diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp | 1038 |
1 files changed, 1038 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp b/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp new file mode 100644 index 0000000..3a782d1 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp @@ -0,0 +1,1038 @@ +//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Loop unrolling may create many similar GEPs for array accesses. +// e.g., a 2-level loop +// +// float a[32][32]; // global variable +// +// for (int i = 0; i < 2; ++i) { +// for (int j = 0; j < 2; ++j) { +// ... +// ... = a[x + i][y + j]; +// ... +// } +// } +// +// will probably be unrolled to: +// +// gep %a, 0, %x, %y; load +// gep %a, 0, %x, %y + 1; load +// gep %a, 0, %x + 1, %y; load +// gep %a, 0, %x + 1, %y + 1; load +// +// LLVM's GVN does not use partial redundancy elimination yet, and is thus +// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs +// significant slowdown in targets with limited addressing modes. For instance, +// because the PTX target does not support the reg+reg addressing mode, the +// NVPTX backend emits PTX code that literally computes the pointer address of +// each GEP, wasting tons of registers. It emits the following PTX for the +// first load and similar PTX for other loads. +// +// mov.u32 %r1, %x; +// mov.u32 %r2, %y; +// mul.wide.u32 %rl2, %r1, 128; +// mov.u64 %rl3, a; +// add.s64 %rl4, %rl3, %rl2; +// mul.wide.u32 %rl5, %r2, 4; +// add.s64 %rl6, %rl4, %rl5; +// ld.global.f32 %f1, [%rl6]; +// +// To reduce the register pressure, the optimization implemented in this file +// merges the common part of a group of GEPs, so we can compute each pointer +// address by adding a simple offset to the common part, saving many registers. +// +// It works by splitting each GEP into a variadic base and a constant offset. +// The variadic base can be computed once and reused by multiple GEPs, and the +// constant offsets can be nicely folded into the reg+immediate addressing mode +// (supported by most targets) without using any extra register. +// +// For instance, we transform the four GEPs and four loads in the above example +// into: +// +// base = gep a, 0, x, y +// load base +// laod base + 1 * sizeof(float) +// load base + 32 * sizeof(float) +// load base + 33 * sizeof(float) +// +// Given the transformed IR, a backend that supports the reg+immediate +// addressing mode can easily fold the pointer arithmetics into the loads. For +// example, the NVPTX backend can easily fold the pointer arithmetics into the +// ld.global.f32 instructions, and the resultant PTX uses much fewer registers. +// +// mov.u32 %r1, %tid.x; +// mov.u32 %r2, %tid.y; +// mul.wide.u32 %rl2, %r1, 128; +// mov.u64 %rl3, a; +// add.s64 %rl4, %rl3, %rl2; +// mul.wide.u32 %rl5, %r2, 4; +// add.s64 %rl6, %rl4, %rl5; +// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX +// ld.global.f32 %f2, [%rl6+4]; // much better +// ld.global.f32 %f3, [%rl6+128]; // much better +// ld.global.f32 %f4, [%rl6+132]; // much better +// +// Another improvement enabled by the LowerGEP flag is to lower a GEP with +// multiple indices to either multiple GEPs with a single index or arithmetic +// operations (depending on whether the target uses alias analysis in codegen). +// Such transformation can have following benefits: +// (1) It can always extract constants in the indices of structure type. +// (2) After such Lowering, there are more optimization opportunities such as +// CSE, LICM and CGP. +// +// E.g. The following GEPs have multiple indices: +// BB1: +// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3 +// load %p +// ... +// BB2: +// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2 +// load %p2 +// ... +// +// We can not do CSE for to the common part related to index "i64 %i". Lowering +// GEPs can achieve such goals. +// If the target does not use alias analysis in codegen, this pass will +// lower a GEP with multiple indices into arithmetic operations: +// BB1: +// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity +// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity +// %3 = add i64 %1, %2 ; CSE opportunity +// %4 = mul i64 %j1, length_of_struct +// %5 = add i64 %3, %4 +// %6 = add i64 %3, struct_field_3 ; Constant offset +// %p = inttoptr i64 %6 to i32* +// load %p +// ... +// BB2: +// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity +// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity +// %9 = add i64 %7, %8 ; CSE opportunity +// %10 = mul i64 %j2, length_of_struct +// %11 = add i64 %9, %10 +// %12 = add i64 %11, struct_field_2 ; Constant offset +// %p = inttoptr i64 %12 to i32* +// load %p2 +// ... +// +// If the target uses alias analysis in codegen, this pass will