS) { return LHS == RHS; @@ -153,9 +158,24 @@ Expression ValueTable::create_expression(Instruction *I) { for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) e.varargs.push_back(lookup_or_add(*OI)); + if (I->isCommutative()) { + // Ensure that commutative instructions that only differ by a permutation + // of their operands get the same value number by sorting the operand value + // numbers. Since all commutative instructions have two operands it is more + // efficient to sort by hand rather than using, say, std::sort. + assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); + if (e.varargs[0] > e.varargs[1]) + std::swap(e.varargs[0], e.varargs[1]); + } if (CmpInst *C = dyn_cast<CmpInst>(I)) { - e.opcode = (C->getOpcode() << 8) | C->getPredicate(); + // Sort the operand value numbers so x<y and y>x get the same value number. + CmpInst::Predicate Predicate = C->getPredicate(); + if (e.varargs[0] > e.varargs[1]) { + std::swap(e.varargs[0], e.varargs[1]); + Predicate = CmpInst::getSwappedPredicate(Predicate); + } + e.opcode = (C->getOpcode() << 8) | Predicate; } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); II != IE; ++II) @@ -165,6 +185,25 @@ Expression ValueTable::create_expression(Instruction *I) { return e; } +Expression ValueTable::create_cmp_expression(unsigned Opcode, + CmpInst::Predicate Predicate, + Value *LHS, Value *RHS) { + assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && + "Not a comparison!"); + Expression e; + e.type = CmpInst::makeCmpResultType(LHS->getType()); + e.varargs.push_back(lookup_or_add(LHS)); + e.varargs.push_back(lookup_or_add(RHS)); + + // Sort the operand value numbers so x<y and y>x get the same value number. + if (e.varargs[0] > e.varargs[1]) { + std::swap(e.varargs[0], e.varargs[1]); + Predicate = CmpInst::getSwappedPredicate(Predicate); + } + e.opcode = (Opcode << 8) | Predicate; + return e; +} + Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) { assert(EI != 0 && "Not an ExtractValueInst?"); Expression e; @@ -414,6 +453,19 @@ uint32_t ValueTable::lookup(Value *V) const { return VI->second; } +/// lookup_or_add_cmp - Returns the value number of the given comparison, +/// assigning it a new number if it did not have one before. Useful when +/// we deduced the result of a comparison, but don't immediately have an +/// instruction realizing that comparison to hand. +uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode, + CmpInst::Predicate Predicate, + Value *LHS, Value *RHS) { + Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS); + uint32_t& e = expressionNumbering[exp]; + if (!e) e = nextValueNumber++; + return e; +} + /// clear - Remove all entries from the ValueTable. void ValueTable::clear() { valueNumbering.clear(); @@ -446,7 +498,8 @@ namespace { MemoryDependenceAnalysis *MD; DominatorTree *DT; const TargetData *TD; - + const TargetLibraryInfo *TLI; + ValueTable VN; /// LeaderTable - A mapping from value numbers to lists of Value*'s that @@ -530,6 +583,7 @@ namespace { // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<DominatorTree>(); + AU.addRequired<TargetLibraryInfo>(); if (!NoLoads) AU.addRequired<MemoryDependenceAnalysis>(); AU.addRequired<AliasAnalysis>(); @@ -568,6 +622,7 @@ FunctionPass *llvm::createGVNPass(bool NoLoads) { INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false) @@ -776,7 +831,7 @@ static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const TargetData &TD) { - // If the loaded or stored value is an first class array or struct, don't try + // If the loaded or stored value is a first class array or struct, don't try // to transform them. We need to be able to bitcast to integer. if (LoadTy->isStructTy() || LoadTy->isArrayTy()) return -1; @@ -973,7 +1028,7 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD); } -/// GetStoreValueForLoad - This function is called when we have a +/// GetLoadValueForLoad - This function is called when we have a /// memdep query of a load that ends up being a clobbering load. This means /// that the load *may* provide bits used by the load but we can't be sure /// because the pointers don't mustalias. Check this case to see if there is @@ -1274,14 +1329,14 @@ bool GVN::processNonLocalLoad(LoadInst *LI) { // If we had to process more than one hundred blocks to find the // dependencies, this load isn't worth worrying about. Optimizing // it will be too expensive. - if (Deps.size() > 100) + unsigned NumDeps = Deps.size(); + if (NumDeps > 100) return false; // If we had a phi translation failure, we'll have a single entry which is a // clobber in the current block. Reject this early. - if (Deps.size() == 1 - && !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) - { + if (NumDeps == 1 && + !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { DEBUG( dbgs() << "GVN: non-local load "; WriteAsOperand(dbgs(), LI); @@ -1294,10 +1349,10 @@ bool GVN::processNonLocalLoad(LoadInst *LI) { // where we have a value available in repl, also keep track of whether we see // dependencies that produce an unknown value for the load (such as a call // that could potentially clobber the load). - SmallVector<AvailableValueInBlock, 16> ValuesPerBlock; - SmallVector<BasicBlock*, 16> UnavailableBlocks; + SmallVector<AvailableValueInBlock, 64> ValuesPerBlock; + SmallVector<BasicBlock*, 64> UnavailableBlocks; - for (unsigned i = 0, e = Deps.size(); i != e; ++i) { + for (unsigned i = 0, e = NumDeps; i != e; ++i) { BasicBlock *DepBB = Deps[i].getBB(); MemDepResult DepInfo = Deps[i].getResult(); @@ -1896,12 +1951,19 @@ unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To, unsigned Count = 0; for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); UI != UE; ) { - Instruction *User = cast<Instruction>(*UI); - unsigned OpNum = UI.getOperandNo(); - ++UI; + Use &U = (UI++).getUse(); + + // If From occurs as a phi node operand then the use implicitly lives in the + // corresponding incoming block. Otherwise it is the block containing the + // user that must be dominated by Root. + BasicBlock *UsingBlock; + if (PHINode *PN = dyn_cast<PHINode>(U.getUser())) + UsingBlock = PN->getIncomingBlock(U); + else + UsingBlock = cast<Instruction>(U.getUser())->getParent(); - if (DT->dominates(Root, User->getParent())) { - User->setOperand(OpNum, To); + if (DT->dominates(Root, UsingBlock)) { + U.set(To); ++Count; } } @@ -1912,69 +1974,119 @@ unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To, /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with /// 'RHS' everywhere in the scope. Returns whether a change was made. bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) { - if (LHS == RHS) return false; - assert(LHS->getType() == RHS->getType() && "Equal but types differ!"); + SmallVector<std::pair<Value*, Value*>, 4> Worklist; + Worklist.push_back(std::make_pair(LHS, RHS)); + bool Changed = false; - // Don't try to propagate equalities between constants. - if (isa<Constant>(LHS) && isa<Constant>(RHS)) - return false; + while (!Worklist.empty()) { + std::pair<Value*, Value*> Item = Worklist.pop_back_val(); + LHS = Item.first; RHS = Item.second; + + if (LHS == RHS) continue; + assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); + + // Don't try to propagate equalities between constants. + if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue; + + // Prefer a constant on the right-hand side, or an Argument if no constants. + if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) + std::swap(LHS, RHS); + assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); + + // If there is no obvious reason to prefer the left-hand side over the right- + // hand side, ensure the longest lived term is on the right-hand side, so the + // shortest lived term will be replaced by the longest lived. This tends to + // expose more simplifications. + uint32_t LVN = VN.lookup_or_add(LHS); + if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || + (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { + // Move the 'oldest' value to the right-hand side, using the value number as + // a proxy for age. + uint32_t RVN = VN.lookup_or_add(RHS); + if (LVN < RVN) { + std::swap(LHS, RHS); + LVN = RVN; + } + } + assert((!isa<Instruction>(RHS) || + DT->properlyDominates(cast<Instruction>(RHS)->getParent(), Root)) && + "Instruction doesn't dominate scope!"); + + // If value numbering later deduces that an instruction in the scope is equal + // to 'LHS' then ensure it will be turned into 'RHS'. + addToLeaderTable(LVN, RHS, Root); + + // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As + // LHS always has at least one use that is not dominated by Root, this will + // never do anything if LHS has only one use. + if (!LHS->hasOneUse()) { + unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root); + Changed |= NumReplacements > 0; + NumGVNEqProp += NumReplacements; + } - // Make sure that any constants are on the right-hand side. In general the - // best results are obtained by placing the longest lived value on the RHS. - if (isa<Constant>(LHS)) - std::swap(LHS, RHS); + // Now try to deduce additional equalities from this one. For example, if the + // known equality was "(A != B)" == "false" then it follows that A and B are + // equal in the scope. Only boolean equalities with an explicit true or false + // RHS are currently supported. + if (!RHS->getType()->isIntegerTy(1)) + // Not a boolean equality - bail out. + continue; + ConstantInt *CI = dyn_cast<ConstantInt>(RHS); + if (!CI) + // RHS neither 'true' nor 'false' - bail out. + continue; + // Whether RHS equals 'true'. Otherwise it equals 'false'. + bool isKnownTrue = CI->isAllOnesValue(); + bool isKnownFalse = !isKnownTrue; + + // If "A && B" is known true then both A and B are known true. If "A || B" + // is known false then both A and B are known false. + Value *A, *B; + if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || + (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { + Worklist.push_back(std::make_pair(A, RHS)); + Worklist.push_back(std::make_pair(B, RHS)); + continue; + } - // If neither term is constant then bail out. This is not for correctness, - // it's just that the non-constant case is much less useful: it occurs just - // as often as the constant case but handling it hardly ever results in an - // improvement. - if (!isa<Constant>(RHS)) - return false; + // If we are propagating an equality like "(A == B)" == "true" then also + // propagate the equality A == B. When propagating a comparison such as + // "(A >= B)" == "true", replace all instances of "A < B" with "false". + if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) { + Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); - // If value numbering later deduces that an instruction in the scope is equal - // to 'LHS' then ensure it will be turned into 'RHS'. - addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root); - - // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. - unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root); - bool Changed = NumReplacements > 0; - NumGVNEqProp += NumReplacements; - - // Now try to deduce additional equalities from this one. For example, if the - // known equality was "(A != B)" == "false" then it follows that A and B are - // equal in the scope. Only boolean equalities with an explicit true or false - // RHS are currently supported. - if (!RHS->getType()->isIntegerTy(1)) - // Not a boolean equality - bail out. - return Changed; - ConstantInt *CI = dyn_cast<ConstantInt>(RHS); - if (!CI) - // RHS neither 'true' nor 'false' - bail out. - return Changed; - // Whether RHS equals 'true'. Otherwise it equals 'false'. - bool isKnownTrue = CI->isAllOnesValue(); - bool isKnownFalse = !isKnownTrue; - - // If "A && B" is known true then both A and B are known true. If "A || B" - // is known false then both A and B are known false. - Value *A, *B; - if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || - (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { - Changed |= propagateEquality(A, RHS, Root); - Changed |= propagateEquality(B, RHS, Root); - return Changed; - } + // If "A == B" is known true, or "A != B" is known false, then replace + // A with B everywhere in the scope. + if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || + (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) + Worklist.push_back(std::make_pair(Op0, Op1)); + + // If "A >= B" is known true, replace "A < B" with false everywhere. + CmpInst::Predicate NotPred = Cmp->getInversePredicate(); + Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); + // Since we don't have the instruction "A < B" immediately to hand, work out + // the value number that it would have and use that to find an appropriate + // instruction (if any). + uint32_t NextNum = VN.getNextUnusedValueNumber(); + uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1); + // If the number we were assigned was brand new then there is no point in + // looking for an instruction realizing it: there cannot be one! + if (Num < NextNum) { + Value *NotCmp = findLeader(Root, Num); + if (NotCmp && isa<Instruction>(NotCmp)) { + unsigned NumReplacements = + replaceAllDominatedUsesWith(NotCmp, NotVal, Root); + Changed |= NumReplacements > 0; + NumGVNEqProp += NumReplacements; + } + } + // Ensure that any instruction in scope that gets the "A < B" value number + // is replaced with false. + addToLeaderTable(Num, NotVal, Root); - // If we are propagating an equality like "(A == B)" == "true" then also - // propagate the equality A == B. - if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) { - // Only equality comparisons are supported. - if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || - (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) { - Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); - Changed |= propagateEquality(Op0, Op1, Root); + continue; } - return Changed; } return Changed; @@ -1985,35 +2097,15 @@ bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) { /// particular 'Dst' must not be reachable via another edge from 'Src'. static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst, DominatorTree *DT) { - // First off, there must not be more than one edge from Src to Dst, there - // should be exactly one. So keep track of the number of times Src occurs - // as a predecessor of Dst and fail if it's more than once. Secondly, any - // other predecessors of Dst should be dominated by Dst (see logic below). - bool SawEdgeFromSrc = false; - for (pred_iterator PI = pred_begin(Dst), PE = pred_end(Dst); PI != PE; ++PI) { - BasicBlock *Pred = *PI; - if (Pred == Src) { - // An edge from Src to Dst. - if (SawEdgeFromSrc) - // There are multiple edges from Src to Dst - fail. - return false; - SawEdgeFromSrc = true; - continue; - } - // If the predecessor is not dominated by Dst, then it must be possible to - // reach it either without passing through Src (and thus not via the edge) - // or by passing through Src but taking a different edge out of Src. Either - // way it is possible to reach Dst without passing via the edge, so fail. - if (!DT->dominates(Dst, *PI)) - return false; - } - assert(SawEdgeFromSrc && "No edge between these basic blocks!"); - - // Every path from the entry block to Dst must at some point pass to Dst from - // a predecessor that is not dominated by Dst. This predecessor can only be - // Src, since all others are dominated by Dst. As there is only one edge from - // Src to Dst, the path passes by this edge. - return true; + // While in theory it is interesting to consider the case in which Dst has + // more than one predecessor, because Dst might be part of a loop which is + // only reachable from Src, in practice it is pointless since at the time + // GVN runs all such loops have preheaders, which means that Dst will have + // been changed to have only one predecessor, namely Src. + BasicBlock *Pred = Dst->getSinglePredecessor(); + assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); + (void)Src; + return Pred != 0; } /// processInstruction - When calculating availability, handle an instruction @@ -2027,7 +2119,7 @@ bool GVN::processInstruction(Instruction *I) { // to value numbering it. Value numbering often exposes redundancies, for // example if it determines that %y is equal to %x then the instruction // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. - if (Value *V = SimplifyInstruction(I, TD, DT)) { + if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) { I->replaceAllUsesWith(V); if (MD && V->getType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); @@ -2076,16 +2168,17 @@ bool GVN::processInstruction(Instruction *I) { Value *SwitchCond = SI->getCondition(); BasicBlock *Parent = SI->getParent(); bool Changed = false; - for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { - BasicBlock *Dst = SI->getSuccessor(i); + for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); + i != e; ++i) { + BasicBlock *Dst = i.getCaseSuccessor(); if (isOnlyReachableViaThisEdge(Parent, Dst, DT)) - Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst); + Changed |= propagateEquality(SwitchCond, i.getCaseValue(), Dst); } return Changed; } // Instructions with void type don't return a value, so there's - // no point in trying to find redudancies in them. + // no point in trying to find redundancies in them. if (I->getType()->isVoidTy()) return false; uint32_t NextNum = VN.getNextUnusedValueNumber(); @@ -2101,7 +2194,7 @@ bool GVN::processInstruction(Instruction *I) { // If the number we were assigned was a brand new VN, then we don't // need to do a lookup to see if the number already exists // somewhere in the domtree: it can't! - if (Num == NextNum) { + if (Num >= NextNum) { addToLeaderTable(Num, I, I->getParent()); return false; } @@ -2129,6 +2222,7 @@ bool GVN::runOnFunction(Function& F) { MD = &getAnalysis<MemoryDependenceAnalysis>(); DT = &getAnalysis<DominatorTree>(); TD = getAnalysisIfAvailable<TargetData>(); + TLI = &getAnalysis<TargetLibraryInfo>(); VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>()); VN.setMemDep(MD); VN.setDomTree(DT); @@ -2241,7 +2335,14 @@ bool GVN::performPRE(Function &F) { CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || isa<DbgInfoIntrinsic>(CurInst)) continue; - + + // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from + // sinking the compare again, and it would force the code generator to + // move the i1 from processor flags or predicate registers into a general + // purpose register. + if (isa<CmpInst>(CurInst)) + continue; + // We don't currently value number ANY inline asm calls. if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) if (CallI->isInlineAsm()) diff --git a/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp b/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp new file mode 100644 index 0000000..c2bd6e6 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/GlobalMerge.cpp @@ -0,0 +1,226 @@ +//===-- GlobalMerge.cpp - Internal globals merging -----------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// This pass merges globals with internal linkage into one. This way all the +// globals which were merged into a biggest one can be addressed using offsets +// from the same base pointer (no need for separate base pointer for each of the +// global). Such a transformation can significantly reduce the register pressure +// when many globals are involved. +// +// For example, consider the code which touches several global variables at +// once: +// +// static int foo[N], bar[N], baz[N]; +// +// for (i = 0; i < N; ++i) { +// foo[i] = bar[i] * baz[i]; +// } +// +// On ARM the addresses of 3 arrays should be kept in the registers, thus +// this code has quite large register pressure (loop body): +// +// ldr r1, [r5], #4 +// ldr r2, [r6], #4 +// mul r1, r2, r1 +// str r1, [r0], #4 +// +// Pass converts the code to something like: +// +// static struct { +// int foo[N]; +// int bar[N]; +// int baz[N]; +// } merged; +// +// for (i = 0; i < N; ++i) { +// merged.foo[i] = merged.bar[i] * merged.baz[i]; +// } +// +// and in ARM code this becomes: +// +// ldr r0, [r5, #40] +// ldr r1, [r5, #80] +// mul r0, r1, r0 +// str r0, [r5], #4 +// +// note that we saved 2 registers here almostly "for free". +// ===---------------------------------------------------------------------===// + +#define DEBUG_TYPE "global-merge" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Attributes.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/ADT/Statistic.h" +using namespace llvm; + +STATISTIC(NumMerged , "Number of globals merged"); +namespace { + class GlobalMerge : public FunctionPass { + /// TLI - Keep a pointer of a TargetLowering to consult for determining + /// target type sizes. + const TargetLowering *TLI; + + bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, + Module &M, bool isConst) const; + + public: + static char ID; // Pass identification, replacement for typeid. + explicit GlobalMerge(const TargetLowering *tli = 0) + : FunctionPass(ID), TLI(tli) { + initializeGlobalMergePass(*PassRegistry::getPassRegistry()); + } + + virtual bool doInitialization(Module &M); + virtual bool runOnFunction(Function &F); + + const char *getPassName() const { + return "Merge internal globals"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + FunctionPass::getAnalysisUsage(AU); + } + + struct GlobalCmp { + const TargetData *TD; + + GlobalCmp(const TargetData *td) : TD(td) { } + + bool operator()(const GlobalVariable *GV1, const GlobalVariable *GV2) { + Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType(); + Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType(); + + return (TD->getTypeAllocSize(Ty1) < TD->getTypeAllocSize(Ty2)); + } + }; + }; +} // end anonymous namespace + +char GlobalMerge::ID = 0; +INITIALIZE_PASS(GlobalMerge, "global-merge", + "Global Merge", false, false) + + +bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, + Module &M, bool isConst) const { + const TargetData *TD = TLI->getTargetData(); + + // FIXME: Infer the maximum possible offset depending on the actual users + // (these max offsets are different for the users inside Thumb or ARM + // functions) + unsigned MaxOffset = TLI->getMaximalGlobalOffset(); + + // FIXME: Find better heuristics + std::stable_sort(Globals.begin(), Globals.end(), GlobalCmp(TD)); + + Type *Int32Ty = Type::getInt32Ty(M.getContext()); + + for (size_t i = 0, e = Globals.size(); i != e; ) { + size_t j = 0; + uint64_t MergedSize = 0; + std::vector<Type*> Tys; + std::vector<Constant*> Inits; + for (j = i; j != e; ++j) { + Type *Ty = Globals[j]->getType()->getElementType(); + MergedSize += TD->getTypeAllocSize(Ty); + if (MergedSize > MaxOffset) { + break; + } + Tys.push_back(Ty); + Inits.push_back(Globals[j]->getInitializer()); + } + + StructType *MergedTy = StructType::get(M.getContext(), Tys); + Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); + GlobalVariable *MergedGV = new GlobalVariable(M, MergedTy, isConst, + GlobalValue::InternalLinkage, + MergedInit, "_MergedGlobals"); + for (size_t k = i; k < j; ++k) { + Constant *Idx[2] = { + ConstantInt::get(Int32Ty, 0), + ConstantInt::get(Int32Ty, k-i) + }; + Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(MergedGV, Idx); + Globals[k]->replaceAllUsesWith(GEP); + Globals[k]->eraseFromParent(); + NumMerged++; + } + i = j; + } + + return true; +} + + +bool GlobalMerge::doInitialization(Module &M) { + SmallVector<GlobalVariable*, 16> Globals, ConstGlobals, BSSGlobals; + const TargetData *TD = TLI->getTargetData(); + unsigned MaxOffset = TLI->getMaximalGlobalOffset(); + bool Changed = false; + + // Grab all non-const globals. + for (Module::global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + // Merge is safe for "normal" internal globals only + if (!I->hasLocalLinkage() || I->isThreadLocal() || I->hasSection()) + continue; + + // Ignore fancy-aligned globals for now. + unsigned Alignment = TD->getPreferredAlignment(I); + Type *Ty = I->getType()->getElementType(); + if (Alignment > TD->getABITypeAlignment(Ty)) + continue; + + // Ignore all 'special' globals. + if (I->getName().startswith("llvm.") || + I->getName().startswith(".llvm.")) + continue; + + if (TD->getTypeAllocSize(Ty) < MaxOffset) { + if (TargetLoweringObjectFile::getKindForGlobal(I, TLI->getTargetMachine()) + .isBSSLocal()) + BSSGlobals.push_back(I); + else if (I->isConstant()) + ConstGlobals.push_back(I); + else + Globals.push_back(I); + } + } + + if (Globals.size() > 1) + Changed |= doMerge(Globals, M, false); + if (BSSGlobals.size() > 1) + Changed |= doMerge(BSSGlobals, M, false); + + // FIXME: This currently breaks the EH processing due to way how the + // typeinfo detection works. We might want to detect the TIs and ignore + // them in the future. + // if (ConstGlobals.size() > 1) + // Changed |= doMerge(ConstGlobals, M, true); + + return Changed; +} + +bool GlobalMerge::runOnFunction(Function &F) { + return false; +} + +Pass *llvm::createGlobalMergePass(const TargetLowering *tli) { + return new GlobalMerge(tli); +} diff --git a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp index 75fa011..a9ba657 100644 --- a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp @@ -33,7 +33,6 @@ #include "llvm/LLVMContext.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" -#include "llvm/Analysis/IVUsers.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" @@ -50,30 +49,21 @@ #include "llvm/ADT/Statistic.h" using namespace llvm; -STATISTIC(NumRemoved , "Number of aux indvars removed"); STATISTIC(NumWidened , "Number of indvars widened"); -STATISTIC(NumInserted , "Number of canonical indvars added"); STATISTIC(NumReplaced , "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); -namespace llvm { - cl::opt<bool> EnableIVRewrite( - "enable-iv-rewrite", cl::Hidden, - cl::desc("Enable canonical induction variable rewriting")); - - // Trip count verification can be enabled by default under NDEBUG if we - // implement a strong expression equivalence checker in SCEV. Until then, we - // use the verify-indvars flag, which may assert in some cases. - cl::opt<bool> VerifyIndvars( - "verify-indvars", cl::Hidden, - cl::desc("Verify the ScalarEvolution result after running indvars")); -} +// Trip count verification can be enabled by default under NDEBUG if we +// implement a strong expression equivalence checker in SCEV. Until then, we +// use the verify-indvars flag, which may assert in some cases. +static cl::opt<bool> VerifyIndvars( + "verify-indvars", cl::Hidden, + cl::desc("Verify the ScalarEvolution result after running indvars")); namespace { class IndVarSimplify : public LoopPass { - IVUsers *IU; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; @@ -84,7 +74,7 @@ namespace { public: static char ID; // Pass identification, replacement for typeid - IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), + IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0), Changed(false) { initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); } @@ -97,13 +87,9 @@ namespace { AU.addRequired<ScalarEvolution>(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); - if (EnableIVRewrite) - AU.addRequired<IVUsers>(); AU.addPreserved<ScalarEvolution>(); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); - if (EnableIVRewrite) - AU.addPreserved<IVUsers>(); AU.setPreservesCFG(); } @@ -121,8 +107,6 @@ namespace { void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); - void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); - Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar, SCEVExpander &Rewriter); @@ -138,7 +122,6 @@ INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSA) -INITIALIZE_PASS_DEPENDENCY(IVUsers) INITIALIZE_PASS_END(IndVarSimplify, "indvars", "Induction Variable Simplification", false, false) @@ -180,6 +163,11 @@ bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { // base of a recurrence. This handles the case in which SCEV expansion // converts a pointer type recurrence into a nonrecurrent pointer base // indexed by an integer recurrence. + + // If the GEP base pointer is a vector of pointers, abort. + if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) + return false; + const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); if (FromBase == ToBase) @@ -445,11 +433,6 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { PN->replaceAllUsesWith(Conv); RecursivelyDeleteTriviallyDeadInstructions(PN); } - - // Add a new IVUsers entry for the newly-created integer PHI. - if (IU) - IU->AddUsersIfInteresting(NewPHI); - Changed = true; } @@ -595,124 +578,6 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { } //===----------------------------------------------------------------------===// -// Rewrite IV users based on a canonical IV. -// Only for use with -enable-iv-rewrite. -//===----------------------------------------------------------------------===// - -/// FIXME: It is an extremely bad idea to indvar substitute anything more -/// complex than affine induction variables. Doing so will put expensive -/// polynomial evaluations inside of the loop, and the str reduction pass -/// currently can only reduce affine polynomials. For now just disable -/// indvar subst on anything more complex than an affine addrec, unless -/// it can be expanded to a trivial value. -static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { - // Loop-invariant values are safe. - if (SE->isLoopInvariant(S, L)) return true; - - // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how - // to transform them into efficient code. - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) - return AR->isAffine(); - - // An add is safe it all its operands are safe. - if (const SCEVCommutativeExpr *Commutative - = dyn_cast<SCEVCommutativeExpr>(S)) { - for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), - E = Commutative->op_end(); I != E; ++I) - if (!isSafe(*I, L, SE)) return false; - return true; - } - - // A cast is safe if its operand is. - if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) - return isSafe(C->getOperand(), L, SE); - - // A udiv is safe if its operands are. - if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) - return isSafe(UD->getLHS(), L, SE) && - isSafe(UD->getRHS(), L, SE); - - // SCEVUnknown is always safe. - if (isa<SCEVUnknown>(S)) - return true; - - // Nothing else is safe. - return false; -} - -void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { - // Rewrite all induction variable expressions in terms of the canonical - // induction variable. - // - // If there were induction variables of other sizes or offsets, manually - // add the offsets to the primary induction variable and cast, avoiding - // the need for the code evaluation methods to insert induction variables - // of different sizes. - for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { - Value *Op = UI->getOperandValToReplace(); - Type *UseTy = Op->getType(); - Instruction *User = UI->getUser(); - - // Compute the final addrec to expand into code. - const SCEV *AR = IU->getReplacementExpr(*UI); - - // Evaluate the expression out of the loop, if possible. - if (!L->contains(UI->getUser())) { - const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); - if (SE->isLoopInvariant(ExitVal, L)) - AR = ExitVal; - } - - // FIXME: It is an extremely bad idea to indvar substitute anything more - // complex than affine induction variables. Doing so will put expensive - // polynomial evaluations inside of the loop, and the str reduction pass - // currently can only reduce affine polynomials. For now just disable - // indvar subst on anything more complex than an affine addrec, unless - // it can be expanded to a trivial value. - if (!isSafe(AR, L, SE)) - continue; - - // Determine the insertion point for this user. By default, insert - // immediately before the user. The SCEVExpander class will automatically - // hoist loop invariants out of the loop. For PHI nodes, there may be - // multiple uses, so compute the nearest common dominator for the - // incoming blocks. - Instruction *InsertPt = getInsertPointForUses(User, Op, DT); - - // Now expand it into actual Instructions and patch it into place. - Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); - - DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' - << " into = " << *NewVal << "\n"); - - if (!isValidRewrite(Op, NewVal)) { - DeadInsts.push_back(NewVal); - continue; - } - // Inform ScalarEvolution that this value is changing. The change doesn't - // affect its value, but it does potentially affect which use lists the - // value will be on after the replacement, which affects ScalarEvolution's - // ability to walk use lists and drop dangling pointers when a value is - // deleted. - SE->forgetValue(User); - - // Patch the new value into place. - if (Op->hasName()) - NewVal->takeName(Op); - if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) - NewValI->setDebugLoc(User->getDebugLoc()); - User->replaceUsesOfWith(Op, NewVal); - UI->setOperandValToReplace(NewVal); - - ++NumRemoved; - Changed = true; - - // The old value may be dead now. - DeadInsts.push_back(Op); - } -} - -//===----------------------------------------------------------------------===// // IV Widening - Extend the width of an IV to cover its widest uses. //===----------------------------------------------------------------------===// @@ -843,7 +708,7 @@ protected: const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); - Instruction *WidenIVUse(NarrowIVDefUse DU); + Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); }; @@ -917,7 +782,6 @@ Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { } return WideBO; } - llvm_unreachable(0); } /// No-wrap operations can transfer sign extension of their result to their @@ -946,9 +810,13 @@ const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { else return 0; + // When creating this AddExpr, don't apply the current operations NSW or NUW + // flags. This instruction may be guarded by control flow that the no-wrap + // behavior depends on. Non-control-equivalent instructions can be mapped to + // the same SCEV expression, and it would be incorrect to transfer NSW/NUW + // semantics to those operations. const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( - SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr, - IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW)); + SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); if (!AddRec || AddRec->getLoop() != L) return 0; @@ -983,7 +851,7 @@ const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { /// WidenIVUse - Determine whether an individual user of the narrow IV can be /// widened. If so, return the wide clone of the user. -Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) { +Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { // Stop traversing the def-use chain at inner-loop phis or post-loop phis. if (isa<PHINode>(DU.NarrowUse) && @@ -1051,7 +919,7 @@ Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) { // NarrowUse. Instruction *WideUse = 0; if (WideAddRec == WideIncExpr - && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT)) + && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) WideUse = WideInc; else { WideUse = CloneIVUser(DU); @@ -1156,7 +1024,7 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { // Process a def-use edge. This may replace the use, so don't hold a // use_iterator across it. - Instruction *WideUse = WidenIVUse(DU); + Instruction *WideUse = WidenIVUse(DU, Rewriter); // Follow all def-use edges from the previous narrow use. if (WideUse) @@ -1231,7 +1099,11 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L, /// BackedgeTakenInfo. If these expressions have not been reduced, then /// expanding them may incur additional cost (albeit in the loop preheader). static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, + SmallPtrSet<const SCEV*, 8> &Processed, ScalarEvolution *SE) { + if (!Processed.insert(S)) + return false; + // If the backedge-taken count is a UDiv, it's very likely a UDiv that // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a // precise expression, rather than a UDiv from the user's code. If we can't @@ -1250,16 +1122,13 @@ static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, } } - if (EnableIVRewrite) - return false; - // Recurse past add expressions, which commonly occur in the // BackedgeTakenCount. They may already exist in program code, and if not, // they are not too expensive rematerialize. if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); I != E; ++I) { - if (isHighCostExpansion(*I, BI, SE)) + if (isHighCostExpansion(*I, BI, Processed, SE)) return true; } return false; @@ -1270,14 +1139,24 @@ static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) return true; - // If we haven't recognized an expensive SCEV patter, assume its an expression - // produced by program code. + // If we haven't recognized an expensive SCEV pattern, assume it's an + // expression produced by program code. return false; } /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken /// count expression can be safely and cheaply expanded into an instruction /// sequence that can be used by LinearFunctionTestReplace. +/// +/// TODO: This fails for pointer-type loop counters with greater than one byte +/// strides, consequently preventing LFTR from running. For the purpose of LFTR +/// we could skip this check in the case that the LFTR loop counter (chosen by +/// FindLoopCounter) is also pointer type. Instead, we could directly convert +/// the loop test to an inequality test by checking the target data's alignment +/// of element types (given that the initial pointer value originates from or is +/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). +/// However, we don't yet have a strong motivation for converting loop tests +/// into inequality tests. static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || @@ -1292,42 +1171,13 @@ static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { if (!BI) return false; - if (isHighCostExpansion(BackedgeTakenCount, BI, SE)) + SmallPtrSet<const SCEV*, 8> Processed; + if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) return false; return true; } -/// getBackedgeIVType - Get the widest type used by the loop test after peeking -/// through Truncs. -/// -/// TODO: Unnecessary when ForceLFTR is removed. -static Type *getBackedgeIVType(Loop *L) { - if (!L->getExitingBlock()) - return 0; - - // Can't rewrite non-branch yet. - BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); - if (!BI) - return 0; - - ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); - if (!Cond) - return 0; - - Type *Ty = 0; - for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); - OI != OE; ++OI) { - assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); - TruncInst *Trunc = dyn_cast<TruncInst>(*OI); - if (!Trunc) - continue; - - return Trunc->getSrcTy(); - } - return Ty; -} - /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop /// invariant value to the phi. static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { @@ -1429,6 +1279,10 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { /// FindLoopCounter - Find an affine IV in canonical form. /// +/// BECount may be an i8* pointer type. The pointer difference is already +/// valid count without scaling the address stride, so it remains a pointer +/// expression as far as SCEV is concerned. +/// /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount /// /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. @@ -1437,11 +1291,6 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { static PHINode * FindLoopCounter(Loop *L, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { - // I'm not sure how BECount could be a pointer type, but we definitely don't - // want to LFTR that. - if (BECount->getType()->isPointerTy()) - return 0; - uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); Value *Cond = @@ -1458,6 +1307,10 @@ FindLoopCounter(Loop *L, const SCEV *BECount, if (!SE->isSCEVable(Phi->getType())) continue; + // Avoid comparing an integer IV against a pointer Limit. + if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) + continue; + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); if (!AR || AR->getLoop() != L || !AR->isAffine()) continue; @@ -1503,6 +1356,82 @@ FindLoopCounter(Loop *L, const SCEV *BECount, return BestPhi; } +/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that +/// holds the RHS of the new loop test. +static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, + SCEVExpander &Rewriter, ScalarEvolution *SE) { + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); + assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); + const SCEV *IVInit = AR->getStart(); + + // IVInit may be a pointer while IVCount is an integer when FindLoopCounter + // finds a valid pointer IV. Sign extend BECount in order to materialize a + // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing + // the existing GEPs whenever possible. + if (IndVar->getType()->isPointerTy() + && !IVCount->getType()->isPointerTy()) { + + Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); + const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); + + // Expand the code for the iteration count. + assert(SE->isLoopInvariant(IVOffset, L) && + "Computed iteration count is not loop invariant!"); + BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); + Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); + + Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); + assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); + // We could handle pointer IVs other than i8*, but we need to compensate for + // gep index scaling. See canExpandBackedgeTakenCount comments. + assert(SE->getSizeOfExpr( + cast<PointerType>(GEPBase->getType())->getElementType())->isOne() + && "unit stride pointer IV must be i8*"); + + IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); + return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); + } + else { + // In any other case, convert both IVInit and IVCount to integers before + // comparing. This may result in SCEV expension of pointers, but in practice + // SCEV will fold the pointer arithmetic away as such: + // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). + // + // Valid Cases: (1) both integers is most common; (2) both may be pointers + // for simple memset-style loops; (3) IVInit is an integer and IVCount is a + // pointer may occur when enable-iv-rewrite generates a canonical IV on top + // of case #2. + + const SCEV *IVLimit = 0; + // For unit stride, IVCount = Start + BECount with 2's complement overflow. + // For non-zero Start, compute IVCount here. + if (AR->getStart()->isZero()) + IVLimit = IVCount; + else { + assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); + const SCEV *IVInit = AR->getStart(); + + // For integer IVs, truncate the IV before computing IVInit + BECount. + if (SE->getTypeSizeInBits(IVInit->getType()) + > SE->getTypeSizeInBits(IVCount->getType())) + IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); + + IVLimit = SE->getAddExpr(IVInit, IVCount); + } + // Expand the code for the iteration count. + BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); + IRBuilder<> Builder(BI); + assert(SE->isLoopInvariant(IVLimit, L) && + "Computed iteration count is not loop invariant!"); + // Ensure that we generate the same type as IndVar, or a smaller integer + // type. In the presence of null pointer values, we have an integer type + // SCEV expression (IVInit) for a pointer type IV value (IndVar). + Type *LimitTy = IVCount->getType()->isPointerTy() ? + IndVar->getType() : IVCount->getType(); + return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); + } +} + /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the @@ -1514,37 +1443,35 @@ LinearFunctionTestReplace(Loop *L, PHINode *IndVar, SCEVExpander &Rewriter) { assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); - BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); // LFTR can ignore IV overflow and truncate to the width of // BECount. This avoids materializing the add(zext(add)) expression. - Type *CntTy = !EnableIVRewrite ? - BackedgeTakenCount->getType() : IndVar->getType(); + Type *CntTy = BackedgeTakenCount->getType(); - const SCEV *IVLimit = BackedgeTakenCount; + const SCEV *IVCount = BackedgeTakenCount; - // If the exiting block is not the same as the backedge block, we must compare - // against the preincremented value, otherwise we prefer to compare against - // the post-incremented value. + // If the exiting block is the same as the backedge block, we prefer to + // compare against the post-incremented value, otherwise we must compare + // against the preincremented value. Value *CmpIndVar; if (L->getExitingBlock() == L->getLoopLatch()) { // Add one to the "backedge-taken" count to get the trip count. // If this addition may overflow, we have to be more pessimistic and // cast the induction variable before doing the add. const SCEV *N = - SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1)); - if (CntTy == IVLimit->getType()) - IVLimit = N; + SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); + if (CntTy == IVCount->getType()) + IVCount = N; else { - const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0); + const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); if ((isa<SCEVConstant>(N) && !N->isZero()) || SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { // No overflow. Cast the sum. - IVLimit = SE->getTruncateOrZeroExtend(N, CntTy); + IVCount = SE->getTruncateOrZeroExtend(N, CntTy); } else { // Potential overflow. Cast before doing the add. - IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); - IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1)); + IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); + IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); } } // The BackedgeTaken expression contains the number of times that the @@ -1552,62 +1479,17 @@ LinearFunctionTestReplace(Loop *L, // number of times the loop executes, so use the incremented indvar. CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); } else { - // We have to use the preincremented value... - IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); + // We must use the preincremented value... + IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); CmpIndVar = IndVar; } - // For unit stride, IVLimit = Start + BECount with 2's complement overflow. - // So for, non-zero start compute the IVLimit here. - bool isPtrIV = false; - Type *CmpTy = CntTy; - const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); - assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); - if (!AR->getStart()->isZero()) { - assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); - const SCEV *IVInit = AR->getStart(); - - // For pointer types, sign extend BECount in order to materialize a GEP. - // Note that for without EnableIVRewrite, we never run SCEVExpander on a - // pointer type, because we must preserve the existing GEPs. Instead we - // directly generate a GEP later. - if (IVInit->getType()->isPointerTy()) { - isPtrIV = true; - CmpTy = SE->getEffectiveSCEVType(IVInit->getType()); - IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy); - } - // For integer types, truncate the IV before computing IVInit + BECount. - else { - if (SE->getTypeSizeInBits(IVInit->getType()) - > SE->getTypeSizeInBits(CmpTy)) - IVInit = SE->getTruncateExpr(IVInit, CmpTy); - - IVLimit = SE->getAddExpr(IVInit, IVLimit); - } - } - // Expand the code for the iteration count. - IRBuilder<> Builder(BI); - - assert(SE->isLoopInvariant(IVLimit, L) && - "Computed iteration count is not loop invariant!"); - Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI); - - // Create a gep for IVInit + IVLimit from on an existing pointer base. - assert(isPtrIV == IndVar->getType()->isPointerTy() && - "IndVar type must match IVInit type"); - if (isPtrIV) { - Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); - assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter"); - assert(SE->getSizeOfExpr( - cast<PointerType>(IVStart->getType())->getElementType())->isOne() - && "unit stride pointer IV must be i8*"); - - Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); - ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit"); - Builder.SetInsertPoint(BI); - } + Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); + assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() + && "genLoopLimit missed a cast"); // Insert a new icmp_ne or icmp_eq instruction before the branch. + BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); ICmpInst::Predicate P; if (L->contains(BI->getSuccessor(0))) P = ICmpInst::ICMP_NE; @@ -1619,11 +1501,13 @@ LinearFunctionTestReplace(Loop *L, << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *ExitCnt << "\n" - << " Expr:\t" << *IVLimit << "\n"); + << " IVCount:\t" << *IVCount << "\n"); + IRBuilder<> Builder(BI); if (SE->getTypeSizeInBits(CmpIndVar->getType()) - > SE->getTypeSizeInBits(CmpTy)) { - CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv"); + > SE->getTypeSizeInBits(ExitCnt->getType())) { + CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), + "lftr.wideiv"); } Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); @@ -1680,11 +1564,12 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) { if (isa<LandingPadInst>(I)) continue; - // Don't sink static AllocaInsts out of the entry block, which would - // turn them into dynamic allocas! - if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) - if (AI->isStaticAlloca()) - continue; + // Don't sink alloca: we never want to sink static alloca's out of the + // entry block, and correctly sinking dynamic alloca's requires + // checks for stacksave/stackrestore intrinsics. + // FIXME: Refactor this check somehow? + if (isa<AllocaInst>(I)) + continue; // Determine if there is a use in or before the loop (direct or // otherwise). @@ -1746,8 +1631,6 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { if (!L->isLoopSimplifyForm()) return false; - if (EnableIVRewrite) - IU = &getAnalysis<IVUsers>(); LI = &getAnalysis<LoopInfo>(); SE = &getAnalysis<ScalarEvolution>(); DT = &getAnalysis<DominatorTree>(); @@ -1774,10 +1657,8 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { // attempt to avoid evaluating SCEVs for sign/zero extend operations until // other expressions involving loop IVs have been evaluated. This helps SCEV // set no-wrap flags before normalizing sign/zero extension. - if (!EnableIVRewrite) { - Rewriter.disableCanonicalMode(); - SimplifyAndExtend(L, Rewriter, LPM); - } + Rewriter.disableCanonicalMode(); + SimplifyAndExtend(L, Rewriter, LPM); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions @@ -1788,106 +1669,28 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) RewriteLoopExitValues(L, Rewriter); - // Eliminate redundant IV users. - if (EnableIVRewrite) - Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts); - // Eliminate redundant IV cycles. - if (!EnableIVRewrite) - NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); - - // Compute the type of the largest recurrence expression, and decide whether - // a canonical induction variable should be inserted. - Type *LargestType = 0; - bool NeedCannIV = false; - bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); - if (EnableIVRewrite && ExpandBECount) { - // If we have a known trip count and a single exit block, we'll be - // rewriting the loop exit test condition below, which requires a - // canonical induction variable. - NeedCannIV = true; - Type *Ty = BackedgeTakenCount->getType(); - if (!EnableIVRewrite) { - // In this mode, SimplifyIVUsers may have already widened the IV used by - // the backedge test and inserted a Trunc on the compare's operand. Get - // the wider type to avoid creating a redundant narrow IV only used by the - // loop test. - LargestType = getBackedgeIVType(L); - } - if (!LargestType || - SE->getTypeSizeInBits(Ty) > - SE->getTypeSizeInBits(LargestType)) - LargestType = SE->getEffectiveSCEVType(Ty); - } - if (EnableIVRewrite) { - for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { - NeedCannIV = true; - Type *Ty = - SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); - if (!LargestType || - SE->getTypeSizeInBits(Ty) > - SE->getTypeSizeInBits(LargestType)) - LargestType = Ty; - } - } - - // Now that we know the largest of the induction variable expressions - // in this loop, insert a canonical induction variable of the largest size. - PHINode *IndVar = 0; - if (NeedCannIV) { - // Check to see if the loop already has any canonical-looking induction - // variables. If any are present and wider than the planned canonical - // induction variable, temporarily remove them, so that the Rewriter - // doesn't attempt to reuse them. - SmallVector<PHINode *, 2> OldCannIVs; - while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { - if (SE->getTypeSizeInBits(OldCannIV->getType()) > - SE->getTypeSizeInBits(LargestType)) - OldCannIV->removeFromParent(); - else - break; - OldCannIVs.push_back(OldCannIV); - } + NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); - IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); - - ++NumInserted; - Changed = true; - DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); - - // Now that the official induction variable is established, reinsert - // any old canonical-looking variables after it so that the IR remains - // consistent. They will be deleted as part of the dead-PHI deletion at - // the end of the pass. - while (!OldCannIVs.empty()) { - PHINode *OldCannIV = OldCannIVs.pop_back_val(); - OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt()); - } - } - else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) { - IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); - } // If we have a trip count expression, rewrite the loop's exit condition // using it. We can currently only handle loops with a single exit. - Value *NewICmp = 0; - if (ExpandBECount && IndVar) { - // Check preconditions for proper SCEVExpander operation. SCEV does not - // express SCEVExpander's dependencies, such as LoopSimplify. Instead any - // pass that uses the SCEVExpander must do it. This does not work well for - // loop passes because SCEVExpander makes assumptions about all loops, while - // LoopPassManager only forces the current loop to be simplified. - // - // FIXME: SCEV expansion has no way to bail out, so the caller must - // explicitly check any assumptions made by SCEV. Brittle. - const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); - if (!AR || AR->getLoop()->getLoopPreheader()) - NewICmp = - LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); + if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { + PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); + if (IndVar) { + // Check preconditions for proper SCEVExpander operation. SCEV does not + // express SCEVExpander's dependencies, such as LoopSimplify. Instead any + // pass that uses the SCEVExpander must do it. This does not work well for + // loop passes because SCEVExpander makes assumptions about all loops, while + // LoopPassManager only forces the current loop to be simplified. + // + // FIXME: SCEV expansion has no way to bail out, so the caller must + // explicitly check any assumptions made by SCEV. Brittle. + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); + if (!AR || AR->getLoop()->getLoopPreheader()) + (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, + Rewriter); + } } - // Rewrite IV-derived expressions. - if (EnableIVRewrite) - RewriteIVExpressions(L, Rewriter); - // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted in the loop below, causing the AssertingVH in the cache to // trigger. @@ -1906,13 +1709,6 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { // loop may be sunk below the loop to reduce register pressure. SinkUnusedInvariants(L); - // For completeness, inform IVUsers of the IV use in the newly-created - // loop exit test instruction. - if (IU && NewICmp) { - ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); - if (NewICmpInst) - IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0))); - } // Clean up dead instructions. Changed |= DeleteDeadPHIs(L->getHeader()); // Check a post-condition. @@ -1922,8 +1718,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { // Verify that LFTR, and any other change have not interfered with SCEV's // ability to compute trip count. #ifndef NDEBUG - if (!EnableIVRewrite && VerifyIndvars && - !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { + if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { SE->forgetLoop(L); const SCEV *NewBECount = SE->getBackedgeTakenCount(L); if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < diff --git a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp index f410af3..429b61b 100644 --- a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp @@ -24,6 +24,7 @@ #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Statistic.h" @@ -75,6 +76,7 @@ namespace { /// class JumpThreading : public FunctionPass { TargetData *TD; + TargetLibraryInfo *TLI; LazyValueInfo *LVI; #ifdef NDEBUG SmallPtrSet<BasicBlock*, 16> LoopHeaders; @@ -107,6 +109,7 @@ namespace { virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<LazyValueInfo>(); AU.addPreserved<LazyValueInfo>(); + AU.addRequired<TargetLibraryInfo>(); } void FindLoopHeaders(Function &F); @@ -133,6 +136,7 @@ char JumpThreading::ID = 0; INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", "Jump Threading", false, false) INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(JumpThreading, "jump-threading", "Jump Threading", false, false) @@ -144,6 +148,7 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } bool JumpThreading::runOnFunction(Function &F) { DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); TD = getAnalysisIfAvailable<TargetData>(); + TLI = &getAnalysis<TargetLibraryInfo>(); LVI = &getAnalysis<LazyValueInfo>(); FindLoopHeaders(F); @@ -674,7 +679,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) { // Run constant folding to see if we can reduce the condition to a simple // constant. if (Instruction *I = dyn_cast<Instruction>(Condition)) { - Value *SimpleVal = ConstantFoldInstruction(I, TD); + Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI); if (SimpleVal) { I->replaceAllUsesWith(SimpleVal); I->eraseFromParent(); @@ -852,6 +857,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { if (BBIt != LoadBB->begin()) return false; + // If all of the loads and stores that feed the value have the same TBAA tag, + // then we can propagate it onto any newly inserted loads. + MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa); SmallPtrSet<BasicBlock*, 8> PredsScanned; typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; @@ -870,11 +878,16 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Scan the predecessor to see if the value is available in the pred. BBIt = PredBB->end(); - Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); + MDNode *ThisTBAATag = 0; + Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, + 0, &ThisTBAATag); if (!PredAvailable) { OneUnavailablePred = PredBB; continue; } + + // If tbaa tags disagree or are not present, forget about them. + if (TBAATag != ThisTBAATag) TBAATag = 0; // If so, this load is partially redundant. Remember this info so that we // can create a PHI node. @@ -921,8 +934,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Split them out to their own block. UnavailablePred = - SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), - "thread-pre-split", this); + SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this); } // If the value isn't available in all predecessors, then there will be @@ -935,6 +947,9 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { LI->getAlignment(), UnavailablePred->getTerminator()); NewVal->setDebugLoc(LI->getDebugLoc()); + if (TBAATag) + NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag); + AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); } @@ -1082,9 +1097,9 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, DestBB = 0; else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); - else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) - DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val))); - else { + else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { + DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); + } else { assert(isa<IndirectBrInst>(BB->getTerminator()) && "Unexpected terminator"); DestBB = cast<BlockAddress>(Val)->getBasicBlock(); @@ -1334,8 +1349,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, else { DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); - PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), - ".thr_comm", this); + PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); } // And finally, do it! @@ -1479,8 +1493,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, else { DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); - PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), - ".thr_comm", this); + PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this); } // Okay, we decided to do this! Clone all the instructions in BB onto the end diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp index b79bb13..8795cd8 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp @@ -43,8 +43,11 @@ #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" @@ -84,6 +87,7 @@ namespace { AU.addPreserved<AliasAnalysis>(); AU.addPreserved("scalar-evolution"); AU.addPreservedID(LoopSimplifyID); + AU.addRequired<TargetLibraryInfo>(); } bool doFinalization() { @@ -96,6 +100,9 @@ namespace { LoopInfo *LI; // Current LoopInfo DominatorTree *DT; // Dominator Tree for the current Loop. + TargetData *TD; // TargetData for constant folding. + TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding. + // State that is updated as we process loops. bool Changed; // Set to true when we change anything. BasicBlock *Preheader; // The preheader block of the current loop... @@ -177,6 +184,7 @@ INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false) @@ -194,6 +202,9 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) { AA = &getAnalysis<AliasAnalysis>(); DT = &getAnalysis<DominatorTree>(); + TD = getAnalysisIfAvailable<TargetData>(); + TLI = &getAnalysis<TargetLibraryInfo>(); + CurAST = new AliasSetTracker(*AA); // Collect Alias info from subloops. for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end(); @@ -333,7 +344,7 @@ void LICM::HoistRegion(DomTreeNode *N) { // Try constant folding this instruction. If all the operands are // constants, it is technically hoistable, but it would be better to just // fold it. - if (Constant *C = ConstantFoldInstruction(&I)) { + if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) { DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n'); CurAST->copyValue(&I, C); CurAST->deleteValue(&I); @@ -369,6 +380,8 @@ bool LICM::canSinkOrHoistInst(Instruction &I) { // in the same alias set as something that ends up being modified. if (AA->pointsToConstantMemory(LI->getOperand(0))) return true; + if (LI->getMetadata("invariant.load")) + return true; // Don't hoist loads which have may-aliased stores in loop. uint64_t Size = 0; @@ -579,7 +592,7 @@ void LICM::hoist(Instruction &I) { /// bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) { // If it is not a trapping instruction, it is always safe to hoist. - if (Inst.isSafeToSpeculativelyExecute()) + if (isSafeToSpeculativelyExecute(&Inst)) return true; return isGuaranteedToExecute(Inst); diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp index af25c5c..f0f05e6 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopInstSimplify.cpp @@ -19,6 +19,7 @@ #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/Statistic.h" @@ -43,6 +44,7 @@ namespace { AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.addPreserved("scalar-evolution"); + AU.addRequired<TargetLibraryInfo>(); } }; } @@ -50,6 +52,7 @@ namespace { char LoopInstSimplify::ID = 0; INITIALIZE_PASS_BEGIN(LoopInstSimplify, "loop-instsimplify", "Simplify instructions in loops", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(LCSSA) @@ -64,6 +67,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>(); LoopInfo *LI = &getAnalysis<LoopInfo>(); const TargetData *TD = getAnalysisIfAvailable<TargetData>(); + const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); SmallVector<BasicBlock*, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); @@ -104,7 +108,7 @@ bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { // Don't bother simplifying unused instructions. if (!I->use_empty()) { - Value *V = SimplifyInstruction(I, TD, DT); + Value *V = SimplifyInstruction(I, TD, TLI, DT); if (V && LI->replacementPreservesLCSSAForm(I, V)) { // Mark all uses for resimplification next time round the loop. for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp index 9fd0958..59aace9 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopRotation.cpp @@ -19,6 +19,7 @@ #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" @@ -52,13 +53,14 @@ namespace { } bool runOnLoop(Loop *L, LPPassManager &LPM); + void simplifyLoopLatch(Loop *L); bool rotateLoop(Loop *L); - + private: LoopInfo *LI; }; } - + char LoopRotate::ID = 0; INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfo) @@ -73,6 +75,11 @@ Pass *llvm::createLoopRotatePass() { return new LoopRotate(); } bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) { LI = &getAnalysis<LoopInfo>(); + // Simplify the loop latch before attempting to rotate the header + // upward. Rotation may not be needed if the loop tail can be folded into the + // loop exit. + simplifyLoopLatch(L); + // One loop can be rotated multiple times. bool MadeChange = false; while (rotateLoop(L)) @@ -92,18 +99,18 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, BasicBlock::iterator I, E = OrigHeader->end(); for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); - + // Now fix up users of the instructions in OrigHeader, inserting PHI nodes // as necessary. SSAUpdater SSA; for (I = OrigHeader->begin(); I != E; ++I) { Value *OrigHeaderVal = I; - + // If there are no uses of the value (e.g. because it returns void), there // is nothing to rewrite. if (OrigHeaderVal->use_empty()) continue; - + Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal]; // The value now exits in two versions: the initial value in the preheader @@ -111,27 +118,27 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); - + // Visit each use of the OrigHeader instruction. for (Value::use_iterator UI = OrigHeaderVal->use_begin(), UE = OrigHeaderVal->use_end(); UI != UE; ) { // Grab the use before incrementing the iterator. Use &U = UI.getUse(); - + // Increment the iterator before removing the use from the list. ++UI; - + // SSAUpdater can't handle a non-PHI use in the same block as an // earlier def. We can easily handle those cases manually. Instruction *UserInst = cast<Instruction>(U.getUser()); if (!isa<PHINode>(UserInst)) { BasicBlock *UserBB = UserInst->getParent(); - + // The original users in the OrigHeader are already using the // original definitions. if (UserBB == OrigHeader) continue; - + // Users in the OrigPreHeader need to use the value to which the // original definitions are mapped. if (UserBB == OrigPreheader) { @@ -139,32 +146,128 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, continue; } } - + // Anything else can be handled by SSAUpdater. SSA.RewriteUse(U); } } -} +} + +/// Determine whether the instructions in this range my be safely and cheaply +/// speculated. This is not an important enough situation to develop complex +/// heuristics. We handle a single arithmetic instruction along with any type +/// conversions. +static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, + BasicBlock::iterator End) { + bool seenIncrement = false; + for (BasicBlock::iterator I = Begin; I != End; ++I) { + + if (!isSafeToSpeculativelyExecute(I)) + return false; + + if (isa<DbgInfoIntrinsic>(I)) + continue; + + switch (I->getOpcode()) { + default: + return false; + case Instruction::GetElementPtr: + // GEPs are cheap if all indices are constant. + if (!cast<GEPOperator>(I)->hasAllConstantIndices()) + return false; + // fall-thru to increment case + case Instruction::Add: + case Instruction::Sub: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + if (seenIncrement) + return false; + seenIncrement = true; + break; + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + // ignore type conversions + break; + } + } + return true; +} + +/// Fold the loop tail into the loop exit by speculating the loop tail +/// instructions. Typically, this is a single post-increment. In the case of a +/// simple 2-block loop, hoisting the increment can be much better than +/// duplicating the entire loop header. In the cast of loops with early exits, +/// rotation will not work anyway, but simplifyLoopLatch will put the loop in +/// canonical form so downstream passes can handle it. +/// +/// I don't believe this invalidates SCEV. +void LoopRotate::simplifyLoopLatch(Loop *L) { + BasicBlock *Latch = L->getLoopLatch(); + if (!Latch || Latch->hasAddressTaken()) + return; + + BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); + if (!Jmp || !Jmp->isUnconditional()) + return; + + BasicBlock *LastExit = Latch->getSinglePredecessor(); + if (!LastExit || !L->isLoopExiting(LastExit)) + return; + + BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); + if (!BI) + return; + + if (!shouldSpeculateInstrs(Latch->begin(), Jmp)) + return; + + DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " + << LastExit->getName() << "\n"); + + // Hoist the instructions from Latch into LastExit. + LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp); + + unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; + BasicBlock *Header = Jmp->getSuccessor(0); + assert(Header == L->getHeader() && "expected a backward branch"); + + // Remove Latch from the CFG so that LastExit becomes the new Latch. + BI->setSuccessor(FallThruPath, Header); + Latch->replaceSuccessorsPhiUsesWith(LastExit); + Jmp->eraseFromParent(); + + // Nuke the Latch block. + assert(Latch->empty() && "unable to evacuate Latch"); + LI->removeBlock(Latch); + if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) + DT->eraseNode(Latch); + Latch->eraseFromParent(); +} /// Rotate loop LP. Return true if the loop is rotated. bool LoopRotate::rotateLoop(Loop *L) { // If the loop has only one block then there is not much to rotate. if (L->getBlocks().size() == 1) return false; - + BasicBlock *OrigHeader = L->getHeader(); - + BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); if (BI == 0 || BI->isUnconditional()) return false; - + // If the loop header is not one of the loop exiting blocks then // either this loop is already rotated or it is not // suitable for loop rotation transformations. if (!L->isLoopExiting(OrigHeader)) return false; - // Updating PHInodes in loops with multiple exits adds complexity. + // Updating PHInodes in loops with multiple exits adds complexity. // Keep it simple, and restrict loop rotation to loops with one exit only. // In future, lift this restriction and support for multiple exits if // required. @@ -184,7 +287,7 @@ bool LoopRotate::rotateLoop(Loop *L) { // Now, this loop is suitable for rotation. BasicBlock *OrigPreheader = L->getLoopPreheader(); BasicBlock *OrigLatch = L->getLoopLatch(); - + // If the loop could not be converted to canonical form, it must have an // indirectbr in it, just give up. if (OrigPreheader == 0 || OrigLatch == 0) @@ -203,9 +306,9 @@ bool LoopRotate::rotateLoop(Loop *L) { if (L->contains(Exit)) std::swap(Exit, NewHeader); assert(NewHeader && "Unable to determine new loop header"); - assert(L->contains(NewHeader) && !L->contains(Exit) && + assert(L->contains(NewHeader) && !L->contains(Exit) && "Unable to determine loop header and exit blocks"); - + // This code assumes that the new header has exactly one predecessor. // Remove any single-entry PHI nodes in it. assert(NewHeader->getSinglePredecessor() && @@ -227,7 +330,7 @@ bool LoopRotate::rotateLoop(Loop *L) { TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); while (I != E) { Instruction *Inst = I++; - + // If the instruction's operands are invariant and it doesn't read or write // memory, then it is safe to hoist. Doing this doesn't change the order of // execution in the preheader, but does prevent the instruction from @@ -236,18 +339,19 @@ bool LoopRotate::rotateLoop(Loop *L) { // memory (without proving that the loop doesn't write). if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && - !