summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp808
1 files changed, 808 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
new file mode 100644
index 0000000..aaab585
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
@@ -0,0 +1,808 @@
+//===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GenericDomTree.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <utility>
+
+#define DEBUG_TYPE "simple-loop-unswitch"
+
+using namespace llvm;
+
+STATISTIC(NumBranches, "Number of branches unswitched");
+STATISTIC(NumSwitches, "Number of switches unswitched");
+STATISTIC(NumTrivial, "Number of unswitches that are trivial");
+
+static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
+ Constant &Replacement) {
+ assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
+
+ // Replace uses of LIC in the loop with the given constant.
+ for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
+ // Grab the use and walk past it so we can clobber it in the use list.
+ Use *U = &*UI++;
+ Instruction *UserI = dyn_cast<Instruction>(U->getUser());
+ if (!UserI || !L.contains(UserI))
+ continue;
+
+ // Replace this use within the loop body.
+ *U = &Replacement;
+ }
+}
+
+/// Update the dominator tree after removing one exiting predecessor of a loop
+/// exit block.
+static void updateLoopExitIDom(BasicBlock *LoopExitBB, Loop &L,
+ DominatorTree &DT) {
+ assert(pred_begin(LoopExitBB) != pred_end(LoopExitBB) &&
+ "Cannot have empty predecessors of the loop exit block if we split "
+ "off a block to unswitch!");
+
+ BasicBlock *IDom = *pred_begin(LoopExitBB);
+ // Walk all of the other predecessors finding the nearest common dominator
+ // until all predecessors are covered or we reach the loop header. The loop
+ // header necessarily dominates all loop exit blocks in loop simplified form
+ // so we can early-exit the moment we hit that block.
+ for (auto PI = std::next(pred_begin(LoopExitBB)), PE = pred_end(LoopExitBB);
+ PI != PE && IDom != L.getHeader(); ++PI)
+ IDom = DT.findNearestCommonDominator(IDom, *PI);
+
+ DT.changeImmediateDominator(LoopExitBB, IDom);
+}
+
+/// Update the dominator tree after unswitching a particular former exit block.
+///
+/// This handles the full update of the dominator tree after hoisting a block
+/// that previously was an exit block (or split off of an exit block) up to be
+/// reached from the new immediate dominator of the preheader.
+///
+/// The common case is simple -- we just move the unswitched block to have an
+/// immediate dominator of the old preheader. But in complex cases, there may
+/// be other blocks reachable from the unswitched block that are immediately
+/// dominated by some node between the unswitched one and the old preheader.
+/// All of these also need to be hoisted in the dominator tree. We also want to
+/// minimize queries to the dominator tree because each step of this
+/// invalidates any DFS numbers that would make queries fast.
+static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
+ DominatorTree &DT) {
+ DomTreeNode *OldPHNode = DT[OldPH];
+ DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
+ // If the dominator tree has already been updated for this unswitched node,
+ // we're done. This makes it easier to use this routine if there are multiple
+ // paths to the same unswitched destination.
+ if (UnswitchedNode->getIDom() == OldPHNode)
+ return;
+
+ // First collect the domtree nodes that we are hoisting over. These are the
+ // set of nodes which may have children that need to be hoisted as well.
+ SmallPtrSet<DomTreeNode *, 4> DomChain;
+ for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
+ IDom = IDom->getIDom())
+ DomChain.insert(IDom);
+
+ // The unswitched block ends up immediately dominated by the old preheader --
+ // regardless of whether it is the loop exit block or split off of the loop
+ // exit block.
+ DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
+
+ // For everything that moves up the dominator tree, we need to examine the
+ // dominator frontier to see if it additionally should move up the dominator
+ // tree. This lambda appends the dominator frontier for a node on the
+ // worklist.
+ //
+ // Note that we don't currently use the IDFCalculator here for two reasons:
+ // 1) It computes dominator tree levels for the entire function on each run
+ // of 'compute'. While this isn't terrible, given that we expect to update
+ // relatively small subtrees of the domtree, it isn't necessarily the right
+ // tradeoff.
