summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/Sink.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Sink.cpp270
1 files changed, 270 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/Sink.cpp b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
new file mode 100644
index 0000000..34f1d6c
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/Sink.cpp
@@ -0,0 +1,270 @@
+//===-- Sink.cpp - Code Sinking -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass moves instructions into successor blocks, when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sink"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+STATISTIC(NumSunk, "Number of instructions sunk");
+STATISTIC(NumSinkIter, "Number of sinking iterations");
+
+namespace {
+ class Sinking : public FunctionPass {
+ DominatorTree *DT;
+ LoopInfo *LI;
+ AliasAnalysis *AA;
+
+ public:
+ static char ID; // Pass identification
+ Sinking() : FunctionPass(ID) {
+ initializeSinkingPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ FunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<LoopInfo>();
+ }
+ private:
+ bool ProcessBlock(BasicBlock &BB);
+ bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
+ bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
+ bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
+ };
+} // end anonymous namespace
+
+char Sinking::ID = 0;
+INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
+
+FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
+
+/// AllUsesDominatedByBlock - Return true if all uses of the specified value
+/// occur in blocks dominated by the specified block.
+bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
+ BasicBlock *BB) const {
+ // Ignoring debug uses is necessary so debug info doesn't affect the code.
+ // This may leave a referencing dbg_value in the original block, before
+ // the definition of the vreg. Dwarf generator handles this although the
+ // user might not get the right info at runtime.
+ for (Value::use_iterator I = Inst->use_begin(),
+ E = Inst->use_end(); I != E; ++I) {
+ // Determine the block of the use.
+ Instruction *UseInst = cast<Instruction>(*I);
+ BasicBlock *UseBlock = UseInst->getParent();
+ if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
+ // PHI nodes use the operand in the predecessor block, not the block with
+ // the PHI.
+ unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
+ UseBlock = PN->getIncomingBlock(Num);
+ }
+ // Check that it dominates.
+ if (!DT->dominates(BB, UseBlock))
+ return false;
+ }
+ return true;
+}
+
+bool Sinking::runOnFunction(Function &F) {
+ DT = &getAnalysis<DominatorTree>();
+ LI = &getAnalysis<LoopInfo>();
+ AA = &getAnalysis<AliasAnalysis>();
+
+ bool MadeChange, EverMadeChange = false;
+
+ do {
+ MadeChange = false;
+ DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
+ // Process all basic blocks.
+ for (Function::iterator I = F.begin(), E = F.end();
+ I != E; ++I)
+ MadeChange |= ProcessBlock(*I);
+ EverMadeChange |= MadeChange;
+ NumSinkIter++;
+ } while (MadeChange);
+
+ return EverMadeChange;
+}
+
+bool Sinking::ProcessBlock(BasicBlock &BB) {
+ // Can't sink anything out of a block that has less than two successors.
+ if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
+
+ // Don't bother sinking code out of unreachable blocks. In addition to being
+ // unprofitable, it can also lead to infinite looping, because in an
+ // unreachable loop there may be nowhere to stop.
+ if (!DT->isReachableFromEntry(&BB)) return false;
+
+ bool MadeChange = false;
+
+ // Walk the basic block bottom-up. Remember if we saw a store.
+ BasicBlock::iterator I = BB.end();
+ --I;
+ bool ProcessedBegin = false;
+ SmallPtrSet<Instruction *, 8> Stores;
+ do {
+ Instruction *Inst = I; // The instruction to sink.
+
+ // Predecrement I (if it's not begin) so that it isn't invalidated by
+ // sinking.
+ ProcessedBegin = I == BB.begin();
+ if (!ProcessedBegin)
+ --I;
+
+ if (isa<DbgInfoIntrinsic>(Inst))
+ continue;
+
+ if (SinkInstruction(Inst, Stores))
+ ++NumSunk, MadeChange = true;
+
+ // If we just processed the first instruction in the block, we're done.