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) { + !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && + !isa<AllocaInst>(Inst)) { Inst->moveBefore(LoopEntryBranch); continue; } - + // Otherwise, create a duplicate of the instruction. Instruction *C = Inst->clone(); - + // Eagerly remap the operands of the instruction. RemapInstruction(C, ValueMap, RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); - + // With the operands remapped, see if the instruction constant folds or is // otherwise simplifyable. This commonly occurs because the entry from PHI // nodes allows icmps and other instructions to fold. @@ -287,7 +391,7 @@ bool LoopRotate::rotateLoop(Loop *L) { L->moveToHeader(NewHeader); assert(L->getHeader() == NewHeader && "Latch block is our new header"); - + // At this point, we've finished our major CFG changes. As part of cloning // the loop into the preheader we've simplified instructions and the // duplicated conditional branch may now be branching on a constant. If it is @@ -308,16 +412,16 @@ bool LoopRotate::rotateLoop(Loop *L) { // the dominator of Exit. DT->changeImmediateDominator(Exit, OrigPreheader); DT->changeImmediateDominator(NewHeader, OrigPreheader); - + // Update OrigHeader to be dominated by the new header block. DT->changeImmediateDominator(OrigHeader, OrigLatch); } - + // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and // thus is not a preheader anymore. Split the edge to form a real preheader. BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this); NewPH->setName(NewHeader->getName() + ".lr.ph"); - + // Preserve canonical loop form, which means that 'Exit' should have only one // predecessor. BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this); @@ -329,7 +433,7 @@ bool LoopRotate::rotateLoop(Loop *L) { BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); NewBI->setDebugLoc(PHBI->getDebugLoc()); PHBI->eraseFromParent(); - + // With our CFG finalized, update DomTree if it is available. if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) { // Update OrigHeader to be dominated by the new header block. @@ -337,7 +441,7 @@ bool LoopRotate::rotateLoop(Loop *L) { DT->changeImmediateDominator(OrigHeader, OrigLatch); } } - + assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); @@ -346,7 +450,7 @@ bool LoopRotate::rotateLoop(Loop *L) { // connected by an unconditional branch. This is just a cleanup so the // emitted code isn't too gross in this common case. MergeBlockIntoPredecessor(OrigHeader, this); - + ++NumRotated; return true; } diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp index 3e122c2..d57ec22 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp @@ -77,19 +77,22 @@ #include <algorithm> using namespace llvm; -namespace llvm { -cl::opt<bool> EnableNested( - "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); - -cl::opt<bool> EnableRetry( - "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); - // Temporary flag to cleanup congruent phis after LSR phi expansion. // It's currently disabled until we can determine whether it's truly useful or // not. The flag should be removed after the v3.0 release. -cl::opt<bool> EnablePhiElim( - "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination")); -} +// This is now needed for ivchains. +static cl::opt<bool> EnablePhiElim( + "enable-lsr-phielim", cl::Hidden, cl::init(true), + cl::desc("Enable LSR phi elimination")); + +#ifndef NDEBUG +// Stress test IV chain generation. +static cl::opt<bool> StressIVChain( + "stress-ivchain", cl::Hidden, cl::init(false), + cl::desc("Stress test LSR IV chains")); +#else +static bool StressIVChain = false; +#endif namespace { @@ -636,6 +639,91 @@ static Type *getAccessType(const Instruction *Inst) { return AccessTy; } +/// isExistingPhi - Return true if this AddRec is already a phi in its loop. +static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { + for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); + PHINode *PN = dyn_cast<PHINode>(I); ++I) { + if (SE.isSCEVable(PN->getType()) && + (SE.getEffectiveSCEVType(PN->getType()) == + SE.getEffectiveSCEVType(AR->getType())) && + SE.getSCEV(PN) == AR) + return true; + } + return false; +} + +/// Check if expanding this expression is likely to incur significant cost. This +/// is tricky because SCEV doesn't track which expressions are actually computed +/// by the current IR. +/// +/// We currently allow expansion of IV increments that involve adds, +/// multiplication by constants, and AddRecs from existing phis. +/// +/// TODO: Allow UDivExpr if we can find an existing IV increment that is an +/// obvious multiple of the UDivExpr. +static bool isHighCostExpansion(const SCEV *S, + SmallPtrSet<const SCEV*, 8> &Processed, + ScalarEvolution &SE) { + // Zero/One operand expressions + switch (S->getSCEVType()) { + case scUnknown: + case scConstant: + return false; + case scTruncate: + return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), + Processed, SE); + case scZeroExtend: + return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), + Processed, SE); + case scSignExtend: + return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), + Processed, SE); + } + + if (!Processed.insert(S)) + return false; + + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { + for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); + I != E; ++I) { + if (isHighCostExpansion(*I, Processed, SE)) + return true; + } + return false; + } + + if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { + if (Mul->getNumOperands() == 2) { + // Multiplication by a constant is ok + if (isa<SCEVConstant>(Mul->getOperand(0))) + return isHighCostExpansion(Mul->getOperand(1), Processed, SE); + + // If we have the value of one operand, check if an existing + // multiplication already generates this expression. + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { + Value *UVal = U->getValue(); + for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); + UI != UE; ++UI) { + // If U is a constant, it may be used by a ConstantExpr. + Instruction *User = dyn_cast<Instruction>(*UI); + if (User && User->getOpcode() == Instruction::Mul + && SE.isSCEVable(User->getType())) { + return SE.getSCEV(User) == Mul; + } + } + } + } + } + + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { + if (isExistingPhi(AR, SE)) + return false; + } + + // Fow now, consider any other type of expression (div/mul/min/max) high cost. + return true; +} + /// DeleteTriviallyDeadInstructions - If any of the instructions is the /// specified set are trivially dead, delete them and see if this makes any of /// their operands subsequently dead. @@ -705,7 +793,8 @@ public: const DenseSet<const SCEV *> &VisitedRegs, const Loop *L, const SmallVectorImpl<int64_t> &Offsets, - ScalarEvolution &SE, DominatorTree &DT); + ScalarEvolution &SE, DominatorTree &DT, + SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); void print(raw_ostream &OS) const; void dump() const; @@ -718,7 +807,8 @@ private: void RatePrimaryRegister(const SCEV *Reg, SmallPtrSet<const SCEV *, 16> &Regs, const Loop *L, - ScalarEvolution &SE, DominatorTree &DT); + ScalarEvolution &SE, DominatorTree &DT, + SmallPtrSet<const SCEV *, 16> *LoserRegs); }; } @@ -729,41 +819,20 @@ void Cost::RateRegister(const SCEV *Reg, const Loop *L, ScalarEvolution &SE, DominatorTree &DT) { if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { - if (AR->getLoop() == L) - AddRecCost += 1; /// TODO: This should be a function of the stride. - // If this is an addrec for another loop, don't second-guess its addrec phi // nodes. LSR isn't currently smart enough to reason about more than one - // loop at a time. LSR has either already run on inner loops, will not run - // on other loops, and cannot be expected to change sibling loops. If the - // AddRec exists, consider it's register free and leave it alone. Otherwise, - // do not consider this formula at all. - // FIXME: why do we need to generate such fomulae? - else if (!EnableNested || L->contains(AR->getLoop()) || - (!AR->getLoop()->contains(L) && - DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { - for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); - PHINode *PN = dyn_cast<PHINode>(I); ++I) { - if (SE.isSCEVable(PN->getType()) && - (SE.getEffectiveSCEVType(PN->getType()) == - SE.getEffectiveSCEVType(AR->getType())) && - SE.getSCEV(PN) == AR) - return; - } - if (!EnableNested) { - Loose(); + // loop at a time. LSR has already run on inner loops, will not run on outer + // loops, and cannot be expected to change sibling loops. + if (AR->getLoop() != L) { + // If the AddRec exists, consider it's register free and leave it alone. + if (isExistingPhi(AR, SE)) return; - } - // If this isn't one of the addrecs that the loop already has, it - // would require a costly new phi and add. TODO: This isn't - // precisely modeled right now. - ++NumBaseAdds; - if (!Regs.count(AR->getStart())) { - RateRegister(AR->getStart(), Regs, L, SE, DT); - if (isLoser()) - return; - } + + // Otherwise, do not consider this formula at all. + Loose(); + return; } + AddRecCost += 1; /// TODO: This should be a function of the stride. // Add the step value register, if it needs one. // TODO: The non-affine case isn't precisely modeled here. @@ -791,13 +860,22 @@ void Cost::RateRegister(const SCEV *Reg, } /// RatePrimaryRegister - Record this register in the set. If we haven't seen it -/// before, rate it. +/// before, rate it. Optional LoserRegs provides a way to declare any formula +/// that refers to one of those regs an instant loser. void Cost::RatePrimaryRegister(const SCEV *Reg, SmallPtrSet<const SCEV *, 16> &Regs, const Loop *L, - ScalarEvolution &SE, DominatorTree &DT) { - if (Regs.insert(Reg)) + ScalarEvolution &SE, DominatorTree &DT, + SmallPtrSet<const SCEV *, 16> *LoserRegs) { + if (LoserRegs && LoserRegs->count(Reg)) { + Loose(); + return; + } + if (Regs.insert(Reg)) { RateRegister(Reg, Regs, L, SE, DT); + if (isLoser()) + LoserRegs->insert(Reg); + } } void Cost::RateFormula(const Formula &F, @@ -805,14 +883,15 @@ void Cost::RateFormula(const Formula &F, const DenseSet<const SCEV *> &VisitedRegs, const Loop *L, const SmallVectorImpl<int64_t> &Offsets, - ScalarEvolution &SE, DominatorTree &DT) { + ScalarEvolution &SE, DominatorTree &DT, + SmallPtrSet<const SCEV *, 16> *LoserRegs) { // Tally up the registers. if (const SCEV *ScaledReg = F.ScaledReg) { if (VisitedRegs.count(ScaledReg)) { Loose(); return; } - RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); + RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); if (isLoser()) return; } @@ -823,7 +902,7 @@ void Cost::RateFormula(const Formula &F, Loose(); return; } - RatePrimaryRegister(BaseReg, Regs, L, SE, DT); + RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); if (isLoser()) return; } @@ -1105,7 +1184,6 @@ bool LSRUse::InsertFormula(const Formula &F) { Formulae.push_back(F); // Record registers now being used by this use. - if (F.ScaledReg) Regs.insert(F.ScaledReg); Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); return true; @@ -1116,7 +1194,6 @@ void LSRUse::DeleteFormula(Formula &F) { if (&F != &Formulae.back()) std::swap(F, Formulae.back()); Formulae.pop_back(); - assert(!Formulae.empty() && "LSRUse has no formulae left!"); } /// RecomputeRegs - Recompute the Regs field, and update RegUses. @@ -1205,10 +1282,19 @@ static bool isLegalUse(const TargetLowering::AddrMode &AM, // If we have low-level target information, ask the target if it can fold an // integer immediate on an icmp. if (AM.BaseOffs != 0) { - if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); - return false; + if (!TLI) + return false; + // We have one of: + // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset + // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset + // Offs is the ICmp immediate. + int64_t Offs = AM.BaseOffs; + if (AM.Scale == 0) + Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN. + return TLI->isLegalICmpImmediate(Offs); } + // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg return true; case LSRUse::Basic: @@ -1220,7 +1306,7 @@ static bool isLegalUse(const TargetLowering::AddrMode &AM, return AM.Scale == 0 || AM.Scale == -1; } - return false; + llvm_unreachable("Invalid LSRUse Kind!"); } static bool isLegalUse(TargetLowering::AddrMode AM, @@ -1327,6 +1413,36 @@ struct UseMapDenseMapInfo { } }; +/// IVInc - An individual increment in a Chain of IV increments. +/// Relate an IV user to an expression that computes the IV it uses from the IV +/// used by the previous link in the Chain. +/// +/// For the head of a chain, IncExpr holds the absolute SCEV expression for the +/// original IVOperand. The head of the chain's IVOperand is only valid during +/// chain collection, before LSR replaces IV users. During chain generation, +/// IncExpr can be used to find the new IVOperand that computes the same +/// expression. +struct IVInc { + Instruction *UserInst; + Value* IVOperand; + const SCEV *IncExpr; + + IVInc(Instruction *U, Value *O, const SCEV *E): + UserInst(U), IVOperand(O), IncExpr(E) {} +}; + +// IVChain - The list of IV increments in program order. +// We typically add the head of a chain without finding subsequent links. +typedef SmallVector<IVInc,1> IVChain; + +/// ChainUsers - Helper for CollectChains to track multiple IV increment uses. +/// Distinguish between FarUsers that definitely cross IV increments and +/// NearUsers that may be used between IV increments. +struct ChainUsers { + SmallPtrSet<Instruction*, 4> FarUsers; + SmallPtrSet<Instruction*, 4> NearUsers; +}; + /// LSRInstance - This class holds state for the main loop strength reduction /// logic. class LSRInstance { @@ -1359,11 +1475,29 @@ class LSRInstance { /// RegUses - Track which uses use which register candidates. RegUseTracker RegUses; + // Limit the number of chains to avoid quadratic behavior. We don't expect to + // have more than a few IV increment chains in a loop. Missing a Chain falls + // back to normal LSR behavior for those uses. + static const unsigned MaxChains = 8; + + /// IVChainVec - IV users can form a chain of IV increments. + SmallVector<IVChain, MaxChains> IVChainVec; + + /// IVIncSet - IV users that belong to profitable IVChains. + SmallPtrSet<Use*, MaxChains> IVIncSet; + void OptimizeShadowIV(); bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); void OptimizeLoopTermCond(); + void ChainInstruction(Instruction *UserInst, Instruction *IVOper, + SmallVectorImpl<ChainUsers> &ChainUsersVec); + void FinalizeChain(IVChain &Chain); + void CollectChains(); + void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, + SmallVectorImpl<WeakVH> &DeadInsts); + void CollectInterestingTypesAndFactors(); void CollectFixupsAndInitialFormulae(); @@ -1389,7 +1523,6 @@ class LSRInstance { LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); -public: void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); void CountRegisters(const Formula &F, size_t LUIdx); @@ -1428,9 +1561,11 @@ public: BasicBlock::iterator HoistInsertPosition(BasicBlock::iterator IP, const SmallVectorImpl<Instruction *> &Inputs) const; - BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, - const LSRFixup &LF, - const LSRUse &LU) const; + BasicBlock::iterator + AdjustInsertPositionForExpand(BasicBlock::iterator IP, + const LSRFixup &LF, + const LSRUse &LU, + SCEVExpander &Rewriter) const; Value *Expand(const LSRFixup &LF, const Formula &F, @@ -1450,6 +1585,7 @@ public: void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, Pass *P); +public: LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); bool getChanged() const { return Changed; } @@ -2045,7 +2181,8 @@ void LSRInstance::CollectInterestingTypesAndFactors() { do { const SCEV *S = Worklist.pop_back_val(); if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { - Strides.insert(AR->getStepRecurrence(SE)); + if (AR->getLoop() == L) + Strides.insert(AR->getStepRecurrence(SE)); Worklist.push_back(AR->getStart()); } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { Worklist.append(Add->op_begin(), Add->op_end()); @@ -2091,11 +2228,544 @@ void LSRInstance::CollectInterestingTypesAndFactors() { DEBUG(print_factors_and_types(dbgs())); } +/// findIVOperand - Helper for CollectChains that finds an IV operand (computed +/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped +/// Instructions to IVStrideUses, we could partially skip this. +static User::op_iterator +findIVOperand(User::op_iterator OI, User::op_iterator OE, + Loop *L, ScalarEvolution &SE) { + for(; OI != OE; ++OI) { + if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { + if (!SE.isSCEVable(Oper->getType())) + continue; + + if (const SCEVAddRecExpr *AR = + dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { + if (AR->getLoop() == L) + break; + } + } + } + return OI; +} + +/// getWideOperand - IVChain logic must consistenctly peek base TruncInst +/// operands, so wrap it in a convenient helper. +static Value *getWideOperand(Value *Oper) { + if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) + return Trunc->getOperand(0); + return Oper; +} + +/// isCompatibleIVType - Return true if we allow an IV chain to include both +/// types. +static bool isCompatibleIVType(Value *LVal, Value *RVal) { + Type *LType = LVal->getType(); + Type *RType = RVal->getType(); + return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); +} + +/// getExprBase - Return an approximation of this SCEV expression's "base", or +/// NULL for any constant. Returning the expression itself is +/// conservative. Returning a deeper subexpression is more precise and valid as +/// long as it isn't less complex than another subexpression. For expressions +/// involving multiple unscaled values, we need to return the pointer-type +/// SCEVUnknown. This avoids forming chains across objects, such as: +/// PrevOper==a[i], IVOper==b[i], IVInc==b-a. +/// +/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost +/// SCEVUnknown, we simply return the rightmost SCEV operand. +static const SCEV *getExprBase(const SCEV *S) { + switch (S->getSCEVType()) { + default: // uncluding scUnknown. + return S; + case scConstant: + return 0; + case scTruncate: + return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); + case scZeroExtend: + return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); + case scSignExtend: + return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); + case scAddExpr: { + // Skip over scaled operands (scMulExpr) to follow add operands as long as + // there's nothing more complex. + // FIXME: not sure if we want to recognize negation. + const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); + for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), + E(Add->op_begin()); I != E; ++I) { + const SCEV *SubExpr = *I; + if (SubExpr->getSCEVType() == scAddExpr) + return getExprBase(SubExpr); + + if (SubExpr->getSCEVType() != scMulExpr) + return SubExpr; + } + return S; // all operands are scaled, be conservative. + } + case scAddRecExpr: + return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); + } +} + +/// Return true if the chain increment is profitable to expand into a loop +/// invariant value, which may require its own register. A profitable chain +/// increment will be an offset relative to the same base. We allow such offsets +/// to potentially be used as chain increment as long as it's not obviously +/// expensive to expand using real instructions. +static const SCEV * +getProfitableChainIncrement(Value *NextIV, Value *PrevIV, + const IVChain &Chain, Loop *L, + ScalarEvolution &SE, const TargetLowering *TLI) { + // Prune the solution space aggressively by checking that both IV operands + // are expressions that operate on the same unscaled SCEVUnknown. This + // "base" will be canceled by the subsequent getMinusSCEV call. Checking first + // avoids creating extra SCEV expressions. + const SCEV *OperExpr = SE.getSCEV(NextIV); + const SCEV *PrevExpr = SE.getSCEV(PrevIV); + if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain) + return 0; + + const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); + if (!SE.isLoopInvariant(IncExpr, L)) + return 0; + + // We are not able to expand an increment unless it is loop invariant, + // however, the following checks are purely for profitability. + if (StressIVChain) + return IncExpr; + + // Do not replace a constant offset from IV head with a nonconstant IV + // increment. + if (!isa<SCEVConstant>(IncExpr)) { + const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand)); + if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) + return 0; + } + + SmallPtrSet<const SCEV*, 8> Processed; + if (isHighCostExpansion(IncExpr, Processed, SE)) + return 0; + + return IncExpr; +} + +/// Return true if the number of registers needed for the chain is estimated to +/// be less than the number required for the individual IV users. First prohibit +/// any IV users that keep the IV live across increments (the Users set should +/// be empty). Next count the number and type of increments in the chain. +/// +/// Chaining IVs can lead to considerable code bloat if ISEL doesn't +/// effectively use postinc addressing modes. Only consider it profitable it the +/// increments can be computed in fewer registers when chained. +/// +/// TODO: Consider IVInc free if it's already used in another chains. +static bool +isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, + ScalarEvolution &SE, const TargetLowering *TLI) { + if (StressIVChain) + return true; + + if (Chain.size() <= 2) + return false; + + if (!Users.empty()) { + DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n"; + for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), + E = Users.end(); I != E; ++I) { + dbgs() << " " << **I << "\n"; + }); + return false; + } + assert(!Chain.empty() && "empty IV chains are not allowed"); + + // The chain itself may require a register, so intialize cost to 1. + int cost = 1; + + // A complete chain likely eliminates the need for keeping the original IV in + // a register. LSR does not currently know how to form a complete chain unless + // the header phi already exists. + if (isa<PHINode>(Chain.back().UserInst) + && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) { + --cost; + } + const SCEV *LastIncExpr = 0; + unsigned NumConstIncrements = 0; + unsigned NumVarIncrements = 0; + unsigned NumReusedIncrements = 0; + for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end(); + I != E; ++I) { + + if (I->IncExpr->isZero()) + continue; + + // Incrementing by zero or some constant is neutral. We assume constants can + // be folded into an addressing mode or an add's immediate operand. + if (isa<SCEVConstant>(I->IncExpr)) { + ++NumConstIncrements; + continue; + } + + if (I->IncExpr == LastIncExpr) + ++NumReusedIncrements; + else + ++NumVarIncrements; + + LastIncExpr = I->IncExpr; + } + // An IV chain with a single increment is handled by LSR's postinc + // uses. However, a chain with multiple increments requires keeping the IV's + // value live longer than it needs to be if chained. + if (NumConstIncrements > 1) + --cost; + + // Materializing increment expressions in the preheader that didn't exist in + // the original code may cost a register. For example, sign-extended array + // indices can produce ridiculous increments like this: + // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) + cost += NumVarIncrements; + + // Reusing variable increments likely saves a register to hold the multiple of + // the stride. + cost -= NumReusedIncrements; + + DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n"); + + return cost < 0; +} + +/// ChainInstruction - Add this IV user to an existing chain or make it the head +/// of a new chain. +void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, + SmallVectorImpl<ChainUsers> &ChainUsersVec) { + // When IVs are used as types of varying widths, they are generally converted + // to a wider type with some uses remaining narrow under a (free) trunc. + Value *NextIV = getWideOperand(IVOper); + + // Visit all existing chains. Check if its IVOper can be computed as a + // profitable loop invariant increment from the last link in the Chain. + unsigned ChainIdx = 0, NChains = IVChainVec.size(); + const SCEV *LastIncExpr = 0; + for (; ChainIdx < NChains; ++ChainIdx) { + Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand); + if (!isCompatibleIVType(PrevIV, NextIV)) + continue; + + // A phi node terminates a chain. + if (isa<PHINode>(UserInst) + && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst)) + continue; + + if (const SCEV *IncExpr = + getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx], + L, SE, TLI)) { + LastIncExpr = IncExpr; + break; + } + } + // If we haven't found a chain, create a new one, unless we hit the max. Don't + // bother for phi nodes, because they must be last in the chain. + if (ChainIdx == NChains) { + if (isa<PHINode>(UserInst)) + return; + if (NChains >= MaxChains && !StressIVChain) { + DEBUG(dbgs() << "IV Chain Limit\n"); + return; + } + LastIncExpr = SE.getSCEV(NextIV); + // IVUsers may have skipped over sign/zero extensions. We don't currently + // attempt to form chains involving extensions unless they can be hoisted + // into this loop's AddRec. + if (!isa<SCEVAddRecExpr>(LastIncExpr)) + return; + ++NChains; + IVChainVec.resize(NChains); + ChainUsersVec.resize(NChains); + DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr + << "\n"); + } + else + DEBUG(dbgs() << "IV Inc: (" << *UserInst << ") IV+" << *LastIncExpr + << "\n"); + + // Add this IV user to the end of the chain. + IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr)); + + SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; + // This chain's NearUsers become FarUsers. + if (!LastIncExpr->isZero()) { + ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), + NearUsers.end()); + NearUsers.clear(); + } + + // All other uses of IVOperand become near uses of the chain. + // We currently ignore intermediate values within SCEV expressions, assuming + // they will eventually be used be the current chain, or can be computed + // from one of the chain increments. To be more precise we could + // transitively follow its user and only add leaf IV users to the set. + for (Value::use_iterator UseIter = IVOper->use_begin(), + UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { + Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); + if (!OtherUse || OtherUse == UserInst) + continue; + if (SE.isSCEVable(OtherUse->getType()) + && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) + && IU.isIVUserOrOperand(OtherUse)) { + continue; + } + NearUsers.insert(OtherUse); + } + + // Since this user is part of the chain, it's no longer considered a use + // of the chain. + ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); +} + +/// CollectChains - Populate the vector of Chains. +/// +/// This decreases ILP at the architecture level. Targets with ample registers, +/// multiple memory ports, and no register renaming probably don't want +/// this. However, such targets should probably disable LSR altogether. +/// +/// The job of LSR is to make a reasonable choice of induction variables across +/// the loop. Subsequent passes can easily "unchain" computation exposing more +/// ILP *within the loop* if the target wants it. +/// +/// Finding the best IV chain is potentially a scheduling problem. Since LSR +/// will not reorder memory operations, it will recognize this as a chain, but +/// will generate redundant IV increments. Ideally this would be corrected later +/// by a smart scheduler: +/// = A[i] +/// = A[i+x] +/// A[i] = +/// A[i+x] = +/// +/// TODO: Walk the entire domtree within this loop, not just the path to the +/// loop latch. This will discover chains on side paths, but requires +/// maintaining multiple copies of the Chains state. +void LSRInstance::CollectChains() { + SmallVector<ChainUsers, 8> ChainUsersVec; + + SmallVector<BasicBlock *,8> LatchPath; + BasicBlock *LoopHeader = L->getHeader(); + for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); + Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { + LatchPath.push_back(Rung->getBlock()); + } + LatchPath.push_back(LoopHeader); + + // Walk the instruction stream from the loop header to the loop latch. + for (SmallVectorImpl<BasicBlock *>::reverse_iterator + BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); + BBIter != BBEnd; ++BBIter) { + for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); + I != E; ++I) { + // Skip instructions that weren't seen by IVUsers analysis. + if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) + continue; + + // Ignore users that are part of a SCEV expression. This way we only + // consider leaf IV Users. This effectively rediscovers a portion of + // IVUsers analysis but in program order this time. + if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) + continue; + + // Remove this instruction from any NearUsers set it may be in. + for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); + ChainIdx < NChains; ++ChainIdx) { + ChainUsersVec[ChainIdx].NearUsers.erase(I); + } + // Search for operands that can be chained. + SmallPtrSet<Instruction*, 4> UniqueOperands; + User::op_iterator IVOpEnd = I->op_end(); + User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); + while (IVOpIter != IVOpEnd) { + Instruction *IVOpInst = cast<Instruction>(*IVOpIter); + if (UniqueOperands.insert(IVOpInst)) + ChainInstruction(I, IVOpInst, ChainUsersVec); + IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); + } + } // Continue walking down the instructions. + } // Continue walking down the domtree. + // Visit phi backedges to determine if the chain can generate the IV postinc. + for (BasicBlock::iterator I = L->getHeader()->begin(); + PHINode *PN = dyn_cast<PHINode>(I); ++I) { + if (!SE.isSCEVable(PN->getType())) + continue; + + Instruction *IncV = + dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); + if (IncV) + ChainInstruction(PN, IncV, ChainUsersVec); + } + // Remove any unprofitable chains. + unsigned ChainIdx = 0; + for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); + UsersIdx < NChains; ++UsersIdx) { + if (!isProfitableChain(IVChainVec[UsersIdx], + ChainUsersVec[UsersIdx].FarUsers, SE, TLI)) + continue; + // Preserve the chain at UsesIdx. + if (ChainIdx != UsersIdx) + IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; + FinalizeChain(IVChainVec[ChainIdx]); + ++ChainIdx; + } + IVChainVec.resize(ChainIdx); +} + +void LSRInstance::FinalizeChain(IVChain &Chain) { + assert(!Chain.empty() && "empty IV chains are not allowed"); + DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n"); + + for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end(); + I != E; ++I) { + DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); + User::op_iterator UseI = + std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); + assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); + IVIncSet.insert(UseI); + } +} + +/// Return true if the IVInc can be folded into an addressing mode. +static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, + Value *Operand, const TargetLowering *TLI) { + const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); + if (!IncConst || !isAddressUse(UserInst, Operand)) + return false; + + if (IncConst->getValue()->getValue().getMinSignedBits() > 64) + return false; + + int64_t IncOffset = IncConst->getValue()->getSExtValue(); + if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false, + LSRUse::Address, getAccessType(UserInst), TLI)) + return false; + + return true; +} + +/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to +/// materialize the IV user's operand from the previous IV user's operand. +void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, + SmallVectorImpl<WeakVH> &DeadInsts) { + // Find the new IVOperand for the head of the chain. It may have been replaced + // by LSR. + const IVInc &Head = Chain[0]; + User::op_iterator IVOpEnd = Head.UserInst->op_end(); + User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), + IVOpEnd, L, SE); + Value *IVSrc = 0; + while (IVOpIter != IVOpEnd) { + IVSrc = getWideOperand(*IVOpIter); + + // If this operand computes the expression that the chain needs, we may use + // it. (Check this after setting IVSrc which is used below.) + // + // Note that if Head.IncExpr is wider than IVSrc, then this phi is too + // narrow for the chain, so we can no longer use it. We do allow using a + // wider phi, assuming the LSR checked for free truncation. In that case we + // should already have a truncate on this operand such that + // getSCEV(IVSrc) == IncExpr. + if (SE.getSCEV(*IVOpIter) == Head.IncExpr + || SE.getSCEV(IVSrc) == Head.IncExpr) { + break; + } + IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); + } + if (IVOpIter == IVOpEnd) { + // Gracefully give up on this chain. + DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); + return; + } + + DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); + Type *IVTy = IVSrc->getType(); + Type *IntTy = SE.getEffectiveSCEVType(IVTy); + const SCEV *LeftOverExpr = 0; + for (IVChain::const_iterator IncI = llvm::next(Chain.begin()), + IncE = Chain.end(); IncI != IncE; ++IncI) { + + Instruction *InsertPt = IncI->UserInst; + if (isa<PHINode>(InsertPt)) + InsertPt = L->getLoopLatch()->getTerminator(); + + // IVOper will replace the current IV User's operand. IVSrc is the IV + // value currently held in a register. + Value *IVOper = IVSrc; + if (!IncI->IncExpr->isZero()) { + // IncExpr was the result of subtraction of two narrow values, so must + // be signed. + const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); + LeftOverExpr = LeftOverExpr ? + SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; + } + if (LeftOverExpr && !LeftOverExpr->isZero()) { + // Expand the IV increment. + Rewriter.clearPostInc(); + Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); + const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), + SE.getUnknown(IncV)); + IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); + + // If an IV increment can't be folded, use it as the next IV value. + if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, + TLI)) { + assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); + IVSrc = IVOper; + LeftOverExpr = 0; + } + } + Type *OperTy = IncI->IVOperand->getType(); + if (IVTy != OperTy) { + assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && + "cannot extend a chained IV"); + IRBuilder<> Builder(InsertPt); + IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); + } + IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); + DeadInsts.push_back(IncI->IVOperand); + } + // If LSR created a new, wider phi, we may also replace its postinc. We only + // do this if we also found a wide value for the head of the chain. + if (isa<PHINode>(Chain.back().UserInst)) { + for (BasicBlock::iterator I = L->getHeader()->begin(); + PHINode *Phi = dyn_cast<PHINode>(I); ++I) { + if (!isCompatibleIVType(Phi, IVSrc)) + continue; + Instruction *PostIncV = dyn_cast<Instruction>( + Phi->getIncomingValueForBlock(L->getLoopLatch())); + if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) + continue; + Value *IVOper = IVSrc; + Type *PostIncTy = PostIncV->getType(); + if (IVTy != PostIncTy) { + assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); + IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); + Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); + IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); + } + Phi->replaceUsesOfWith(PostIncV, IVOper); + DeadInsts.push_back(PostIncV); + } + } +} + void LSRInstance::CollectFixupsAndInitialFormulae() { for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { + Instruction *UserInst = UI->getUser(); + // Skip IV users that are part of profitable IV Chains. + User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), + UI->getOperandValToReplace()); + assert(UseI != UserInst->op_end() && "cannot find IV operand"); + if (IVIncSet.count(UseI)) + continue; + // Record the uses. LSRFixup &LF = getNewFixup(); - LF.UserInst = UI->getUser(); + LF.UserInst = UserInst; LF.OperandValToReplace = UI->getOperandValToReplace(); LF.PostIncLoops = UI->getPostIncLoops(); @@ -2914,6 +3584,7 @@ LSRInstance::GenerateAllReuseFormulae() { void LSRInstance::FilterOutUndesirableDedicatedRegisters() { DenseSet<const SCEV *> VisitedRegs; SmallPtrSet<const SCEV *, 16> Regs; + SmallPtrSet<const SCEV *, 16> LoserRegs; #ifndef NDEBUG bool ChangedFormulae = false; #endif @@ -2933,46 +3604,66 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() { FIdx != NumForms; ++FIdx) { Formula &F = LU.Formulae[FIdx]; - SmallVector<const SCEV *, 2> Key; - for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), - JE = F.BaseRegs.end(); J != JE; ++J) { - const SCEV *Reg = *J; - if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) - Key.push_back(Reg); + // Some formulas are instant losers. For example, they may depend on + // nonexistent AddRecs from other loops. These need to be filtered + // immediately, otherwise heuristics could choose them over others leading + // to an unsatisfactory solution. Passing LoserRegs into RateFormula here + // avoids the need to recompute this information across formulae using the + // same bad AddRec. Passing LoserRegs is also essential unless we remove + // the corresponding bad register from the Regs set. + Cost CostF; + Regs.clear(); + CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, + &LoserRegs); + if (CostF.isLoser()) { + // During initial formula generation, undesirable formulae are generated + // by uses within other loops that have some non-trivial address mode or + // use the postinc form of the IV. LSR needs to provide these formulae + // as the basis of rediscovering the desired formula that uses an AddRec + // corresponding to the existing phi. Once all formulae have been + // generated, these initial losers may be pruned. + DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); + dbgs() << "\n"); } - if (F.ScaledReg && - RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) - Key.push_back(F.ScaledReg); - // Unstable sort by host order ok, because this is only used for - // uniquifying. - std::sort(Key.begin(), Key.end()); - - std::pair<BestFormulaeTy::const_iterator, bool> P = - BestFormulae.insert(std::make_pair(Key, FIdx)); - if (!P.second) { + else { + SmallVector<const SCEV *, 2> Key; + for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), + JE = F.BaseRegs.end(); J != JE; ++J) { + const SCEV *Reg = *J; + if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) + Key.push_back(Reg); + } + if (F.ScaledReg && + RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) + Key.push_back(F.ScaledReg); + // Unstable sort by host order ok, because this is only used for + // uniquifying. + std::sort(Key.begin(), Key.end()); + + std::pair<BestFormulaeTy::const_iterator, bool> P = + BestFormulae.insert(std::make_pair(Key, FIdx)); + if (P.second) + continue; + Formula &Best = LU.Formulae[P.first->second]; - Cost CostF; - CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); - Regs.clear(); Cost CostBest; - CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); Regs.clear(); + CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); if (CostF < CostBest) std::swap(F, Best); DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); dbgs() << "\n" " in favor of formula "; Best.print(dbgs()); dbgs() << '\n'); + } #ifndef NDEBUG - ChangedFormulae = true; + ChangedFormulae = true; #endif - LU.DeleteFormula(F); - --FIdx; - --NumForms; - Any = true; - continue; - } + LU.DeleteFormula(F); + --FIdx; + --NumForms; + Any = true; } // Now that we've filtered out some formulae, recompute the Regs set. @@ -3284,24 +3975,29 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, if (LU.Regs.count(*I)) ReqRegs.insert(*I); - bool AnySatisfiedReqRegs = false; SmallPtrSet<const SCEV *, 16> NewRegs; Cost NewCost; -retry: for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), E = LU.Formulae.end(); I != E; ++I) { const Formula &F = *I; // Ignore formulae which do not use any of the required registers. + bool SatisfiedReqReg = true; for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), JE = ReqRegs.end(); J != JE; ++J) { const SCEV *Reg = *J; if ((!F.ScaledReg || F.ScaledReg != Reg) && std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == - F.BaseRegs.end()) - goto skip; + F.BaseRegs.end()) { + SatisfiedReqReg = false; + break; + } + } + if (!SatisfiedReqReg) { + // If none of the formulae satisfied the required registers, then we could + // clear ReqRegs and try again. Currently, we simply give up in this case. + continue; } - AnySatisfiedReqRegs = true; // Evaluate the cost of the current formula. If it's already worse than // the current best, prune the search at that point. @@ -3317,7 +4013,7 @@ retry: VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); } else { DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); - dbgs() << ". Regs:"; + dbgs() << ".\n Regs:"; for (SmallPtrSet<const SCEV *, 16>::const_iterator I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) dbgs() << ' ' << **I; @@ -3328,18 +4024,6 @@ retry: } Workspace.pop_back(); } - skip:; - } - - if (!EnableRetry && !AnySatisfiedReqRegs) - return; - - // If none of the formulae had all of the required registers, relax the - // constraint so that we don't exclude all formulae. - if (!AnySatisfiedReqRegs) { - assert(!ReqRegs.empty() && "Solver failed even without required registers"); - ReqRegs.clear(); - goto retry; } } @@ -3435,9 +4119,10 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, /// AdjustInsertPositionForExpand - Determine an input position which will be /// dominated by the operands and which will dominate the result. BasicBlock::iterator -LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, +LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, const LSRFixup &LF, - const LSRUse &LU) const { + const LSRUse &LU, + SCEVExpander &Rewriter) const { // Collect some instructions which must be dominated by the // expanding replacement. These must be dominated by any operands that // will be required in the expansion. @@ -3472,9 +4157,13 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, } } + assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) + && !isa<DbgInfoIntrinsic>(LowestIP) && + "Insertion point must be a normal instruction"); + // Then, climb up the immediate dominator tree as far as we can go while // still being dominated by the input positions. - IP = HoistInsertPosition(IP, Inputs); + BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); // Don't insert instructions before PHI nodes. while (isa<PHINode>(IP)) ++IP; @@ -3485,6 +4174,11 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, // Ignore debug intrinsics. while (isa<DbgInfoIntrinsic>(IP)) ++IP; + // Set IP below instructions recently inserted by SCEVExpander. This keeps the + // IP consistent across expansions and allows the previously inserted + // instructions to be reused by subsequent expansion. + while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; + return IP; } @@ -3499,7 +4193,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF, // Determine an input position which will be dominated by the operands and // which will dominate the result. - IP = AdjustInsertPositionForExpand(IP, LF, LU); + IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); // Inform the Rewriter if we have a post-increment use, so that it can // perform an advantageous expansion. @@ -3775,10 +4469,20 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, SmallVector<WeakVH, 16> DeadInsts; SCEVExpander Rewriter(SE, "lsr"); +#ifndef NDEBUG + Rewriter.setDebugType(DEBUG_TYPE); +#endif Rewriter.disableCanonicalMode(); Rewriter.enableLSRMode(); Rewriter.setIVIncInsertPos(L, IVIncInsertPos); + // Mark phi nodes that terminate chains so the expander tries to reuse them. + for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), + ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { + if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst)) + Rewriter.setChainedPhi(PN); + } + // Expand the new value definitions and update the users. for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), E = Fixups.end(); I != E; ++I) { @@ -3789,6 +4493,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, Changed = true; } + for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), + ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { + GenerateIVChain(*ChainI, Rewriter, DeadInsts); + Changed = true; + } // Clean up after ourselves. This must be done before deleting any // instructions. Rewriter.clear(); @@ -3804,11 +4513,29 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { // If LoopSimplify form is not available, stay out of trouble. - if (!L->isLoopSimplifyForm()) return; + if (!L->isLoopSimplifyForm()) + return; // If there's no interesting work to be done, bail early. if (IU.empty()) return; +#ifndef NDEBUG + // All dominating loops must have preheaders, or SCEVExpander may not be able + // to materialize an AddRecExpr whose Start is an outer AddRecExpr. + // + // IVUsers analysis should only create users that are dominated by simple loop + // headers. Since this loop should dominate all of its users, its user list + // should be empty if this loop itself is not within a simple loop nest. + for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); + Rung; Rung = Rung->getIDom()) { + BasicBlock *BB = Rung->getBlock(); + const Loop *DomLoop = LI.getLoopFor(BB); + if (DomLoop && DomLoop->getHeader() == BB) { + assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); + } + } +#endif // DEBUG + DEBUG(dbgs() << "\nLSR on loop "; WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); dbgs() << ":\n"); @@ -3821,24 +4548,18 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) if (IU.empty()) return; // Skip nested loops until we can model them better with formulae. - if (!EnableNested && !L->empty()) { - - if (EnablePhiElim) { - // Remove any extra phis created by processing inner loops. - SmallVector<WeakVH, 16> DeadInsts; - SCEVExpander Rewriter(SE, "lsr"); - Changed |= Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); - Changed |= DeleteTriviallyDeadInstructions(DeadInsts); - } + if (!L->empty()) { DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); return; } // Start collecting data and preparing for the solver. + CollectChains(); CollectInterestingTypesAndFactors(); CollectFixupsAndInitialFormulae(); CollectLoopInvariantFixupsAndFormulae(); + assert(!Uses.empty() && "IVUsers reported at least one use"); DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; print_uses(dbgs())); @@ -3875,14 +4596,6 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) // Now that we've decided what we want, make it so. ImplementSolution(Solution, P); - - if (EnablePhiElim) { - // Remove any extra phis created by processing inner loops. - SmallVector<WeakVH, 16> DeadInsts; - SCEVExpander Rewriter(SE, "lsr"); - Changed |= Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); - Changed |= DeleteTriviallyDeadInstructions(DeadInsts); - } } void LSRInstance::print_factors_and_types(raw_ostream &OS) const { @@ -4008,9 +4721,21 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { // Run the main LSR transformation. Changed |= LSRInstance(TLI, L, this).getChanged(); - // At this point, it is worth checking to see if any recurrence PHIs are also - // dead, so that we can remove them as well. + // Remove any extra phis created by processing inner loops. Changed |= DeleteDeadPHIs(L->getHeader()); - + if (EnablePhiElim) { + SmallVector<WeakVH, 16> DeadInsts; + SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); +#ifndef NDEBUG + Rewriter.setDebugType(DEBUG_TYPE); +#endif + unsigned numFolded = Rewriter. + replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI); + if (numFolded) { + Changed = true; + DeleteTriviallyDeadInstructions(DeadInsts); + DeleteDeadPHIs(L->getHeader()); + } + } return Changed; } diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp index 91395b2..09a186f 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp @@ -40,10 +40,9 @@ UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, cl::desc("Allows loops to be partially unrolled until " "-unroll-threshold loop size is reached.")); -// Temporary flag to be removed in 3.0 static cl::opt<bool> -NoSCEVUnroll("disable-unroll-scev", cl::init(false), cl::Hidden, - cl::desc("Use ScalarEvolution to analyze loop trip counts for unrolling")); +UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, + cl::desc("Unroll loops with run-time trip counts")); namespace { class LoopUnroll : public LoopPass { @@ -68,6 +67,10 @@ namespace { // explicit -unroll-threshold). static const unsigned OptSizeUnrollThreshold = 50; + // Default unroll count for loops with run-time trip count if + // -unroll-count is not set + static const unsigned UnrollRuntimeCount = 8; + unsigned CurrentCount; unsigned CurrentThreshold; bool CurrentAllowPartial; @@ -101,6 +104,7 @@ INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial) { @@ -147,23 +151,21 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { // Find trip count and trip multiple if count is not available unsigned TripCount = 0; unsigned TripMultiple = 1; - if (!NoSCEVUnroll) { - // Find "latch trip count". UnrollLoop assumes that control cannot exit - // via the loop latch on any iteration prior to TripCount. The loop may exit - // early via an earlier branch. - BasicBlock *LatchBlock = L->getLoopLatch(); - if (LatchBlock) { - TripCount = SE->getSmallConstantTripCount(L, LatchBlock); - TripMultiple = SE->getSmallConstantTripMultiple(L, LatchBlock); - } - } - else { - TripCount = L->getSmallConstantTripCount(); - if (TripCount == 0) - TripMultiple = L->getSmallConstantTripMultiple(); + // Find "latch trip count". UnrollLoop assumes that control cannot exit + // via the loop latch on any iteration prior to TripCount. The loop may exit + // early via an earlier branch. + BasicBlock *LatchBlock = L->getLoopLatch(); + if (LatchBlock) { + TripCount = SE->getSmallConstantTripCount(L, LatchBlock); + TripMultiple = SE->getSmallConstantTripMultiple(L, LatchBlock); } - // Automatically select an unroll count. + // Use a default unroll-count if the user doesn't specify a value + // and the trip count is a run-time value. The default is different + // for run-time or compile-time trip count loops. unsigned Count = CurrentCount; + if (UnrollRuntime && CurrentCount == 0 && TripCount == 0) + Count = UnrollRuntimeCount; + if (Count == 0) { // Conservative heuristic: if we know the trip count, see if we can // completely unroll (subject to the threshold, checked below); otherwise @@ -188,15 +190,23 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { if (TripCount != 1 && Size > Threshold) { DEBUG(dbgs() << " Too large to fully unroll with count: " << Count << " because size: " << Size << ">" << Threshold << "\n"); - if (!CurrentAllowPartial) { + if (!CurrentAllowPartial && !(UnrollRuntime && TripCount == 0)) { DEBUG(dbgs() << " will not try to unroll partially because " << "-unroll-allow-partial not given\n"); return false; } - // Reduce unroll count to be modulo of TripCount for partial unrolling - Count = Threshold / LoopSize; - while (Count != 0 && TripCount%Count != 0) { - Count--; + if (TripCount) { + // Reduce unroll count to be modulo of TripCount for partial unrolling + Count = Threshold / LoopSize; + while (Count != 0 && TripCount%Count != 0) + Count--; + } + else if (UnrollRuntime) { + // Reduce unroll count to be a lower power-of-two value + while (Count != 0 && Size > Threshold) { + Count >>= 1; + Size = LoopSize*Count; + } } if (Count < 2) { DEBUG(dbgs() << " could not unroll partially\n"); @@ -207,7 +217,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { } // Unroll the loop. - if (!UnrollLoop(L, Count, TripCount, TripMultiple, LI, &LPM)) + if (!UnrollLoop(L, Count, TripCount, UnrollRuntime, TripMultiple, LI, &LPM)) return false; return true; diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp index 458949c..ee23268 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp @@ -32,7 +32,7 @@ #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" -#include "llvm/Analysis/InlineCost.h" +#include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" @@ -48,6 +48,7 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> +#include <map> #include <set> using namespace llvm; @@ -56,14 +57,70 @@ STATISTIC(NumSwitches, "Number of switches unswitched"); STATISTIC(NumSelects , "Number of selects unswitched"); STATISTIC(NumTrivial , "Number of unswitches that are trivial"); STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); +STATISTIC(TotalInsts, "Total number of instructions analyzed"); -// The specific value of 50 here was chosen based only on intuition and a +// The specific value of 100 here was chosen based only on intuition and a // few specific examples. static cl::opt<unsigned> Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), - cl::init(50), cl::Hidden); - + cl::init(100), cl::Hidden); + namespace { + + class LUAnalysisCache { + + typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> > + UnswitchedValsMap; + + typedef UnswitchedValsMap::iterator UnswitchedValsIt; + + struct LoopProperties { + unsigned CanBeUnswitchedCount; + unsigned SizeEstimation; + UnswitchedValsMap UnswitchedVals; + }; + + // Here we use std::map instead of DenseMap, since we need to keep valid + // LoopProperties pointer for current loop for better performance. + typedef std::map<const Loop*, LoopProperties> LoopPropsMap; + typedef LoopPropsMap::iterator LoopPropsMapIt; + + LoopPropsMap LoopsProperties; + UnswitchedValsMap* CurLoopInstructions; + LoopProperties* CurrentLoopProperties; + + // Max size of code we can produce on remained iterations. + unsigned MaxSize; + + public: + + LUAnalysisCache() : + CurLoopInstructions(NULL), CurrentLoopProperties(NULL), + MaxSize(Threshold) + {} + + // Analyze loop. Check its size, calculate is it possible to unswitch + // it. Returns true if we can unswitch this loop. + bool countLoop(const Loop* L); + + // Clean all data related to given loop. + void forgetLoop(const Loop* L); + + // Mark case value as unswitched. + // Since SI instruction can be partly unswitched, in order to avoid + // extra unswitching in cloned loops keep track all unswitched values. + void setUnswitched(const SwitchInst* SI, const Value* V); + + // Check was this case value unswitched before or not. + bool isUnswitched(const SwitchInst* SI, const Value* V); + + // Clone all loop-unswitch related loop properties. + // Redistribute unswitching quotas. + // Note, that new loop data is stored inside the VMap. + void cloneData(const Loop* NewLoop, const Loop* OldLoop, + const ValueToValueMapTy& VMap); + }; + class LoopUnswitch : public LoopPass { LoopInfo *LI; // Loop information LPPassManager *LPM; @@ -71,8 +128,9 @@ namespace { // LoopProcessWorklist - Used to check if second loop needs processing // after RewriteLoopBodyWithConditionConstant rewrites first loop. std::vector<Loop*> LoopProcessWorklist; - SmallPtrSet<Value *,8> UnswitchedVals; - + + LUAnalysisCache BranchesInfo; + bool OptimizeForSize; bool redoLoop; @@ -80,9 +138,9 @@ namespace { DominatorTree *DT; BasicBlock *loopHeader; BasicBlock *loopPreheader; - + // LoopBlocks contains all of the basic blocks of the loop, including the - // preheader of the loop, the body of the loop, and the exit blocks of the + // preheader of the loop, the body of the loop, and the exit blocks of the // loop, in that order. std::vector<BasicBlock*> LoopBlocks; // NewBlocks contained cloned copy of basic blocks from LoopBlocks. @@ -90,8 +148,8 @@ namespace { public: static char ID; // Pass ID, replacement for typeid - explicit LoopUnswitch(bool Os = false) : - LoopPass(ID), OptimizeForSize(Os), redoLoop(false), + explicit LoopUnswitch(bool Os = false) : + LoopPass(ID), OptimizeForSize(Os), redoLoop(false), currentLoop(NULL), DT(NULL), loopHeader(NULL), loopPreheader(NULL) { initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); @@ -117,7 +175,7 @@ namespace { private: virtual void releaseMemory() { - UnswitchedVals.clear(); + BranchesInfo.forgetLoop(currentLoop); } /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist, @@ -147,7 +205,7 @@ namespace { Constant *Val, bool isEqual); void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, - BasicBlock *TrueDest, + BasicBlock *TrueDest, BasicBlock *FalseDest, Instruction *InsertPt); @@ -160,6 +218,112 @@ namespace { }; } + +// Analyze loop. Check its size, calculate is it possible to unswitch +// it. Returns true if we can unswitch this loop. +bool LUAnalysisCache::countLoop(const Loop* L) { + + std::pair<LoopPropsMapIt, bool> InsertRes = + LoopsProperties.insert(std::make_pair(L, LoopProperties())); + + LoopProperties& Props = InsertRes.first->second; + + if (InsertRes.second) { + // New loop. + + // Limit the number of instructions to avoid causing significant code + // expansion, and the number of basic blocks, to avoid loops with + // large numbers of branches which cause loop unswitching to go crazy. + // This is a very ad-hoc heuristic. + + // FIXME: This is overly conservative because it does not take into + // consideration code simplification opportunities and code that can + // be shared by the resultant unswitched loops. + CodeMetrics Metrics; + for (Loop::block_iterator I = L->block_begin(), + E = L->block_end(); + I != E; ++I) + Metrics.analyzeBasicBlock(*I); + + Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5); + Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); + MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; + } + + if (!Props.CanBeUnswitchedCount) { + DEBUG(dbgs() << "NOT unswitching loop %" + << L->getHeader()->getName() << ", cost too high: " + << L->getBlocks().size() << "\n"); + + return false; + } + + // Be careful. This links are good only before new loop addition. + CurrentLoopProperties = &Props; + CurLoopInstructions = &Props.UnswitchedVals; + + return true; +} + +// Clean all data related to given loop. +void LUAnalysisCache::forgetLoop(const Loop* L) { + + LoopPropsMapIt LIt = LoopsProperties.find(L); + + if (LIt != LoopsProperties.end()) { + LoopProperties& Props = LIt->second; + MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation; + LoopsProperties.erase(LIt); + } + + CurrentLoopProperties = NULL; + CurLoopInstructions = NULL; +} + +// Mark case value as unswitched. +// Since SI instruction can be partly unswitched, in order to avoid +// extra unswitching in cloned loops keep track all unswitched values. +void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) { + (*CurLoopInstructions)[SI].insert(V); +} + +// Check was this case value unswitched before or not. +bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) { + return (*CurLoopInstructions)[SI].count(V); +} + +// Clone all loop-unswitch related loop properties. +// Redistribute unswitching quotas. +// Note, that new loop data is stored inside the VMap. +void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop, + const ValueToValueMapTy& VMap) { + + LoopProperties& NewLoopProps = LoopsProperties[NewLoop]; + LoopProperties& OldLoopProps = *CurrentLoopProperties; + UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals; + + // Reallocate "can-be-unswitched quota" + + --OldLoopProps.CanBeUnswitchedCount; + unsigned Quota = OldLoopProps.CanBeUnswitchedCount; + NewLoopProps.CanBeUnswitchedCount = Quota / 2; + OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; + + NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; + + // Clone unswitched values info: + // for new loop switches we clone info about values that was + // already unswitched and has redundant successors. + for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { + const SwitchInst* OldInst = I->first; + Value* NewI = VMap.lookup(OldInst); + const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI); + assert(NewInst && "All instructions that are in SrcBB must be in VMap."); + + NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; + } +} + char LoopUnswitch::ID = 0; INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", false, false) @@ -169,14 +333,18 @@ INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", false, false) -Pass *llvm::createLoopUnswitchPass(bool Os) { - return new LoopUnswitch(Os); +Pass *llvm::createLoopUnswitchPass(bool Os) { + return new LoopUnswitch(Os); } /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is /// invariant in the loop, or has an invariant piece, return the invariant. /// Otherwise, return null. static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { + + // We started analyze new instruction, increment scanned instructions counter. + ++TotalInsts; + // We can never unswitch on vector conditions. if (Cond->getType()->isVectorTy()) return 0; @@ -201,7 +369,7 @@ static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) return RHS; } - + return 0; } @@ -226,16 +394,36 @@ bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { return Changed; } -/// processCurrentLoop - Do actual work and unswitch loop if possible +/// processCurrentLoop - Do actual work and unswitch loop if possible /// and profitable. bool LoopUnswitch::processCurrentLoop() { bool Changed = false; - LLVMContext &Context = currentLoop->getHeader()->getContext(); + + initLoopData(); + + // If LoopSimplify was unable to form a preheader, don't do any unswitching. + if (!loopPreheader) + return false; + + // Loops with indirectbr cannot be cloned. + if (!currentLoop->isSafeToClone()) + return false; + + // Without dedicated exits, splitting the exit edge may fail. + if (!currentLoop->hasDedicatedExits()) + return false; + + LLVMContext &Context = loopHeader->getContext(); + + // Probably we reach the quota of branches for this loop. If so + // stop unswitching. + if (!BranchesInfo.countLoop(currentLoop)) + return false; // Loop over all of the basic blocks in the loop. If we find an interior // block that is branching on a loop-invariant condition, we can unswitch this // loop. - for (Loop::block_iterator I = currentLoop->block_begin(), + for (Loop::block_iterator I = currentLoop->block_begin(), E = currentLoop->block_end(); I != E; ++I) { TerminatorInst *TI = (*I)->getTerminator(); if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { @@ -244,24 +432,37 @@ bool LoopUnswitch::processCurrentLoop() { if (BI->isConditional()) { // See if this, or some part of it, is loop invariant. If so, we can // unswitch on it if we desire. - Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), + Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop, Changed); - if (LoopCond && UnswitchIfProfitable(LoopCond, + if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { ++NumBranches; return true; } - } + } } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), + Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop, Changed); - if (LoopCond && SI->getNumCases() > 1) { + unsigned NumCases = SI->getNumCases(); + if (LoopCond && NumCases) { // Find a value to unswitch on: // FIXME: this should chose the most expensive case! // FIXME: scan for a case with a non-critical edge? - Constant *UnswitchVal = SI->getCaseValue(1); + Constant *UnswitchVal = NULL; + // Do not process same value again and again. - if (!UnswitchedVals.insert(UnswitchVal)) + // At this point we have some cases already unswitched and + // some not yet unswitched. Let's find the first not yet unswitched one. + for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); + i != e; ++i) { + Constant* UnswitchValCandidate = i.getCaseValue(); + if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { + UnswitchVal = UnswitchValCandidate; + break; + } + } + + if (!UnswitchVal) continue; if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { @@ -270,14 +471,14 @@ bool LoopUnswitch::processCurrentLoop() { } } } - + // Scan the instructions to check for unswitchable values. - for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); + for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); BBI != E; ++BBI) if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { - Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), + Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop, Changed); - if (LoopCond && UnswitchIfProfitable(LoopCond, + if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { ++NumSelects; return true; @@ -297,7 +498,8 @@ static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, BasicBlock *&ExitBB, std::set<BasicBlock*> &Visited) { if (!Visited.insert(BB).second) { - // Already visited. Without more analysis, this could indicate an infinte loop. + // Already visited. Without more analysis, this could indicate an infinite + // loop. return false; } else if (!L->contains(BB)) { // Otherwise, this is a loop exit, this is fine so long as this is the @@ -306,7 +508,7 @@ static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, ExitBB = BB; return true; } - + // Otherwise, this is an unvisited intra-loop node. Check all successors. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { // Check to see if the successor is a trivial loop exit. @@ -319,12 +521,12 @@ static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (I->mayHaveSideEffects()) return false; - + return true; } /// isTrivialLoopExitBlock - Return true if the specified block unconditionally -/// leads to an exit from the specified loop, and has no side-effects in the +/// leads to an exit from the specified loop, and has no side-effects in the /// process. If so, return the block that is exited to, otherwise return null. static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { std::set<BasicBlock*> Visited; @@ -352,49 +554,61 @@ bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, BasicBlock *Header = currentLoop->getHeader(); TerminatorInst *HeaderTerm = Header->getTerminator(); LLVMContext &Context = Header->getContext(); - + BasicBlock *LoopExitBB = 0; if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { // If the header block doesn't end with a conditional branch on Cond, we // can't handle it. if (!BI->isConditional() || BI->getCondition() != Cond) return false; - - // Check to see if a successor of the branch is guaranteed to - // exit through a unique exit block without having any + + // Check to see if a successor of the branch is guaranteed to + // exit through a unique exit block without having any // side-effects. If so, determine the value of Cond that causes it to do // this. - if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, + if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, BI->getSuccessor(0)))) { if (Val) *Val = ConstantInt::getTrue(Context); - } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, + } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, BI->getSuccessor(1)))) { if (Val) *Val = ConstantInt::getFalse(Context); } } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { // If this isn't a switch on Cond, we can't handle it. if (SI->getCondition() != Cond) return false; - + // Check to see if a successor of the switch is guaranteed to go to the - // latch block or exit through a one exit block without having any + // latch block or exit through a one exit block without having any // side-effects. If so, determine the value of Cond that causes it to do - // this. Note that we can't trivially unswitch on the default case. - for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) - if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, - SI->getSuccessor(i)))) { + // this. + // Note that we can't trivially unswitch on the default case or + // on already unswitched cases. + for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); + i != e; ++i) { + BasicBlock* LoopExitCandidate; + if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop, + i.getCaseSuccessor()))) { // Okay, we found a trivial case, remember the value that is trivial. - if (Val) *Val = SI->getCaseValue(i); + ConstantInt* CaseVal = i.getCaseValue(); + + // Check that it was not unswitched before, since already unswitched + // trivial vals are looks trivial too. + if (BranchesInfo.isUnswitched(SI, CaseVal)) + continue; + LoopExitBB = LoopExitCandidate; + if (Val) *Val = CaseVal; break; } + } } // If we didn't find a single unique LoopExit block, or if the loop exit block // contains phi nodes, this isn't trivial. if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) return false; // Can't handle this. - + if (LoopExit) *LoopExit = LoopExitBB; - + // We already know that nothing uses any scalar values defined inside of this // loop. As such, we just have to check to see if this loop will execute any // side-effecting instructions (e.g. stores, calls, volatile loads) in the @@ -411,12 +625,6 @@ bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, /// unswitch the loop, reprocess the pieces, then return true. bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { - initLoopData(); - - // If LoopSimplify was unable to form a preheader, don't do any unswitching. - if (!loopPreheader) - return false; - Function *F = loopHeader->getParent(); Constant *CondVal = 0; @@ -434,28 +642,6 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize)) return false; - // FIXME: This is overly conservative because it does not take into - // consideration code simplification opportunities and code that can - // be shared by the resultant unswitched loops. - CodeMetrics Metrics; - for (Loop::block_iterator I = currentLoop->block_begin(), - E = currentLoop->block_end(); - I != E; ++I) - Metrics.analyzeBasicBlock(*I); - - // Limit the number of instructions to avoid causing significant code - // expansion, and the number of basic blocks, to avoid loops with - // large numbers of branches which cause loop unswitching to go crazy. - // This is a very ad-hoc heuristic. - if (Metrics.NumInsts > Threshold || - Metrics.NumBlocks * 5 > Threshold || - Metrics.containsIndirectBr || Metrics.isRecursive) { - DEBUG(dbgs() << "NOT unswitching loop %" - << currentLoop->getHeader()->getName() << ", cost too high: " - << currentLoop->getBlocks().size() << "\n"); - return false; - } - UnswitchNontrivialCondition(LoopCond, Val, currentLoop); return true; } @@ -508,17 +694,17 @@ void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable /// condition in it (a cond branch from its header block to its latch block, -/// where the path through the loop that doesn't execute its body has no +/// where the path through the loop that doesn't execute its body has no /// side-effects), unswitch it. This doesn't involve any code duplication, just /// moving the conditional branch outside of the loop and updating loop info. -void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, - Constant *Val, +void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, + Constant *Val, BasicBlock *ExitBlock) { DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" << loopHeader->getName() << " [" << L->getBlocks().size() << " blocks] in Function " << L->getHeader()->getParent()->getName() << " on cond: " << *Val << " == " << *Cond << "\n"); - + // First step, split the preheader, so that we know that there is a safe place // to insert the conditional branch. We will change loopPreheader to have a // conditional branch on Cond. @@ -527,24 +713,24 @@ void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, // Now that we have a place to insert the conditional branch, create a place // to branch to: this is the exit block out of the loop that we should // short-circuit to. - + // Split this block now, so that the loop maintains its exit block, and so // that the jump from the preheader can execute the contents of the exit block // without actually branching to it (the exit block should be dominated by the // loop header, not the preheader). assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this); - - // Okay, now we have a position to branch from and a position to branch to, + + // Okay, now we have a position to branch from and a position to branch to, // insert the new conditional branch. - EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, + EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, loopPreheader->getTerminator()); LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); loopPreheader->getTerminator()->eraseFromParent(); // We need to reprocess this loop, it could be unswitched again. redoLoop = true; - + // Now that we know that the loop is never entered when this condition is a // particular value, rewrite the loop with this info. We know that this will // at least eliminate the old branch. @@ -554,7 +740,7 @@ void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, /// SplitExitEdges - Split all of the edges from inside the loop to their exit /// blocks. Update the appropriate Phi nodes as we do so. -void LoopUnswitch::SplitExitEdges(Loop *L, +void LoopUnswitch::SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks){ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { @@ -565,8 +751,7 @@ void LoopUnswitch::SplitExitEdges(Loop *L, // Although SplitBlockPredecessors doesn't preserve loop-simplify in // general, if we call it on all predecessors of all exits then it does. if (!ExitBlock->isLandingPad()) { - SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(), - ".us-lcssa", this); + SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this); } else { SmallVector<BasicBlock*, 2> NewBBs; SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa", @@ -575,10 +760,10 @@ void LoopUnswitch::SplitExitEdges(Loop *L, } } -/// UnswitchNontrivialCondition - We determined that the loop is profitable -/// to unswitch when LIC equal Val. Split it into loop versions and test the +/// UnswitchNontrivialCondition - We determined that the loop is profitable +/// to unswitch when LIC equal Val. Split it into loop versions and test the /// condition outside of either loop. Return the loops created as Out1/Out2. -void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, +void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, Loop *L) { Function *F = loopHeader->getParent(); DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" @@ -621,6 +806,7 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, ValueToValueMapTy VMap; for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); + NewBlocks.push_back(NewBB); VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); @@ -633,6 +819,11 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, // Now we create the new Loop object for the versioned loop. Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); + + // Recalculate unswitching quota, inherit simplified switches info for NewBB, + // Probably clone more loop-unswitch related loop properties. + BranchesInfo.cloneData(NewLoop, L, VMap); + Loop *ParentLoop = L->getParentLoop(); if (ParentLoop) { // Make sure to add the cloned preheader and exit blocks to the parent loop @@ -645,7 +836,7 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, // The new exit block should be in the same loop as the old one. if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase()); - + assert(NewExit->getTerminator()->getNumSuccessors() == 1 && "Exit block should have been split to have one successor!"); BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); @@ -680,7 +871,7 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); - + // Rewrite the original preheader to select between versions of the loop. BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && @@ -699,7 +890,7 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, // the condition that we're unswitching on), we don't rewrite the second // iteration. WeakVH LICHandle(LIC); - + // Now we rewrite the original code to know that the condition is true and the // new code to know that the condition is false. RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); @@ -714,7 +905,7 @@ void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, /// RemoveFromWorklist - Remove all instances of I from the worklist vector /// specified. -static void RemoveFromWorklist(Instruction *I, +static void RemoveFromWorklist(Instruction *I, std::vector<Instruction*> &Worklist) { std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(), Worklist.end(), I); @@ -727,7 +918,7 @@ static void RemoveFromWorklist(Instruction *I, /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the /// program, replacing all uses with V and update the worklist. -static void ReplaceUsesOfWith(Instruction *I, Value *V, +static void ReplaceUsesOfWith(Instruction *I, Value *V, std::vector<Instruction*> &Worklist, Loop *L, LPPassManager *LPM) { DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); @@ -760,10 +951,10 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, if (BasicBlock *Pred = BB->getSinglePredecessor()) { // If it has one pred, fold phi nodes in BB. while (isa<PHINode>(BB->begin())) - ReplaceUsesOfWith(BB->begin(), - cast<PHINode>(BB->begin())->getIncomingValue(0), + ReplaceUsesOfWith(BB->begin(), + cast<PHINode>(BB->begin())->getIncomingValue(0), Worklist, L, LPM); - + // If this is the header of a loop and the only pred is the latch, we now // have an unreachable loop. if (Loop *L = LI->getLoopFor(BB)) @@ -774,15 +965,15 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L); Pred->getTerminator()->eraseFromParent(); new UnreachableInst(BB->getContext(), Pred); - + // The loop is now broken, remove it from LI. RemoveLoopFromHierarchy(L); - + // Reprocess the header, which now IS dead. RemoveBlockIfDead(BB, Worklist, L); return; } - + // If pred ends in a uncond branch, add uncond branch to worklist so that // the two blocks will get merged. if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) @@ -793,11 +984,11 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, } DEBUG(dbgs() << "Nuking dead block: " << *BB); - + // Remove the instructions in the basic block from the worklist. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { RemoveFromWorklist(I, Worklist); - + // Anything that uses the instructions in this basic block should have their // uses replaced with undefs. // If I is not void type then replaceAllUsesWith undef. @@ -805,7 +996,7 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, if (!I->getType()->isVoidTy()) I->replaceAllUsesWith(UndefValue::get(I->getType())); } - + // If this is the edge to the header block for a loop, remove the loop and // promote all subloops. if (Loop *BBLoop = LI->getLoopFor(BB)) { @@ -821,8 +1012,8 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, // Remove the block from the loop info, which removes it from any loops it // was in. LI->removeBlock(BB); - - + + // Remove phi node entries in successors for this block. TerminatorInst *TI = BB->getTerminator(); SmallVector<BasicBlock*, 4> Succs; @@ -830,13 +1021,13 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, Succs.push_back(TI->getSuccessor(i)); TI->getSuccessor(i)->removePredecessor(BB); } - + // Unique the successors, remove anything with multiple uses. array_pod_sort(Succs.begin(), Succs.end()); Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end()); - + // Remove the basic block, including all of the instructions contained in it. - LPM->deleteSimpleAnalysisValue(BB, L); + LPM->deleteSimpleAnalysisValue(BB, L); BB->eraseFromParent(); // Remove successor blocks here that are not dead, so that we know we only // have dead blocks in this list. Nondead blocks have a way of becoming dead, @@ -854,7 +1045,7 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, --i; } } - + for (unsigned i = 0, e = Succs.size(); i != e; ++i) RemoveBlockIfDead(Succs[i], Worklist, L); } @@ -877,14 +1068,14 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, Constant *Val, bool IsEqual) { assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); - + // FIXME: Support correlated properties, like: // for (...) // if (li1 < li2) // ... // if (li1 > li2) // ... - + // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, // selects, switches. std::vector<Instruction*> Worklist; @@ -899,21 +1090,25 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, if (IsEqual) Replacement = Val; else - Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), + Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), !cast<ConstantInt>(Val)->getZExtValue()); - + for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end(); UI != E; ++UI) { Instruction *U = dyn_cast<Instruction>(*UI); if (!U || !L->contains(U)) continue; - U->replaceUsesOfWith(LIC, Replacement); Worklist.push_back(U); } + + for (std::vector<Instruction*>::iterator UI = Worklist.begin(); + UI != Worklist.end(); ++UI) + (*UI)->replaceUsesOfWith(LIC, Replacement); + SimplifyCode(Worklist, L); return; } - + // Otherwise, we don't know the precise value of LIC, but we do know that it // is certainly NOT "Val". As such, simplify any uses in the loop that we // can. This case occurs when we unswitch switch statements. @@ -925,23 +1120,27 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, Worklist.push_back(U); - // TODO: We could do other simplifications, for example, turning + // TODO: We could do other simplifications, for example, turning // 'icmp eq LIC, Val' -> false. // If we know that LIC is not Val, use this info to simplify code. SwitchInst *SI = dyn_cast<SwitchInst>(U); if (SI == 0 || !isa<ConstantInt>(Val)) continue; - - unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); - if (DeadCase == 0) continue; // Default case is live for multiple values. - - // Found a dead case value. Don't remove PHI nodes in the + + SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); + // Default case is live for multiple values. + if (DeadCase == SI->case_default()) continue; + + // Found a dead case value. Don't remove PHI nodes in the // successor if they become single-entry, those PHI nodes may // be in the Users list. BasicBlock *Switch = SI->getParent(); - BasicBlock *SISucc = SI->getSuccessor(DeadCase); + BasicBlock *SISucc = DeadCase.getCaseSuccessor(); BasicBlock *Latch = L->getLoopLatch(); + + BranchesInfo.setUnswitched(SI, Val); + if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. // If the DeadCase successor dominates the loop latch, then the // transformation isn't safe since it will delete the sole predecessor edge @@ -957,7 +1156,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, // Compute the successors instead of relying on the return value // of SplitEdge, since it may have split the switch successor // after PHI nodes. - BasicBlock *NewSISucc = SI->getSuccessor(DeadCase); + BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); BasicBlock *OldSISucc = *succ_begin(NewSISucc); // Create an "unreachable" destination. BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", @@ -981,7 +1180,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, if (DT) DT->addNewBlock(Abort, NewSISucc); } - + SimplifyCode(Worklist, L); } @@ -1002,7 +1201,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { // Simple DCE. if (isInstructionTriviallyDead(I)) { DEBUG(dbgs() << "Remove dead instruction '" << *I); - + // Add uses to the worklist, which may be dead now. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) @@ -1017,7 +1216,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { // See if instruction simplification can hack this up. This is common for // things like "select false, X, Y" after unswitching made the condition be // 'false'. - if (Value *V = SimplifyInstruction(I, 0, DT)) + if (Value *V = SimplifyInstruction(I, 0, 0, DT)) if (LI->replacementPreservesLCSSAForm(I, V)) { ReplaceUsesOfWith(I, V, Worklist, L, LPM); continue; @@ -1034,24 +1233,24 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { if (!SinglePred) continue; // Nothing to do. assert(SinglePred == Pred && "CFG broken"); - DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " + DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " << Succ->getName() << "\n"); - + // Resolve any single entry PHI nodes in Succ. while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); - + // If Succ has any successors with PHI nodes, update them to have // entries coming from Pred instead of Succ. Succ->replaceAllUsesWith(Pred); - + // Move all of the successor contents from Succ to Pred. Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), Succ->end()); LPM->deleteSimpleAnalysisValue(BI, L); BI->eraseFromParent(); RemoveFromWorklist(BI, Worklist); - + // Remove Succ from the loop tree. LI->removeBlock(Succ); LPM->deleteSimpleAnalysisValue(Succ, L); @@ -1059,7 +1258,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { ++NumSimplify; continue; } - + if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){ // Conditional branch. Turn it into an unconditional branch, then // remove dead blocks. diff --git a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp index eeb8931..a87cce3 100644 --- a/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -147,8 +147,8 @@ struct MemsetRange { } // end anon namespace bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const { - // If we found more than 8 stores to merge or 64 bytes, use memset. - if (TheStores.size() >= 8 || End-Start >= 64) return true; + // If we found more than 4 stores to merge or 16 bytes, use memset. + if (TheStores.size() >= 4 || End-Start >= 16) return true; // If there is nothing to merge, don't do anything. if (TheStores.size() < 2) return false; @@ -806,21 +806,25 @@ bool MemCpyOpt::processMemCpy(MemCpyInst *M) { // a) memcpy-memcpy xform which exposes redundance for DSE. // b) call-memcpy xform for return slot optimization. MemDepResult DepInfo = MD->getDependency(M); - if (!DepInfo.isClobber()) - return false; - - if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst())) - return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue()); - - if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { - if (performCallSlotOptzn(M, M->getDest(), M->getSource(), - CopySize->getZExtValue(), C)) { - MD->removeInstruction(M); - M->eraseFromParent(); - return true; + if (DepInfo.isClobber()) { + if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { + if (performCallSlotOptzn(M, M->getDest(), M->getSource(), + CopySize->getZExtValue(), C)) { + MD->removeInstruction(M); + M->eraseFromParent(); + return true; + } } } - + + AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M); + MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true, + M, M->getParent()); + if (SrcDepInfo.isClobber()) { + if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) + return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue()); + } + return false; } @@ -945,7 +949,7 @@ bool MemCpyOpt::iterateOnFunction(Function &F) { RepeatInstruction = processMemMove(M); else if (CallSite CS = (Value*)I) { for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) - if (CS.paramHasAttr(i+1, Attribute::ByVal)) + if (CS.isByValArgument(i)) MadeChange |= processByValArgument(CS, i); } diff --git a/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp b/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp index da74e9c..40b0b20 100644 --- a/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/ObjCARC.cpp @@ -88,13 +88,14 @@ namespace { } #endif - ValueT &operator[](KeyT Arg) { + ValueT &operator[](const KeyT &Arg) { std::pair<typename MapTy::iterator, bool> Pair = Map.insert(std::make_pair(Arg, size_t(0))); if (Pair.second) { - Pair.first->second = Vector.size(); + size_t Num = Vector.size(); + Pair.first->second = Num; Vector.push_back(std::make_pair(Arg, ValueT())); - return Vector.back().second; + return Vector[Num].second; } return Vector[Pair.first->second].second; } @@ -104,14 +105,15 @@ namespace { std::pair<typename MapTy::iterator, bool> Pair = Map.insert(std::make_pair(InsertPair.first, size_t(0))); if (Pair.second) { - Pair.first->second = Vector.size(); + size_t Num = Vector.size(); + Pair.first->second = Num; Vector.push_back(InsertPair); - return std::make_pair(llvm::prior(Vector.end()), true); + return std::make_pair(Vector.begin() + Num, true); } return std::make_pair(Vector.begin() + Pair.first->second, false); } - const_iterator find(KeyT Key) const { + const_iterator find(const KeyT &Key) const { typename MapTy::const_iterator It = Map.find(Key); if (It == Map.end()) return Vector.end(); return Vector.begin() + It->second; @@ -121,7 +123,7 @@ namespace { /// from the vector, it just zeros out the key in the vector. This leaves /// iterators intact, but clients must be prepared for zeroed-out keys when /// iterating. - void blot(KeyT Key) { + void blot(const KeyT &Key) { typename MapTy::iterator It = Map.find(Key); if (It == Map.end()) return; Vector[It->second].first = KeyT(); @@ -179,9 +181,13 @@ static bool IsPotentialUse(const Value *Op) { Arg->hasNestAttr() || Arg->hasStructRetAttr()) return false; - // Only consider values with pointer types, and not function pointers. + // Only consider values with pointer types. + // It seemes intuitive to exclude function pointer types as well, since + // functions are never reference-counted, however clang occasionally + // bitcasts reference-counted pointers to function-pointer type + // temporarily. PointerType *Ty = dyn_cast<PointerType>(Op->getType()); - if (!Ty || isa<FunctionType>(Ty->getElementType())) + if (!Ty) return false; // Conservatively assume anything else is a potential use. return true; @@ -371,7 +377,7 @@ static InstructionClass GetBasicInstructionClass(const Value *V) { } // Otherwise, be conservative. - return IC_User; + return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User; } /// IsRetain - Test if the the given class is objc_retain or @@ -597,6 +603,46 @@ static bool ModuleHasARC(const Module &M) { M.getNamedValue("objc_unretainedPointer"); } +/// DoesObjCBlockEscape - Test whether the given pointer, which is an +/// Objective C block pointer, does not "escape". This differs from regular +/// escape analysis in that a use as an argument to a call is not considered +/// an escape. +static bool DoesObjCBlockEscape(const Value *BlockPtr) { + // Walk the def-use chains. + SmallVector<const Value *, 4> Worklist; + Worklist.push_back(BlockPtr); + do { + const Value *V = Worklist.pop_back_val(); + for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); + UI != UE; ++UI) { + const User *UUser = *UI; + // Special - Use by a call (callee or argument) is not considered + // to be an escape. + if (isa<CallInst>(UUser) || isa<InvokeInst>(UUser)) + continue; + // Use by an instruction which copies the value is an escape if the + // result is an escape. + if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) || + isa<PHINode>(UUser) || isa<SelectInst>(UUser)) { + Worklist.push_back(UUser); + continue; + } + // Use by a load is not an escape. + if (isa<LoadInst>(UUser)) + continue; + // Use by a store is not an escape if the use is the address. + if (const StoreInst *SI = dyn_cast<StoreInst>(UUser)) + if (V != SI->getValueOperand()) + continue; + // Otherwise, conservatively assume an escape. + return true; + } + } while (!Worklist.empty()); + + // No escapes found. + return false; +} + //===----------------------------------------------------------------------===// // ARC AliasAnalysis. //===----------------------------------------------------------------------===// @@ -850,6 +896,139 @@ bool ObjCARCExpand::runOnFunction(Function &F) { } //===----------------------------------------------------------------------===// +// ARC autorelease pool elimination. +//===----------------------------------------------------------------------===// + +#include "llvm/Constants.h" + +namespace { + /// ObjCARCAPElim - Autorelease pool elimination. + class ObjCARCAPElim : public ModulePass { + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + virtual bool runOnModule(Module &M); + + bool MayAutorelease(CallSite CS, unsigned Depth = 0); + bool OptimizeBB(BasicBlock *BB); + + public: + static char ID; + ObjCARCAPElim() : ModulePass(ID) { + initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry()); + } + }; +} + +char ObjCARCAPElim::ID = 0; +INITIALIZE_PASS(ObjCARCAPElim, + "objc-arc-apelim", + "ObjC ARC autorelease pool elimination", + false, false) + +Pass *llvm::createObjCARCAPElimPass() { + return new ObjCARCAPElim(); +} + +void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); +} + +/// MayAutorelease - Interprocedurally determine if calls made by the +/// given call site can possibly produce autoreleases. +bool ObjCARCAPElim::MayAutorelease(CallSite CS, unsigned Depth) { + if (Function *Callee = CS.getCalledFunction()) { + if (Callee->isDeclaration() || Callee->mayBeOverridden()) + return true; + for (Function::iterator I = Callee->begin(), E = Callee->end(); + I != E; ++I) { + BasicBlock *BB = I; + for (BasicBlock::iterator J = BB->begin(), F = BB->end(); J != F; ++J) + if (CallSite JCS = CallSite(J)) + // This recursion depth limit is arbitrary. It's just great + // enough to cover known interesting testcases. + if (Depth < 3 && + !JCS.onlyReadsMemory() && + MayAutorelease(JCS, Depth + 1)) + return true; + } + return false; + } + + return true; +} + +bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) { + bool Changed = false; + + Instruction *Push = 0; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { + Instruction *Inst = I++; + switch (GetBasicInstructionClass(Inst)) { + case IC_AutoreleasepoolPush: + Push = Inst; + break; + case IC_AutoreleasepoolPop: + // If this pop matches a push and nothing in between can autorelease, + // zap the pair. + if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) { + Changed = true; + Inst->eraseFromParent(); + Push->eraseFromParent(); + } + Push = 0; + break; + case IC_CallOrUser: + if (MayAutorelease(CallSite(Inst))) + Push = 0; + break; + default: + break; + } + } + + return Changed; +} + +bool ObjCARCAPElim::runOnModule(Module &M) { + if (!EnableARCOpts) + return false; + + // If nothing in the Module uses ARC, don't do anything. + if (!ModuleHasARC(M)) + return false; + + // Find the llvm.global_ctors variable, as the first step in + // identifying the global constructors. + GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); + if (!GV) + return false; + + assert(GV->hasDefinitiveInitializer() && + "llvm.global_ctors is uncooperative!"); + + bool Changed = false; + + // Dig the constructor functions out of GV's initializer. + ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); + for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end(); + OI != OE; ++OI) { + Value *Op = *OI; + // llvm.global_ctors is an array of pairs where the second members + // are constructor functions. + Function *F = cast<Function>(cast<ConstantStruct>(Op)->getOperand(1)); + // Only look at function definitions. + if (F->isDeclaration()) + continue; + // Only look at functions with one basic block. + if (llvm::next(F->begin()) != F->end()) + continue; + // Ok, a single-block constructor function definition. Try to optimize it. + Changed |= OptimizeBB(F->begin()); + } + + return Changed; +} + +//===----------------------------------------------------------------------===// // ARC optimization. //===----------------------------------------------------------------------===// @@ -896,8 +1075,9 @@ bool ObjCARCExpand::runOnFunction(Function &F) { #include "llvm/LLVMContext.