+ // 2) The interface doesn't fit this usage well. It doesn't operate in
+ // append-only, and builds several sets that we don't need.
+ //
+ // FIXME: Neither of these issues are a big deal and could be addressed with
+ // some amount of refactoring of IDFCalculator. That would allow us to share
+ // the core logic here (which is solving the same core problem).
+ SmallSetVector<BasicBlock *, 4> Worklist;
+ SmallVector<DomTreeNode *, 4> DomNodes;
+ SmallPtrSet<BasicBlock *, 4> DomSet;
+ auto AppendDomFrontier = [&](DomTreeNode *Node) {
+ assert(DomNodes.empty() && "Must start with no dominator nodes.");
+ assert(DomSet.empty() && "Must start with an empty dominator set.");
+
+ // First flatten this subtree into sequence of nodes by doing a pre-order
+ // walk.
+ DomNodes.push_back(Node);
+ // We intentionally re-evaluate the size as each node can add new children.
+ // Because this is a tree walk, this cannot add any duplicates.
+ for (int i = 0; i < (int)DomNodes.size(); ++i)
+ DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
+
+ // Now create a set of the basic blocks so we can quickly test for
+ // dominated successors. We could in theory use the DFS numbers of the
+ // dominator tree for this, but we want this to remain predictably fast
+ // even while we mutate the dominator tree in ways that would invalidate
+ // the DFS numbering.
+ for (DomTreeNode *InnerN : DomNodes)
+ DomSet.insert(InnerN->getBlock());
+
+ // Now re-walk the nodes, appending every successor of every node that isn't
+ // in the set. Note that we don't append the node itself, even though if it
+ // is a successor it does not strictly dominate itself and thus it would be
+ // part of the dominance frontier. The reason we don't append it is that
+ // the node passed in came *from* the worklist and so it has already been
+ // processed.
+ for (DomTreeNode *InnerN : DomNodes)
+ for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
+ if (!DomSet.count(SuccBB))
+ Worklist.insert(SuccBB);
+
+ DomNodes.clear();
+ DomSet.clear();
+ };
+
+ // Append the initial dom frontier nodes.
+ AppendDomFrontier(UnswitchedNode);
+
+ // Walk the worklist. We grow the list in the loop and so must recompute size.
+ for (int i = 0; i < (int)Worklist.size(); ++i) {
+ auto *BB = Worklist[i];
+
+ DomTreeNode *Node = DT[BB];
+ assert(!DomChain.count(Node) &&
+ "Cannot be dominated by a block you can reach!");
+
+ // If this block had an immediate dominator somewhere in the chain
+ // we hoisted over, then its position in the domtree needs to move as it is
+ // reachable from a node hoisted over this chain.
+ if (!DomChain.count(Node->getIDom()))
+ continue;
+
+ DT.changeImmediateDominator(Node, OldPHNode);
+
+ // Now add this node's dominator frontier to the worklist as well.
+ AppendDomFrontier(Node);
+ }
+}
+
+/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
+/// incoming values along this edge.
+static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
+ BasicBlock &ExitBB) {
+ for (Instruction &I : ExitBB) {
+ auto *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ // No more PHIs to check.
+ return true;
+
+ // If the incoming value for this edge isn't loop invariant the unswitch
+ // won't be trivial.
+ if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
+ return false;
+ }
+ llvm_unreachable("Basic blocks should never be empty!");
+}
+
+/// Rewrite the PHI nodes in an unswitched loop exit basic block.
+///
+/// Requires that the loop exit and unswitched basic block are the same, and
+/// that the exiting block was a unique predecessor of that block. Rewrites the
+/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
+/// PHI nodes from the old preheader that now contains the unswitched
+/// terminator.
+static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
+ BasicBlock &OldExitingBB,
+ BasicBlock &OldPH) {
+ for (Instruction &I : UnswitchedBB) {
+ auto *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ // No more PHIs to check.
+ break;
+
+ // When the loop exit is directly unswitched we just need to update the
+ // incoming basic block. We loop to handle weird cases with repeated
+ // incoming blocks, but expect to typically only have one operand here.
