diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp | 634 |
1 files changed, 634 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp b/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp new file mode 100644 index 0000000..e21eb9d --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp @@ -0,0 +1,634 @@ +//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file transforms calls of the current function (self recursion) followed +// by a return instruction with a branch to the entry of the function, creating +// a loop. This pass also implements the following extensions to the basic +// algorithm: +// +// 1. Trivial instructions between the call and return do not prevent the +// transformation from taking place, though currently the analysis cannot +// support moving any really useful instructions (only dead ones). +// 2. This pass transforms functions that are prevented from being tail +// recursive by an associative and commutative expression to use an +// accumulator variable, thus compiling the typical naive factorial or +// 'fib' implementation into efficient code. +// 3. TRE is performed if the function returns void, if the return +// returns the result returned by the call, or if the function returns a +// run-time constant on all exits from the function. It is possible, though +// unlikely, that the return returns something else (like constant 0), and +// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in +// the function return the exact same value. +// 4. If it can prove that callees do not access their caller stack frame, +// they are marked as eligible for tail call elimination (by the code +// generator). +// +// There are several improvements that could be made: +// +// 1. If the function has any alloca instructions, these instructions will be +// moved out of the entry block of the function, causing them to be +// evaluated each time through the tail recursion. Safely keeping allocas +// in the entry block requires analysis to proves that the tail-called +// function does not read or write the stack object. +// 2. Tail recursion is only performed if the call immediately precedes the +// return instruction. It's possible that there could be a jump between +// the call and the return. +// 3. There can be intervening operations between the call and the return that +// prevent the TRE from occurring. For example, there could be GEP's and +// stores to memory that will not be read or written by the call. This +// requires some substantial analysis (such as with DSA) to prove safe to +// move ahead of the call, but doing so could allow many more TREs to be +// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. +// 4. The algorithm we use to detect if callees access their caller stack +// frames is very primitive. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "tailcallelim" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/InlineCost.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +using namespace llvm; + +STATISTIC(NumEliminated, "Number of tail calls removed"); +STATISTIC(NumRetDuped, "Number of return duplicated"); +STATISTIC(NumAccumAdded, "Number of accumulators introduced"); + +namespace { + struct TailCallElim : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + TailCallElim() : FunctionPass(ID) { + initializeTailCallElimPass(*PassRegistry::getPassRegistry()); + } + + virtual bool runOnFunction(Function &F); + + private: + CallInst *FindTRECandidate(Instruction *I, + bool CannotTailCallElimCallsMarkedTail); + bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, + BasicBlock *&OldEntry, + bool &TailCallsAreMarkedTail, + SmallVector<PHINode*, 8> &ArgumentPHIs, + bool CannotTailCallElimCallsMarkedTail); + bool FoldReturnAndProcessPred(BasicBlock *BB, + ReturnInst *Ret, BasicBlock *&OldEntry, + bool &TailCallsAreMarkedTail, + SmallVector<PHINode*, 8> &ArgumentPHIs, + bool CannotTailCallElimCallsMarkedTail); + bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, + bool &TailCallsAreMarkedTail, + SmallVector<PHINode*, 8> &ArgumentPHIs, + bool CannotTailCallElimCallsMarkedTail); + bool CanMoveAboveCall(Instruction *I, CallInst *CI); + Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); + }; +} + +char TailCallElim::ID = 0; +INITIALIZE_PASS(TailCallElim, "tailcallelim", + "Tail Call Elimination", false, false) + +// Public interface to the TailCallElimination pass +FunctionPass *llvm::createTailCallEliminationPass() { + return new TailCallElim(); +} + +/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by +/// callees of this function. We only do very simple analysis right now, this +/// could be expanded in the future to use mod/ref information for particular +/// call sites if desired. +static bool AllocaMightEscapeToCalls(AllocaInst *AI) { + // FIXME: do simple 'address taken' analysis. + return true; +} + +/// CheckForEscapingAllocas - Scan the specified basic block for alloca +/// instructions. If it contains any