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/CFG.h" -#include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/DenseSet.h" STATISTIC(NumNoops, "Number of no-op objc calls eliminated"); STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); @@ -1158,6 +1338,12 @@ namespace { /// with the "tail" keyword. bool IsTailCallRelease; + /// Partial - True of we've seen an opportunity for partial RR elimination, + /// such as pushing calls into a CFG triangle or into one side of a + /// CFG diamond. + /// TODO: Consider moving this to PtrState. + bool Partial; + /// ReleaseMetadata - If the Calls are objc_release calls and they all have /// a clang.imprecise_release tag, this is the metadata tag. MDNode *ReleaseMetadata; @@ -1171,7 +1357,8 @@ namespace { SmallPtrSet<Instruction *, 2> ReverseInsertPts; RRInfo() : - KnownSafe(false), IsRetainBlock(false), IsTailCallRelease(false), + KnownSafe(false), IsRetainBlock(false), + IsTailCallRelease(false), Partial(false), ReleaseMetadata(0) {} void clear(); @@ -1182,6 +1369,7 @@ void RRInfo::clear() { KnownSafe = false; IsRetainBlock = false; IsTailCallRelease = false; + Partial = false; ReleaseMetadata = 0; Calls.clear(); ReverseInsertPts.clear(); @@ -1239,16 +1427,6 @@ namespace { Seq = NewSeq; } - void SetSeqToRelease(MDNode *M) { - if (Seq == S_None || Seq == S_Use) { - Seq = M ? S_MovableRelease : S_Release; - RRI.ReleaseMetadata = M; - } else if (Seq != S_MovableRelease || RRI.ReleaseMetadata != M) { - Seq = S_Release; - RRI.ReleaseMetadata = 0; - } - } - Sequence GetSeq() const { return Seq; } @@ -1272,8 +1450,16 @@ PtrState::Merge(const PtrState &Other, bool TopDown) { if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock) Seq = S_None; + // If we're not in a sequence (anymore), drop all associated state. if (Seq == S_None) { RRI.clear(); + } else if (RRI.Partial || Other.RRI.Partial) { + // If we're doing a merge on a path that's previously seen a partial + // merge, conservatively drop the sequence, to avoid doing partial + // RR elimination. If the branch predicates for the two merge differ, + // mixing them is unsafe. + Seq = S_None; + RRI.clear(); } else { // Conservatively merge the ReleaseMetadata information. if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata) @@ -1282,8 +1468,15 @@ PtrState::Merge(const PtrState &Other, bool TopDown) { RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe; RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease; RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end()); - RRI.ReverseInsertPts.insert(Other.RRI.ReverseInsertPts.begin(), - Other.RRI.ReverseInsertPts.end()); + + // Merge the insert point sets. If there are any differences, + // that makes this a partial merge. + RRI.Partial = RRI.ReverseInsertPts.size() != + Other.RRI.ReverseInsertPts.size(); + for (SmallPtrSet<Instruction *, 2>::const_iterator + I = Other.RRI.ReverseInsertPts.begin(), + E = Other.RRI.ReverseInsertPts.end(); I != E; ++I) + RRI.Partial |= RRI.ReverseInsertPts.insert(*I); } } @@ -1460,6 +1653,14 @@ namespace { /// metadata. unsigned ImpreciseReleaseMDKind; + /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape + /// metadata. + unsigned CopyOnEscapeMDKind; + + /// NoObjCARCExceptionsMDKind - The Metadata Kind for + /// clang.arc.no_objc_arc_exceptions metadata. + unsigned NoObjCARCExceptionsMDKind; + Constant *getRetainRVCallee(Module *M); Constant *getAutoreleaseRVCallee(Module *M); Constant *getReleaseCallee(Module *M); @@ -1467,6 +1668,8 @@ namespace { Constant *getRetainBlockCallee(Module *M); Constant *getAutoreleaseCallee(Module *M); + bool IsRetainBlockOptimizable(const Instruction *Inst); + void OptimizeRetainCall(Function &F, Instruction *Retain); bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV); @@ -1475,9 +1678,16 @@ namespace { void CheckForCFGHazards(const BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, BBState &MyStates) const; + bool VisitInstructionBottomUp(Instruction *Inst, + BasicBlock *BB, + MapVector<Value *, RRInfo> &Retains, + BBState &MyStates); bool VisitBottomUp(BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, MapVector<Value *, RRInfo> &Retains); + bool VisitInstructionTopDown(Instruction *Inst, + DenseMap<Value *, RRInfo> &Releases, + BBState &MyStates); bool VisitTopDown(BasicBlock *BB, DenseMap<const BasicBlock *, BBState> &BBStates, DenseMap<Value *, RRInfo> &Releases); @@ -1534,6 +1744,22 @@ void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } +bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) { + // Without the magic metadata tag, we have to assume this might be an + // objc_retainBlock call inserted to convert a block pointer to an id, + // in which case it really is needed. + if (!Inst->getMetadata(CopyOnEscapeMDKind)) + return false; + + // If the pointer "escapes" (not including being used in a call), + // the copy may be needed. + if (DoesObjCBlockEscape(Inst)) + return false; + + // Otherwise, it's not needed. + return true; +} + Constant *ObjCARCOpt::getRetainRVCallee(Module *M) { if (!RetainRVCallee) { LLVMContext &C = M->getContext(); @@ -1737,6 +1963,7 @@ namespace { /// use here. enum DependenceKind { NeedsPositiveRetainCount, + AutoreleasePoolBoundary, CanChangeRetainCount, RetainAutoreleaseDep, ///< Blocks objc_retainAutorelease. RetainAutoreleaseRVDep, ///< Blocks objc_retainAutoreleaseReturnValue. @@ -1766,6 +1993,19 @@ Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg, } } + case AutoreleasePoolBoundary: { + InstructionClass Class = GetInstructionClass(Inst); + switch (Class) { + case IC_AutoreleasepoolPop: + case IC_AutoreleasepoolPush: + // These mark the end and begin of an autorelease pool scope. + return true; + default: + // Nothing else does this. + return false; + } + } + case CanChangeRetainCount: { InstructionClass Class = GetInstructionClass(Inst); switch (Class) { @@ -1783,6 +2023,7 @@ Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg, case RetainAutoreleaseDep: switch (GetBasicInstructionClass(Inst)) { case IC_AutoreleasepoolPop: + case IC_AutoreleasepoolPush: // Don't merge an objc_autorelease with an objc_retain inside a different // autoreleasepool scope. return true; @@ -1794,7 +2035,6 @@ Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg, // Nothing else matters for objc_retainAutorelease formation. return false; } - break; case RetainAutoreleaseRVDep: { InstructionClass Class = GetBasicInstructionClass(Inst); @@ -1808,7 +2048,6 @@ Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg, // retainAutoreleaseReturnValue formation. return CanInterruptRV(Class); } - break; } case RetainRVDep: @@ -1816,7 +2055,6 @@ Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg, } llvm_unreachable("Invalid dependence flavor"); - return true; } /// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and @@ -1920,17 +2158,26 @@ ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) { /// return true. bool ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { - // Check for the argument being from an immediately preceding call. + // Check for the argument being from an immediately preceding call or invoke. Value *Arg = GetObjCArg(RetainRV); CallSite CS(Arg); - if (Instruction *Call = CS.getInstruction()) + if (Instruction *Call = CS.getInstruction()) { if (Call->getParent() == RetainRV->getParent()) { BasicBlock::iterator I = Call; ++I; while (isNoopInstruction(I)) ++I; if (&*I == RetainRV) return false; + } else if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { + BasicBlock *RetainRVParent = RetainRV->getParent(); + if (II->getNormalDest() == RetainRVParent) { + BasicBlock::iterator I = RetainRVParent->begin(); + while (isNoopInstruction(I)) ++I; + if (&*I == RetainRV) + return false; + } } + } // Check for being preceded by an objc_autoreleaseReturnValue on the same // pointer. In this case, we can delete the pair. @@ -2144,9 +2391,34 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { // Check that there is nothing that cares about the reference // count between the call and the phi. - FindDependencies(NeedsPositiveRetainCount, Arg, - Inst->getParent(), Inst, - DependingInstructions, Visited, PA); + switch (Class) { + case IC_Retain: + case IC_RetainBlock: + // These can always be moved up. + break; + case IC_Release: + // These can't be moved across things that care about the retain count. + FindDependencies(NeedsPositiveRetainCount, Arg, + Inst->getParent(), Inst, + DependingInstructions, Visited, PA); + break; + case IC_Autorelease: + // These can't be moved across autorelease pool scope boundaries. + FindDependencies(AutoreleasePoolBoundary, Arg, + Inst->getParent(), Inst, + DependingInstructions, Visited, PA); + break; + case IC_RetainRV: + case IC_AutoreleaseRV: + // Don't move these; the RV optimization depends on the autoreleaseRV + // being tail called, and the retainRV being immediately after a call + // (which might still happen if we get lucky with codegen layout, but + // it's not worth taking the chance). + continue; + default: + llvm_unreachable("Invalid dependence flavor"); + } + if (DependingInstructions.size() == 1 && *DependingInstructions.begin() == PN) { Changed = true; @@ -2186,7 +2458,7 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, BBState &MyStates) const { // If any top-down local-use or possible-dec has a succ which is earlier in // the sequence, forget it. - for (BBState::ptr_const_iterator I = MyStates.top_down_ptr_begin(), + for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); I != E; ++I) switch (I->second.GetSeq()) { default: break; @@ -2195,14 +2467,32 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); bool SomeSuccHasSame = false; bool AllSuccsHaveSame = true; - PtrState &S = MyStates.getPtrTopDownState(Arg); - for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) { - PtrState &SuccS = BBStates[*SI].getPtrBottomUpState(Arg); - switch (SuccS.GetSeq()) { + PtrState &S = I->second; + succ_const_iterator SI(TI), SE(TI, false); + + // If the terminator is an invoke marked with the + // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be + // ignored, for ARC purposes. + if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) + --SE; + + for (; SI != SE; ++SI) { + Sequence SuccSSeq = S_None; + bool SuccSRRIKnownSafe = false; + // If VisitBottomUp has visited this successor, take what we know about it. + DenseMap<const BasicBlock *, BBState>::iterator BBI = BBStates.find(*SI); + if (BBI != BBStates.end()) { + const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); + SuccSSeq = SuccS.GetSeq(); + SuccSRRIKnownSafe = SuccS.RRI.KnownSafe; + } + switch (SuccSSeq) { case S_None: case S_CanRelease: { - if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe) + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) { S.ClearSequenceProgress(); + break; + } continue; } case S_Use: @@ -2211,7 +2501,7 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, case S_Stop: case S_Release: case S_MovableRelease: - if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe) + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) AllSuccsHaveSame = false; break; case S_Retain: @@ -2223,19 +2513,38 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, // guards against loops in the middle of a sequence. if (SomeSuccHasSame && !AllSuccsHaveSame) S.ClearSequenceProgress(); + break; } case S_CanRelease: { const Value *Arg = I->first; const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); bool SomeSuccHasSame = false; bool AllSuccsHaveSame = true; - PtrState &S = MyStates.getPtrTopDownState(Arg); - for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) { - PtrState &SuccS = BBStates[*SI].getPtrBottomUpState(Arg); - switch (SuccS.GetSeq()) { + PtrState &S = I->second; + succ_const_iterator SI(TI), SE(TI, false); + + // If the terminator is an invoke marked with the + // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be + // ignored, for ARC purposes. + if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) + --SE; + + for (; SI != SE; ++SI) { + Sequence SuccSSeq = S_None; + bool SuccSRRIKnownSafe = false; + // If VisitBottomUp has visited this successor, take what we know about it. + DenseMap<const BasicBlock *, BBState>::iterator BBI = BBStates.find(*SI); + if (BBI != BBStates.end()) { + const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); + SuccSSeq = SuccS.GetSeq(); + SuccSRRIKnownSafe = SuccS.RRI.KnownSafe; + } + switch (SuccSSeq) { case S_None: { - if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe) + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) { S.ClearSequenceProgress(); + break; + } continue; } case S_CanRelease: @@ -2245,7 +2554,7 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, case S_Release: case S_MovableRelease: case S_Use: - if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe) + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) AllSuccsHaveSame = false; break; case S_Retain: @@ -2257,8 +2566,167 @@ ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, // guards against loops in the middle of a sequence. if (SomeSuccHasSame && !AllSuccsHaveSame) S.ClearSequenceProgress(); + break; + } + } +} + +bool +ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst, + BasicBlock *BB, + MapVector<Value *, RRInfo> &Retains, + BBState &MyStates) { + bool NestingDetected = false; + InstructionClass Class = GetInstructionClass(Inst); + const Value *Arg = 0; + + switch (Class) { + case IC_Release: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrBottomUpState(Arg); + + // If we see two releases in a row on the same pointer. If so, make + // a note, and we'll cicle back to revisit it after we've + // hopefully eliminated the second release, which may allow us to + // eliminate the first release too. + // Theoretically we could implement removal of nested retain+release + // pairs by making PtrState hold a stack of states, but this is + // simple and avoids adding overhead for the non-nested case. + if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) + NestingDetected = true; + + S.RRI.clear(); + + MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); + S.SetSeq(ReleaseMetadata ? S_MovableRelease : S_Release); + S.RRI.ReleaseMetadata = ReleaseMetadata; + S.RRI.KnownSafe = S.IsKnownNested() || S.IsKnownIncremented(); + S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall(); + S.RRI.Calls.insert(Inst); + + S.IncrementRefCount(); + S.IncrementNestCount(); + break; + } + case IC_RetainBlock: + // An objc_retainBlock call with just a use may need to be kept, + // because it may be copying a block from the stack to the heap. + if (!IsRetainBlockOptimizable(Inst)) + break; + // FALLTHROUGH + case IC_Retain: + case IC_RetainRV: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrBottomUpState(Arg); + S.DecrementRefCount(); + S.SetAtLeastOneRefCount(); + S.DecrementNestCount(); + + switch (S.GetSeq()) { + case S_Stop: + case S_Release: + case S_MovableRelease: + case S_Use: + S.RRI.ReverseInsertPts.clear(); + // FALL THROUGH + case S_CanRelease: + // Don't do retain+release tracking for IC_RetainRV, because it's + // better to let it remain as the first instruction after a call. + if (Class != IC_RetainRV) { + S.RRI.IsRetainBlock = Class == IC_RetainBlock; + Retains[Inst] = S.RRI; + } + S.ClearSequenceProgress(); + break; + case S_None: + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); } + return NestingDetected; + } + case IC_AutoreleasepoolPop: + // Conservatively, clear MyStates for all known pointers. + MyStates.clearBottomUpPointers(); + return NestingDetected; + case IC_AutoreleasepoolPush: + case IC_None: + // These are irrelevant. + return NestingDetected; + default: + break; + } + + // Consider any other possible effects of this instruction on each + // pointer being tracked. + for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(), + ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { + const Value *Ptr = MI->first; + if (Ptr == Arg) + continue; // Handled above. + PtrState &S = MI->second; + Sequence Seq = S.GetSeq(); + + // Check for possible releases. + if (CanAlterRefCount(Inst, Ptr, PA, Class)) { + S.DecrementRefCount(); + switch (Seq) { + case S_Use: + S.SetSeq(S_CanRelease); + continue; + case S_CanRelease: + case S_Release: + case S_MovableRelease: + case S_Stop: + case S_None: + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } } + + // Check for possible direct uses. + switch (Seq) { + case S_Release: + case S_MovableRelease: + if (CanUse(Inst, Ptr, PA, Class)) { + assert(S.RRI.ReverseInsertPts.empty()); + // If this is an invoke instruction, we're scanning it as part of + // one of its successor blocks, since we can't insert code after it + // in its own block, and we don't want to split critical edges. + if (isa<InvokeInst>(Inst)) + S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt()); + else + S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst))); + S.SetSeq(S_Use); + } else if (Seq == S_Release && + (Class == IC_User || Class == IC_CallOrUser)) { + // Non-movable releases depend on any possible objc pointer use. + S.SetSeq(S_Stop); + assert(S.RRI.ReverseInsertPts.empty()); + // As above; handle invoke specially. + if (isa<InvokeInst>(Inst)) + S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt()); + else + S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst))); + } + break; + case S_Stop: + if (CanUse(Inst, Ptr, PA, Class)) + S.SetSeq(S_Use); + break; + case S_CanRelease: + case S_Use: + case S_None: + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } + } + + return NestingDetected; } bool @@ -2274,7 +2742,13 @@ ObjCARCOpt::VisitBottomUp(BasicBlock *BB, succ_const_iterator SI(TI), SE(TI, false); if (SI == SE) MyStates.SetAsExit(); - else + else { + // If the terminator is an invoke marked with the + // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be + // ignored, for ARC purposes. + if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) + --SE; + do { const BasicBlock *Succ = *SI++; if (Succ == BB) @@ -2295,145 +2769,169 @@ ObjCARCOpt::VisitBottomUp(BasicBlock *BB, } break; } while (SI != SE); + } // Visit all the instructions, bottom-up. for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { Instruction *Inst = llvm::prior(I); - InstructionClass Class = GetInstructionClass(Inst); - const Value *Arg = 0; - switch (Class) { - case IC_Release: { - Arg = GetObjCArg(Inst); + // Invoke instructions are visited as part of their successors (below). + if (isa<InvokeInst>(Inst)) + continue; + + NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); + } + + // If there's a predecessor with an invoke, visit the invoke as + // if it were part of this block, since we can't insert code after + // an invoke in its own block, and we don't want to split critical + // edges. + for (pred_iterator PI(BB), PE(BB, false); PI != PE; ++PI) { + BasicBlock *Pred = *PI; + TerminatorInst *PredTI = cast<TerminatorInst>(&Pred->back()); + if (isa<InvokeInst>(PredTI)) + NestingDetected |= VisitInstructionBottomUp(PredTI, BB, Retains, MyStates); + } + + return NestingDetected; +} + +bool +ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, + DenseMap<Value *, RRInfo> &Releases, + BBState &MyStates) { + bool NestingDetected = false; + InstructionClass Class = GetInstructionClass(Inst); + const Value *Arg = 0; + + switch (Class) { + case IC_RetainBlock: + // An objc_retainBlock call with just a use may need to be kept, + // because it may be copying a block from the stack to the heap. + if (!IsRetainBlockOptimizable(Inst)) + break; + // FALLTHROUGH + case IC_Retain: + case IC_RetainRV: { + Arg = GetObjCArg(Inst); - PtrState &S = MyStates.getPtrBottomUpState(Arg); + PtrState &S = MyStates.getPtrTopDownState(Arg); - // If we see two releases in a row on the same pointer. If so, make + // Don't do retain+release tracking for IC_RetainRV, because it's + // better to let it remain as the first instruction after a call. + if (Class != IC_RetainRV) { + // If we see two retains in a row on the same pointer. If so, make // a note, and we'll cicle back to revisit it after we've - // hopefully eliminated the second release, which may allow us to - // eliminate the first release too. + // hopefully eliminated the second retain, which may allow us to + // eliminate the first retain too. // Theoretically we could implement removal of nested retain+release // pairs by making PtrState hold a stack of states, but this is // simple and avoids adding overhead for the non-nested case. - if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) + if (S.GetSeq() == S_Retain) NestingDetected = true; - S.SetSeqToRelease(Inst->getMetadata(ImpreciseReleaseMDKind)); + S.SetSeq(S_Retain); S.RRI.clear(); - S.RRI.KnownSafe = S.IsKnownNested() || S.IsKnownIncremented(); - S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall(); + S.RRI.IsRetainBlock = Class == IC_RetainBlock; + // Don't check S.IsKnownIncremented() here because it's not + // sufficient. + S.RRI.KnownSafe = S.IsKnownNested(); S.RRI.Calls.insert(Inst); + } - S.IncrementRefCount(); - S.IncrementNestCount(); + S.SetAtLeastOneRefCount(); + S.IncrementRefCount(); + S.IncrementNestCount(); + return NestingDetected; + } + case IC_Release: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrTopDownState(Arg); + S.DecrementRefCount(); + S.DecrementNestCount(); + + switch (S.GetSeq()) { + case S_Retain: + case S_CanRelease: + S.RRI.ReverseInsertPts.clear(); + // FALL THROUGH + case S_Use: + S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); + S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall(); + Releases[Inst] = S.RRI; + S.ClearSequenceProgress(); + break; + case S_None: break; + case S_Stop: + case S_Release: + case S_MovableRelease: + llvm_unreachable("top-down pointer in release state!"); } - case IC_RetainBlock: - case IC_Retain: - case IC_RetainRV: { - Arg = GetObjCArg(Inst); + break; + } + case IC_AutoreleasepoolPop: + // Conservatively, clear MyStates for all known pointers. + MyStates.clearTopDownPointers(); + return NestingDetected; + case IC_AutoreleasepoolPush: + case IC_None: + // These are irrelevant. + return NestingDetected; + default: + break; + } - PtrState &S = MyStates.getPtrBottomUpState(Arg); + // Consider any other possible effects of this instruction on each + // pointer being tracked. + for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(), + ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { + const Value *Ptr = MI->first; + if (Ptr == Arg) + continue; // Handled above. + PtrState &S = MI->second; + Sequence Seq = S.GetSeq(); + + // Check for possible releases. + if (CanAlterRefCount(Inst, Ptr, PA, Class)) { S.DecrementRefCount(); - S.SetAtLeastOneRefCount(); - S.DecrementNestCount(); - - // An objc_retainBlock call with just a use still needs to be kept, - // because it may be copying a block from the stack to the heap. - if (Class == IC_RetainBlock && S.GetSeq() == S_Use) + switch (Seq) { + case S_Retain: S.SetSeq(S_CanRelease); + assert(S.RRI.ReverseInsertPts.empty()); + S.RRI.ReverseInsertPts.insert(Inst); - switch (S.GetSeq()) { - case S_Stop: - case S_Release: - case S_MovableRelease: + // One call can't cause a transition from S_Retain to S_CanRelease + // and S_CanRelease to S_Use. If we've made the first transition, + // we're done. + continue; case S_Use: - S.RRI.ReverseInsertPts.clear(); - // FALL THROUGH case S_CanRelease: - // Don't do retain+release tracking for IC_RetainRV, because it's - // better to let it remain as the first instruction after a call. - if (Class != IC_RetainRV) { - S.RRI.IsRetainBlock = Class == IC_RetainBlock; - Retains[Inst] = S.RRI; - } - S.ClearSequenceProgress(); - break; case S_None: break; - case S_Retain: - llvm_unreachable("bottom-up pointer in retain state!"); - } - continue; - } - case IC_AutoreleasepoolPop: - // Conservatively, clear MyStates for all known pointers. - MyStates.clearBottomUpPointers(); - continue; - case IC_AutoreleasepoolPush: - case IC_None: - // These are irrelevant. - continue; - default: - break; - } - - // Consider any other possible effects of this instruction on each - // pointer being tracked. - for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(), - ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { - const Value *Ptr = MI->first; - if (Ptr == Arg) - continue; // Handled above. - PtrState &S = MI->second; - Sequence Seq = S.GetSeq(); - - // Check for possible releases. - if (CanAlterRefCount(Inst, Ptr, PA, Class)) { - S.DecrementRefCount(); - switch (Seq) { - case S_Use: - S.SetSeq(S_CanRelease); - continue; - case S_CanRelease: - case S_Release: - case S_MovableRelease: - case S_Stop: - case S_None: - break; - case S_Retain: - llvm_unreachable("bottom-up pointer in retain state!"); - } - } - - // Check for possible direct uses. - switch (Seq) { + case S_Stop: case S_Release: case S_MovableRelease: - if (CanUse(Inst, Ptr, PA, Class)) { - assert(S.RRI.ReverseInsertPts.empty()); - S.RRI.ReverseInsertPts.insert(Inst); - S.SetSeq(S_Use); - } else if (Seq == S_Release && - (Class == IC_User || Class == IC_CallOrUser)) { - // Non-movable releases depend on any possible objc pointer use. - S.SetSeq(S_Stop); - assert(S.RRI.ReverseInsertPts.empty()); - S.RRI.ReverseInsertPts.insert(Inst); - } - break; - case S_Stop: - if (CanUse(Inst, Ptr, PA, Class)) - S.SetSeq(S_Use); - break; - case S_CanRelease: - case S_Use: - case S_None: - break; - case S_Retain: - llvm_unreachable("bottom-up pointer in retain state!"); + llvm_unreachable("top-down pointer in release state!"); } } + + // Check for possible direct uses. + switch (Seq) { + case S_CanRelease: + if (CanUse(Inst, Ptr, PA, Class)) + S.SetSeq(S_Use); + break; + case S_Retain: + case S_Use: + case S_None: + break; + case S_Stop: + case S_Release: + case S_MovableRelease: + llvm_unreachable("top-down pointer in release state!"); + } } return NestingDetected; @@ -2453,22 +2951,31 @@ ObjCARCOpt::VisitTopDown(BasicBlock *BB, MyStates.SetAsEntry(); else do { - const BasicBlock *Pred = *PI++; + unsigned OperandNo = PI.getOperandNo(); + const Use &Us = PI.getUse(); + ++PI; + + // Skip invoke unwind edges on invoke instructions marked with + // clang.arc.no_objc_arc_exceptions. + if (const InvokeInst *II = dyn_cast<InvokeInst>(Us.getUser())) + if (OperandNo == II->getNumArgOperands() + 2 && + II->getMetadata(NoObjCARCExceptionsMDKind)) + continue; + + const BasicBlock *Pred = cast<TerminatorInst>(Us.getUser())->getParent(); if (Pred == BB) continue; DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); - assert(I != BBStates.end()); // If we haven't seen this node yet, then we've found a CFG cycle. // Be optimistic here; it's CheckForCFGHazards' job detect trouble. - if (!I->second.isVisitedTopDown()) + if (I == BBStates.end() || !I->second.isVisitedTopDown()) continue; MyStates.InitFromPred(I->second); while (PI != PE) { Pred = *PI++; if (Pred != BB) { I = BBStates.find(Pred); - assert(I != BBStates.end()); - if (I->second.isVisitedTopDown()) + if (I != BBStates.end() && I->second.isVisitedTopDown()) MyStates.MergePred(I->second); } } @@ -2478,147 +2985,89 @@ ObjCARCOpt::VisitTopDown(BasicBlock *BB, // Visit all the instructions, top-down. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { Instruction *Inst = I; - InstructionClass Class = GetInstructionClass(Inst); - const Value *Arg = 0; + NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates); + } - switch (Class) { - case IC_RetainBlock: - case IC_Retain: - case IC_RetainRV: { - Arg = GetObjCArg(Inst); + CheckForCFGHazards(BB, BBStates, MyStates); + return NestingDetected; +} - PtrState &S = MyStates.getPtrTopDownState(Arg); +static void +ComputePostOrders(Function &F, + SmallVectorImpl<BasicBlock *> &PostOrder, + SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder) { + /// Backedges - Backedges detected in the DFS. These edges will be + /// ignored in the reverse-CFG DFS, so that loops with multiple exits will be + /// traversed in the desired order. + DenseSet<std::pair<BasicBlock *, BasicBlock *> > Backedges; + + /// Visited - The visited set, for doing DFS walks. + SmallPtrSet<BasicBlock *, 16> Visited; - // Don't do retain+release tracking for IC_RetainRV, because it's - // better to let it remain as the first instruction after a call. - if (Class != IC_RetainRV) { - // If we see two retains in a row on the same pointer. If so, make - // a note, and we'll cicle back to revisit it after we've - // hopefully eliminated the second retain, which may allow us to - // eliminate the first retain too. - // Theoretically we could implement removal of nested retain+release - // pairs by making PtrState hold a stack of states, but this is - // simple and avoids adding overhead for the non-nested case. - if (S.GetSeq() == S_Retain) - NestingDetected = true; - - S.SetSeq(S_Retain); - S.RRI.clear(); - S.RRI.IsRetainBlock = Class == IC_RetainBlock; - // Don't check S.IsKnownIncremented() here because it's not - // sufficient. - S.RRI.KnownSafe = S.IsKnownNested(); - S.RRI.Calls.insert(Inst); + // Do DFS, computing the PostOrder. + SmallPtrSet<BasicBlock *, 16> OnStack; + SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; + BasicBlock *EntryBB = &F.getEntryBlock(); + SuccStack.push_back(std::make_pair(EntryBB, succ_begin(EntryBB))); + Visited.insert(EntryBB); + OnStack.insert(EntryBB); + do { + dfs_next_succ: + TerminatorInst *TI = cast<TerminatorInst>(&SuccStack.back().first->back()); + succ_iterator End = succ_iterator(TI, true); + while (SuccStack.back().second != End) { + BasicBlock *BB = *SuccStack.back().second++; + if (Visited.insert(BB)) { + SuccStack.push_back(std::make_pair(BB, succ_begin(BB))); + OnStack.insert(BB); + goto dfs_next_succ; } - - S.SetAtLeastOneRefCount(); - S.IncrementRefCount(); - S.IncrementNestCount(); - continue; + if (OnStack.count(BB)) + Backedges.insert(std::make_pair(SuccStack.back().first, BB)); } - case IC_Release: { - Arg = GetObjCArg(Inst); + OnStack.erase(SuccStack.back().first); + PostOrder.push_back(SuccStack.pop_back_val().first); + } while (!SuccStack.empty()); - PtrState &S = MyStates.getPtrTopDownState(Arg); - S.DecrementRefCount(); - S.DecrementNestCount(); - - switch (S.GetSeq()) { - case S_Retain: - case S_CanRelease: - S.RRI.ReverseInsertPts.clear(); - // FALL THROUGH - case S_Use: - S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); - S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall(); - Releases[Inst] = S.RRI; - S.ClearSequenceProgress(); - break; - case S_None: - break; - case S_Stop: - case S_Release: - case S_MovableRelease: - llvm_unreachable("top-down pointer in release state!"); - } - break; - } - case IC_AutoreleasepoolPop: - // Conservatively, clear MyStates for all known pointers. - MyStates.clearTopDownPointers(); - continue; - case IC_AutoreleasepoolPush: - case IC_None: - // These are irrelevant. - continue; - default: - break; - } + Visited.clear(); - // Consider any other possible effects of this instruction on each - // pointer being tracked. - for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(), - ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { - const Value *Ptr = MI->first; - if (Ptr == Arg) - continue; // Handled above. - PtrState &S = MI->second; - Sequence Seq = S.GetSeq(); - - // Check for possible releases. - if (CanAlterRefCount(Inst, Ptr, PA, Class)) { - S.DecrementRefCount(); - switch (Seq) { - case S_Retain: - S.SetSeq(S_CanRelease); - assert(S.RRI.ReverseInsertPts.empty()); - S.RRI.ReverseInsertPts.insert(Inst); + // Compute the exits, which are the starting points for reverse-CFG DFS. + // This includes blocks where all the successors are backedges that + // we're skipping. + SmallVector<BasicBlock *, 4> Exits; + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { + BasicBlock *BB = I; + TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); + for (succ_iterator SI(TI), SE(TI, true); SI != SE; ++SI) + if (!Backedges.count(std::make_pair(BB, *SI))) + goto HasNonBackedgeSucc; + Exits.push_back(BB); + HasNonBackedgeSucc:; + } - // One call can't cause a transition from S_Retain to S_CanRelease - // and S_CanRelease to S_Use. If we've made the first transition, - // we're done. + // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. + SmallVector<std::pair<BasicBlock *, pred_iterator>, 16> PredStack; + for (SmallVectorImpl<BasicBlock *>::iterator I = Exits.begin(), E = Exits.end(); + I != E; ++I) { + BasicBlock *ExitBB = *I; + PredStack.push_back(std::make_pair(ExitBB, pred_begin(ExitBB))); + Visited.insert(ExitBB); + while (!PredStack.empty()) { + reverse_dfs_next_succ: + pred_iterator End = pred_end(PredStack.back().first); + while (PredStack.back().second != End) { + BasicBlock *BB = *PredStack.back().second++; + // Skip backedges detected in the forward-CFG DFS. + if (Backedges.count(std::make_pair(BB, PredStack.back().first))) continue; - case S_Use: - case S_CanRelease: - case S_None: - break; - case S_Stop: - case S_Release: - case S_MovableRelease: - llvm_unreachable("top-down pointer in release state!"); - } - } - - // Check for possible direct uses. - switch (Seq) { - case S_CanRelease: - if (CanUse(Inst, Ptr, PA, Class)) - S.SetSeq(S_Use); - break; - case S_Retain: - // An objc_retainBlock call may be responsible for copying the block - // data from the stack to the heap. Model this by moving it straight - // from S_Retain to S_Use. - if (S.RRI.IsRetainBlock && - CanUse(Inst, Ptr, PA, Class)) { - assert(S.RRI.ReverseInsertPts.empty()); - S.RRI.ReverseInsertPts.insert(Inst); - S.SetSeq(S_Use); + if (Visited.insert(BB)) { + PredStack.push_back(std::make_pair(BB, pred_begin(BB))); + goto reverse_dfs_next_succ; } - break; - case S_Use: - case S_None: - break; - case S_Stop: - case S_Release: - case S_MovableRelease: - llvm_unreachable("top-down pointer in release state!"); } + ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); } } - - CheckForCFGHazards(BB, BBStates, MyStates); - return NestingDetected; } // Visit - Visit the function both top-down and bottom-up. @@ -2627,43 +3076,29 @@ ObjCARCOpt::Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates, MapVector<Value *, RRInfo> &Retains, DenseMap<Value *, RRInfo> &Releases) { - // Use reverse-postorder on the reverse CFG for bottom-up, because we - // magically know that loops will be well behaved, i.e. they won't repeatedly - // call retain on a single pointer without doing a release. We can't use - // ReversePostOrderTraversal here because we want to walk up from each - // function exit point. - SmallPtrSet<BasicBlock *, 16> Visited; - SmallVector<std::pair<BasicBlock *, pred_iterator>, 16> Stack; - SmallVector<BasicBlock *, 16> Order; - for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { - BasicBlock *BB = I; - if (BB->getTerminator()->getNumSuccessors() == 0) - Stack.push_back(std::make_pair(BB, pred_begin(BB))); - } - while (!Stack.empty()) { - pred_iterator End = pred_end(Stack.back().first); - while (Stack.back().second != End) { - BasicBlock *BB = *Stack.back().second++; - if (Visited.insert(BB)) - Stack.push_back(std::make_pair(BB, pred_begin(BB))); - } - Order.push_back(Stack.pop_back_val().first); - } + + // Use reverse-postorder traversals, because we magically know that loops + // will be well behaved, i.e. they won't repeatedly call retain on a single + // pointer without doing a release. We can't use the ReversePostOrderTraversal + // class here because we want the reverse-CFG postorder to consider each + // function exit point, and we want to ignore selected cycle edges. + SmallVector<BasicBlock *, 16> PostOrder; + SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; + ComputePostOrders(F, PostOrder, ReverseCFGPostOrder); + + // Use reverse-postorder on the reverse CFG for bottom-up. bool BottomUpNestingDetected = false; for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = - Order.rbegin(), E = Order.rend(); I != E; ++I) { - BasicBlock *BB = *I; - BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains); - } + ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend(); + I != E; ++I) + BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains); - // Use regular reverse-postorder for top-down. + // Use reverse-postorder for top-down. bool TopDownNestingDetected = false; - typedef ReversePostOrderTraversal<Function *> RPOTType; - RPOTType RPOT(&F); - for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { - BasicBlock *BB = *I; - TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases); - } + for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = + PostOrder.rbegin(), E = PostOrder.rend(); + I != E; ++I) + TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases); return TopDownNestingDetected && BottomUpNestingDetected; } @@ -2691,40 +3126,26 @@ void ObjCARCOpt::MoveCalls(Value *Arg, getRetainBlockCallee(M) : getRetainCallee(M), MyArg, "", InsertPt); Call->setDoesNotThrow(); - if (!RetainsToMove.IsRetainBlock) + if (RetainsToMove.IsRetainBlock) + Call->setMetadata(CopyOnEscapeMDKind, + MDNode::get(M->getContext(), ArrayRef<Value *>())); + else Call->setTailCall(); } for (SmallPtrSet<Instruction *, 2>::const_iterator PI = RetainsToMove.ReverseInsertPts.begin(), PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) { - Instruction *LastUse = *PI; - Instruction *InsertPts[] = { 0, 0, 0 }; - if (InvokeInst *II = dyn_cast<InvokeInst>(LastUse)) { - // We can't insert code immediately after an invoke instruction, so - // insert code at the beginning of both successor blocks instead. - // The invoke's return value isn't available in the unwind block, - // but our releases will never