+ for (auto i : seq<int>(0, PN->getNumOperands())) {
+ assert(PN->getIncomingBlock(i) == &OldExitingBB &&
+ "Found incoming block different from unique predecessor!");
+ PN->setIncomingBlock(i, &OldPH);
+ }
+ }
+}
+
+/// Rewrite the PHI nodes in the loop exit basic block and the split off
+/// unswitched block.
+///
+/// Because the exit block remains an exit from the loop, this rewrites the
+/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
+/// nodes into the unswitched basic block to select between the value in the
+/// old preheader and the loop exit.
+static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
+ BasicBlock &UnswitchedBB,
+ BasicBlock &OldExitingBB,
+ BasicBlock &OldPH) {
+ assert(&ExitBB != &UnswitchedBB &&
+ "Must have different loop exit and unswitched blocks!");
+ Instruction *InsertPt = &*UnswitchedBB.begin();
+ for (Instruction &I : ExitBB) {
+ auto *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ // No more PHIs to check.
+ break;
+
+ auto *NewPN = PHINode::Create(PN->getType(), /*NumReservedValues*/ 2,
+ PN->getName() + ".split", InsertPt);
+
+ // Walk backwards over the old PHI node's inputs to minimize the cost of
+ // removing each one. We have to do this weird loop manually so that we
+ // create the same number of new incoming edges in the new PHI as we expect
+ // each case-based edge to be included in the unswitched switch in some
+ // cases.
+ // FIXME: This is really, really gross. It would be much cleaner if LLVM
+ // allowed us to create a single entry for a predecessor block without
+ // having separate entries for each "edge" even though these edges are
+ // required to produce identical results.
+ for (int i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
+ if (PN->getIncomingBlock(i) != &OldExitingBB)
+ continue;
+
+ Value *Incoming = PN->removeIncomingValue(i);
+ NewPN->addIncoming(Incoming, &OldPH);
+ }
+
+ // Now replace the old PHI with the new one and wire the old one in as an
+ // input to the new one.
+ PN->replaceAllUsesWith(NewPN);
+ NewPN->addIncoming(PN, &ExitBB);
+ }
+}
+
+/// Unswitch a trivial branch if the condition is loop invariant.
+///
+/// This routine should only be called when loop code leading to the branch has
+/// been validated as trivial (no side effects). This routine checks if the
+/// condition is invariant and one of the successors is a loop exit. This
+/// allows us to unswitch without duplicating the loop, making it trivial.
+///
+/// If this routine fails to unswitch the branch it returns false.
+///
+/// If the branch can be unswitched, this routine splits the preheader and
+/// hoists the branch above that split. Preserves loop simplified form
+/// (splitting the exit block as necessary). It simplifies the branch within
+/// the loop to an unconditional branch but doesn't remove it entirely. Further
+/// cleanup can be done with some simplify-cfg like pass.
+static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
+ LoopInfo &LI) {
+ assert(BI.isConditional() && "Can only unswitch a conditional branch!");
+ DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
+
+ Value *LoopCond = BI.getCondition();
+
+ // Need a trivial loop condition to unswitch.
+ if (!L.isLoopInvariant(LoopCond))
+ return false;
+
+ // FIXME: We should compute this once at the start and update it!
+ SmallVector<BasicBlock *, 16> ExitBlocks;
+ L.getExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+
+ // Check to see if a successor of the branch is guaranteed to
+ // exit through a unique exit block without having any
+ // side-effects. If so, determine the value of Cond that causes
+ // it to do this.
+ ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
+ ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
+ int LoopExitSuccIdx = 0;
+ auto *LoopExitBB = BI.getSuccessor(0);
+ if (!ExitBlockSet.count(LoopExitBB)) {
+ std::swap(CondVal, Replacement);
+ LoopExitSuccIdx = 1;
+ LoopExitBB = BI.getSuccessor(1);
+ if (!ExitBlockSet.count(LoopExitBB))
+ return false;
+ }
+ auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
+ assert(L.contains(ContinueBB) &&
+ "Cannot have both successors exit and still be in the loop!");
+
+ auto *ParentBB = BI.getParent();
+ if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
+ return false;
+
+ DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal
+ << " == " << LoopCond << "\n");
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the conditional branch. We will change the preheader to have a conditional
+ // branch on LoopCond.