that might be accessed by calls, return +/// true. +static bool CheckForEscapingAllocas(BasicBlock *BB, + bool &CannotTCETailMarkedCall) { + bool RetVal = false; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { + RetVal |= AllocaMightEscapeToCalls(AI); + + // If this alloca is in the body of the function, or if it is a variable + // sized allocation, we cannot tail call eliminate calls marked 'tail' + // with this mechanism. + if (BB != &BB->getParent()->getEntryBlock() || + !isa<ConstantInt>(AI->getArraySize())) + CannotTCETailMarkedCall = true; + } + return RetVal; +} + +bool TailCallElim::runOnFunction(Function &F) { + // If this function is a varargs function, we won't be able to PHI the args + // right, so don't even try to convert it... + if (F.getFunctionType()->isVarArg()) return false; + + BasicBlock *OldEntry = 0; + bool TailCallsAreMarkedTail = false; + SmallVector<PHINode*, 8> ArgumentPHIs; + bool MadeChange = false; + bool FunctionContainsEscapingAllocas = false; + + // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls + // marked with the 'tail' attribute, because doing so would cause the stack + // size to increase (real TCE would deallocate variable sized allocas, TCE + // doesn't). + bool CannotTCETailMarkedCall = false; + + // Loop over the function, looking for any returning blocks, and keeping track + // of whether this function has any non-trivially used allocas. + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall) + break; + + FunctionContainsEscapingAllocas |= + CheckForEscapingAllocas(BB, CannotTCETailMarkedCall); + } + + /// FIXME: The code generator produces really bad code when an 'escaping + /// alloca' is changed from being a static alloca to being a dynamic alloca. + /// Until this is resolved, disable this transformation if that would ever + /// happen. This bug is PR962. + if (FunctionContainsEscapingAllocas) + return false; + + // Second pass, change any tail calls to loops. + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { + bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, + ArgumentPHIs,CannotTCETailMarkedCall); + if (!Change && BB->getFirstNonPHIOrDbg() == Ret) + Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, + TailCallsAreMarkedTail, ArgumentPHIs, + CannotTCETailMarkedCall); + MadeChange |= Change; + } + } + + // If we eliminated any tail recursions, it's possible that we inserted some + // silly PHI nodes which just merge an initial value (the incoming operand) + // with themselves. Check to see if we did and clean up our mess if so. This + // occurs when a function passes an argument straight through to its tail + // call. + if (!ArgumentPHIs.empty()) { + for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { + PHINode *PN = ArgumentPHIs[i]; + + // If the PHI Node is a dynamic constant, replace it with the value it is. + if (Value *PNV = SimplifyInstruction(PN)) { + PN->replaceAllUsesWith(PNV); + PN->eraseFromParent(); + } + } + } + + // Finally, if this function contains no non-escaping allocas, or calls + // setjmp, mark all calls in the function as eligible for tail calls + //(there is no stack memory for them to access). + if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice()) + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (CallInst *CI = dyn_cast<CallInst>(I)) { + CI->setTailCall(); + MadeChange = true; + } + + return MadeChange; +} + + +/// CanMoveAboveCall - Return true if it is safe to move the specified +/// instruction from after the call to before the call, assuming that all +/// instructions between the call and this instruction are movable. +/// +bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { + // FIXME: We can move load/store/call/free instructions above the call if the + // call does not mod/ref the memory location being processed. + if (I->mayHaveSideEffects()) // This also handles volatile loads. + return false; + + if (LoadInst *L = dyn_cast<LoadInst>(I)) { + // Loads may always be moved above calls without side effects. + if (CI->mayHaveSideEffects()) { + // Non-volatile loads may be moved above a call with side effects if it + // does not write to memory and the load provably won't trap. + // FIXME: Writes to memory only matter if they may alias the pointer + // being loaded from. + if (CI->mayWriteToMemory() || + !isSafeToLoadUnconditionally(L->getPointerOperand(), L, + L->getAlignment())) + return false; + } + } + + // Otherwise, if this is a side-effect free instruction, check to make sure + // that it does not use the return value of the call. If it doesn't use the + // return value of the call, it must only use things that are defined before + // the call, or movable instructions between the call and the instruction + // itself. + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (I->getOperand(i) == CI) + return false; + return true; +} + +// isDynamicConstant - Return true if the specified value is the same when the +// return would exit as it