depend on it, because they must be - // paired with retains from before the invoke. - InsertPts[0] = II->getNormalDest()->getFirstInsertionPt(); - InsertPts[1] = II->getUnwindDest()->getFirstInsertionPt(); - } else { - // Insert code immediately after the last use. - InsertPts[0] = llvm::next(BasicBlock::iterator(LastUse)); - } - - for (Instruction **I = InsertPts; *I; ++I) { - Instruction *InsertPt = *I; - Value *MyArg = ArgTy == ParamTy ? Arg : - new BitCastInst(Arg, ParamTy, "", InsertPt); - CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg, - "", InsertPt); - // Attach a clang.imprecise_release metadata tag, if appropriate. - if (MDNode *M = ReleasesToMove.ReleaseMetadata) - Call->setMetadata(ImpreciseReleaseMDKind, M); - Call->setDoesNotThrow(); - if (ReleasesToMove.IsTailCallRelease) - Call->setTailCall(); - } + Instruction *InsertPt = *PI; + Value *MyArg = ArgTy == ParamTy ? Arg : + new BitCastInst(Arg, ParamTy, "", InsertPt); + CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg, + "", InsertPt); + // Attach a clang.imprecise_release metadata tag, if appropriate. + if (MDNode *M = ReleasesToMove.ReleaseMetadata) + Call->setMetadata(ImpreciseReleaseMDKind, M); + Call->setDoesNotThrow(); + if (ReleasesToMove.IsTailCallRelease) + Call->setTailCall(); } // Delete the original retain and release calls. @@ -2765,17 +3186,11 @@ ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState> Instruction *Retain = cast<Instruction>(V); Value *Arg = GetObjCArg(Retain); - // If the object being released is in static storage, we know it's + // If the object being released is in static or stack storage, we know it's // not being managed by ObjC reference counting, so we can delete pairs // regardless of what possible decrements or uses lie between them. - bool KnownSafe = isa<Constant>(Arg); + bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); - // Same for stack storage, unless this is an objc_retainBlock call, - // which is responsible for copying the block data from the stack to - // the heap. - if (!I->second.IsRetainBlock && isa<AllocaInst>(Arg)) - KnownSafe = true; - // A constant pointer can't be pointing to an object on the heap. It may // be reference-counted, but it won't be deleted. if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) @@ -3091,7 +3506,7 @@ void ObjCARCOpt::OptimizeWeakCalls(Function &F) { UE = Alloca->use_end(); UI != UE; ) { CallInst *UserInst = cast<CallInst>(*UI++); if (!UserInst->use_empty()) - UserInst->replaceAllUsesWith(UserInst->getOperand(1)); + UserInst->replaceAllUsesWith(UserInst->getArgOperand(0)); UserInst->eraseFromParent(); } Alloca->eraseFromParent(); @@ -3243,6 +3658,10 @@ bool ObjCARCOpt::doInitialization(Module &M) { // Identify the imprecise release metadata kind. ImpreciseReleaseMDKind = M.getContext().getMDKindID("clang.imprecise_release"); + CopyOnEscapeMDKind = + M.getContext().getMDKindID("clang.arc.copy_on_escape"); + NoObjCARCExceptionsMDKind = + M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions"); // Intuitively, objc_retain and others are nocapture, however in practice // they are not, because they return their argument value. And objc_release @@ -3344,6 +3763,11 @@ namespace { /// RetainRV calls to make the optimization work on targets which need it. const MDString *RetainRVMarker; + /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If + /// at the end of walking the function we have found no alloca + /// instructions, these calls can be marked "tail". + DenseSet<CallInst *> StoreStrongCalls; + Constant *getStoreStrongCallee(Module *M); Constant *getRetainAutoreleaseCallee(Module *M); Constant *getRetainAutoreleaseRVCallee(Module *M); @@ -3547,6 +3971,11 @@ void ObjCARCContract::ContractRelease(Instruction *Release, StoreStrong->setDoesNotThrow(); StoreStrong->setDebugLoc(Store->getDebugLoc()); + // We can't set the tail flag yet, because we haven't yet determined + // whether there are any escaping allocas. Remember this call, so that + // we can set the tail flag once we know it's safe. + StoreStrongCalls.insert(StoreStrong); + if (&*Iter == Store) ++Iter; Store->eraseFromParent(); Release->eraseFromParent(); @@ -3593,6 +4022,13 @@ bool ObjCARCContract::runOnFunction(Function &F) { PA.setAA(&getAnalysis<AliasAnalysis>()); + // Track whether it's ok to mark objc_storeStrong calls with the "tail" + // keyword. Be conservative if the function has variadic arguments. + // It seems that functions which "return twice" are also unsafe for the + // "tail" argument, because they are setjmp, which could need to + // return to an earlier stack state. + bool TailOkForStoreStrongs = !F.isVarArg() && !F.callsFunctionThatReturnsTwice(); + // For ObjC library calls which return their argument, replace uses of the // argument with uses of the call return value, if it dominates the use. This // reduces register pressure. @@ -3649,6 +4085,13 @@ bool ObjCARCContract::runOnFunction(Function &F) { case IC_Release: ContractRelease(Inst, I); continue; + case IC_User: + // Be conservative if the function has any alloca instructions. + // Technically we only care about escaping alloca instructions, + // but this is sufficient to handle some interesting cases. + if (isa<AllocaInst>(Inst)) + TailOkForStoreStrongs = false; + continue; default: continue; } @@ -3666,36 +4109,37 @@ bool ObjCARCContract::runOnFunction(Function &F) { Use &U = UI.getUse(); unsigned OperandNo = UI.getOperandNo(); ++UI; // Increment UI now, because we may unlink its element. - if (Instruction *UserInst = dyn_cast<Instruction>(U.getUser())) - if (Inst != UserInst && DT->dominates(Inst, UserInst)) { - Changed = true; - Instruction *Replacement = Inst; - Type *UseTy = U.get()->getType(); - if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) { - // For PHI nodes, insert the bitcast in the predecessor block. - unsigned ValNo = - PHINode::getIncomingValueNumForOperand(OperandNo); - BasicBlock *BB = - PHI->getIncomingBlock(ValNo); - if (Replacement->getType() != UseTy) - Replacement = new BitCastInst(Replacement, UseTy, "", - &BB->back()); - for (unsigned i = 0, e = PHI->getNumIncomingValues(); - i != e; ++i) - if (PHI->getIncomingBlock(i) == BB) { - // Keep the UI iterator valid. - if (&PHI->getOperandUse( - PHINode::getOperandNumForIncomingValue(i)) == - &UI.getUse()) - ++UI; - PHI->setIncomingValue(i, Replacement); - } - } else { - if (Replacement->getType() != UseTy) - Replacement = new BitCastInst(Replacement, UseTy, "", UserInst); - U.set(Replacement); - } + if (DT->isReachableFromEntry(U) && + DT->dominates(Inst, U)) { + Changed = true; + Instruction *Replacement = Inst; + Type *UseTy = U.get()->getType(); + if (PHINode *PHI = dyn_cast<PHINode>(U.getUser())) { + // For PHI nodes, insert the bitcast in the predecessor block. + unsigned ValNo = + PHINode::getIncomingValueNumForOperand(OperandNo); + BasicBlock *BB = + PHI->getIncomingBlock(ValNo); + if (Replacement->getType() != UseTy) + Replacement = new BitCastInst(Replacement, UseTy, "", + &BB->back()); + for (unsigned i = 0, e = PHI->getNumIncomingValues(); + i != e; ++i) + if (PHI->getIncomingBlock(i) == BB) { + // Keep the UI iterator valid. + if (&PHI->getOperandUse( + PHINode::getOperandNumForIncomingValue(i)) == + &UI.getUse()) + ++UI; + PHI->setIncomingValue(i, Replacement); + } + } else { + if (Replacement->getType() != UseTy) + Replacement = new BitCastInst(Replacement, UseTy, "", + cast<Instruction>(U.getUser())); + U.set(Replacement); } + } } // If Arg is a no-op casted pointer, strip one level of casts and @@ -3713,5 +4157,13 @@ bool ObjCARCContract::runOnFunction(Function &F) { } } + // If this function has no escaping allocas or suspicious vararg usage, + // objc_storeStrong calls can be marked with the "tail" keyword. + if (TailOkForStoreStrongs) + for (DenseSet<CallInst *>::iterator I = StoreStrongCalls.begin(), + E = StoreStrongCalls.end(); I != E; ++I) + (*I)->setTailCall(); + StoreStrongCalls.clear(); + return Changed; } diff --git a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp index 8f98a5b..cb408a1 100644 --- a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp @@ -74,7 +74,7 @@ static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { namespace { class Reassociate : public FunctionPass { DenseMap<BasicBlock*, unsigned> RankMap; - DenseMap<AssertingVH<>, unsigned> ValueRankMap; + DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; SmallVector<WeakVH, 8> RedoInsts; SmallVector<WeakVH, 8> DeadInsts; bool MadeChange; @@ -210,7 +210,7 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { /// LowerNegateToMultiply - Replace 0-X with X*-1. /// static Instruction *LowerNegateToMultiply(Instruction *Neg, - DenseMap<AssertingVH<>, unsigned> &ValueRankMap) { + DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) { Constant *Cst = Constant::getAllOnesValue(Neg->getType()); Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); @@ -492,7 +492,7 @@ static bool ShouldBreakUpSubtract(Instruction *Sub) { /// only used by an add, transform this into (X+(0-Y)) to promote better /// reassociation. static Instruction *BreakUpSubtract(Instruction *Sub, - DenseMap<AssertingVH<>, unsigned> &ValueRankMap) { + DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) { // Convert a subtract into an add and a neg instruction. This allows sub // instructions to be commuted with other add instructions. // @@ -517,8 +517,8 @@ static Instruction *BreakUpSubtract(Instruction *Sub, /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used /// by one, change this into a multiply by a constant to assist with further /// reassociation. -static Instruction *ConvertShiftToMul(Instruction *Shl, - DenseMap<AssertingVH<>, unsigned> &ValueRankMap) { +static Instruction *ConvertShiftToMul(Instruction *Shl, + DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) { // If an operand of this shift is a reassociable multiply, or if the shift // is used by a reassociable multiply or add, turn into a multiply. if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) || diff --git a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp index 196a847..16b64a5 100644 --- a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp @@ -25,9 +25,9 @@ #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" @@ -39,9 +39,7 @@ #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" #include <algorithm> -#include <map> using namespace llvm; STATISTIC(NumInstRemoved, "Number of instructions removed"); @@ -59,7 +57,7 @@ class LatticeVal { enum LatticeValueTy { /// undefined - This LLVM Value has no known value yet. undefined, - + /// constant - This LLVM Value has a specific constant value. constant, @@ -68,7 +66,7 @@ class LatticeVal { /// with another (different) constant, it goes to overdefined, instead of /// asserting. forcedconstant, - + /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined @@ -77,30 +75,30 @@ class LatticeVal { /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'forcedconstant' value. PointerIntPair<Constant *, 2, LatticeValueTy> Val; - + LatticeValueTy getLatticeValue() const { return Val.getInt(); } - + public: LatticeVal() : Val(0, undefined) {} - + bool isUndefined() const { return getLatticeValue() == undefined; } bool isConstant() const { return getLatticeValue() == constant || getLatticeValue() == forcedconstant; } bool isOverdefined() const { return getLatticeValue() == overdefined; } - + Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val.getPointer(); } - + /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; - + Val.setInt(overdefined); return true; } @@ -111,17 +109,17 @@ public: assert(getConstant() == V && "Marking constant with different value"); return false; } - + if (isUndefined()) { Val.setInt(constant); assert(V && "Marking constant with NULL"); Val.setPointer(V); } else { - assert(getLatticeValue() == forcedconstant && + assert(getLatticeValue() == forcedconstant && "Cannot move from overdefined to constant!"); // Stay at forcedconstant if the constant is the same. if (V == getConstant()) return false; - + // Otherwise, we go to overdefined. Assumptions made based on the // forced value are possibly wrong. Assuming this is another constant // could expose a contradiction. @@ -137,7 +135,7 @@ public: return dyn_cast<ConstantInt>(getConstant()); return 0; } - + void markForcedConstant(Constant *V) { assert(isUndefined() && "Can't force a defined value!"); Val.setInt(forcedconstant); @@ -156,6 +154,7 @@ namespace { /// class SCCPSolver : public InstVisitor<SCCPSolver> { const TargetData *TD; + const TargetLibraryInfo *TLI; SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. @@ -163,7 +162,7 @@ class SCCPSolver : public InstVisitor<SCCPSolver> { /// StructType, for example for formal arguments, calls, insertelement, etc. /// DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; - + /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes @@ -178,7 +177,7 @@ class SCCPSolver : public InstVisitor<SCCPSolver> { /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions /// that return multiple values. DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; - + /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is /// represented here for efficient lookup. SmallPtrSet<Function*, 16> MRVFunctionsTracked; @@ -187,7 +186,7 @@ class SCCPSolver : public InstVisitor<SCCPSolver> { /// arguments we make optimistic assumptions about and try to prove as /// constants. SmallPtrSet<Function*, 16> TrackingIncomingArguments; - + /// The reason for two worklists is that overdefined is the lowest state /// on the lattice, and moving things to overdefined as fast as possible /// makes SCCP converge much faster. @@ -201,16 +200,13 @@ class SCCPSolver : public InstVisitor<SCCPSolver> { SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list - /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not - /// overdefined, despite the fact that the PHI node is overdefined. - std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; - /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. typedef std::pair<BasicBlock*, BasicBlock*> Edge; DenseSet<Edge> KnownFeasibleEdges; public: - SCCPSolver(const TargetData *td) : TD(td) {} + SCCPSolver(const TargetData *td, const TargetLibraryInfo *tli) + : TD(td), TLI(tli) {} /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. @@ -253,7 +249,7 @@ public: void AddArgumentTrackedFunction(Function *F) { TrackingIncomingArguments.insert(F); } - + /// Solve - Solve for constants and executable blocks. /// void Solve(); @@ -274,9 +270,9 @@ public: assert(I != ValueState.end() && "V is not in valuemap!"); return I->second; } - + /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { - DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = + DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = StructValueState.find(std::make_pair(V, i)); assert(I != StructValueState.end() && "V is not in valuemap!"); return I->second; @@ -308,7 +304,7 @@ public: else markOverdefined(V); } - + private: // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that @@ -322,7 +318,7 @@ private: else InstWorkList.push_back(V); } - + void markConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "Should use other method"); markConstant(ValueState[V], V, C); @@ -338,14 +334,14 @@ private: else InstWorkList.push_back(V); } - - + + // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. void markOverdefined(LatticeVal &IV, Value *V) { if (!IV.markOverdefined()) return; - + DEBUG(dbgs() << "markOverdefined: "; if (Function *F = dyn_cast<Function>(V)) dbgs() << "Function '" << F->getName() << "'\n"; @@ -365,7 +361,7 @@ private: else if (IV.getConstant() != MergeWithV.getConstant()) markOverdefined(IV, V); } - + void mergeInValue(Value *V, LatticeVal MergeWithV) { assert(!V->getType()->isStructTy() && "Should use other method"); mergeInValue(ValueState[V], V, MergeWithV); @@ -390,7 +386,7 @@ private: if (!isa<UndefValue>(V)) LV.markConstant(C); // Constants are constant } - + // All others are underdefined by default. return LV; } @@ -412,21 +408,20 @@ private: return LV; // Common case, already in the map. if (Constant *C = dyn_cast<Constant>(V)) { - if (isa<UndefValue>(C)) - ; // Undef values remain undefined. - else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) - LV.markConstant(CS->getOperand(i)); // Constants are constant. - else if (isa<ConstantAggregateZero>(C)) { - Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); - LV.markConstant(Constant::getNullValue(FieldTy)); - } else + Constant *Elt = C->getAggregateElement(i); + + if (Elt == 0) LV.markOverdefined(); // Unknown sort of constant. + else if (isa<UndefValue>(Elt)) + ; // Undef values remain undefined. + else + LV.markConstant(Elt); // Constants are constant. } - + // All others are underdefined by default. return LV; } - + /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. @@ -466,33 +461,6 @@ private: if (BBExecutable.count(I->getParent())) // Inst is executable? visit(*I); } - - /// RemoveFromOverdefinedPHIs - If I has any entries in the - /// UsersOfOverdefinedPHIs map for PN, remove them now. - void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) { - if (UsersOfOverdefinedPHIs.empty()) return; - typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; - std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); - for (ItTy It = Range.first, E = Range.second; It != E;) { - if (It->second == I) - UsersOfOverdefinedPHIs.erase(It++); - else - ++It; - } - } - - /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS - /// map for I and PN, but if one is there already, do not create another. - /// (Duplicate entries do not break anything directly, but can lead to - /// exponential growth of the table in rare cases.) - void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) { - typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; - std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); - for (ItTy J = Range.first, E = Range.second; J != E; ++J) - if (J->second == I) - return; - UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I)); - } private: friend class InstVisitor<SCCPSolver>; @@ -559,7 +527,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, Succs[0] = true; return; } - + LatticeVal BCValue = getValueState(BI->getCondition()); ConstantInt *CI = BCValue.getConstantInt(); if (CI == 0) { @@ -569,44 +537,44 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, Succs[0] = Succs[1] = true; return; } - + // Constant condition variables mean the branch can only go a single way. Succs[CI->isZero()] = true; return; } - + if (isa<InvokeInst>(TI)) { // Invoke instructions successors are always executable. Succs[0] = Succs[1] = true; return; } - + if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { - if (TI.getNumSuccessors() < 2) { + if (!SI->getNumCases()) { Succs[0] = true; return; } LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); - + if (CI == 0) { // Overdefined or undefined condition? // All destinations are executable! if (!SCValue.isUndefined()) Succs.assign(TI.getNumSuccessors(), true); return; } - - Succs[SI->findCaseValue(CI)] = true; + + Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true; return; } - + // TODO: This could be improved if the operand is a [cast of a] BlockAddress. if (isa<IndirectBrInst>(&TI)) { // Just mark all destinations executable! Succs.assign(TI.getNumSuccessors(), true); return; } - + #ifndef NDEBUG dbgs() << "Unknown terminator instruction: " << TI << '\n'; #endif @@ -628,7 +596,7 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { if (BI->isUnconditional()) return true; - + LatticeVal BCValue = getValueState(BI->getCondition()); // Overdefined condition variables mean the branch could go either way, @@ -636,40 +604,33 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { ConstantInt *CI = BCValue.getConstantInt(); if (CI == 0) return !BCValue.isUndefined(); - + // Constant condition variables mean the branch can only go a single way. return BI->getSuccessor(CI->isZero()) == To; } - + // Invoke instructions successors are always executable. if (isa<InvokeInst>(TI)) return true; - + if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - if (SI->getNumSuccessors() < 2) + if (SI->getNumCases() < 1) return true; LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); - + if (CI == 0) return !SCValue.isUndefined(); - // Make sure to skip the "default value" which isn't a value - for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) - if (SI->getSuccessorValue(i) == CI) // Found the taken branch. - return SI->getSuccessor(i) == To; - - // If the constant value is not equal to any of the branches, we must - // execute default branch. - return SI->getDefaultDest() == To; + return SI->findCaseValue(CI).getCaseSuccessor() == To; } - + // Just mark all destinations executable! // TODO: This could be improved if the operand is a [cast of a] BlockAddress. if (isa<IndirectBrInst>(TI)) return true; - + #ifndef NDEBUG dbgs() << "Unknown terminator instruction: " << *TI << '\n'; #endif @@ -699,30 +660,15 @@ void SCCPSolver::visitPHINode(PHINode &PN) { // TODO: We could do a lot better than this if code actually uses this. if (PN.getType()->isStructTy()) return markAnythingOverdefined(&PN); - - if (getValueState(&PN).isOverdefined()) { - // There may be instructions using this PHI node that are not overdefined - // themselves. If so, make sure that they know that the PHI node operand - // changed. - typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; - std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(&PN); - - if (Range.first == Range.second) - return; - - SmallVector<Instruction*, 16> Users; - for (ItTy I = Range.first, E = Range.second; I != E; ++I) - Users.push_back(I->second); - while (!Users.empty()) - visit(Users.pop_back_val()); + + if (getValueState(&PN).isOverdefined()) return; // Quick exit - } // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) return markOverdefined(&PN); - + // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical @@ -736,7 +682,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) { if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; - + if (IV.isOverdefined()) // PHI node becomes overdefined! return markOverdefined(&PN); @@ -744,11 +690,11 @@ void SCCPSolver::visitPHINode(PHINode &PN) { OperandVal = IV.getConstant(); continue; } - + // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. - + // Check to see if there are two different constants merging, if so, the PHI // node is overdefined. if (IV.getConstant() != OperandVal) @@ -772,7 +718,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) { Function *F = I.getParent()->getParent(); Value *ResultOp = I.getOperand(0); - + // If we are tracking the return value of this function, merge it in. if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { DenseMap<Function*, LatticeVal>::iterator TFRVI = @@ -782,7 +728,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) { return; } } - + // Handle functions that return multiple values. if (!TrackedMultipleRetVals.empty()) { if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) @@ -790,7 +736,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, getStructValueState(ResultOp, i)); - + } } @@ -811,7 +757,7 @@ void SCCPSolver::visitCastInst(CastInst &I) { if (OpSt.isOverdefined()) // Inherit overdefinedness of operand markOverdefined(&I); else if (OpSt.isConstant()) // Propagate constant value - markConstant(&I, ConstantExpr::getCast(I.getOpcode(), + markConstant(&I, ConstantExpr::getCast(I.getOpcode(), OpSt.getConstant(), I.getType())); } @@ -821,7 +767,7 @@ void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { // structs in structs. if (EVI.getType()->isStructTy()) return markAnythingOverdefined(&EVI); - + // If this is extracting from more than one level of struct, we don't know. if (EVI.getNumIndices() != 1) return markOverdefined(&EVI); @@ -841,15 +787,15 @@ void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { StructType *STy = dyn_cast<StructType>(IVI.getType()); if (STy == 0) return markOverdefined(&IVI); - + // If this has more than one index, we can't handle it, drive all results to // undef. if (IVI.getNumIndices() != 1) return markAnythingOverdefined(&IVI); - + Value *Aggr = IVI.getAggregateOperand(); unsigned Idx = *IVI.idx_begin(); - + // Compute the result based on what we're inserting. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // This passes through all values that aren't the inserted element. @@ -858,7 +804,7 @@ void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); continue; } - + Value *Val = IVI.getInsertedValueOperand(); if (Val->getType()->isStructTy()) // We don't track structs in structs. @@ -875,25 +821,25 @@ void SCCPSolver::visitSelectInst(SelectInst &I) { // TODO: We could do a lot better than this if code actually uses this. if (I.getType()->isStructTy()) return markAnythingOverdefined(&I); - + LatticeVal CondValue = getValueState(I.getCondition()); if (CondValue.isUndefined()) return; - + if (ConstantInt *CondCB = CondValue.getConstantInt()) { Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); mergeInValue(&I, getValueState(OpVal)); return; } - + // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. LatticeVal TVal = getValueState(I.getTrueValue()); LatticeVal FVal = getValueState(I.getFalseValue()); - + // select ?, C, C -> C. - if (TVal.isConstant() && FVal.isConstant() && + if (TVal.isConstant() && FVal.isConstant() && TVal.getConstant() == FVal.getConstant()) return markConstant(&I, FVal.getConstant()); @@ -908,7 +854,7 @@ void SCCPSolver::visitSelectInst(SelectInst &I) { void SCCPSolver::visitBinaryOperator(Instruction &I) { LatticeVal V1State = getValueState(I.getOperand(0)); LatticeVal V2State = getValueState(I.getOperand(1)); - + LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; @@ -916,14 +862,14 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { return markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), V2State.getConstant())); - + // If something is undef, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; - + // Otherwise, one of our operands is overdefined. Try to produce something // better than overdefined with some tricks. - + // If this is an AND or OR with 0 or -1, it doesn't matter that the other // operand is overdefined. if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { @@ -945,7 +891,7 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { Constant::getAllOnesValue(I.getType())); return; } - + if (I.getOpcode() == Instruction::And) { // X and 0 = 0 if (NonOverdefVal->getConstant()->isNullValue()) @@ -959,64 +905,6 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { } - // If both operands are PHI nodes, it is possible that this instruction has - // a constant value, despite the fact that the PHI node doesn't. Check for - // this condition now. - if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) - if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) - if (PN1->getParent() == PN2->getParent()) { - // Since the two PHI nodes are in the same basic block, they must have - // entries for the same predecessors. Walk the predecessor list, and - // if all of the incoming values are constants, and the result of - // evaluating this expression with all incoming value pairs is the - // same, then this expression is a constant even though the PHI node - // is not a constant! - LatticeVal Result; - for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { - LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); - BasicBlock *InBlock = PN1->getIncomingBlock(i); - LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); - - if (In1.isOverdefined() || In2.isOverdefined()) { - Result.markOverdefined(); - break; // Cannot fold this operation over the PHI nodes! - } - - if (In1.isConstant() && In2.isConstant()) { - Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), - In2.getConstant()); - if (Result.isUndefined()) - Result.markConstant(V); - else if (Result.isConstant() && Result.getConstant() != V) { - Result.markOverdefined(); - break; - } - } - } - - // If we found a constant value here, then we know the instruction is - // constant despite the fact that the PHI nodes are overdefined. - if (Result.isConstant()) { - markConstant(IV, &I, Result.getConstant()); - // Remember that this instruction is virtually using the PHI node - // operands. - InsertInOverdefinedPHIs(&I, PN1); - InsertInOverdefinedPHIs(&I, PN2); - return; - } - - if (Result.isUndefined()) - return; - - // Okay, this really is overdefined now. Since we might have - // speculatively thought that this was not overdefined before, and - // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, - // make sure to clean out any entries that we put there, for - // efficiency. - RemoveFromOverdefinedPHIs(&I, PN1); - RemoveFromOverdefinedPHIs(&I, PN2); - } - markOverdefined(&I); } @@ -1029,75 +917,13 @@ void SCCPSolver::visitCmpInst(CmpInst &I) { if (IV.isOverdefined()) return; if (V1State.isConstant() && V2State.isConstant()) - return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), - V1State.getConstant(), + return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), + V1State.getConstant(), V2State.getConstant())); - + // If operands are still undefined, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; - - // If something is overdefined, use some tricks to avoid ending up and over - // defined if we can. - - // If both operands are PHI nodes, it is possible that this instruction has - // a constant value, despite the fact that the PHI node doesn't. Check for - // this condition now. - if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) - if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) - if (PN1->getParent() == PN2->getParent()) { - // Since the two PHI nodes are in the same basic block, they must have - // entries for the same predecessors. Walk the predecessor list, and - // if all of the incoming values are constants, and the result of - // evaluating this expression with all incoming value pairs is the - // same, then this expression is a constant even though the PHI node - // is not a constant! - LatticeVal Result; - for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { - LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); - BasicBlock *InBlock = PN1->getIncomingBlock(i); - LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); - - if (In1.isOverdefined() || In2.isOverdefined()) { - Result.markOverdefined(); - break; // Cannot fold this operation over the PHI nodes! - } - - if (In1.isConstant() && In2.isConstant()) { - Constant *V = ConstantExpr::getCompare(I.getPredicate(), - In1.getConstant(), - In2.getConstant()); - if (Result.isUndefined()) - Result.markConstant(V); - else if (Result.isConstant() && Result.getConstant() != V) { - Result.markOverdefined(); - break; - } - } - } - - // If we found a constant value here, then we know the instruction is - // constant despite the fact that the PHI nodes are overdefined. - if (Result.isConstant()) { - markConstant(&I, Result.getConstant()); - // Remember that this instruction is virtually using the PHI node - // operands. - InsertInOverdefinedPHIs(&I, PN1); - InsertInOverdefinedPHIs(&I, PN2); - return; - } - - if (Result.isUndefined()) - return; - - // Okay, this really is overdefined now. Since we might have - // speculatively thought that this was not overdefined before, and - // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, - // make sure to clean out any entries that we put there, for - // efficiency. - RemoveFromOverdefinedPHIs(&I, PN1); - RemoveFromOverdefinedPHIs(&I, PN2); - } markOverdefined(&I); } @@ -1135,7 +961,7 @@ void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { EltState.getConstant(), IdxState.getConstant())); else if (ValState.isUndefined() && EltState.isConstant() && - IdxState.isConstant()) + IdxState.isConstant()) markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), EltState.getConstant(), IdxState.getConstant())); @@ -1153,17 +979,17 @@ void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { if (MaskState.isUndefined() || (V1State.isUndefined() && V2State.isUndefined())) return; // Undefined output if mask or both inputs undefined. - + if (V1State.isOverdefined() || V2State.isOverdefined() || MaskState.isOverdefined()) { markOverdefined(&I); } else { // A mix of constant/undef inputs. - Constant *V1 = V1State.isConstant() ? + Constant *V1 = V1State.isConstant() ? V1State.getConstant() : UndefValue::get(I.getType()); - Constant *V2 = V2State.isConstant() ? + Constant *V2 = V2State.isConstant() ? V2State.getConstant() : UndefValue::get(I.getType()); - Constant *Mask = MaskState.isConstant() ? + Constant *Mask = MaskState.isConstant() ? MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); } @@ -1183,7 +1009,7 @@ void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { LatticeVal State = getValueState(I.getOperand(i)); if (State.isUndefined()) return; // Operands are not resolved yet. - + if (State.isOverdefined()) return markOverdefined(&I); @@ -1200,10 +1026,10 @@ void SCCPSolver::visitStoreInst(StoreInst &SI) { // If this store is of a struct, ignore it. if (SI.getOperand(0)->getType()->isStructTy()) return; - + if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) return; - + GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; @@ -1221,22 +1047,22 @@ void SCCPSolver::visitLoadInst(LoadInst &I) { // If this load is of a struct, just mark the result overdefined. if (I.getType()->isStructTy()) return markAnythingOverdefined(&I); - + LatticeVal PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! - + LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (!PtrVal.isConstant() || I.isVolatile()) return markOverdefined(IV, &I); - + Constant *Ptr = PtrVal.getConstant(); // load null -> null if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) return markConstant(IV, &I, Constant::getNullValue(I.getType())); - + // Transform load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { if (!TrackedGlobals.empty()) { @@ -1262,7 +1088,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) { void SCCPSolver::visitCallSite(CallSite CS) { Function *F = CS.getCalledFunction(); Instruction *I = CS.getInstruction(); - + // The common case is that we aren't tracking the callee, either because we // are not doing interprocedural analysis or the callee is indirect, or is // external. Handle these cases first. @@ -1270,17 +1096,17 @@ void SCCPSolver::visitCallSite(CallSite CS) { CallOverdefined: // Void return and not tracking callee, just bail. if (I->getType()->isVoidTy()) return; - + // Otherwise, if we have a single return value case, and if the function is // a declaration, maybe we can constant fold it. if (F && F->isDeclaration() && !I->getType()->isStructTy() && canConstantFoldCallTo(F)) { - + SmallVector<Constant*, 8> Operands; for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { LatticeVal State = getValueState(*AI); - + if (State.isUndefined()) return; // Operands are not resolved yet. if (State.isOverdefined()) @@ -1288,10 +1114,10 @@ CallOverdefined: assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } - + // If we can constant fold this, mark the result of the call as a // constant. - if (Constant *C = ConstantFoldCall(F, Operands)) + if (Constant *C = ConstantFoldCall(F, Operands, TLI)) return markConstant(I, C); } @@ -1304,7 +1130,7 @@ CallOverdefined: // the formal arguments of the function. if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ MarkBlockExecutable(F->begin()); - + // Propagate information from this call site into the callee. CallSite::arg_iterator CAI = CS.