diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp | 2600 |
1 files changed, 2600 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp new file mode 100644 index 0000000..026fea1 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -0,0 +1,2600 @@ +//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This transformation implements the well known scalar replacement of +// aggregates transformation. This xform breaks up alloca instructions of +// aggregate type (structure or array) into individual alloca instructions for +// each member (if possible). Then, if possible, it transforms the individual +// alloca instructions into nice clean scalar SSA form. +// +// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they +// often interact, especially for C++ programs. As such, iterating between +// SRoA, then Mem2Reg until we run out of things to promote works well. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "scalarrepl" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Analysis/DIBuilder.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +using namespace llvm; + +STATISTIC(NumReplaced, "Number of allocas broken up"); +STATISTIC(NumPromoted, "Number of allocas promoted"); +STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion"); +STATISTIC(NumConverted, "Number of aggregates converted to scalar"); +STATISTIC(NumGlobals, "Number of allocas copied from constant global"); + +namespace { + struct SROA : public FunctionPass { + SROA(int T, bool hasDT, char &ID) + : FunctionPass(ID), HasDomTree(hasDT) { + if (T == -1) + SRThreshold = 128; + else + SRThreshold = T; + } + + bool runOnFunction(Function &F); + + bool performScalarRepl(Function &F); + bool performPromotion(Function &F); + + private: + bool HasDomTree; + TargetData *TD; + + /// DeadInsts - Keep track of instructions we have made dead, so that + /// we can remove them after we are done working. + SmallVector<Value*, 32> DeadInsts; + + /// AllocaInfo - When analyzing uses of an alloca instruction, this captures + /// information about the uses. All these fields are initialized to false + /// and set to true when something is learned. + struct AllocaInfo { + /// The alloca to promote. + AllocaInst *AI; + + /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite + /// looping and avoid redundant work. + SmallPtrSet<PHINode*, 8> CheckedPHIs; + + /// isUnsafe - This is set to true if the alloca cannot be SROA'd. + bool isUnsafe : 1; + + /// isMemCpySrc - This is true if this aggregate is memcpy'd from. + bool isMemCpySrc : 1; + + /// isMemCpyDst - This is true if this aggregate is memcpy'd into. + bool isMemCpyDst : 1; + + /// hasSubelementAccess - This is true if a subelement of the alloca is + /// ever accessed, or false if the alloca is only accessed with mem + /// intrinsics or load/store that only access the entire alloca at once. + bool hasSubelementAccess : 1; + + /// hasALoadOrStore - This is true if there are any loads or stores to it. + /// The alloca may just be accessed with memcpy, for example, which would + /// not set this. + bool hasALoadOrStore : 1; + + explicit AllocaInfo(AllocaInst *ai) + : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false), + hasSubelementAccess(false), hasALoadOrStore(false) {} + }; + + unsigned SRThreshold; + + void MarkUnsafe(AllocaInfo &I, Instruction *User) { + I.isUnsafe = true; + DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n'); + } + + bool isSafeAllocaToScalarRepl(AllocaInst *AI); + + void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info); + void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset, + AllocaInfo &Info); + void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info); + void isSafeMemAccess(uint64_t Offset, uint64_t MemSize, + Type *MemOpType, bool isStore, AllocaInfo &Info, + Instruction *TheAccess, bool AllowWholeAccess); + bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size); + uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, + Type *&IdxTy); + + void DoScalarReplacement(AllocaInst *AI, + std::vector<AllocaInst*> &WorkList); + void DeleteDeadInstructions(); + + void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, + uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, + AllocaInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, + SmallVector<AllocaInst*, 32> &NewElts); + + static MemTransferInst *isOnlyCopiedFromConstantGlobal( + AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete); + }; + + // SROA_DT - SROA that uses DominatorTree. + struct SROA_DT : public SROA { + static char ID; + public: + SROA_DT(int T = -1) : SROA(T, true, ID) { + initializeSROA_DTPass(*PassRegistry::getPassRegistry()); + } + + // getAnalysisUsage - This pass does not require any passes, but we know it + // will not alter the CFG, so say so. + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<DominatorTree>(); + AU.setPreservesCFG(); + } + }; + + // SROA_SSAUp - SROA