was when the initial iteration of the recursive +// function was executed. +// +// We currently handle static constants and arguments that are not modified as +// part of the recursion. +// +static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { + if (isa<Constant>(V)) return true; // Static constants are always dyn consts + + // Check to see if this is an immutable argument, if so, the value + // will be available to initialize the accumulator. + if (Argument *Arg = dyn_cast<Argument>(V)) { + // Figure out which argument number this is... + unsigned ArgNo = 0; + Function *F = CI->getParent()->getParent(); + for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) + ++ArgNo; + + // If we are passing this argument into call as the corresponding + // argument operand, then the argument is dynamically constant. + // Otherwise, we cannot transform this function safely. + if (CI->getArgOperand(ArgNo) == Arg) + return true; + } + + // Switch cases are always constant integers. If the value is being switched + // on and the return is only reachable from one of its cases, it's + // effectively constant. + if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) + if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) + if (SI->getCondition() == V) + return SI->getDefaultDest() != RI->getParent(); + + // Not a constant or immutable argument, we can't safely transform. + return false; +} + +// getCommonReturnValue - Check to see if the function containing the specified +// tail call consistently returns the same runtime-constant value at all exit +// points except for IgnoreRI. If so, return the returned value. +// +static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { + Function *F = CI->getParent()->getParent(); + Value *ReturnedValue = 0; + + for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { + ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); + if (RI == 0 || RI == IgnoreRI) continue; + + // We can only perform this transformation if the value returned is + // evaluatable at the start of the initial invocation of the function, + // instead of at the end of the evaluation. + // + Value *RetOp = RI->getOperand(0); + if (!isDynamicConstant(RetOp, CI, RI)) + return 0; + + if (ReturnedValue && RetOp != ReturnedValue) + return 0; // Cannot transform if differing values are returned. + ReturnedValue = RetOp; + } + return ReturnedValue; +} + +/// CanTransformAccumulatorRecursion - If the specified instruction can be +/// transformed using accumulator recursion elimination, return the constant +/// which is the start of the accumulator value. Otherwise return null. +/// +Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, + CallInst *CI) { + if (!I->isAssociative() || !I->isCommutative()) return 0; + assert(I->getNumOperands() == 2 && + "Associative/commutative operations should have 2 args!"); + + // Exactly one operand should be the result of the call instruction. + if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || + (I->getOperand(0) != CI && I->getOperand(1) != CI)) + return 0; + + // The only user of this instruction we allow is a single return instruction. + if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back())) + return 0; + + // Ok, now we have to check all of the other return instructions in this + // function. If they return non-constants or differing values, then we cannot + // transform the function safely. + return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI); +} + +static Instruction *FirstNonDbg(BasicBlock::iterator I) { + while (isa<DbgInfoIntrinsic>(I)) + ++I; + return &*I; +} + +CallInst* +TailCallElim::FindTRECandidate(Instruction *TI, + bool CannotTailCallElimCallsMarkedTail) { + BasicBlock *BB = TI->getParent(); + Function *F = BB->getParent(); + + if (&BB->front() == TI) // Make sure there is something before the terminator. + return 0; + + // Scan backwards from the return, checking to see if there is a tail call in + // this block. If so, set CI to it. + CallInst *CI = 0; + BasicBlock::iterator BBI = TI; + while (true) { + CI = dyn_cast<CallInst>(BBI); + if (CI && CI->getCalledFunction() == F) + break; + + if (BBI == BB->begin()) + return 0; // Didn't find a potential tail call. + --BBI; + } + + // If this call is marked as a tail call, and if there are dynamic allocas in + // the function, we cannot perform this optimization. + if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) + return 0; + + // As a special case, detect code like this: + // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call + // and disable this xform in this case, because the code generator will + // lower the call to fabs into inline code. + if (BB == &F->getEntryBlock() && + FirstNonDbg(BB->front()) == CI && + FirstNonDbg(llvm::next(BB->begin())) == TI && + callIsSmall(F)) { + // A single-block function with just a call and a return. Check that + // the arguments match. + CallSite::arg_iterator I = CallSite(CI).arg_begin(), + E = CallSite(CI).arg_end(); + Function::arg_iterator FI = F->arg_begin(), + FE = F->arg_end(); + for (; I != E && FI != FE; ++I, ++FI) + if (*I != &*FI) break; + if (I == E && FI == FE) + return 0; + } + + return CI; +} + +bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, + BasicBlock *&OldEntry, + bool &TailCallsAreMarkedTail, + SmallVector<PHINode*, 8> &ArgumentPHIs, + bool CannotTailCallElimCallsMarkedTail) { + // If we are introducing accumulator recursion to eliminate operations after + // the call instruction that are both associative and commutative, the initial + // value for the accumulator is placed in this variable. If this value is set + // then we actually perform accumulator recursion elimination instead of + // simple tail recursion elimination. If the operation is an LLVM instruction + // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then + // we are handling the case when the return instruction returns a constant C + // which is different to the constant returned by other return instructions + // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a + // special case of accumulator recursion, the operation being "return C". + Value *AccumulatorRecursionEliminationInitVal = 0; + Instruction *AccumulatorRecursionInstr = 0; + + // Ok, we found a potential tail call. We can currently only transform the + // tail call if all of the instructions between the call and the return are + // movable to above the call itself, leaving the call next to the return. + // Check that this is the case now. + BasicBlock::iterator BBI = CI; + for (++BBI; &*BBI != Ret; ++BBI) { + if (CanMoveAboveCall(BBI, CI)) continue; + + // If we can't move the instruction above the call, it might be because it + // is an associative and commutative operation that could be transformed + // using accumulator recursion elimination. Check to see if this is the + // case, and if so, remember the initial accumulator value for later. + if ((AccumulatorRecursionEliminationInitVal = + CanTransformAccumulatorRecursion(BBI, CI))) { + // Yes, this is accumulator recursion. Remember which instruction + // accumulates. + AccumulatorRecursionInstr = BBI; + } else { + return false; // Otherwise, we cannot eliminate the tail recursion! + } + } + + // We can only transform call/return pairs that either ignore the return value + // of the call and return void, ignore the value of the call and return a + // constant, return the value returned by the tail call, or that are being + // accumulator recursion variable eliminated. + if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && + !isa<UndefValue>(Ret->getReturnValue()) && + AccumulatorRecursionEliminationInitVal == 0 && + !getCommonReturnValue(0, CI)) { + // One case remains that we are able to handle: the current return + // instruction returns a constant, and all other return instructions + // return a different constant. + if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) + return false; // Current return instruction does not return a constant. + // Check that all other return instructions return a common constant. If + // so, record it in AccumulatorRecursionEliminationInitVal. + AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); + if (!AccumulatorRecursionEliminationInitVal) + return false; + } + + BasicBlock *BB = Ret->getParent(); + Function *F = BB->getParent(); + + // OK! We can transform this tail call. If this is the first one found, + // create the new entry block, allowing us to branch back to the old entry. + if (OldEntry == 0) { + OldEntry = &F->getEntryBlock(); + BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); + NewEntry->takeName(OldEntry); + OldEntry->setName("tailrecurse"); + BranchInst::Create(OldEntry, NewEntry); + + // If this tail call is marked 'tail' and if there are any allocas in the + // entry block, move them up to the new entry block. + TailCallsAreMarkedTail = CI->isTailCall(); + if (TailCallsAreMarkedTail) + // Move all fixed sized allocas from OldEntry to NewEntry. + for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), + NEBI = NewEntry->begin(); OEBI != E; ) + if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) + if (isa<ConstantInt>(AI->getArraySize())) + AI->moveBefore(NEBI); + + // Now that we have created a new block, which jumps to the entry + // block, insert a PHI node for each argument of the function. + // For now, we initialize each PHI to only have the real arguments + // which are passed in. + Instruction *InsertPos = OldEntry->begin(); + for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) { + PHINode *PN = PHINode::Create(I->getType(), 2, + I->getName() + ".tr", InsertPos); + I->replaceAllUsesWith(PN); // Everyone use the PHI node now! + PN->addIncoming(I, NewEntry); + ArgumentPHIs.push_back(PN); + } + } + + // If this function has self recursive calls in the tail position where some + // are marked tail and some are not, only transform one flavor or