+ BasicBlock *OldPH = L.getLoopPreheader();
+ BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
+
+ // Now that we have a place to insert the conditional branch, create a place
+ // to branch to: this is the exit block out of the loop that we are
+ // unswitching. We need to split this if there are other loop predecessors.
+ // Because the loop is in simplified form, *any* other predecessor is enough.
+ BasicBlock *UnswitchedBB;
+ if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
+ (void)PredBB;
+ assert(PredBB == BI.getParent() &&
+ "A branch's parent isn't a predecessor!");
+ UnswitchedBB = LoopExitBB;
+ } else {
+ UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
+ }
+
+ // Now splice the branch to gate reaching the new preheader and re-point its
+ // successors.
+ OldPH->getInstList().splice(std::prev(OldPH->end()),
+ BI.getParent()->getInstList(), BI);
+ OldPH->getTerminator()->eraseFromParent();
+ BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
+ BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
+
+ // Create a new unconditional branch that will continue the loop as a new
+ // terminator.
+ BranchInst::Create(ContinueBB, ParentBB);
+
+ // Rewrite the relevant PHI nodes.
+ if (UnswitchedBB == LoopExitBB)
+ rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
+ else
+ rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
+ *ParentBB, *OldPH);
+
+ // Now we need to update the dominator tree.
+ updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
+ // But if we split something off of the loop exit block then we also removed
+ // one of the predecessors for the loop exit block and may need to update its
+ // idom.
+ if (UnswitchedBB != LoopExitBB)
+ updateLoopExitIDom(LoopExitBB, L, DT);
+
+ // Since this is an i1 condition we can also trivially replace uses of it
+ // within the loop with a constant.
+ replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
+
+ ++NumTrivial;
+ ++NumBranches;
+ return true;
+}
+
+/// Unswitch a trivial switch if the condition is loop invariant.
+///
+/// This routine should only be called when loop code leading to the switch has
+/// been validated as trivial (no side effects). This routine checks if the
+/// condition is invariant and that at least one of the successors is a loop
+/// exit. This allows us to unswitch without duplicating the loop, making it
+/// trivial.
+///
+/// If this routine fails to unswitch the switch it returns false.
+///
+/// If the switch can be unswitched, this routine splits the preheader and
+/// copies the switch above that split. If the default case is one of the
+/// exiting cases, it copies the non-exiting cases and points them at the new
+/// preheader. If the default case is not exiting, it copies the exiting cases
+/// and points the default at the preheader. It preserves loop simplified form
+/// (splitting the exit blocks as necessary). It simplifies the switch within
+/// the loop by removing now-dead cases. If the default case is one of those
+/// unswitched, it replaces its destination with a new basic block containing
+/// only unreachable. Such basic blocks, while technically loop exits, are not
+/// considered for unswitching so this is a stable transform and the same
+/// switch will not be revisited. If after unswitching there is only a single
+/// in-loop successor, the switch is further simplified to an unconditional
+/// branch. Still more cleanup can be done with some simplify-cfg like pass.
+static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
+ LoopInfo &LI) {
+ DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
+ Value *LoopCond = SI.getCondition();
+
+ // If this isn't switching on an invariant condition, we can't unswitch it.
+ if (!L.isLoopInvariant(LoopCond))
+ return false;
+
+ auto *ParentBB = SI.getParent();
+
+ // FIXME: We should compute this once at the start and update it!