that uses SSAUpdater. + struct SROA_SSAUp : public SROA { + static char ID; + public: + SROA_SSAUp(int T = -1) : SROA(T, false, ID) { + initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry()); + } + + // getAnalysisUsage - This pass does not require any passes, but we know it + // will not alter the CFG, so say so. + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + } + }; + +} + +char SROA_DT::ID = 0; +char SROA_SSAUp::ID = 0; + +INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl", + "Scalar Replacement of Aggregates (DT)", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_END(SROA_DT, "scalarrepl", + "Scalar Replacement of Aggregates (DT)", false, false) + +INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa", + "Scalar Replacement of Aggregates (SSAUp)", false, false) +INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa", + "Scalar Replacement of Aggregates (SSAUp)", false, false) + +// Public interface to the ScalarReplAggregates pass +FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold, + bool UseDomTree) { + if (UseDomTree) + return new SROA_DT(Threshold); + return new SROA_SSAUp(Threshold); +} + + +//===----------------------------------------------------------------------===// +// Convert To Scalar Optimization. +//===----------------------------------------------------------------------===// + +namespace { +/// ConvertToScalarInfo - This class implements the "Convert To Scalar" +/// optimization, which scans the uses of an alloca and determines if it can +/// rewrite it in terms of a single new alloca that can be mem2reg'd. +class ConvertToScalarInfo { + /// AllocaSize - The size of the alloca being considered in bytes. + unsigned AllocaSize; + const TargetData &TD; + + /// IsNotTrivial - This is set to true if there is some access to the object + /// which means that mem2reg can't promote it. + bool IsNotTrivial; + + /// ScalarKind - Tracks the kind of alloca being considered for promotion, + /// computed based on the uses of the alloca rather than the LLVM type system. + enum { + Unknown, + + // Accesses via GEPs that are consistent with element access of a vector + // type. This will not be converted into a vector unless there is a later + // access using an actual vector type. + ImplicitVector, + + // Accesses via vector operations and GEPs that are consistent with the + // layout of a vector type. + Vector, + + // An integer bag-of-bits with bitwise operations for insertion and + // extraction. Any combination of types can be converted into this kind + // of scalar. + Integer + } ScalarKind; + + /// VectorTy - This tracks the type that we should promote the vector to if + /// it is possible to turn it into a vector. This starts out null, and if it + /// isn't possible to turn into a vector type, it gets set to VoidTy. + VectorType *VectorTy; + + /// HadNonMemTransferAccess - True if there is at least one access to the + /// alloca that is not a MemTransferInst. We don't want to turn structs into + /// large integers unless there is some potential for optimization. + bool HadNonMemTransferAccess; + +public: + explicit ConvertToScalarInfo(unsigned Size, const TargetData &td) + : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown), + VectorTy(0), HadNonMemTransferAccess(false) { } + + AllocaInst *TryConvert(AllocaInst *AI); + +private: + bool CanConvertToScalar(Value *V, uint64_t Offset); + void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset); + bool MergeInVectorType(VectorType *VInTy, uint64_t Offset); + void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset); + + Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType, + uint64_t Offset, IRBuilder<> &Builder); + Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal, + uint64_t Offset, IRBuilder<> &Builder); +}; +} // end anonymous namespace. + + +/// TryConvert - Analyze the specified alloca, and if it is safe to do so, +/// rewrite it to be a new alloca which is mem2reg'able. This returns the new +/// alloca if possible or null if not. +AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) { + // If we can't convert this scalar, or if mem2reg can trivially do it, bail + // out. + if (!CanConvertToScalar(AI, 0) || !IsNotTrivial) + return 0; + + // If an alloca has only memset / memcpy uses, it may still have an Unknown + // ScalarKind. Treat it as an Integer below. + if (ScalarKind == Unknown) + ScalarKind = Integer; + + if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8) + ScalarKind = Integer; + + // If we were able to find a vector type that can handle this with + // insert/extract elements, and if there was at least one use that had + // a vector type, promote this to a vector. We don't want to promote + // random stuff that doesn't use vectors (e.g. <9 x double>) because then + // we just get a lot of insert/extracts. If at least one vector is + // involved, then we probably really do have a union of vector/array. + Type *NewTy; + if (ScalarKind == Vector) { + assert(VectorTy && "Missing type for vector scalar."); + DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = " + << *VectorTy << '\n'); + NewTy = VectorTy; // Use the vector type. + } else { + unsigned BitWidth = AllocaSize * 8; + if ((ScalarKind == ImplicitVector || ScalarKind == Integer) && + !