lower a GEP +// with multiple indices into multiple GEPs with a single index: +// BB1: +// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity +// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity +// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity +// %4 = mul i64 %j1, length_of_struct +// %5 = getelementptr i8* %3, i64 %4 +// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset +// %p = bitcast i8* %6 to i32* +// load %p +// ... +// BB2: +// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity +// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity +// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity +// %10 = mul i64 %j2, length_of_struct +// %11 = getelementptr i8* %9, i64 %10 +// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset +// %p2 = bitcast i8* %12 to i32* +// load %p2 +// ... +// +// Lowering GEPs can also benefit other passes such as LICM and CGP. +// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple +// indices if one of the index is variant. If we lower such GEP into invariant +// parts and variant parts, LICM can hoist/sink those invariant parts. +// CGP (CodeGen Prepare) tries to sink address calculations that match the +// target's addressing modes. A GEP with multiple indices may not match and will +// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of +// them. So we end up with a better addressing mode. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include "llvm/IR/IRBuilder.h" + +using namespace llvm; + +static cl::opt<bool> DisableSeparateConstOffsetFromGEP( + "disable-separate-const-offset-from-gep", cl::init(false), + cl::desc("Do not separate the constant offset from a GEP instruction"), + cl::Hidden); +// Setting this flag may emit false positives when the input module already +// contains dead instructions. Therefore, we set it only in unit tests that are +// free of dead code. +static cl::opt<bool> + VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false), + cl::desc("Verify this pass produces no dead code"), + cl::Hidden); + +namespace { + +/// \brief A helper class for separating a constant offset from a GEP index. +/// +/// In real programs, a GEP index may be more complicated than a simple addition +/// of something and a constant integer which can be trivially splitted. For +/// example, to split ((a << 3) | 5) + b, we need to search deeper for the +/// constant offset, so that we can separate the index to (a << 3) + b and 5. +/// +/// Therefore, this class looks into the expression that computes a given GEP +/// index, and tries to find a constant integer that can be hoisted to the +/// outermost level of the expression as an addition. Not every constant in an +/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + +/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, +/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). +class ConstantOffsetExtractor { +public: + /// Extracts a constant offset from the given GEP index. It returns the + /// new index representing the remainder (equal to the original index minus + /// the constant offset), or nullptr if we cannot extract a constant offset. + /// \p Idx The given GEP index + /// \p GEP The given GEP + /// \p UserChainTail Outputs the tail of UserChain so that we can + /// garbage-collect unused instructions in UserChain. + static Value *Extract(Value *Idx, GetElementPtrInst *GEP, + User *&UserChainTail, const DominatorTree *DT); + /// Looks for a constant offset from the given GEP index without extracting + /// it. It returns the numeric value of the extracted constant offset (0 if + /// failed). The meaning of the arguments are the same as Extract. + static int64_t Find(Value *Idx, GetElementPtrInst *GEP, + const DominatorTree *DT); + +private: + ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT) + : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) { + } + /// Searches the expression that computes V for a non-zero constant C s.t. + /// V can be reassociated into the form V' + C. If the searching is + /// successful, returns C and update UserChain as a def-use chain from C to V; + /// otherwise, UserChain is empty. + /// + /// \p V The given expression + /// \p SignExtended Whether V will be sign-extended in the computation of the + /// GEP index + /// \p ZeroExtended Whether V will be zero-extended in the computation of the + /// GEP index + /// \p NonNegative Whether V is guaranteed to be non-negative. For example, + /// an index of an inbounds GEP is guaranteed to be + /// non-negative. Levaraging this, we can better split + /// inbounds GEPs. + APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); + /// A helper function to look into both operands of a binary operator. + APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, + bool