diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp | 776 |
1 files changed, 776 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp b/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp new file mode 100644 index 0000000..6557ce4 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp @@ -0,0 +1,776 @@ +//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Loop unrolling may create many similar GEPs for array accesses. +// e.g., a 2-level loop +// +// float a[32][32]; // global variable +// +// for (int i = 0; i < 2; ++i) { +// for (int j = 0; j < 2; ++j) { +// ... +// ... = a[x + i][y + j]; +// ... +// } +// } +// +// will probably be unrolled to: +// +// gep %a, 0, %x, %y; load +// gep %a, 0, %x, %y + 1; load +// gep %a, 0, %x + 1, %y; load +// gep %a, 0, %x + 1, %y + 1; load +// +// LLVM's GVN does not use partial redundancy elimination yet, and is thus +// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs +// significant slowdown in targets with limited addressing modes. For instance, +// because the PTX target does not support the reg+reg addressing mode, the +// NVPTX backend emits PTX code that literally computes the pointer address of +// each GEP, wasting tons of registers. It emits the following PTX for the +// first load and similar PTX for other loads. +// +// mov.u32 %r1, %x; +// mov.u32 %r2, %y; +// mul.wide.u32 %rl2, %r1, 128; +// mov.u64 %rl3, a; +// add.s64 %rl4, %rl3, %rl2; +// mul.wide.u32 %rl5, %r2, 4; +// add.s64 %rl6, %rl4, %rl5; +// ld.global.f32 %f1, [%rl6]; +// +// To reduce the register pressure, the optimization implemented in this file +// merges the common part of a group of GEPs, so we can compute each pointer +// address by adding a simple offset to the common part, saving many registers. +// +// It works by splitting each GEP into a variadic base and a constant offset. +// The variadic base can be computed once and reused by multiple GEPs, and the +// constant offsets can be nicely folded into the reg+immediate addressing mode +// (supported by most targets) without using any extra register. +// +// For instance, we transform the four GEPs and four loads in the above example +// into: +// +// base = gep a, 0, x, y +// load base +// laod base + 1 * sizeof(float) +// load base + 32 * sizeof(float) +// load base + 33 * sizeof(float) +// +// Given the transformed IR, a backend that supports the reg+immediate +// addressing mode can easily fold the pointer arithmetics into the loads. For +// example, the NVPTX backend can easily fold the pointer arithmetics into the +// ld.global.f32 instructions, and the resultant PTX uses much fewer registers. +// +// mov.u32 %r1, %tid.x; +// mov.u32 %r2, %tid.y; +// mul.wide.u32 %rl2, %r1, 128; +// mov.u64 %rl3, a; +// add.s64 %rl4, %rl3, %rl2; +// mul.wide.u32 %rl5, %r2, 4; +// add.s64 %rl6, %rl4, %rl5; +// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX +// ld.global.f32 %f2, [%rl6+4]; // much better +// ld.global.f32 %f3, [%rl6+128]; // much better +// ld.global.f32 %f4, [%rl6+132]; // much better +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" + +using namespace llvm; + +static cl::opt<bool> DisableSeparateConstOffsetFromGEP( + "disable-separate-const-offset-from-gep", cl::init(false), + cl::desc("Do not separate the constant offset from a GEP instruction"), + cl::Hidden); + +namespace { + +/// \brief A helper class for separating a constant offset from a GEP index. +/// +/// In real programs, a GEP index may be more complicated than a simple addition +/// of something and a constant integer which can be trivially splitted. For +/// example, to split ((a << 3) | 5) + b, we need to search deeper for the +/// constant offset, so that we can separate the index to (a << 3) + b and 5. +/// +/// Therefore, this class looks into the expression that computes a given GEP +/// index, and tries to find a constant integer that can be hoisted to the +/// outermost level of the expression as an addition. Not every constant in an +/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + +/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, +/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). +class ConstantOffsetExtractor { + public: + /// Extracts a constant offset from the given GEP index. It outputs the + /// numeric value of the extracted constant offset (0 if failed), and a + /// new index representing the remainder (equal to the original index minus + /// the constant offset). + /// \p Idx The given GEP index + /// \p NewIdx The new index to replace (output) + /// \p DL The datalayout of the module + /// \p GEP The given GEP + static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL, + GetElementPtrInst *GEP); + /// Looks for a constant offset without extracting it. The meaning