+ SmallVector<BasicBlock *, 16> ExitBlocks;
+ L.getExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+
+ SmallVector<int, 4> ExitCaseIndices;
+ for (auto Case : SI.cases()) {
+ auto *SuccBB = Case.getCaseSuccessor();
+ if (ExitBlockSet.count(SuccBB) &&
+ areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
+ ExitCaseIndices.push_back(Case.getCaseIndex());
+ }
+ BasicBlock *DefaultExitBB = nullptr;
+ if (ExitBlockSet.count(SI.getDefaultDest()) &&
+ areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
+ !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
+ DefaultExitBB = SI.getDefaultDest();
+ else if (ExitCaseIndices.empty())
+ return false;
+
+ DEBUG(dbgs() << " unswitching trivial cases...\n");
+
+ SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
+ ExitCases.reserve(ExitCaseIndices.size());
+ // We walk the case indices backwards so that we remove the last case first
+ // and don't disrupt the earlier indices.
+ for (unsigned Index : reverse(ExitCaseIndices)) {
+ auto CaseI = SI.case_begin() + Index;
+ // Save the value of this case.
+ ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
+ // Delete the unswitched cases.
+ SI.removeCase(CaseI);
+ }
+
+ // Check if after this all of the remaining cases point at the same
+ // successor.
+ BasicBlock *CommonSuccBB = nullptr;
+ if (SI.getNumCases() > 0 &&
+ std::all_of(std::next(SI.case_begin()), SI.case_end(),
+ [&SI](const SwitchInst::CaseHandle &Case) {
+ return Case.getCaseSuccessor() ==
+ SI.case_begin()->getCaseSuccessor();
+ }))
+ CommonSuccBB = SI.case_begin()->getCaseSuccessor();
+
+ if (DefaultExitBB) {
+ // We can't remove the default edge so replace it with an edge to either
+ // the single common remaining successor (if we have one) or an unreachable
+ // block.
+ if (CommonSuccBB) {
+ SI.setDefaultDest(CommonSuccBB);
+ } else {
+ BasicBlock *UnreachableBB = BasicBlock::Create(
+ ParentBB->getContext(),
+ Twine(ParentBB->getName()) + ".unreachable_default",
+ ParentBB->getParent());
+ new UnreachableInst(ParentBB->getContext(), UnreachableBB);
+ SI.setDefaultDest(UnreachableBB);
+ DT.addNewBlock(UnreachableBB, ParentBB);
+ }
+ } else {
+ // If we're not unswitching the default, we need it to match any cases to
+ // have a common successor or if we have no cases it is the common
+ // successor.
+ if (SI.getNumCases() == 0)
+ CommonSuccBB = SI.getDefaultDest();
+ else if (SI.getDefaultDest() != CommonSuccBB)
+ CommonSuccBB = nullptr;
+ }
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the switch.
+ BasicBlock *OldPH = L.getLoopPreheader();
+ BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
+ OldPH->getTerminator()->eraseFromParent();
+
+ // Now add the unswitched switch.
+ auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
+
+ // Rewrite the IR for the unswitched basic blocks. This requires two steps.
+ // First, we split any exit blocks with remaining in-loop predecessors. Then
+ // we update the PHIs in one of two ways depending on if there was a split.
+ // We walk in reverse so that we split in the same order as the cases
+ // appeared. This is purely for convenience of reading the resulting IR, but
+ // it doesn't cost anything really.
+ SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
+ SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
+ // Handle the default exit if necessary.
+ // FIXME: It'd be great if we could merge this with the loop below but LLVM's
+ // ranges aren't quite powerful enough yet.
+ if (DefaultExitBB) {
+ if (pred_empty(DefaultExitBB)) {
+ UnswitchedExitBBs.insert(DefaultExitBB);
+ rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
+ } else {
+ auto *SplitBB =
+ SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
+ rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
+ *ParentBB, *OldPH);
+ updateLoopExitIDom(DefaultExitBB, L, DT);
+ DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
+ }
+ }
+ // Note that we must use a reference in the for loop so that we update the
+ // container.
+ for (auto &CasePair : reverse(ExitCases)) {
+ // Grab a reference to the exit block in the pair so that we can update it.
+ BasicBlock *ExitBB = CasePair.second;
+
+ // If this case is the last edge into the exit block, we can simply reuse it
+ // as it will no longer be a loop exit. No mapping necessary.