ZeroExtended); + /// After finding the constant offset C from the GEP index I, we build a new + /// index I' s.t. I' + C = I. This function builds and returns the new + /// index I' according to UserChain produced by function "find". + /// + /// The building conceptually takes two steps: + /// 1) iteratively distribute s/zext towards the leaves of the expression tree + /// that computes I + /// 2) reassociate the expression tree to the form I' + C. + /// + /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute + /// sext to a, b and 5 so that we have + /// sext(a) + (sext(b) + 5). + /// Then, we reassociate it to + /// (sext(a) + sext(b)) + 5. + /// Given this form, we know I' is sext(a) + sext(b). + Value *rebuildWithoutConstOffset(); + /// After the first step of rebuilding the GEP index without the constant + /// offset, distribute s/zext to the operands of all operators in UserChain. + /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => + /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). + /// + /// The function also updates UserChain to point to new subexpressions after + /// distributing s/zext. e.g., the old UserChain of the above example is + /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), + /// and the new UserChain is + /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> + /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) + /// + /// \p ChainIndex The index to UserChain. ChainIndex is initially + /// UserChain.size() - 1, and is decremented during + /// the recursion. + Value *distributeExtsAndCloneChain(unsigned ChainIndex); + /// Reassociates the GEP index to the form I' + C and returns I'. + Value *removeConstOffset(unsigned ChainIndex); + /// A helper function to apply ExtInsts, a list of s/zext, to value V. + /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function + /// returns "sext i32 (zext i16 V to i32) to i64". + Value *applyExts(Value *V); + + /// A helper function that returns whether we can trace into the operands + /// of binary operator BO for a constant offset. + /// + /// \p SignExtended Whether BO is surrounded by sext + /// \p ZeroExtended Whether BO is surrounded by zext + /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound + /// array index. + bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, + bool NonNegative); + + /// The path from the constant offset to the old GEP index. e.g., if the GEP + /// index is "a * b + (c + 5)". After running function find, UserChain[0] will + /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and + /// UserChain[2] will be the entire expression "a * b + (c + 5)". + /// + /// This path helps to rebuild the new GEP index. + SmallVector<User *, 8> UserChain; + /// A data structure used in rebuildWithoutConstOffset. Contains all + /// sext/zext instructions along UserChain. + SmallVector<CastInst *, 16> ExtInsts; + Instruction *IP; /// Insertion position of cloned instructions. + const DataLayout &DL; + const DominatorTree *DT; +}; + +/// \brief A pass that tries to split every GEP in the function into a variadic +/// base and a constant offset. It is a FunctionPass because searching for the +/// constant offset may inspect other basic blocks. +class SeparateConstOffsetFromGEP : public FunctionPass { +public: + static char ID; + SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr, + bool LowerGEP = false) + : FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) { + initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.setPreservesCFG(); + } + + bool doInitialization(Module &M) override { + DL = &M.getDataLayout(); + return false; + } + bool runOnFunction(Function &F) override; + +private: + /// Tries to split the given GEP into a variadic base and a constant offset, + /// and returns true if the splitting succeeds. + bool splitGEP(GetElementPtrInst *GEP); + /// Lower a GEP with multiple indices into multiple GEPs with a single index. + /// Function splitGEP already split the original GEP into a variadic part and + /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the + /// variadic part into a set of GEPs with a single index and applies + /// AccumulativeByteOffset to it. + /// \p Variadic The variadic part of the original GEP. + /// \p AccumulativeByteOffset The constant offset. + void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, + int64_t AccumulativeByteOffset); + /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form. + /// Function splitGEP already split the original GEP into a variadic part and + /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the + /// variadic part into a set of arithmetic operations and applies + /// AccumulativeByteOffset to it. + /// \p Variadic The variadic