diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp | 710 |
1 files changed, 710 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp new file mode 100644 index 0000000..453503a --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp @@ -0,0 +1,710 @@ +//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements straight-line strength reduction (SLSR). Unlike loop +// strength reduction, this algorithm is designed to reduce arithmetic +// redundancy in straight-line code instead of loops. It has proven to be +// effective in simplifying arithmetic statements derived from an unrolled loop. +// It can also simplify the logic of SeparateConstOffsetFromGEP. +// +// There are many optimizations we can perform in the domain of SLSR. This file +// for now contains only an initial step. Specifically, we look for strength +// reduction candidates in the following forms: +// +// Form 1: B + i * S +// Form 2: (B + i) * S +// Form 3: &B[i * S] +// +// where S is an integer variable, and i is a constant integer. If we found two +// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 +// in a simpler way with respect to S1. For example, +// +// S1: X = B + i * S +// S2: Y = B + i' * S => X + (i' - i) * S +// +// S1: X = (B + i) * S +// S2: Y = (B + i') * S => X + (i' - i) * S +// +// S1: X = &B[i * S] +// S2: Y = &B[i' * S] => &X[(i' - i) * S] +// +// Note: (i' - i) * S is folded to the extent possible. +// +// This rewriting is in general a good idea. The code patterns we focus on +// usually come from loop unrolling, so (i' - i) * S is likely the same +// across iterations and can be reused. When that happens, the optimized form +// takes only one add starting from the second iteration. +// +// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has +// multiple bases, we choose to rewrite S2 with respect to its "immediate" +// basis, the basis that is the closest ancestor in the dominator tree. +// +// TODO: +// +// - Floating point arithmetics when fast math is enabled. +// +// - SLSR may decrease ILP at the architecture level. Targets that are very +// sensitive to ILP may want to disable it. Having SLSR to consider ILP is +// left as future work. +// +// - When (i' - i) is constant but i and i' are not, we could still perform +// SLSR. +#include <vector> + +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/Local.h" + +using namespace llvm; +using namespace PatternMatch; + +namespace { + +class StraightLineStrengthReduce : public FunctionPass { +public: + // SLSR candidate. Such a candidate must be in one of the forms described in + // the header comments. + struct Candidate : public ilist_node<Candidate> { + enum Kind { + Invalid, // reserved for the default constructor + Add, // B + i * S + Mul, // (B + i) * S + GEP, // &B[..][i * S][..] + }; + + Candidate() + : CandidateKind(Invalid), Base(nullptr), Index(nullptr), + Stride(nullptr), Ins(nullptr), Basis(nullptr) {} + Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, + Instruction *I) + : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I), + Basis(nullptr) {} + Kind CandidateKind; + const SCEV *Base; + // Note that Index and Stride of a GEP candidate do not necessarily have the + // same integer type. In that case, during rewriting, Stride will be + // sign-extended or truncated to Index's type. + ConstantInt *Index; + Value *Stride; + // The instruction this candidate corresponds to. It helps us to rewrite a + // candidate with respect to its immediate basis. Note that one instruction + // can correspond to multiple candidates depending on how you associate the + // expression. For instance, + // + // (a + 1) * (b + 2) + // + // can be treated as + // + // <Base: a, Index: 1, Stride: b + 2> + // + // or + // + // <Base: b, Index: 2, Stride: a + 1> + Instruction *Ins; + // Points to the immediate basis of this candidate, or nullptr if we cannot + // find any basis for this candidate. + Candidate *Basis; + }; + + static char ID; + + StraightLineStrengthReduce() + : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) { + initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<ScalarEvolution>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + // We do not modify the shape of the CFG. + AU.setPreservesCFG(); + } + + bool doInitialization(Module &M) override { + DL = &M.getDataLayout(); + return false; + } + + bool runOnFunction(Function &F) override; + +private: + // Returns true if Basis is a basis for C, i.e., Basis dominates C and they + // share the same base and stride. + bool isBasisFor(const Candidate &Basis, const Candidate &C); + // Returns whether the candidate can be folded into an addressing mode. + bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, + const DataLayout *DL); + // Returns true if C is already in a simplest form and not worth being + // rewritten. + bool isSimplestForm(const Candidate &C); + // Checks whether I is in a candidate form. If so, adds all the matching forms + // to Candidates, and tries to find the immediate