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); @@ -1315,7 +1141,7 @@ CallOverdefined: markOverdefined(AI); continue; } - + if (StructType *STy = dyn_cast<StructType>(AI->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { LatticeVal CallArg = getStructValueState(*CAI, i); @@ -1326,22 +1152,22 @@ CallOverdefined: } } } - + // If this is a single/zero retval case, see if we're tracking the function. if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { if (!MRVFunctionsTracked.count(F)) goto CallOverdefined; // Not tracking this callee. - + // If we are tracking this callee, propagate the result of the function // into this call site. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - mergeInValue(getStructValueState(I, i), I, + mergeInValue(getStructValueState(I, i), I, TrackedMultipleRetVals[std::make_pair(F, i)]); } else { DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); if (TFRVI == TrackedRetVals.end()) goto CallOverdefined; // Not tracking this callee. - + // If so, propagate the return value of the callee into this call result. mergeInValue(I, TFRVI->second); } @@ -1370,7 +1196,7 @@ void SCCPSolver::Solve() { if (Instruction *I = dyn_cast<Instruction>(*UI)) OperandChangedState(I); } - + // Process the instruction work list. while (!InstWorkList.empty()) { Value *I = InstWorkList.pop_back_val(); @@ -1427,11 +1253,11 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!BBExecutable.count(BB)) continue; - + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Look for instructions which produce undef values. if (I->getType()->isVoidTy()) continue; - + if (StructType *STy = dyn_cast<StructType>(I->getType())) { // Only a few things that can be structs matter for undef. @@ -1442,7 +1268,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { continue; // extractvalue and insertvalue don't need to be marked; they are - // tracked as precisely as their operands. + // tracked as precisely as their operands. if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) continue; @@ -1549,12 +1375,12 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { // X / undef -> undef. No change. // X % undef -> undef. No change. if (Op1LV.isUndefined()) break; - + // undef / X -> 0. X could be maxint. // undef % X -> 0. X could be 1. markForcedConstant(I, Constant::getNullValue(ITy)); return true; - + case Instruction::AShr: // X >>a undef -> undef. if (Op1LV.isUndefined()) break; @@ -1587,7 +1413,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { } else { // Leave Op1LV as Operand(1)'s LatticeValue. } - + if (Op1LV.isConstant()) markForcedConstant(I, Op1LV.getConstant()); else @@ -1627,7 +1453,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { return true; } } - + // Check to see if we have a branch or switch on an undefined value. If so // we force the branch to go one way or the other to make the successor // values live. It doesn't really matter which way we force it. @@ -1636,7 +1462,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { if (!BI->isConditional()) continue; if (!getValueState(BI->getCondition()).isUndefined()) continue; - + // If the input to SCCP is actually branch on undef, fix the undef to // false. if (isa<UndefValue>(BI->getCondition())) { @@ -1644,7 +1470,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { markEdgeExecutable(BB, TI->getSuccessor(1)); return true; } - + // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Handle this by forcing the input value to the // branch to false. @@ -1652,22 +1478,22 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { ConstantInt::getFalse(TI->getContext())); return true; } - + if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - if (SI->getNumSuccessors() < 2) // no cases + if (!SI->getNumCases()) continue; if (!getValueState(SI->getCondition()).isUndefined()) continue; - + // If the input to SCCP is actually switch on undef, fix the undef to // the first constant. if (isa<UndefValue>(SI->getCondition())) { - SI->setCondition(SI->getCaseValue(1)); - markEdgeExecutable(BB, TI->getSuccessor(1)); + SI->setCondition(SI->case_begin().getCaseValue()); + markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor()); return true; } - - markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); + + markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue()); return true; } } @@ -1683,6 +1509,9 @@ namespace { /// Sparse Conditional Constant Propagator. /// struct SCCP : public FunctionPass { + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<TargetLibraryInfo>(); + } static char ID; // Pass identification, replacement for typeid SCCP() : FunctionPass(ID) { initializeSCCPPass(*PassRegistry::getPassRegistry()); @@ -1735,7 +1564,9 @@ static void DeleteInstructionInBlock(BasicBlock *BB) { // bool SCCP::runOnFunction(Function &F) { DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); - SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); + const TargetData *TD = getAnalysisIfAvailable<TargetData>(); + const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); + SCCPSolver Solver(TD, TLI); // Mark the first block of the function as being executable. Solver.MarkBlockExecutable(F.begin()); @@ -1764,7 +1595,7 @@ bool SCCP::runOnFunction(Function &F) { MadeChanges = true; continue; } - + // Iterate over all of the instructions in a function, replacing them with // constants if we have found them to be of constant values. // @@ -1772,25 +1603,25 @@ bool SCCP::runOnFunction(Function &F) { Instruction *Inst = BI++; if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) continue; - + // TODO: Reconstruct structs from their elements. if (Inst->getType()->isStructTy()) continue; - + LatticeVal IV = Solver.getLatticeValueFor(Inst); if (IV.isOverdefined()) continue; - + Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); // Replaces all of the uses of a variable with uses of the constant. Inst->replaceAllUsesWith(Const); - + // Delete the instruction. Inst->eraseFromParent(); - + // Hey, we just changed something! MadeChanges = true; ++NumInstRemoved; @@ -1807,6 +1638,9 @@ namespace { /// Constant Propagation. /// struct IPSCCP : public ModulePass { + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<TargetLibraryInfo>(); + } static char ID; IPSCCP() : ModulePass(ID) { initializeIPSCCPPass(*PassRegistry::getPassRegistry()); @@ -1816,7 +1650,11 @@ namespace { } // end anonymous namespace char IPSCCP::ID = 0; -INITIALIZE_PASS(IPSCCP, "ipsccp", +INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", + "Interprocedural Sparse Conditional Constant Propagation", + false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) +INITIALIZE_PASS_END(IPSCCP, "ipsccp", "Interprocedural Sparse Conditional Constant Propagation", false, false) @@ -1855,7 +1693,9 @@ static bool AddressIsTaken(const GlobalValue *GV) { } bool IPSCCP::runOnModule(Module &M) { - SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); + const TargetData *TD = getAnalysisIfAvailable<TargetData>(); + const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); + SCCPSolver Solver(TD, TLI); // AddressTakenFunctions - This set keeps track of the address-taken functions // that are in the input. As IPSCCP runs through and simplifies code, @@ -1863,19 +1703,19 @@ bool IPSCCP::runOnModule(Module &M) { // address-taken-ness. Because of this, we keep track of their addresses from // the first pass so we can use them for the later simplification pass. SmallPtrSet<Function*, 32> AddressTakenFunctions; - + // Loop over all functions, marking arguments to those with their addresses // taken or that are external as overdefined. // for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; - + // If this is a strong or ODR definition of this function, then we can // propagate information about its result into callsites of it. if (!F->mayBeOverridden()) Solver.AddTrackedFunction(F); - + // If this function only has direct calls that we can see, we can track its // arguments and return value aggressively, and can assume it is not called // unless we see evidence to the contrary. @@ -1890,7 +1730,7 @@ bool IPSCCP::runOnModule(Module &M) { // Assume the function is called. Solver.MarkBlockExecutable(F->begin()); - + // Assume nothing about the incoming arguments. for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) @@ -1928,17 +1768,17 @@ bool IPSCCP::runOnModule(Module &M) { for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) { if (AI->use_empty() || AI->getType()->isStructTy()) continue; - + // TODO: Could use getStructLatticeValueFor to find out if the entire // result is a constant and replace it entirely if so. LatticeVal IV = Solver.getLatticeValueFor(AI); if (IV.isOverdefined()) continue; - + Constant *CST = IV.isConstant() ? IV.getConstant() : UndefValue::get(AI->getType()); DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); - + // Replaces all of the uses of a variable with uses of the // constant. AI->replaceAllUsesWith(CST); @@ -1967,19 +1807,19 @@ bool IPSCCP::runOnModule(Module &M) { new UnreachableInst(M.getContext(), BB); continue; } - + for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = BI++; if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) continue; - + // TODO: Could use getStructLatticeValueFor to find out if the entire // result is a constant and replace it entirely if so. - + LatticeVal IV = Solver.getLatticeValueFor(Inst); if (IV.isOverdefined()) continue; - + Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); @@ -1987,7 +1827,7 @@ bool IPSCCP::runOnModule(Module &M) { // Replaces all of the uses of a variable with uses of the // constant. Inst->replaceAllUsesWith(Const); - + // Delete the instruction. if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) Inst->eraseFromParent(); @@ -2029,15 +1869,15 @@ bool IPSCCP::runOnModule(Module &M) { llvm_unreachable("Didn't fold away reference to block!"); } #endif - + // Make this an uncond branch to the first successor. TerminatorInst *TI = I->getParent()->getTerminator(); BranchInst::Create(TI->getSuccessor(0), TI); - + // Remove entries in successor phi nodes to remove edges. for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) TI->getSuccessor(i)->removePredecessor(TI->getParent()); - + // Remove the old terminator. TI->eraseFromParent(); } @@ -2060,7 +1900,7 @@ bool IPSCCP::runOnModule(Module &M) { // last use of a function, the order of processing functions would affect // whether other functions are optimizable. SmallVector<ReturnInst*, 8> ReturnsToZap; - + // TODO: Process multiple value ret instructions also. const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), @@ -2068,11 +1908,11 @@ bool IPSCCP::runOnModule(Module &M) { Function *F = I->first; if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) continue; - + // We can only do this if we know that nothing else can call the function. if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) continue; - + for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) if (!isa<UndefValue>(RI->getOperand(0))) @@ -2084,9 +1924,9 @@ bool IPSCCP::runOnModule(Module &M) { Function *F = ReturnsToZap[i]->getParent()->getParent(); ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); } - - // If we inferred constant or undef values for globals variables, we can delete - // the global and any stores that remain to it. + + // If we inferred constant or undef values for globals variables, we can + // delete the global and any stores that remain to it. const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), E = TG.end(); I != E; ++I) { diff --git a/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp b/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp index f6918de..7d65bcc 100644 --- a/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/Scalar.cpp @@ -51,6 +51,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) { initializeLowerExpectIntrinsicPass(Registry); initializeMemCpyOptPass(Registry); initializeObjCARCAliasAnalysisPass(Registry); + initializeObjCARCAPElimPass(Registry); initializeObjCARCExpandPass(Registry); initializeObjCARCContractPass(Registry); initializeObjCARCOptPass(Registry); diff --git a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp index c6d9123..026fea1 100644 --- a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -13,7 +13,7 @@ // each member (if possible). Then, if possible, it transforms the individual // alloca instructions into nice clean scalar SSA form. // -// This combines a simple SRoA algorithm with the Mem2Reg algorithm because +// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they // often interact, especially for C++ programs. As such, iterating between // SRoA, then Mem2Reg until we run out of things to promote works well. // @@ -453,6 +453,8 @@ bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { // Compute the offset that this GEP adds to the pointer. SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); + if (!GEP->getPointerOperandType()->isPointerTy()) + return false; uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(), Indices); // See if all uses can be converted. @@ -572,8 +574,9 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, // transform it into a store of the expanded constant value. if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { assert(MSI->getRawDest() == Ptr && "Consistency error!"); - unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); - if (NumBytes != 0) { + int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue(); + if (SNumBytes > 0 && (SNumBytes >> 32) == 0) { + unsigned NumBytes = static_cast<unsigned>(SNumBytes); unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue(); // Compute the value replicated the right number of times. @@ -806,8 +809,10 @@ ConvertScalar_InsertValue(Value *SV, Value *Old, return Builder.CreateBitCast(SV, AllocaType); // Must be an element insertion. - assert(SV->getType() == VTy->getElementType()); - uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType()); + Type *EltTy = VTy->getElementType(); + if (SV->getType() != EltTy) + SV = Builder.CreateBitCast(SV, EltTy); + uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy); unsigned Elt = Offset/EltSize; return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt)); } @@ -934,13 +939,14 @@ public: void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) { // Remember which alloca we're promoting (for isInstInList). this->AI = AI; - if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) + if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) { for (Value::use_iterator UI = DebugNode->use_begin(), E = DebugNode->use_end(); UI != E; ++UI) if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) DDIs.push_back(DDI); else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI)) DVIs.push_back(DVI); + } LoadAndStorePromoter::run(Insts); AI->eraseFromParent(); @@ -975,30 +981,25 @@ public: for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), E = DVIs.end(); I != E; ++I) { DbgValueInst *DVI = *I; + Value *Arg = NULL; if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - Instruction *DbgVal = NULL; // If an argument is zero extended then use argument directly. The ZExt // may be zapped by an optimization pass in future. - Argument *ExtendedArg = NULL; if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) - ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); + Arg = dyn_cast<Argument>(ZExt->getOperand(0)); if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) - ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); - if (ExtendedArg) - DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0, - DIVariable(DVI->getVariable()), - SI); - else - DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0, - DIVariable(DVI->getVariable()), - SI); - DbgVal->setDebugLoc(DVI->getDebugLoc()); + Arg = dyn_cast<Argument>(SExt->getOperand(0)); + if (!Arg) + Arg = SI->getOperand(0); } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - Instruction *DbgVal = - DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0, - DIVariable(DVI->getVariable()), LI); - DbgVal->setDebugLoc(DVI->getDebugLoc()); + Arg = LI->getOperand(0); + } else { + continue; } + Instruction *DbgVal = + DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), + Inst); + DbgVal->setDebugLoc(DVI->getDebugLoc()); } } }; @@ -1517,6 +1518,9 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); if (Length == 0) return MarkUnsafe(Info, User); + if (Length->isNegative()) + return MarkUnsafe(Info, User); + isSafeMemAccess(Offset, Length->getZExtValue(), 0, UI.getOperandNo() == 0, Info, MI, true /*AllowWholeAccess*/); @@ -1873,8 +1877,14 @@ void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, return; // The bitcast references the original alloca. Replace its uses with - // references to the first new element alloca. - Instruction *Val = NewElts[0]; + // references to the alloca containing offset zero (which is normally at + // index zero, but might not be in cases involving structs with elements + // of size zero). + Type *T = AI->getAllocatedType(); + uint64_t EltOffset = 0; + Type *IdxTy; + uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy); + Instruction *Val = NewElts[Idx]; if (Val->getType() != BC->getDestTy()) { Val = new BitCastInst(Val, BC->getDestTy(), "", BC); Val->takeName(BC); @@ -2146,8 +2156,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, // If the requested value was a vector constant, create it. if (EltTy->isVectorTy()) { unsigned NumElts = cast<VectorType>(EltTy)->getNumElements(); - SmallVector<Constant*, 16> Elts(NumElts, StoreVal); - StoreVal = ConstantVector::get(Elts); + StoreVal = ConstantVector::getSplat(NumElts, StoreVal); } } new StoreInst(StoreVal, EltPtr, MI); @@ -2158,6 +2167,8 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, } unsigned EltSize = TD->getTypeAllocSize(EltTy); + if (!EltSize) + continue; IRBuilder<> Builder(MI); @@ -2524,13 +2535,12 @@ isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, // ignore it if we know that the value isn't captured. unsigned ArgNo = CS.getArgumentNo(UI); if (CS.onlyReadsMemory() && - (CS.getInstruction()->use_empty() || - CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))) + (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo))) continue; // If this is being passed as a byval argument, the caller is making a // copy, so it is only a read of the alloca. - if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal)) + if (CS.isByValArgument(ArgNo)) continue; } diff --git a/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp index fbb9465..9c49ec1 100644 --- a/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/SimplifyLibCalls.cpp @@ -256,19 +256,18 @@ struct StrChrOpt : public LibCallOptimization { ConstantInt::get(TD->getIntPtrType(*Context), Len), B, TD); } - + // Otherwise, the character is a constant, see if the first argument is // a string literal. If so, we can constant fold. - std::string Str; - if (!GetConstantStringInfo(SrcStr, Str)) + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) return 0; - // strchr can find the nul character. - Str += '\0'; - - // Compute the offset. - size_t I = Str.find(CharC->getSExtValue()); - if (I == std::string::npos) // Didn't find the char. strchr returns null. + // Compute the offset, make sure to handle the case when we're searching for + // zero (a weird way to spell strlen). + size_t I = CharC->getSExtValue() == 0 ? + Str.size() : Str.find(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. strchr returns null. return Constant::getNullValue(CI->getType()); // strchr(s+n,c) -> gep(s+n+i,c) @@ -296,20 +295,18 @@ struct StrRChrOpt : public LibCallOptimization { if (!CharC) return 0; - std::string Str; - if (!GetConstantStringInfo(SrcStr, Str)) { + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { // strrchr(s, 0) -> strchr(s, 0) if (TD && CharC->isZero()) return EmitStrChr(SrcStr, '\0', B, TD); return 0; } - // strrchr can find the nul character. - Str += '\0'; - // Compute the offset. - size_t I = Str.rfind(CharC->getSExtValue()); - if (I == std::string::npos) // Didn't find the char. Return null. + size_t I = CharC->getSExtValue() == 0 ? + Str.size() : Str.rfind(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. Return null. return Constant::getNullValue(CI->getType()); // strrchr(s+n,c) -> gep(s+n+i,c) @@ -334,14 +331,13 @@ struct StrCmpOpt : public LibCallOptimization { if (Str1P == Str2P) // strcmp(x,x) -> 0 return ConstantInt::get(CI->getType(), 0); - std::string Str1, Str2; - bool HasStr1 = GetConstantStringInfo(Str1P, Str1); - bool HasStr2 = GetConstantStringInfo(Str2P, Str2); + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); // strcmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) - return ConstantInt::get(CI->getType(), - StringRef(Str1).compare(Str2)); + return ConstantInt::get(CI->getType(), Str1.compare(Str2)); if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), @@ -397,14 +393,14 @@ struct StrNCmpOpt : public LibCallOptimization { if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD); - std::string Str1, Str2; - bool HasStr1 = GetConstantStringInfo(Str1P, Str1); - bool HasStr2 = GetConstantStringInfo(Str2P, Str2); + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); // strncmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) { - StringRef SubStr1 = StringRef(Str1).substr(0, Length); - StringRef SubStr2 = StringRef(Str2).substr(0, Length); + StringRef SubStr1 = Str1.substr(0, Length); + StringRef SubStr2 = Str2.substr(0, Length); return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); } @@ -549,9 +545,9 @@ struct StrPBrkOpt : public LibCallOptimization { FT->getReturnType() != FT->getParamType(0)) return 0; - std::string S1, S2; - bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); - bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strpbrk(s, "") -> NULL // strpbrk("", s) -> NULL @@ -609,9 +605,9 @@ struct StrSpnOpt : public LibCallOptimization { !FT->getReturnType()->isIntegerTy()) return 0; - std::string S1, S2; - bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); - bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strspn(s, "") -> 0 // strspn("", s) -> 0 @@ -619,8 +615,11 @@ struct StrSpnOpt : public LibCallOptimization { return Constant::getNullValue(CI->getType()); // Constant folding. - if (HasS1 && HasS2) - return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str())); + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_not_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } return 0; } @@ -638,17 +637,20 @@ struct StrCSpnOpt : public LibCallOptimization { !FT->getReturnType()->isIntegerTy()) return 0; - std::string S1, S2; - bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); - bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); // strcspn("", s) -> 0 if (HasS1 && S1.empty()) return Constant::getNullValue(CI->getType()); // Constant folding. - if (HasS1 && HasS2) - return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str())); + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_of(S2); + if (Pos == StringRef::npos) Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } // strcspn(s, "") -> strlen(s) if (TD && HasS2 && S2.empty()) @@ -692,9 +694,9 @@ struct StrStrOpt : public LibCallOptimization { } // See if either input string is a constant string. - std::string SearchStr, ToFindStr; - bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr); - bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr); + StringRef SearchStr, ToFindStr; + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); // fold strstr(x, "") -> x. if (HasStr2 && ToFindStr.empty()) @@ -704,7 +706,7 @@ struct StrStrOpt : public LibCallOptimization { if (HasStr1 && HasStr2) { std::string::size_type Offset = SearchStr.find(ToFindStr); - if (Offset == std::string::npos) // strstr("foo", "bar") -> null + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null return Constant::getNullValue(CI->getType()); // strstr("abcd", "bc") -> gep((char*)"abcd", 1) @@ -756,11 +758,11 @@ struct MemCmpOpt : public LibCallOptimization { } // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) - std::string LHSStr, RHSStr; - if (GetConstantStringInfo(LHS, LHSStr) && - GetConstantStringInfo(RHS, RHSStr)) { + StringRef LHSStr, RHSStr; + if (getConstantStringInfo(LHS, LHSStr) && + getConstantStringInfo(RHS, RHSStr)) { // Make sure we're not reading out-of-bounds memory. - if (Len > LHSStr.length() || Len > RHSStr.length()) + if (Len > LHSStr.size() || Len > RHSStr.size()) return 0; uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len); return ConstantInt::get(CI->getType(), Ret); @@ -841,6 +843,28 @@ struct MemSetOpt : public LibCallOptimization { //===----------------------------------------------------------------------===// //===---------------------------------------===// +// 'cos*' Optimizations + +struct CosOpt : public LibCallOptimization { + virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { + FunctionType *FT = Callee->getFunctionType(); + // Just make sure this has 1 argument of FP type, which matches the + // result type. + if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || + !FT->getParamType(0)->isFloatingPointTy()) + return 0; + + // cos(-x) -> cos(x) + Value *Op1 = CI->getArgOperand(0); + if (BinaryOperator::isFNeg(Op1)) { + BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); + return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); + } + return 0; + } +}; + +//===---------------------------------------===// // 'pow*' Optimizations struct PowOpt : public LibCallOptimization { @@ -870,7 +894,7 @@ struct PowOpt : public LibCallOptimization { if (Op2C->isExactlyValue(0.5)) { // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). // This is faster than calling pow, and still handles negative zero - // and negative infinite correctly. + // and negative infinity correctly. // TODO: In fast-math mode, this could be just sqrt(x). // TODO: In finite-only mode, this could be just fabs(sqrt(x)). Value *Inf = ConstantFP::getInfinity(CI->getType()); @@ -963,8 +987,7 @@ struct UnaryDoubleFPOpt : public LibCallOptimization { // floor((double)floatval) -> (double)floorf(floatval) Value *V = Cast->getOperand(0); - V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B, - Callee->getAttributes()); + V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); return B.CreateFPExt(V, B.getDoubleTy()); } }; @@ -1000,7 +1023,7 @@ struct FFSOpt : public LibCallOptimization { Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); - Value *V = B.CreateCall(F, Op, "cttz"); + Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); V = B.CreateIntCast(V, B.getInt32Ty(), false); @@ -1095,8 +1118,8 @@ struct PrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. - std::string FormatStr; - if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr)) + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) return 0; // Empty format string -> noop. @@ -1122,11 +1145,9 @@ struct PrintFOpt : public LibCallOptimization { FormatStr.find('%') == std::string::npos) { // no format characters. // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. - FormatStr.erase(FormatStr.end()-1); - Constant *C = ConstantArray::get(*Context, FormatStr, true); - C = new GlobalVariable(*Callee->getParent(), C->getType(), true, - GlobalVariable::InternalLinkage, C, "str"); - EmitPutS(C, B, TD); + FormatStr = FormatStr.drop_back(); + Value *GV = B.CreateGlobalString(FormatStr, "str"); + EmitPutS(GV, B, TD); return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), FormatStr.size()+1); } @@ -1184,8 +1205,8 @@ struct SPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. - std::string FormatStr; - if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return 0; // If we just have a format string (nothing else crazy) transform it. @@ -1296,7 +1317,8 @@ struct FWriteOpt : public LibCallOptimization { return ConstantInt::get(CI->getType(), 0); // If this is writing one byte, turn it into fputc. - if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F) + // This optimisation is only valid, if the return value is unused. + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); EmitFPutC(Char, CI->getArgOperand(3), B, TD); return ConstantInt::get(CI->getType(), 1); @@ -1326,7 +1348,7 @@ struct FPutsOpt : public LibCallOptimization { if (!Len) return 0; EmitFWrite(CI->getArgOperand(0), ConstantInt::get(TD->getIntPtrType(*Context), Len-1), - CI->getArgOperand(1), B, TD); + CI->getArgOperand(1), B, TD, TLI); return CI; // Known to have no uses (see above). } }; @@ -1338,8 +1360,8 @@ struct FPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // All the optimizations depend on the format string. - std::string FormatStr; - if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return 0; // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) @@ -1354,7 +1376,7 @@ struct FPrintFOpt : public LibCallOptimization { EmitFWrite(CI->getArgOperand(1), ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()), - CI->getArgOperand(0), B, TD); + CI->getArgOperand(0), B, TD, TLI); return ConstantInt::get(CI->getType(), FormatStr.size()); } @@ -1376,7 +1398,7 @@ struct FPrintFOpt : public LibCallOptimization { // fprintf(F, "%s", str) --> fputs(str, F) if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty()) return 0; - EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); + EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI); return CI; } return 0; @@ -1422,8 +1444,8 @@ struct PutsOpt : public LibCallOptimization { return 0; // Check for a constant string. - std::string Str; - if (!GetConstantStringInfo(CI->getArgOperand(0), Str)) + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(0), Str)) return 0; if (Str.empty() && CI->use_empty()) { @@ -1457,7 +1479,7 @@ namespace { StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr; MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet; // Math Library Optimizations - PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; + CosOpt Cos; PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; // Integer Optimizations FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; ToAsciiOpt ToAscii; @@ -1472,6 +1494,7 @@ namespace { SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) { initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); } + void AddOpt(LibFunc::Func F, LibCallOptimization* Opt); void InitOptimizations(); bool runOnFunction(Function &F); @@ -1502,6 +1525,11 @@ FunctionPass *llvm::createSimplifyLibCallsPass() { return new SimplifyLibCalls(); } +void SimplifyLibCalls::AddOpt(LibFunc::Func F, LibCallOptimization* Opt) { + if (TLI->has(F)) + Optimizations[TLI->getName(F)] = Opt; +} + /// Optimizations - Populate the Optimizations map with all the optimizations /// we know. void SimplifyLibCalls::InitOptimizations() { @@ -1527,14 +1555,17 @@ void SimplifyLibCalls::InitOptimizations() { Optimizations["strcspn"] = &StrCSpn; Optimizations["strstr"] = &StrStr; Optimizations["memcmp"] = &MemCmp; - if (TLI->has(LibFunc::memcpy)) Optimizations["memcpy"] = &MemCpy; + AddOpt(LibFunc::memcpy, &MemCpy); Optimizations["memmove"] = &MemMove; - if (TLI->has(LibFunc::memset)) Optimizations["memset"] = &MemSet; + AddOpt(LibFunc::memset, &MemSet); // _chk variants of String and Memory LibCall Optimizations. Optimizations["__strcpy_chk"] = &StrCpyChk; // Math Library Optimizations + Optimizations["cosf"] = &Cos; + Optimizations["cos"] = &Cos; + Optimizations["cosl"] = &Cos; Optimizations["powf"] = &Pow; Optimizations["pow"] = &Pow; Optimizations["powl"] = &Pow; @@ -1582,8 +1613,8 @@ void SimplifyLibCalls::InitOptimizations() { // Formatting and IO Optimizations Optimizations["sprintf"] = &SPrintF; Optimizations["printf"] = &PrintF; - Optimizations["fwrite"] = &FWrite; - Optimizations["fputs"] = &FPuts; + AddOpt(LibFunc::fwrite, &FWrite); + AddOpt(LibFunc::fputs, &FPuts); Optimizations["fprintf"] = &FPrintF; Optimizations["puts"] = &Puts; } @@ -2348,9 +2379,6 @@ bool SimplifyLibCalls::doInitialization(Module &M) { // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // -// cos, cosf, cosl: -// * cos(-x) -> cos(x) -// // exp, expf, expl: // * exp(log(x)) -> x // @@ -2387,6 +2415,8 @@ bool SimplifyLibCalls::doInitialization(Module &M) { // * stpcpy(str, "literal") -> // llvm.memcpy(str,"literal",strlen("literal")+1,1) // +// strchr: +// * strchr(p, 0) -> strlen(p) // tan, tanf, tanl: // * tan(atan(x)) -> x // diff --git a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp index c83f56c..ef65c0a 100644 --- a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp @@ -18,6 +18,7 @@ #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CFG.h" @@ -240,7 +241,7 @@ bool Sinking::SinkInstruction(Instruction *Inst, if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. - if (!Inst->isSafeToSpeculativelyExecute()) { + if (!isSafeToSpeculativelyExecute(Inst)) { DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); return false; } |