part of the original GEP. + /// \p AccumulativeByteOffset The constant offset. + void lowerToArithmetics(GetElementPtrInst *Variadic, + int64_t AccumulativeByteOffset); + /// Finds the constant offset within each index and accumulates them. If + /// LowerGEP is true, it finds in indices of both sequential and structure + /// types, otherwise it only finds in sequential indices. The output + /// NeedsExtraction indicates whether we successfully find a non-zero constant + /// offset. + int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction); + /// Canonicalize array indices to pointer-size integers. This helps to + /// simplify the logic of splitting a GEP. For example, if a + b is a + /// pointer-size integer, we have + /// gep base, a + b = gep (gep base, a), b + /// However, this equality may not hold if the size of a + b is smaller than + /// the pointer size, because LLVM conceptually sign-extends GEP indices to + /// pointer size before computing the address + /// (http://llvm.org/docs/LangRef.html#id181). + /// + /// This canonicalization is very likely already done in clang and + /// instcombine. Therefore, the program will probably remain the same. + /// + /// Returns true if the module changes. + /// + /// Verified in @i32_add in split-gep.ll + bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); + /// Verify F is free of dead code. + void verifyNoDeadCode(Function &F); + + const DataLayout *DL; + const DominatorTree *DT; + const TargetMachine *TM; + /// Whether to lower a GEP with multiple indices into arithmetic operations or + /// multiple GEPs with a single index. + bool LowerGEP; +}; +} // anonymous namespace + +char SeparateConstOffsetFromGEP::ID = 0; +INITIALIZE_PASS_BEGIN( + SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", + "Split GEPs to a variadic base and a constant offset for better CSE", false, + false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END( + SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", + "Split GEPs to a variadic base and a constant offset for better CSE", false, + false) + +FunctionPass * +llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM, + bool LowerGEP) { + return new SeparateConstOffsetFromGEP(TM, LowerGEP); +} + +bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, + bool ZeroExtended, + BinaryOperator *BO, + bool NonNegative) { + // We only consider ADD, SUB and OR, because a non-zero constant found in + // expressions composed of these operations can be easily hoisted as a + // constant offset by reassociation. + if (BO->getOpcode() != Instruction::Add && + BO->getOpcode() != Instruction::Sub && + BO->getOpcode() != Instruction::Or) { + return false; + } + + Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); + // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS + // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). + if (BO->getOpcode() == Instruction::Or && + !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT)) + return false; + + // In addition, tracing into BO requires that its surrounding s/zext (if + // any) is distributable to both operands. + // + // Suppose BO = A op B. + // SignExtended | ZeroExtended | Distributable? + // --------------+--------------+---------------------------------- + // 0 | 0 | true because no s/zext exists + // 0 | 1 | zext(BO) == zext(A) op zext(B) + // 1 | 0 | sext(BO) == sext(A) op sext(B) + // 1 | 1 | zext(sext(BO)) == + // | | zext(sext(A)) op zext(sext(B)) + if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { + // If a + b >= 0 and (a >= 0 or b >= 0), then + // sext(a + b) = sext(a) + sext(b) + // even if the addition is not marked nsw. + // + // Leveraging this invarient, we can trace into an sext'ed inbound GEP + // index if the constant offset is non-negative. + // + // Verified in @sext_add in split-gep.ll. + if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { + if (!ConstLHS->isNegative()) + return true; + } + if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { + if (!ConstRHS->isNegative()) + return true; + } + } + + // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) + // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) + if (BO->getOpcode() == Instruction::Add || + BO->getOpcode() == Instruction::Sub) { + if (SignExtended && !BO->hasNoSignedWrap()) + return false; + if (ZeroExtended && !BO->hasNoUnsignedWrap()) + return false; + } + + return true; +} + +APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, + bool SignExtended, + bool ZeroExtended) { + // BO being non-negative does not shed light on whether its operands are + // non-negative. Clear the NonNegative flag here. + APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, + /* NonNegative */ false); + // If we found a constant