of the + /// arguments and the return value are the same as Extract. + static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP); + + private: + ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt) + : DL(Layout), IP(InsertionPt) {} + /// Searches the expression that computes V for a non-zero constant C s.t. + /// V can be reassociated into the form V' + C. If the searching is + /// successful, returns C and update UserChain as a def-use chain from C to V; + /// otherwise, UserChain is empty. + /// + /// \p V The given expression + /// \p SignExtended Whether V will be sign-extended in the computation of the + /// GEP index + /// \p ZeroExtended Whether V will be zero-extended in the computation of the + /// GEP index + /// \p NonNegative Whether V is guaranteed to be non-negative. For example, + /// an index of an inbounds GEP is guaranteed to be + /// non-negative. Levaraging this, we can better split + /// inbounds GEPs. + APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); + /// A helper function to look into both operands of a binary operator. + APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, + bool ZeroExtended); + /// After finding the constant offset C from the GEP index I, we build a new + /// index I' s.t. I' + C = I. This function builds and returns the new + /// index I' according to UserChain produced by function "find". + /// + /// The building conceptually takes two steps: + /// 1) iteratively distribute s/zext towards the leaves of the expression tree + /// that computes I + /// 2) reassociate the expression tree to the form I' + C. + /// + /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute + /// sext to a, b and 5 so that we have + /// sext(a) + (sext(b) + 5). + /// Then, we reassociate it to + /// (sext(a) + sext(b)) + 5. + /// Given this form, we know I' is sext(a) + sext(b). + Value *rebuildWithoutConstOffset(); + /// After the first step of rebuilding the GEP index without the constant + /// offset, distribute s/zext to the operands of all operators in UserChain. + /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => + /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). + /// + /// The function also updates UserChain to point to new subexpressions after + /// distributing s/zext. e.g., the old UserChain of the above example is + /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), + /// and the new UserChain is + /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> + /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) + /// + /// \p ChainIndex The index to UserChain. ChainIndex is initially + /// UserChain.size() - 1, and is decremented during + /// the recursion. + Value *distributeExtsAndCloneChain(unsigned ChainIndex); + /// Reassociates the GEP index to the form I' + C and returns I'. + Value *removeConstOffset(unsigned ChainIndex); + /// A helper function to apply ExtInsts, a list of s/zext, to value V. + /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function + /// returns "sext i32 (zext i16 V to i32) to i64". + Value *applyExts(Value *V); + + /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0. + bool NoCommonBits(Value *LHS, Value *RHS) const; + /// Computes which bits are known to be one or zero. + /// \p KnownOne Mask of all bits that are known to be one. + /// \p KnownZero Mask of all bits that are known to be zero. + void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const; + /// A helper function that returns whether we can trace into the operands + /// of binary operator BO for a constant offset. + /// + /// \p SignExtended Whether BO is surrounded by sext + /// \p ZeroExtended Whether BO is surrounded by zext + /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound + /// array index. + bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, + bool NonNegative); + + /// The path from the constant offset to the old GEP index. e.g., if the GEP + /// index is "a * b + (c + 5)". After running function find, UserChain[0] will + /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and + /// UserChain[2] will be the entire expression "a * b + (c + 5)". + /// + /// This path helps to rebuild the new GEP index. + SmallVector<User *, 8> UserChain; + /// A data structure used in rebuildWithoutConstOffset. Contains all + /// sext/zext instructions along UserChain. + SmallVector<CastInst *, 16> ExtInsts; + /// The data layout of the module. Used in ComputeKnownBits. + const DataLayout *DL; + Instruction *IP; /// Insertion position of cloned instructions. +}; + +/// \brief A pass that tries to split every GEP in the function into a variadic +/// base and a constant offset. It is a FunctionPass because searching for the +/// constant offset may inspect other basic blocks. +class