+ if (pred_empty(ExitBB)) {
+ // Only rewrite once.
+ if (UnswitchedExitBBs.insert(ExitBB).second)
+ rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
+ continue;
+ }
+
+ // Otherwise we need to split the exit block so that we retain an exit
+ // block from the loop and a target for the unswitched condition.
+ BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
+ if (!SplitExitBB) {
+ // If this is the first time we see this, do the split and remember it.
+ SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
+ rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
+ *ParentBB, *OldPH);
+ updateLoopExitIDom(ExitBB, L, DT);
+ }
+ // Update the case pair to point to the split block.
+ CasePair.second = SplitExitBB;
+ }
+
+ // Now add the unswitched cases. We do this in reverse order as we built them
+ // in reverse order.
+ for (auto CasePair : reverse(ExitCases)) {
+ ConstantInt *CaseVal = CasePair.first;
+ BasicBlock *UnswitchedBB = CasePair.second;
+
+ NewSI->addCase(CaseVal, UnswitchedBB);
+ updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
+ }
+
+ // If the default was unswitched, re-point it and add explicit cases for
+ // entering the loop.
+ if (DefaultExitBB) {
+ NewSI->setDefaultDest(DefaultExitBB);
+ updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
+
+ // We removed all the exit cases, so we just copy the cases to the
+ // unswitched switch.
+ for (auto Case : SI.cases())
+ NewSI->addCase(Case.getCaseValue(), NewPH);
+ }
+
+ // If we ended up with a common successor for every path through the switch
+ // after unswitching, rewrite it to an unconditional branch to make it easy
+ // to recognize. Otherwise we potentially have to recognize the default case
+ // pointing at unreachable and other complexity.
+ if (CommonSuccBB) {
+ BasicBlock *BB = SI.getParent();
+ SI.eraseFromParent();
+ BranchInst::Create(CommonSuccBB, BB);
+ }
+
+ DT.verifyDomTree();
+ ++NumTrivial;
+ ++NumSwitches;
+ return true;
+}
+
+/// This routine scans the loop to find a branch or switch which occurs before
+/// any side effects occur. These can potentially be unswitched without
+/// duplicating the loop. If a branch or switch is successfully unswitched the
+/// scanning continues to see if subsequent branches or switches have become
+/// trivial. Once all trivial candidates have been unswitched, this routine
+/// returns.
+///
+/// The return value indicates whether anything was unswitched (and therefore
+/// changed).
+static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
+ LoopInfo &LI) {
+ bool Changed = false;
+
+ // If loop header has only one reachable successor we should keep looking for
+ // trivial condition candidates in the successor as well. An alternative is
+ // to constant fold conditions and merge successors into loop header (then we
+ // only need to check header's terminator). The reason for not doing this in
+ // LoopUnswitch pass is that it could potentially break LoopPassManager's
+ // invariants. Folding dead branches could either eliminate the current loop
+ // or make other loops unreachable. LCSSA form might also not be preserved
+ // after deleting branches. The following code keeps traversing loop header's
+ // successors until it finds the trivial condition candidate (condition that
+ // is not a constant). Since unswitching generates branches with constant
+ // conditions, this scenario could be very common in practice.
+ BasicBlock *CurrentBB = L.getHeader();
+ SmallPtrSet<BasicBlock *, 8> Visited;
+ Visited.insert(CurrentBB);
+ do {
+ // Check if there are any side-effecting instructions (e.g. stores, calls,
+ // volatile loads) in the part of the loop that the code *would* execute
+ // without unswitching.
+ if (llvm::any_of(*CurrentBB,
+ [](Instruction &I) { return I.mayHaveSideEffects(); }))
+ return Changed;
+
+ TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
+
+ if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
+ // Don't bother trying to unswitch past a switch with a constant
+ // condition. This should be removed prior to running this pass by
+ // simplify-cfg.
+ if (isa<Constant>(SI->getCondition()))
+ return Changed;
+
+ if (!unswitchTrivialSwitch(L, *SI, DT, LI))
+ // Coludn't unswitch this one so we're done.