offset in the left operand, stop and return that. + // This shortcut might cause us to miss opportunities of combining the + // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. + // However, such cases are probably already handled by -instcombine, + // given this pass runs after the standard optimizations. + if (ConstantOffset != 0) return ConstantOffset; + ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, + /* NonNegative */ false); + // If U is a sub operator, negate the constant offset found in the right + // operand. + if (BO->getOpcode() == Instruction::Sub) + ConstantOffset = -ConstantOffset; + return ConstantOffset; +} + +APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, + bool ZeroExtended, bool NonNegative) { + // TODO(jingyue): We could trace into integer/pointer casts, such as + // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only + // integers because it gives good enough results for our benchmarks. + unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + + // We cannot do much with Values that are not a User, such as an Argument. + User *U = dyn_cast<User>(V); + if (U == nullptr) return APInt(BitWidth, 0); + + APInt ConstantOffset(BitWidth, 0); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + // Hooray, we found it! + ConstantOffset = CI->getValue(); + } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { + // Trace into subexpressions for more hoisting opportunities. + if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) + ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); + } else if (isa<SExtInst>(V)) { + ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, + ZeroExtended, NonNegative).sext(BitWidth); + } else if (isa<ZExtInst>(V)) { + // As an optimization, we can clear the SignExtended flag because + // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. + // + // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. + ConstantOffset = + find(U->getOperand(0), /* SignExtended */ false, + /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); + } + + // If we found a non-zero constant offset, add it to the path for + // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't + // help this optimization. + if (ConstantOffset != 0) + UserChain.push_back(U); + return ConstantOffset; +} + +Value *ConstantOffsetExtractor::applyExts(Value *V) { + Value *Current = V; + // ExtInsts is built in the use-def order. Therefore, we apply them to V + // in the reversed order. + for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) { + if (Constant *C = dyn_cast<Constant>(Current)) { + // If Current is a constant, apply s/zext using ConstantExpr::getCast. + // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. + Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType()); + } else { + Instruction *Ext = (*I)->clone(); + Ext->setOperand(0, Current); + Ext->insertBefore(IP); + Current = Ext; + } + } + return Current; +} + +Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { + distributeExtsAndCloneChain(UserChain.size() - 1); + // Remove all nullptrs (used to be s/zext) from UserChain. + unsigned NewSize = 0; + for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) { + if (*I != nullptr) { + UserChain[NewSize] = *I; + NewSize++; + } + } + UserChain.resize(NewSize); + return removeConstOffset(UserChain.size() - 1); +} + +Value * +ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { + User *U = UserChain[ChainIndex]; + if (ChainIndex == 0) { + assert(isa<ConstantInt>(U)); + // If U is a ConstantInt, applyExts will return a ConstantInt as well. + return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); + } + + if (CastInst *Cast = dyn_cast<CastInst>(U)) { + assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) && + "We only traced into two types of CastInst: sext and zext"); + ExtInsts.push_back(Cast); + UserChain[ChainIndex] = nullptr; + return distributeExtsAndCloneChain(ChainIndex - 1); + } + + // Function find only trace into BinaryOperator and CastInst. + BinaryOperator *BO = cast<BinaryOperator>(U); + // OpNo = which operand of BO is UserChain[ChainIndex - 1] + unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); + Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); + Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); + + BinaryOperator *NewBO = nullptr; + if (OpNo == 0) { + NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, + BO->getName(), IP); + } else { + NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, + BO->getName(), IP); + } + return UserChain[ChainIndex] = NewBO; +} + +Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { + if (ChainIndex == 0) { + assert(isa<ConstantInt>(UserChain[ChainIndex])); + return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); + } + + BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); + assert(BO->getNumUses() <= 