another. We + // have to choose whether we move allocas in the entry block to the new entry + // block or not, so we can't make a good choice for both. NOTE: We could do + // slightly better here in the case that the function has no entry block + // allocas. + if (TailCallsAreMarkedTail && !CI->isTailCall()) + return false; + + // Ok, now that we know we have a pseudo-entry block WITH all of the + // required PHI nodes, add entries into the PHI node for the actual + // parameters passed into the tail-recursive call. + for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) + ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); + + // If we are introducing an accumulator variable to eliminate the recursion, + // do so now. Note that we _know_ that no subsequent tail recursion + // eliminations will happen on this function because of the way the + // accumulator recursion predicate is set up. + // + if (AccumulatorRecursionEliminationInitVal) { + Instruction *AccRecInstr = AccumulatorRecursionInstr; + // Start by inserting a new PHI node for the accumulator. + pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); + PHINode *AccPN = + PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), + std::distance(PB, PE) + 1, + "accumulator.tr", OldEntry->begin()); + + // Loop over all of the predecessors of the tail recursion block. For the + // real entry into the function we seed the PHI with the initial value, + // computed earlier. For any other existing branches to this block (due to + // other tail recursions eliminated) the accumulator is not modified. + // Because we haven't added the branch in the current block to OldEntry yet, + // it will not show up as a predecessor. + for (pred_iterator PI = PB; PI != PE; ++PI) { + BasicBlock *P = *PI; + if (P == &F->getEntryBlock()) + AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); + else + AccPN->addIncoming(AccPN, P); + } + + if (AccRecInstr) { + // Add an incoming argument for the current block, which is computed by + // our associative and commutative accumulator instruction. + AccPN->addIncoming(AccRecInstr, BB); + + // Next, rewrite the accumulator recursion instruction so that it does not + // use the result of the call anymore, instead, use the PHI node we just + // inserted. + AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); + } else { + // Add an incoming argument for the current block, which is just the + // constant returned by the current return instruction. + AccPN->addIncoming(Ret->getReturnValue(), BB); + } + + // Finally, rewrite any return instructions in the program to return the PHI + // node instead of the "initval" that they do currently. This loop will + // actually rewrite the return value we are destroying, but that's ok. + for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) + if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) + RI->setOperand(0, AccPN); + ++NumAccumAdded; + } + + // Now that all of the PHI nodes are in place, remove the call and + // ret instructions, replacing them with an unconditional branch. + BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); + NewBI->setDebugLoc(CI->getDebugLoc()); + + BB->getInstList().erase(Ret); // Remove return. + BB->getInstList().erase(CI); // Remove call. + ++NumEliminated; + return true; +} + +bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, + ReturnInst *Ret, BasicBlock *&OldEntry, + bool &TailCallsAreMarkedTail, + SmallVector<PHINode*, 8> &ArgumentPHIs, + bool CannotTailCallElimCallsMarkedTail) { + bool Change = false; + + // If the return block contains nothing but the return and PHI's, + // there might be an opportunity to duplicate the return in its + // predecessors and perform TRC there. Look for predecessors that end + // in unconditional branch and recursive call(s). + SmallVector<BranchInst*, 8> UncondBranchPreds; + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + BasicBlock *Pred = *PI; + TerminatorInst *PTI = Pred->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) + if (BI->isUnconditional()) + UncondBranchPreds.push_back(BI); + } + + while (!UncondBranchPreds.empty()) { + BranchInst *BI = UncondBranchPreds.pop_back_val(); + BasicBlock *Pred = BI->getParent(); + if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ + DEBUG(dbgs() << "FOLDING: " << *BB + << "INTO UNCOND BRANCH PRED: " << *Pred); + EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), + OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, + CannotTailCallElimCallsMarkedTail); + ++NumRetDuped; + Change = true; + } + } + + return Change; +} + +bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, + bool &TailCallsAreMarkedTail, + SmallVector<PHINode*, 8> &ArgumentPHIs, + bool CannotTailCallElimCallsMarkedTail) { + CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); + if (!CI) + return false; + + return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, + ArgumentPHIs, + CannotTailCallElimCallsMarkedTail); +} |