SeparateConstOffsetFromGEP : public FunctionPass { + public: + static char ID; + SeparateConstOffsetFromGEP() : FunctionPass(ID) { + initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DataLayoutPass>(); + AU.addRequired<TargetTransformInfo>(); + } + + bool doInitialization(Module &M) override { + DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); + if (DLP == nullptr) + report_fatal_error("data layout missing"); + DL = &DLP->getDataLayout(); + return false; + } + + bool runOnFunction(Function &F) override; + + private: + /// Tries to split the given GEP into a variadic base and a constant offset, + /// and returns true if the splitting succeeds. + bool splitGEP(GetElementPtrInst *GEP); + /// Finds the constant offset within each index, and accumulates them. This + /// function only inspects the GEP without changing it. The output + /// NeedsExtraction indicates whether we can extract a non-zero constant + /// offset from any index. + int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction); + /// Canonicalize array indices to pointer-size integers. This helps to + /// simplify the logic of splitting a GEP. For example, if a + b is a + /// pointer-size integer, we have + /// gep base, a + b = gep (gep base, a), b + /// However, this equality may not hold if the size of a + b is smaller than + /// the pointer size, because LLVM conceptually sign-extends GEP indices to + /// pointer size before computing the address + /// (http://llvm.org/docs/LangRef.html#id181). + /// + /// This canonicalization is very likely already done in clang and + /// instcombine. Therefore, the program will probably remain the same. + /// + /// Returns true if the module changes. + /// + /// Verified in @i32_add in split-gep.ll + bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); + + const DataLayout *DL; +}; +} // anonymous namespace + +char SeparateConstOffsetFromGEP::ID = 0; +INITIALIZE_PASS_BEGIN( + SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", + "Split GEPs to a variadic base and a constant offset for better CSE", false, + false) +INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) +INITIALIZE_PASS_DEPENDENCY(DataLayoutPass) +INITIALIZE_PASS_END( + SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", + "Split GEPs to a variadic base and a constant offset for better CSE", false, + false) + +FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() { + return new SeparateConstOffsetFromGEP(); +} + +bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, + bool ZeroExtended, + BinaryOperator *BO, + bool NonNegative) { + // We only consider ADD, SUB and OR, because a non-zero constant found in + // expressions composed of these operations can be easily hoisted as a + // constant offset by reassociation. + if (BO->getOpcode() != Instruction::Add && + BO->getOpcode() != Instruction::Sub && + BO->getOpcode() != Instruction::Or) { + return false; + } + + Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); + // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS + // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). + if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS)) + return false; + + // In addition, tracing into BO requires that its surrounding s/zext (if + // any) is distributable to both operands. + // + // Suppose BO = A op B. + // SignExtended | ZeroExtended | Distributable? + // --------------+--------------+---------------------------------- + // 0 | 0 | true because no s/zext exists + // 0 | 1 | zext(BO) == zext(A) op zext(B) + // 1 | 0 | sext(BO) == sext(A) op sext(B) + // 1 | 1 | zext(sext(BO)) == + // | | zext(sext(A)) op zext(sext(B)) + if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { + // If a + b >= 0 and (a >= 0 or b >= 0), then + // sext(a + b) = sext(a) + sext(b) + // even if the addition is not marked nsw. + // + // Leveraging this invarient, we can trace into an sext'ed inbound GEP + // index if the constant offset is non-negative. + // + // Verified in @sext_add in split-gep.ll. + if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { + if (!ConstLHS->isNegative()) + return true; + } + if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { + if (!ConstRHS->isNegative()) + return true; + } + } + + // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) + // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) + if (BO->getOpcode() == Instruction::Add || + BO->getOpcode() == Instruction::Sub) { + if (SignExtended && !BO->hasNoSignedWrap()) + return false; + if (ZeroExtended && !BO->hasNoUnsignedWrap()) + return false; + } + + return true; +} + +APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, + bool SignExtended, + bool ZeroExtended) { + // BO being non-negative does not shed light on whether its operands