1 && + "distributeExtsAndCloneChain clones each BinaryOperator in " + "UserChain, so no one should be used more than " + "once"); + + unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); + assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); + Value *NextInChain = removeConstOffset(ChainIndex - 1); + Value *TheOther = BO->getOperand(1 - OpNo); + + // If NextInChain is 0 and not the LHS of a sub, we can simplify the + // sub-expression to be just TheOther. + if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { + if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) + return TheOther; + } + + BinaryOperator::BinaryOps NewOp = BO->getOpcode(); + if (BO->getOpcode() == Instruction::Or) { + // Rebuild "or" as "add", because "or" may be invalid for the new + // epxression. + // + // For instance, given + // a | (b + 5) where a and b + 5 have no common bits, + // we can extract 5 as the constant offset. + // + // However, reusing the "or" in the new index would give us + // (a | b) + 5 + // which does not equal a | (b + 5). + // + // Replacing the "or" with "add" is fine, because + // a | (b + 5) = a + (b + 5) = (a + b) + 5 + NewOp = Instruction::Add; + } + + BinaryOperator *NewBO; + if (OpNo == 0) { + NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP); + } else { + NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP); + } + NewBO->takeName(BO); + return NewBO; +} + +Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP, + User *&UserChainTail, + const DominatorTree *DT) { + ConstantOffsetExtractor Extractor(GEP, DT); + // Find a non-zero constant offset first. + APInt ConstantOffset = + Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, + GEP->isInBounds()); + if (ConstantOffset == 0) { + UserChainTail = nullptr; + return nullptr; + } + // Separates the constant offset from the GEP index. + Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); + UserChainTail = Extractor.UserChain.back(); + return IdxWithoutConstOffset; +} + +int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP, + const DominatorTree *DT) { + // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. + return ConstantOffsetExtractor(GEP, DT) + .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, + GEP->isInBounds()) + .getSExtValue(); +} + +bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize( + GetElementPtrInst *GEP) { + bool Changed = false; + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + gep_type_iterator GTI = gep_type_begin(*GEP); + for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); + I != E; ++I, ++GTI) { + // Skip struct member indices which must be i32. + if (isa<SequentialType>(*GTI)) { + if ((*I)->getType() != IntPtrTy) { + *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); + Changed = true; + } + } + } + return Changed; +} + +int64_t +SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, + bool &NeedsExtraction) { + NeedsExtraction = false; + int64_t AccumulativeByteOffset = 0; + gep_type_iterator GTI = gep_type_begin(*GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + // Tries to extract a constant offset from this GEP index. + int64_t ConstantOffset = + ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT); + if (ConstantOffset != 0) { + NeedsExtraction = true; + // A GEP may have multiple indices. We accumulate the extracted + // constant offset to a byte offset, and later offset the remainder of + // the original GEP with this byte offset. + AccumulativeByteOffset += + ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); + } + } else if (LowerGEP) { + StructType *StTy = cast<StructType>(*GTI); + uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue(); + // Skip field 0 as the offset is always 0. + if (Field != 0) { + NeedsExtraction = true; + AccumulativeByteOffset += + DL->getStructLayout(StTy)->getElementOffset(Field); + } + } + } + return AccumulativeByteOffset; +} + +void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( + GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) { + IRBuilder<> Builder(Variadic); + Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); + + Type *I8PtrTy = + Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace()); + Value *ResultPtr = Variadic->getOperand(0); + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); + + gep_type_iterator GTI = gep_type_begin(*Variadic); + // Create an ugly GEP for each sequential index. We don't create GEPs for + // structure indices, as they are accumulated in the constant offset index. + for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + Value *Idx = Variadic->getOperand(I); + // Skip zero indices. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) + if (CI->isZero()) + continue; + + APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), + DL->getTypeAllocSize(GTI.getIndexedType())); + // Scale the index by element size. + if (ElementSize != 1) { + if (ElementSize.isPowerOf2()) { + Idx = Builder.CreateShl( + Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); + } else { + Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); + } + } + // Create an ugly GEP with a single index for each index. + ResultPtr = + Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep"); + } + } + + // Create a GEP with the constant offset index. + if (AccumulativeByteOffset != 0) { + Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset); + ResultPtr = + Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep"); + } + if (ResultPtr->getType() != Variadic->getType()) + ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType()); + + Variadic->replaceAllUsesWith(ResultPtr); + Variadic->eraseFromParent(); +} + +void +SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic, + int64_t AccumulativeByteOffset) { + IRBuilder<> Builder(Variadic); + Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); + + Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy); + gep_type_iterator GTI = gep_type_begin(*Variadic); + // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We + // don't create arithmetics for structure indices, as they are accumulated + // in the constant offset index. + for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + Value *Idx = Variadic->getOperand(I); + // Skip zero indices. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) + if (CI->isZero()) + continue; + + APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), + DL->getTypeAllocSize(GTI.getIndexedType())); + // Scale the index by element size. + if (ElementSize != 1) { + if (ElementSize.isPowerOf2()) { + Idx = Builder.CreateShl( + Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); + } else { + Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); + } + } + // Create an ADD for each index. + ResultPtr = Builder.CreateAdd(ResultPtr, Idx); + } + } + + // Create an ADD for the constant offset index. + if (AccumulativeByteOffset != 0) { + ResultPtr = Builder.CreateAdd( + ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset)); + } + + ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType()); + Variadic->replaceAllUsesWith(ResultPtr); + Variadic->eraseFromParent(); +} + +bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { + // Skip vector GEPs. + if (GEP->getType()->isVectorTy()) + return false; + + // The backend can already nicely handle the case where all indices are + // constant. + if (GEP->hasAllConstantIndices()) + return false; + + bool Changed = canonicalizeArrayIndicesToPointerSize(GEP); + + bool NeedsExtraction; + int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); + + if (!NeedsExtraction) + return Changed; + // If LowerGEP is disabled, before really splitting the GEP, check whether the + // backend supports the addressing mode we are about to produce. If no, this + // splitting probably won't be beneficial. + // If LowerGEP is enabled, even the extracted constant offset can not match + // the addressing mode, we can still do optimizations to other lowered parts + // of variable indices. Therefore, we don't check for addressing modes in that + // case. + if (!LowerGEP) { + TargetTransformInfo &TTI = + getAnalysis<TargetTransformInfoWrapperPass>().getTTI( + *GEP->getParent()->getParent()); + if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(), + /*BaseGV=*/nullptr, AccumulativeByteOffset, + /*HasBaseReg=*/true, /*Scale=*/0)) { + return Changed; + } + } + + // Remove the constant offset in each sequential index. The resultant GEP + // computes the variadic base. + // Notice that we don't remove struct field indices here. If LowerGEP is + // disabled, a structure index is not accumulated and we still use the old + // one. If LowerGEP is enabled, a structure index is accumulated in the + // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later + // handle the constant offset and won't need a new structure index. + gep_type_iterator GTI = gep_type_begin(*GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + // Splits this GEP index into a variadic part and a constant offset, and + // uses the variadic part as the new index. + Value *OldIdx = GEP->getOperand(I); + User *UserChainTail; + Value *NewIdx = + ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT); + if (NewIdx != nullptr) { + // Switches to the index with the constant offset removed. + GEP->setOperand(I, NewIdx); + // After switching to the new index, we can garbage-collect UserChain + // and the old index if they are not