+ return Changed;
+
+ // Mark that we managed to unswitch something.
+ Changed = true;
+
+ // If unswitching turned the terminator into an unconditional branch then
+ // we can continue. The unswitching logic specifically works to fold any
+ // cases it can into an unconditional branch to make it easier to
+ // recognize here.
+ auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
+ if (!BI || BI->isConditional())
+ return Changed;
+
+ CurrentBB = BI->getSuccessor(0);
+ continue;
+ }
+
+ auto *BI = dyn_cast<BranchInst>(CurrentTerm);
+ if (!BI)
+ // We do not understand other terminator instructions.
+ return Changed;
+
+ // Don't bother trying to unswitch past an unconditional branch or a branch
+ // with a constant value. These should be removed by simplify-cfg prior to
+ // running this pass.
+ if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
+ return Changed;
+
+ // Found a trivial condition candidate: non-foldable conditional branch. If
+ // we fail to unswitch this, we can't do anything else that is trivial.
+ if (!unswitchTrivialBranch(L, *BI, DT, LI))
+ return Changed;
+
+ // Mark that we managed to unswitch something.
+ Changed = true;
+
+ // We unswitched the branch. This should always leave us with an
+ // unconditional branch that we can follow now.
+ BI = cast<BranchInst>(CurrentBB->getTerminator());
+ assert(!BI->isConditional() &&
+ "Cannot form a conditional branch by unswitching1");
+ CurrentBB = BI->getSuccessor(0);
+
+ // When continuing, if we exit the loop or reach a previous visited block,
+ // then we can not reach any trivial condition candidates (unfoldable
+ // branch instructions or switch instructions) and no unswitch can happen.
+ } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
+
+ return Changed;
+}
+
+/// Unswitch control flow predicated on loop invariant conditions.
+///
+/// This first hoists all branches or switches which are trivial (IE, do not
+/// require duplicating any part of the loop) out of the loop body. It then
+/// looks at other loop invariant control flows and tries to unswitch those as
+/// well by cloning the loop if the result is small enough.
+static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC) {
+ assert(L.isLCSSAForm(DT) &&
+ "Loops must be in LCSSA form before unswitching.");
+ bool Changed = false;
+
+ // Must be in loop simplified form: we need a preheader and dedicated exits.
+ if (!L.isLoopSimplifyForm())
+ return false;
+
+ // Try trivial unswitch first before loop over other basic blocks in the loop.
+ Changed |= unswitchAllTrivialConditions(L, DT, LI);
+
+ // FIXME: Add support for non-trivial unswitching by cloning the loop.
+
+ return Changed;
+}
+
+PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &U) {
+ Function &F = *L.getHeader()->getParent();
+ (void)F;
+
+ DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
+
+ if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC))
+ return PreservedAnalyses::all();
+
+#ifndef NDEBUG
+ // Historically this pass has had issues with the dominator tree so verify it
+ // in asserts builds.
+ AR.DT.verifyDomTree();
+#endif
+ return getLoopPassPreservedAnalyses();
+}
+
+namespace {
+
+class SimpleLoopUnswitchLegacyPass : public LoopPass {
+public:
+ static char ID; // Pass ID, replacement for typeid
+
+ explicit SimpleLoopUnswitchLegacyPass() : LoopPass(ID) {
+ initializeSimpleLoopUnswitchLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ getLoopAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (skipLoop(L))
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+
+ DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
+
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+
+ bool Changed = unswitchLoop(*L, DT, LI, AC);
+
+#ifndef NDEBUG
+ // Historically this pass has had issues with the dominator tree so verify it
+ // in asserts builds.
+ DT.verifyDomTree();
+#endif
+ return Changed;
+}
+
+char SimpleLoopUnswitchLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
+ "Simple unswitch loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
+ "Simple unswitch loops", false, false)
+
+Pass *llvm::createSimpleLoopUnswitchLegacyPass() {
+ return new SimpleLoopUnswitchLegacyPass();
+}
OpenPOWER on IntegriCloud