are + // non-negative. Clear the NonNegative flag here. + APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, + /* NonNegative */ false); + // If we found a constant offset in the left operand, stop and return that. + // This shortcut might cause us to miss opportunities of combining the + // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. + // However, such cases are probably already handled by -instcombine, + // given this pass runs after the standard optimizations. + if (ConstantOffset != 0) return ConstantOffset; + ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, + /* NonNegative */ false); + // If U is a sub operator, negate the constant offset found in the right + // operand. + if (BO->getOpcode() == Instruction::Sub) + ConstantOffset = -ConstantOffset; + return ConstantOffset; +} + +APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, + bool ZeroExtended, bool NonNegative) { + // TODO(jingyue): We could trace into integer/pointer casts, such as + // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only + // integers because it gives good enough results for our benchmarks. + unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + + // We cannot do much with Values that are not a User, such as an Argument. + User *U = dyn_cast<User>(V); + if (U == nullptr) return APInt(BitWidth, 0); + + APInt ConstantOffset(BitWidth, 0); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + // Hooray, we found it! + ConstantOffset = CI->getValue(); + } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { + // Trace into subexpressions for more hoisting opportunities. + if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) { + ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); + } + } else if (isa<SExtInst>(V)) { + ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, + ZeroExtended, NonNegative).sext(BitWidth); + } else if (isa<ZExtInst>(V)) { + // As an optimization, we can clear the SignExtended flag because + // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. + // + // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. + ConstantOffset = + find(U->getOperand(0), /* SignExtended */ false, + /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); + } + + // If we found a non-zero constant offset, add it to the path for + // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't + // help this optimization. + if (ConstantOffset != 0) + UserChain.push_back(U); + return ConstantOffset; +} + +Value *ConstantOffsetExtractor::applyExts(Value *V) { + Value *Current = V; + // ExtInsts is built in the use-def order. Therefore, we apply them to V + // in the reversed order. + for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) { + if (Constant *C = dyn_cast<Constant>(Current)) { + // If Current is a constant, apply s/zext using ConstantExpr::getCast. + // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. + Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType()); + } else { + Instruction *Ext = (*I)->clone(); + Ext->setOperand(0, Current); + Ext->insertBefore(IP); + Current = Ext; + } + } + return Current; +} + +Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { + distributeExtsAndCloneChain(UserChain.size() - 1); + // Remove all nullptrs (used to be s/zext) from UserChain. + unsigned NewSize = 0; + for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) { + if (*I != nullptr) { + UserChain[NewSize] = *I; + NewSize++; + } + } + UserChain.resize(NewSize); + return removeConstOffset(UserChain.size() - 1); +} + +Value * +ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { + User *U = UserChain[ChainIndex]; + if (ChainIndex == 0) { + assert(isa<ConstantInt>(U)); + // If U is a ConstantInt, applyExts will return a ConstantInt as well. + return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); + } + + if (CastInst *Cast = dyn_cast<CastInst>(U)) { + assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) && + "We only traced into two types of CastInst: sext and zext"); + ExtInsts.push_back(Cast); + UserChain[ChainIndex] = nullptr; + return distributeExtsAndCloneChain(ChainIndex - 1); + } + + // Function find only trace into BinaryOperator and CastInst. + BinaryOperator *BO = cast<BinaryOperator>(U); + // OpNo = which operand of BO is UserChain[ChainIndex - 1] + unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); + Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); + Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); + + BinaryOperator *NewBO = nullptr; + if (OpNo == 0) { + NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, + BO->getName(), IP); + } else { + NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, + BO->getName(), IP); + } + return UserChain[ChainIndex] = NewBO; +} + +Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { + if (ChainIndex == 0) { + assert(isa<ConstantInt>(UserChain[ChainIndex])); + return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); + } + + BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); + unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); + assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); + Value *NextInChain = removeConstOffset(ChainIndex - 1); + Value *TheOther = BO->getOperand(1 - OpNo); + + // If NextInChain is 0 and not the LHS of a sub, we can simplify the + // sub-expression to be just TheOther. + if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { + if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) + return TheOther; + } + + if (BO->getOpcode() == Instruction::Or) { + // Rebuild "or" as "add", because "or" may be invalid for the new + // epxression. + // + // For instance, given + // a | (b + 5) where a and b + 5 have no common bits, + // we can extract 5 as the constant offset. + // + // However, reusing the "or" in the new index would give us + // (a | b) + 5 + // which does not equal a | (b + 5). + // + // Replacing the "or" with "add" is fine, because + // a | (b + 5) = a + (b + 5) = (a + b) + 5 + return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1), + BO->getName(), IP); + } + + // We can reuse BO in this case, because the new expression shares the same + // instruction type and BO is used at most once. + assert(BO->getNumUses() <= 1 && + "distributeExtsAndCloneChain clones each BinaryOperator in " + "UserChain, so no one should be used more than " + "once"); + BO->setOperand(OpNo, NextInChain); + BO->setHasNoSignedWrap(false); + BO->setHasNoUnsignedWrap(false); + // Make sure it appears after all instructions we've inserted so far. + BO->moveBefore(IP); + return BO; +} + +int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx, + const DataLayout *DL, + GetElementPtrInst *GEP) { + ConstantOffsetExtractor Extractor(DL, GEP); + // Find a non-zero constant offset first. + APInt ConstantOffset = + Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, + GEP->isInBounds()); + if (ConstantOffset != 0) { + // Separates the constant offset from the GEP index. + NewIdx = Extractor.rebuildWithoutConstOffset(); + } + return ConstantOffset.getSExtValue(); +} + +int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL, + GetElementPtrInst *GEP) { + // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. + return ConstantOffsetExtractor(DL, GEP) + .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, + GEP->isInBounds()) + .getSExtValue(); +} + +void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne, + APInt &KnownZero) const { + IntegerType *IT = cast<IntegerType>(V->getType()); + KnownOne = APInt(IT->getBitWidth(), 0); + KnownZero = APInt(IT->getBitWidth(), 0); + llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0); +} + +bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const { + assert(LHS->getType() == RHS->getType() && + "LHS and RHS should have the same type"); + APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero; + ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero); + ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero); + return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); +} + +bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize( + GetElementPtrInst *GEP) { + bool Changed = false; + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + gep_type_iterator GTI = gep_type_begin(*GEP); + for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); + I != E; ++I, ++GTI) { + // Skip struct member indices which must be i32. + if (isa<SequentialType>(*GTI)) { + if ((*I)->getType() != IntPtrTy) { + *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); + Changed = true; + } + } + } + return Changed; +} + +int64_t +SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, + bool &NeedsExtraction) { + NeedsExtraction = false; + int64_t AccumulativeByteOffset = 0; + gep_type_iterator GTI = gep_type_begin(*GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + // Tries to extract a constant offset from this GEP index. + int64_t ConstantOffset = + ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP); + if (ConstantOffset != 0) { + NeedsExtraction = true; + // A GEP may have multiple indices. We accumulate the extracted + // constant offset to a byte offset, and later offset the remainder of + // the original GEP with this byte offset. + AccumulativeByteOffset += + ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); + } + } + } + return AccumulativeByteOffset; +} + +bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { + // Skip vector GEPs. + if (GEP->getType()->isVectorTy()) + return false; + + // The backend can already nicely