basis for each of them. + void allocateCandidatesAndFindBasis(Instruction *I); + // Allocate candidates and find bases for Add instructions. + void allocateCandidatesAndFindBasisForAdd(Instruction *I); + // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a + // candidate. + void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, + Instruction *I); + // Allocate candidates and find bases for Mul instructions. + void allocateCandidatesAndFindBasisForMul(Instruction *I); + // Splits LHS into Base + Index and, if succeeds, calls + // allocateCandidatesAndFindBasis. + void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, + Instruction *I); + // Allocate candidates and find bases for GetElementPtr instructions. + void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); + // A helper function that scales Idx with ElementSize before invoking + // allocateCandidatesAndFindBasis. + void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, + Value *S, uint64_t ElementSize, + Instruction *I); + // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate + // basis. + void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, + ConstantInt *Idx, Value *S, + Instruction *I); + // Rewrites candidate C with respect to Basis. + void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); + // A helper function that factors ArrayIdx to a product of a stride and a + // constant index, and invokes allocateCandidatesAndFindBasis with the + // factorings. + void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, + GetElementPtrInst *GEP); + // Emit code that computes the "bump" from Basis to C. If the candidate is a + // GEP and the bump is not divisible by the element size of the GEP, this + // function sets the BumpWithUglyGEP flag to notify its caller to bump the + // basis using an ugly GEP. + static Value *emitBump(const Candidate &Basis, const Candidate &C, + IRBuilder<> &Builder, const DataLayout *DL, + bool &BumpWithUglyGEP); + + const DataLayout *DL; + DominatorTree *DT; + ScalarEvolution *SE; + TargetTransformInfo *TTI; + ilist<Candidate> Candidates; + // Temporarily holds all instructions that are unlinked (but not deleted) by + // rewriteCandidateWithBasis. These instructions will be actually removed + // after all rewriting finishes. + std::vector<Instruction *> UnlinkedInstructions; +}; +} // anonymous namespace + +char StraightLineStrengthReduce::ID = 0; +INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", + "Straight line strength reduction", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", + "Straight line strength reduction", false, false) + +FunctionPass *llvm::createStraightLineStrengthReducePass() { + return new StraightLineStrengthReduce(); +} + +bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, + const Candidate &C) { + return (Basis.Ins != C.Ins && // skip the same instruction + // Basis must dominate C in order to rewrite C with respect to Basis. + DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && + // They share the same base, stride, and candidate kind. + Basis.Base == C.Base && + Basis.Stride == C.Stride && + Basis.CandidateKind == C.CandidateKind); +} + +static bool isGEPFoldable(GetElementPtrInst *GEP, + const TargetTransformInfo *TTI, + const DataLayout *DL) { + GlobalVariable *BaseGV = nullptr; + int64_t BaseOffset = 0; + bool HasBaseReg = false; + int64_t Scale = 0; + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand())) + BaseGV = GV; + else + HasBaseReg = true; + + gep_type_iterator GTI = gep_type_begin(GEP); + for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); + if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) { + BaseOffset += ConstIdx->getSExtValue() * ElementSize; + } else { + // Needs scale register. + if (Scale != 0) { + // No addressing mode takes two scale registers. + return false; + } + Scale = ElementSize; + } + } else { + StructType *STy = cast<StructType>(*GTI); + uint64_t Field = cast<ConstantInt>(*I)->getZExtValue(); + BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); + } + } + return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV, + BaseOffset, HasBaseReg, Scale); +} + +// Returns whether (Base + Index * Stride) can be folded to an addressing mode. +static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, + TargetTransformInfo *TTI) { + return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, + Index->getSExtValue()); +} + +bool StraightLineStrengthReduce::isFoldable(const Candidate &C, + TargetTransformInfo *TTI, + const DataLayout *DL) { + if (C.CandidateKind == Candidate::Add) + return isAddFoldable(C.Base, C.Index, C.Stride, TTI); + if (C.CandidateKind == Candidate::GEP) + return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL); + return false; +} + +// Returns true if GEP has zero or one non-zero index. +static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { + unsigned NumNonZeroIndices = 0; + for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { + ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); + if (ConstIdx == nullptr || !ConstIdx->isZero()) + ++NumNonZeroIndices; + } + return NumNonZeroIndices <= 1; +} + +bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { + if (C.CandidateKind == Candidate::Add) { + // B + 1 * S or B + (-1) * S + return C.Index->isOne() || C.Index->isMinusOne(); + } + if (C.CandidateKind == Candidate::Mul) { + // (B + 0) * S + return C.Index->isZero(); + } + if (C.CandidateKind == Candidate::GEP) { + // (char*)B + S or (char*)B - S + return ((C.Index->isOne() || C.Index->isMinusOne()) && + hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); + } + return false; +} + +// TODO: We currently implement an algorithm whose time complexity is linear in +// the number of existing candidates. However, we could do better by using +// ScopedHashTable. Specifically, while traversing the dominator tree, we could +// maintain all the candidates that dominate the basic block being traversed in +// a ScopedHashTable. This hash table is indexed by the base and the stride of +// a candidate. Therefore, finding the immediate basis of a candidate boils down +// to one hash-table look up. +void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( + Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, + Instruction *I) { + Candidate C(CT, B, Idx, S, I); + // SLSR can complicate an instruction in two cases: + // + // 1. If we can fold I into an addressing mode, computing I is likely free or + // takes only one instruction. + // + // 2. I is already in a simplest form. For example, when + // X = B + 8 * S + // Y = B + S, + // rewriting Y to X - 7 * S is probably a bad idea. + // + // In the above cases, we still add I to the candidate list so that I can be + // the basis of other candidates, but we leave I's basis blank so that I + // won't be rewritten. + if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { + // Try to compute the immediate basis of C. + unsigned NumIterations = 0; + // Limit the scan radius to avoid running in quadratice time. + static const unsigned MaxNumIterations = 50; + for (auto Basis = Candidates.rbegin(); + Basis != Candidates.rend() && NumIterations < MaxNumIterations; + ++Basis, ++NumIterations) { + if (isBasisFor(*Basis, C)) { + C.Basis = &(*Basis); + break; + } + } + } + // Regardless of whether we find a basis for C, we need to push C to the + // candidate list so that it can be the basis of other candidates. + Candidates.push_back(C); +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( + Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + allocateCandidatesAndFindBasisForAdd(I); + break; + case Instruction::Mul: + allocateCandidatesAndFindBasisForMul(I); + break; + case Instruction::GetElementPtr: + allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); + break; + } +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( + Instruction *I) { + // Try matching B + i * S. + if (!isa<IntegerType>(I->getType())) + return; + + assert(I->getNumOperands() == 2 && "isn't I an add?"); + Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); + allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); + if (LHS != RHS) + allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( + Value *LHS, Value *RHS, Instruction *I) { + Value *S = nullptr; + ConstantInt *Idx = nullptr; + if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { + // I = LHS + RHS = LHS + Idx * S + allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); + } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { + // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) + APInt One(Idx->getBitWidth(), 1); + Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); + allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); + } else { + // At least, I = LHS + 1 * RHS + ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); + allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, + I); + } +} + +// Returns true if A matches B + C where C is constant. +static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { + return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || + match(A, m_Add(m_ConstantInt(C), m_Value(B)))); +} + +// Returns true if A matches B | C where C is constant. +static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { + return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || + match(A, m_Or(m_ConstantInt(C), m_Value(B)))); +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( + Value *LHS, Value *RHS, Instruction *I) { + Value *B = nullptr; + ConstantInt *Idx = nullptr; + if (matchesAdd(LHS, B, Idx)) { + // If LHS is in the form of "Base + Index", then I is in the form of + // "(Base + Index) * RHS". + allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); + } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { + // If LHS is in the form of "Base | Index" and Base and Index have no common + // bits set, then + // Base | Index = Base + Index + // and I is thus in the form of "(Base + Index) * RHS". + allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); + } else { + // Otherwise, at least try the form (LHS + 0) * RHS. + ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); + allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, + I); + } +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( + Instruction *I) { + // Try matching (B + i) * S. + // TODO: we could extend SLSR to float and vector types. + if (!isa<IntegerType>(I->getType())) + return; + + assert(I->getNumOperands() == 2 && "isn't I a mul?"); + Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); + allocateCandidatesAndFindBasisForMul(LHS, RHS, I); + if (LHS != RHS) { + // Symmetrically, try to split RHS to Base + Index. + allocateCandidatesAndFindBasisForMul(RHS, LHS, I); + } +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( + const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, + Instruction *I) { + // I = B + sext(Idx *nsw S) * ElementSize + // = B + (sext(Idx) * sext(S)) * ElementSize + // = B + (sext(Idx) * ElementSize) * sext(S) + // Casting to IntegerType is safe because we skipped vector GEPs. + IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); + ConstantInt *ScaledIdx = ConstantInt::get( + IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); + allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); +} + +void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, + const SCEV *Base, + uint64_t ElementSize, + GetElementPtrInst *GEP) { + // At least, ArrayIdx = ArrayIdx *nsw 1. + allocateCandidatesAndFindBasisForGEP( + Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), + ArrayIdx, ElementSize, GEP); + Value *LHS = nullptr; + ConstantInt *RHS = nullptr; + // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx + // itself. This would allow us to handle the shl case for free. However, + // matching SCEVs has two issues: + // + // 1. this would complicate rewriting because the rewriting procedure + // would have to translate SCEVs back to IR instructions. This translation + // is difficult when LHS is further evaluated to a composite SCEV. + // + // 2. ScalarEvolution is designed to be control-flow oblivious. It tends + // to strip nsw/nuw flags which are critical for SLSR to trace into + // sext'ed multiplication. + if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { + // SLSR is currently unsafe if i * S may overflow. + // GEP = Base + sext(LHS *nsw RHS) * ElementSize + allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); + } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { + // GEP = Base + sext(LHS <<nsw RHS) * ElementSize + // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize + APInt One(RHS->getBitWidth(), 1); + ConstantInt *PowerOf2 = + ConstantInt::get(RHS->getContext(), One << RHS->getValue()); + allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); + } +} + +void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( + GetElementPtrInst *GEP) { + // TODO: handle vector GEPs + if (GEP->getType()->isVectorTy()) + return; + + SmallVector<const SCEV *, 4> IndexExprs; + for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) + IndexExprs.push_back(SE->getSCEV(*I)); + + gep_type_iterator GTI = gep_type_begin(GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { + if (!isa<SequentialType>(*GTI++)) + continue; + + const SCEV *OrigIndexExpr = IndexExprs[I - 1]; + IndexExprs[I - 1] = SE->getConstant(OrigIndexExpr->getType(), 0); + + // The base of this candidate is GEP's base plus the offsets of all + // indices except this current one. + const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(), + SE->getSCEV(GEP->getPointerOperand()), + IndexExprs, GEP->isInBounds()); + Value *ArrayIdx = GEP->getOperand(I); + uint64_t ElementSize = DL->getTypeAllocSize(*GTI); + factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); + // When ArrayIdx is the sext of a value, we try to factor that value as + // well. Handling this case is important because array indices are + // typically sign-extended to the pointer size. + Value *TruncatedArrayIdx = nullptr; + if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx)))) + factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); + + IndexExprs[I - 1] = OrigIndexExpr; + } +} + +// A helper function that unifies the bitwidth of A and B. +static void unifyBitWidth(APInt &A, APInt &B) { + if (A.getBitWidth() < B.getBitWidth()) + A = A.sext(B.getBitWidth()); + else if (A.getBitWidth() > B.getBitWidth()) + B = B.sext(A.getBitWidth()); +} + +Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, + const Candidate &C, + IRBuilder<> &Builder, + const DataLayout *DL, + bool &BumpWithUglyGEP) { + APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); + unifyBitWidth(Idx, BasisIdx); + APInt IndexOffset = Idx - BasisIdx; + + BumpWithUglyGEP = false; + if (Basis.CandidateKind == Candidate::GEP) { + APInt ElementSize( + IndexOffset.getBitWidth(), + DL->getTypeAllocSize( + cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType())); + APInt Q, R; + APInt::sdivrem(IndexOffset, ElementSize, Q, R); + if (R.getSExtValue() == 0) + IndexOffset = Q; + else + BumpWithUglyGEP = true; + } + + // Compute Bump = C - Basis = (i' - i) * S. + // Common case 1: if (i' - i) is 1, Bump = S. + if (IndexOffset.getSExtValue() == 1) + return C.Stride; + // Common case 2: if (i' - i) is -1, Bump = -S. + if (IndexOffset.getSExtValue() == -1) + return Builder.CreateNeg(C.Stride); + + // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may + // have different bit widths. + IntegerType *DeltaType = + IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); + Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); + if (IndexOffset.isPowerOf2()) { + // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). + ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); + return Builder.CreateShl(ExtendedStride, Exponent); + } + if ((-IndexOffset).isPowerOf2()) { + // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). + ConstantInt *Exponent = + ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); + return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); + } + Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); + return Builder.CreateMul(ExtendedStride, Delta); +} + +void StraightLineStrengthReduce::rewriteCandidateWithBasis( + const Candidate &C, const Candidate &Basis) { + assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && + C.Stride == Basis.Stride); + // We run rewriteCandidateWithBasis on all candidates in a post-order, so the + // basis of a candidate cannot be unlinked before the candidate. + assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); + + // An instruction can correspond to multiple candidates. Therefore, instead of + // simply deleting an instruction when we rewrite it, we mark its parent as + // nullptr (i.e. unlink it) so that we can skip the candidates whose + // instruction is already rewritten. + if (!C.Ins->getParent()) + return; + + IRBuilder<> Builder(C.Ins); + bool BumpWithUglyGEP; + Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); + Value *Reduced = nullptr; // equivalent to but weaker than C.Ins + switch (C.CandidateKind) { + case Candidate::Add: + case Candidate::Mul: + // C = Basis + Bump + if (BinaryOperator::isNeg(Bump)) { + // If Bump is a neg instruction, emit C = Basis - (-Bump). + Reduced = + Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump)); + // We only use the negative argument of Bump, and Bump itself may be + // trivially dead. + RecursivelyDeleteTriviallyDeadInstructions(Bump); + } else { + Reduced = Builder.CreateAdd(Basis.Ins, Bump); + } + break; + case Candidate::GEP: + { + Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); + bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); + if (BumpWithUglyGEP) { + // C = (char *)Basis + Bump + unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); + Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); + Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); + if (InBounds) + Reduced = + Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); + else + Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); + Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); + } else { + // C = gep Basis, Bump + // Canonicalize bump to pointer size. + Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); + if (InBounds) + Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump); + else + Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump); + } + } + break; + default: + llvm_unreachable("C.CandidateKind is invalid"); + }; + Reduced->takeName(C.Ins); + C.Ins->replaceAllUsesWith(Reduced); + // Unlink C.Ins so that we can skip other candidates also corresponding to + // C.Ins. The actual deletion is postponed to the end of runOnFunction. + C.Ins->removeFromParent(); + UnlinkedInstructions.push_back(C.Ins); +} + +bool StraightLineStrengthReduce::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + SE = &getAnalysis<ScalarEvolution>(); + // Traverse the dominator tree in the depth-first order. This order makes sure + // all bases of a candidate are in Candidates when we process it. + for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT); + node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) { + for (auto &I : *node->getBlock()) + allocateCandidatesAndFindBasis(&I); + } + + // Rewrite candidates in the reverse depth-first order. This order makes sure + // a candidate being rewritten is not a basis for any other candidate. + while (!Candidates.empty()) { + const Candidate &C = Candidates.back(); + if (C.Basis != nullptr) { + rewriteCandidateWithBasis(C, *C.Basis); + } + Candidates.pop_back(); + } + + // Delete all unlink instructions. + for (auto *UnlinkedInst : UnlinkedInstructions) { + for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { + Value *Op = UnlinkedInst->getOperand(I); + UnlinkedInst->setOperand(I, nullptr); + RecursivelyDeleteTriviallyDeadInstructions(Op); + } + delete UnlinkedInst; + } + bool Ret = !UnlinkedInstructions.empty(); + UnlinkedInstructions.clear(); + return Ret; +} |