+ } while (!ProcessedBegin);
+
+ return MadeChange;
+}
+
+static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
+ SmallPtrSet<Instruction *, 8> &Stores) {
+
+ if (Inst->mayWriteToMemory()) {
+ Stores.insert(Inst);
+ return false;
+ }
+
+ if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
+ AliasAnalysis::Location Loc = AA->getLocation(L);
+ for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
+ E = Stores.end(); I != E; ++I)
+ if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
+ return false;
+ }
+
+ if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
+ return false;
+
+ return true;
+}
+
+/// IsAcceptableTarget - Return true if it is possible to sink the instruction
+/// in the specified basic block.
+bool Sinking::IsAcceptableTarget(Instruction *Inst,
+ BasicBlock *SuccToSinkTo) const {
+ assert(Inst && "Instruction to be sunk is null");
+ assert(SuccToSinkTo && "Candidate sink target is null");
+
+ // It is not possible to sink an instruction into its own block. This can
+ // happen with loops.
+ if (Inst->getParent() == SuccToSinkTo)
+ return false;
+
+ // If the block has multiple predecessors, this would introduce computation
+ // on different code paths. We could split the critical edge, but for now we
+ // just punt.
+ // FIXME: Split critical edges if not backedges.
+ if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
+ // We cannot sink a load across a critical edge - there may be stores in
+ // other code paths.
+ if (!isSafeToSpeculativelyExecute(Inst))
+ return false;
+
+ // We don't want to sink across a critical edge if we don't dominate the
+ // successor. We could be introducing calculations to new code paths.
+ if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
+ return false;
+
+ // Don't sink instructions into a loop.
+ Loop *succ = LI->getLoopFor(SuccToSinkTo);
+ Loop *cur = LI->getLoopFor(Inst->getParent());
+ if (succ != 0 && succ != cur)
+ return false;
+ }
+
+ // Finally, check that all the uses of the instruction are actually
+ // dominated by the candidate
+ return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
+}
+
+/// SinkInstruction - Determine whether it is safe to sink the specified machine
+/// instruction out of its current block into a successor.
+bool Sinking::SinkInstruction(Instruction *Inst,
+ SmallPtrSet<Instruction *, 8> &Stores) {
+ // Check if it's safe to move the instruction.
+ if (!isSafeToMove(Inst, AA, Stores))
+ return false;
+
+ // FIXME: This should include support for sinking instructions within the
+ // block they are currently in to shorten the live ranges. We often get
+ // instructions sunk into the top of a large block, but it would be better to
+ // also sink them down before their first use in the block. This xform has to
+ // be careful not to *increase* register pressure though, e.g. sinking
+ // "x = y + z" down if it kills y and z would increase the live ranges of y
+ // and z and only shrink the live range of x.
+
+ // SuccToSinkTo - This is the successor to sink this instruction to, once we
+ // decide.
+ BasicBlock *SuccToSinkTo = 0;
+
+ // Instructions can only be sunk if all their uses are in blocks
+ // dominated by one of the successors.
+ // Look at all the postdominators and see if we can sink it in one.
+ DomTreeNode *DTN = DT->getNode(Inst->getParent());
+ for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
+ I != E && SuccToSinkTo == 0; ++I) {
+ BasicBlock *Candidate = (*I)->getBlock();
+ if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
+ IsAcceptableTarget(Inst, Candidate))
+ SuccToSinkTo = Candidate;
+ }
+
+ // If no suitable postdominator was found, look at all the successors and
+ // decide which one we should sink to, if any.
+ for (succ_iterator I = succ_begin(Inst->getParent()),
+ E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) {
+ if (IsAcceptableTarget(Inst, *I))
+ SuccToSinkTo = *I;
+ }
+
+ // If we couldn't find a block to sink to, ignore this instruction.
+ if (SuccToSinkTo == 0)
+ return false;
+
+ DEBUG(dbgs() << "Sink" << *Inst << " (";
+ WriteAsOperand(dbgs(), Inst->getParent(), false);
+ dbgs() << " -> ";
+ WriteAsOperand(dbgs(), SuccToSinkTo, false);
+ dbgs() << ")\n");
+
+ // Move the instruction.
+ Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt());
+ return true;
+}
OpenPOWER on IntegriCloud