handle the case where all indices are + // constant. + if (GEP->hasAllConstantIndices()) + return false; + + bool Changed = canonicalizeArrayIndicesToPointerSize(GEP); + + bool NeedsExtraction; + int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); + + if (!NeedsExtraction) + return Changed; + // Before really splitting the GEP, check whether the backend supports the + // addressing mode we are about to produce. If no, this splitting probably + // won't be beneficial. + TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>(); + if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(), + /*BaseGV=*/nullptr, AccumulativeByteOffset, + /*HasBaseReg=*/true, /*Scale=*/0)) { + return Changed; + } + + // Remove the constant offset in each GEP index. The resultant GEP computes + // the variadic base. + gep_type_iterator GTI = gep_type_begin(*GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + Value *NewIdx = nullptr; + // Tries to extract a constant offset from this GEP index. + int64_t ConstantOffset = + ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP); + if (ConstantOffset != 0) { + assert(NewIdx != nullptr && + "ConstantOffset != 0 implies NewIdx is set"); + GEP->setOperand(I, NewIdx); + } + } + } + // Clear the inbounds attribute because the new index may be off-bound. + // e.g., + // + // b = add i64 a, 5 + // addr = gep inbounds float* p, i64 b + // + // is transformed to: + // + // addr2 = gep float* p, i64 a + // addr = gep float* addr2, i64 5 + // + // If a is -4, although the old index b is in bounds, the new index a is + // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the + // inbounds keyword is not present, the offsets are added to the base + // address with silently-wrapping two's complement arithmetic". + // Therefore, the final code will be a semantically equivalent. + // + // TODO(jingyue): do some range analysis to keep as many inbounds as + // possible. GEPs with inbounds are more friendly to alias analysis. + GEP->setIsInBounds(false); + + // Offsets the base with the accumulative byte offset. + // + // %gep ; the base + // ... %gep ... + // + // => add the offset + // + // %gep2 ; clone of %gep + // %new.gep = gep %gep2, <offset / sizeof(*%gep)> + // %gep ; will be removed + // ... %gep ... + // + // => replace all uses of %gep with %new.gep and remove %gep + // + // %gep2 ; clone of %gep + // %new.gep = gep %gep2, <offset / sizeof(*%gep)> + // ... %new.gep ... + // + // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an + // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): + // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the + // type of %gep. + // + // %gep2 ; clone of %gep + // %0 = bitcast %gep2 to i8* + // %uglygep = gep %0, <offset> + // %new.gep = bitcast %uglygep to <type of %gep> + // ... %new.gep ... + Instruction *NewGEP = GEP->clone(); + NewGEP->insertBefore(GEP); + + uint64_t ElementTypeSizeOfGEP = + DL->getTypeAllocSize(GEP->getType()->getElementType()); + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { + // Very likely. As long as %gep is natually aligned, the byte offset we + // extracted should be a multiple of sizeof(*%gep). + // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we + // cast ElementTypeSizeOfGEP to signed. + int64_t Index = + AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP); + NewGEP = GetElementPtrInst::Create( + NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP); + } else { + // Unlikely but possible. For example, + // #pragma pack(1) + // struct S { + // int a[3]; + // int64 b[8]; + // }; + // #pragma pack() + // + // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After + // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is + // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of + // sizeof(int64). + // + // Emit an uglygep in this case. + Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), + GEP->getPointerAddressSpace()); + NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); + NewGEP = GetElementPtrInst::Create( + NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), + "uglygep", GEP); + if (GEP->getType() != I8PtrTy) + NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); + } + + GEP->replaceAllUsesWith(NewGEP); + GEP->eraseFromParent(); + + return true; +} + +bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) { + if (DisableSeparateConstOffsetFromGEP) + return false; + + bool Changed = false; + for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) { + for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) { + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) { + Changed |= splitGEP(GEP); + } + // No need to split GEP ConstantExprs because all its indices are constant + // already. + } + } + return Changed; +} |