used. + RecursivelyDeleteTriviallyDeadInstructions(UserChainTail); + RecursivelyDeleteTriviallyDeadInstructions(OldIdx); + } + } + } + + // Clear the inbounds attribute because the new index may be off-bound. + // e.g., + // + // b = add i64 a, 5 + // addr = gep inbounds float* p, i64 b + // + // is transformed to: + // + // addr2 = gep float* p, i64 a + // addr = gep float* addr2, i64 5 + // + // If a is -4, although the old index b is in bounds, the new index a is + // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the + // inbounds keyword is not present, the offsets are added to the base + // address with silently-wrapping two's complement arithmetic". + // Therefore, the final code will be a semantically equivalent. + // + // TODO(jingyue): do some range analysis to keep as many inbounds as + // possible. GEPs with inbounds are more friendly to alias analysis. + GEP->setIsInBounds(false); + + // Lowers a GEP to either GEPs with a single index or arithmetic operations. + if (LowerGEP) { + // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to + // arithmetic operations if the target uses alias analysis in codegen. + if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA()) + lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset); + else + lowerToArithmetics(GEP, AccumulativeByteOffset); + return true; + } + + // No need to create another GEP if the accumulative byte offset is 0. + if (AccumulativeByteOffset == 0) + return true; + + // Offsets the base with the accumulative byte offset. + // + // %gep ; the base + // ... %gep ... + // + // => add the offset + // + // %gep2 ; clone of %gep + // %new.gep = gep %gep2, <offset / sizeof(*%gep)> + // %gep ; will be removed + // ... %gep ... + // + // => replace all uses of %gep with %new.gep and remove %gep + // + // %gep2 ; clone of %gep + // %new.gep = gep %gep2, <offset / sizeof(*%gep)> + // ... %new.gep ... + // + // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an + // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): + // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the + // type of %gep. + // + // %gep2 ; clone of %gep + // %0 = bitcast %gep2 to i8* + // %uglygep = gep %0, <offset> + // %new.gep = bitcast %uglygep to <type of %gep> + // ... %new.gep ... + Instruction *NewGEP = GEP->clone(); + NewGEP->insertBefore(GEP); + + // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned = + // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is + // used with unsigned integers later. + int64_t ElementTypeSizeOfGEP = static_cast<int64_t>( + DL->getTypeAllocSize(GEP->getType()->getElementType())); + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { + // Very likely. As long as %gep is natually aligned, the byte offset we + // extracted should be a multiple of sizeof(*%gep). + int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP; + NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP, + ConstantInt::get(IntPtrTy, Index, true), + GEP->getName(), GEP); + } else { + // Unlikely but possible. For example, + // #pragma pack(1) + // struct S { + // int a[3]; + // int64 b[8]; + // }; + // #pragma pack() + // + // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After + // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is + // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of + // sizeof(int64). + // + // Emit an uglygep in this case. + Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), + GEP->getPointerAddressSpace()); + NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); + NewGEP = GetElementPtrInst::Create( + Type::getInt8Ty(GEP->getContext()), NewGEP, + ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep", + GEP); + if (GEP->getType() != I8PtrTy) + NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); + } + + GEP->replaceAllUsesWith(NewGEP); + GEP->eraseFromParent(); + + return true; +} + +bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + if (DisableSeparateConstOffsetFromGEP) + return false; + + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + + bool Changed = false; + for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) { + for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) { + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) { + Changed |= splitGEP(GEP); + } + // No need to split GEP ConstantExprs because all its indices are constant + // already. + } + } + + if (VerifyNoDeadCode) + verifyNoDeadCode(F); + + return Changed; +} + +void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { + for (auto &B : F) { + for (auto &I : B) { + if (isInstructionTriviallyDead(&I)) { + std::string ErrMessage; + raw_string_ostream RSO(ErrMessage); + RSO << "Dead instruction detected!\n" << I << "\n"; + llvm_unreachable(RSO.str().c_str()); + } + } + } +} |