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth)) + return 0; + + DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"); + // Create and insert the integer alloca. + NewTy = IntegerType::get(AI->getContext(), BitWidth); + } + AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin()); + ConvertUsesToScalar(AI, NewAI, 0); + return NewAI; +} + +/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type +/// (VectorTy) so far at the offset specified by Offset (which is specified in +/// bytes). +/// +/// There are two cases we handle here: +/// 1) A union of vector types of the same size and potentially its elements. +/// Here we turn element accesses into insert/extract element operations. +/// This promotes a <4 x float> with a store of float to the third element +/// into a <4 x float> that uses insert element. +/// 2) A fully general blob of memory, which we turn into some (potentially +/// large) integer type with extract and insert operations where the loads +/// and stores would mutate the memory. We mark this by setting VectorTy +/// to VoidTy. +void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In, + uint64_t Offset) { + // If we already decided to turn this into a blob of integer memory, there is + // nothing to be done. + if (ScalarKind == Integer) + return; + + // If this could be contributing to a vector, analyze it. + + // If the In type is a vector that is the same size as the alloca, see if it + // matches the existing VecTy. + if (VectorType *VInTy = dyn_cast<VectorType>(In)) { + if (MergeInVectorType(VInTy, Offset)) + return; + } else if (In->isFloatTy() || In->isDoubleTy() || + (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 && + isPowerOf2_32(In->getPrimitiveSizeInBits()))) { + // Full width accesses can be ignored, because they can always be turned + // into bitcasts. + unsigned EltSize = In->getPrimitiveSizeInBits()/8; + if (EltSize == AllocaSize) + return; + + // If we're accessing something that could be an element of a vector, see + // if the implied vector agrees with what we already have and if Offset is + // compatible with it. + if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 && + (!VectorTy || EltSize == VectorTy->getElementType() + ->getPrimitiveSizeInBits()/8)) { + if (!VectorTy) { + ScalarKind = ImplicitVector; + VectorTy = VectorType::get(In, AllocaSize/EltSize); + } + return; + } + } + + // Otherwise, we have a case that we can't handle with an optimized vector + // form. We can still turn this into a large integer. + ScalarKind = Integer; +} + +/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore, +/// returning true if the type was successfully merged and false otherwise. +bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy, + uint64_t Offset) { + if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) { + // If we're storing/loading a vector of the right size, allow it as a + // vector. If this the first vector we see, remember the type so that + // we know the element size. If this is a subsequent access, ignore it + // even if it is a differing type but the same size. Worst case we can + // bitcast the resultant vectors. + if (!VectorTy) + VectorTy = VInTy; + ScalarKind = Vector; + return true; + } + + return false; +} + +/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all +/// its accesses to a single vector type, return true and set VecTy to +/// the new type. If we could convert the alloca into a single promotable +/// integer, return true but set VecTy to VoidTy. Further, if the use is not a +/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset +/// is the current offset from the base of the alloca being analyzed. +/// +/// If we see at least one access to the value that is as a vector type, set the +/// SawVec flag. +bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) { + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + // Don't break volatile loads. + if (!LI->isSimple()) + return false; + // Don't touch MMX operations. + if (LI->getType()->isX86_MMXTy()) + return false; + HadNonMemTransferAccess = true; + MergeInTypeForLoadOrStore(LI->getType(), Offset); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // Storing the pointer, not into the value? + if (SI->getOperand(0) == V || !SI->isSimple()) return false; + // Don't touch MMX operations. + if (SI->getOperand(0)->getType()->isX86_MMXTy()) + return false; + HadNonMemTransferAccess = true; + MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset); + continue; + } + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { + if (!onlyUsedByLifetimeMarkers(BCI)) + IsNotTrivial = true; // Can't be mem2reg'd. + if (!CanConvertToScalar(BCI, Offset)) + return false; + continue; + } + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { + // If this is a GEP with a variable indices, we can't handle it. + if (!GEP->hasAllConstantIndices()) + return false; + + // Compute the offset that this GEP adds to the pointer. + SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); + if (!GEP->getPointerOperandType()->isPointerTy()) + return false; + uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(), + Indices); + // See if all uses can be converted. + if (!CanConvertToScalar(GEP, Offset+GEPOffset)) + return false; + IsNotTrivial = true; // Can't be mem2reg'd. + HadNonMemTransferAccess = true; + continue; + } + + // If this is a constant sized memset of a constant value (e.g. 0) we can + // handle it. + if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { + // Store of constant value. + if (!isa<ConstantInt>(MSI->getValue())) + return false; + + // Store of constant size. + ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength()); + if (!Len) + return false; + + // If the size differs from the alloca, we can only convert the alloca to + // an integer bag-of-bits. + // FIXME: This should handle all of the cases that are currently accepted + // as vector element insertions. + if (Len->getZExtValue() != AllocaSize || Offset != 0) + ScalarKind = Integer; + + IsNotTrivial = true; // Can't be mem2reg'd. + HadNonMemTransferAccess = true; + continue; + } + + // If this is a memcpy or memmove into or out of the whole allocation, we + // can handle it like a load or store of the scalar type. + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { + ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()); + if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0) + return false; + + IsNotTrivial = true; // Can't be mem2reg'd. + continue; + } + + // If this is a lifetime intrinsic, we can handle it. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { + if (II->getIntrinsicID() == Intrinsic::lifetime_start || + II->getIntrinsicID() == Intrinsic::lifetime_end) { + continue; + } + } + + // Otherwise, we cannot handle this! + return false; + } + + return true; +} + +/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca +/// directly. This happens when we are converting an "integer union" to a +/// single integer scalar, or when we are converting a "vector union" to a +/// vector with insert/extractelement instructions. +/// +/// Offset is an offset from the original alloca, in bits that need to be +/// shifted to the right. By the end of this, there should be no uses of Ptr. +void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, + uint64_t Offset) { + while (!Ptr->use_empty()) { + Instruction *User = cast<Instruction>(Ptr->use_back()); + + if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { + ConvertUsesToScalar(CI, NewAI, Offset); + CI->eraseFromParent(); + continue; + } + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { + // Compute the offset that this GEP adds to the pointer. + SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); + uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(), + Indices); + ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8); + GEP->eraseFromParent(); + continue; + } + + IRBuilder<> Builder(User); + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + // The load is a bit extract from NewAI shifted right by Offset bits. + Value *LoadedVal = Builder.CreateLoad(NewAI); + Value *NewLoadVal + = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder); + LI->replaceAllUsesWith(NewLoadVal); + LI->eraseFromParent(); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + assert(SI->getOperand(0) != Ptr && "Consistency error!"); + Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); + Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset, + Builder); + Builder.CreateStore(New, NewAI); + SI->eraseFromParent(); + + // If the load we just inserted is now dead, then the inserted store + // overwrote the entire thing. + if (Old->use_empty()) + Old->eraseFromParent(); + continue; + } + + // If this is a constant sized memset of a constant value (e.g. 0) we can + // transform it into a store of the expanded constant value. + if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { + assert(MSI->getRawDest() == Ptr && "Consistency error!"); + int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue(); + if (SNumBytes > 0 && (SNumBytes >> 32) == 0) { + unsigned NumBytes = static_cast<unsigned>(SNumBytes); + unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue(); + + // Compute the value replicated the right number of times. + APInt APVal(NumBytes*8, Val); + + // Splat the value if non-zero. + if (Val) + for (unsigned i = 1; i != NumBytes; ++i) + APVal |= APVal << 8; + + Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); + Value *New = ConvertScalar_InsertValue( + ConstantInt::get(User->getContext(), APVal), + Old, Offset, Builder); + Builder.CreateStore(New, NewAI); + + // If the load we just inserted is now dead, then the memset overwrote + // the entire thing. + if (Old->use_empty()) + Old->eraseFromParent(); + } + MSI->eraseFromParent(); + continue; + } + + // If this is a memcpy or memmove into or out of the whole allocation, we + // can handle it like a load or store of the scalar type. + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { + assert(Offset == 0 && "must be store to start of alloca"); + + // If the source and destination are both to the same alloca, then this is + // a noop copy-to-self, just delete it. Otherwise, emit a load and store + // as appropriate. + AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0)); + + if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) { + // Dest must be OrigAI, change this to be a load from the original + // pointer (bitcasted), then a store to our new alloca. + assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?"); + Value *SrcPtr = MTI->getSource(); + PointerType* SPTy = cast<PointerType>(SrcPtr->getType()); + PointerType* AIPTy = cast<PointerType>(NewAI->getType()); + if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) { + AIPTy = PointerType::get(AIPTy->getElementType(), + SPTy->getAddressSpace()); + } + SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy); + + LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval"); + SrcVal->setAlignment(MTI->getAlignment()); + Builder.CreateStore(SrcVal, NewAI); + } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) { + // Src must be OrigAI, change this to be a load from NewAI then a store + // through the original dest pointer (bitcasted). + assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?"); + LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval"); + + PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType()); + PointerType* AIPTy = cast<PointerType>(NewAI->getType()); + if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) { + AIPTy = PointerType::get(AIPTy->getElementType(), + DPTy->getAddressSpace()); + } + Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy); + + StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr); + NewStore->setAlignment(MTI->getAlignment()); + } else { + // Noop transfer. Src == Dst + } + + MTI->eraseFromParent(); + continue; + } + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { + if (II->getIntrinsicID() == Intrinsic::lifetime_start || + II->getIntrinsicID() == Intrinsic::lifetime_end) { + // There's no need to preserve these, as the resulting alloca will be + // converted to a register anyways. + II->eraseFromParent(); + continue; + } + } + + llvm_unreachable("Unsupported operation!"); + } +} + +/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer +/// or vector value FromVal, extracting the bits from the offset specified by +/// Offset. This returns the value, which is of type ToType. +/// +/// This happens when we are converting an "integer union" to a single +/// integer scalar, or when we are converting a "vector union" to a vector with +/// insert/extractelement instructions. +/// +/// Offset is an offset from the original alloca, in bits that need to be +/// shifted to the right. +Value *ConvertToScalarInfo:: +ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, + uint64_t Offset, IRBuilder<> &Builder) { + // If the load is of the whole new alloca, no conversion is needed. + Type *FromType = FromVal->getType(); + if (FromType == ToType && Offset == 0) + return FromVal; + + // If the result alloca is a vector type, this is either an element + // access or a bitcast to another vector type of the same size. + if (VectorType *VTy = dyn_cast<VectorType>(FromType)) { + unsigned FromTypeSize = TD.getTypeAllocSize(FromType); + unsigned ToTypeSize = TD.getTypeAllocSize(ToType); + if (FromTypeSize == ToTypeSize) + return Builder.CreateBitCast(FromVal, ToType); + + // Otherwise it must be an element access. + unsigned Elt = 0; + if (Offset) { + unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType()); + Elt = Offset/EltSize; + assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); + } + // Return the element extracted out of it. + Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt)); + if (V->getType() != ToType) + V = Builder.CreateBitCast(V, ToType); + return V; + } + + // If ToType is a first class aggregate, extract out each of the pieces and + // use insertvalue's to form the FCA. + if (StructType *ST = dyn_cast<StructType>(ToType)) { + const StructLayout &Layout = *TD.getStructLayout(ST); + Value *Res = UndefValue::get(ST); + for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { + Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i), + Offset+Layout.getElementOffsetInBits(i), + Builder); + Res = Builder.CreateInsertValue(Res, Elt, i); + } + return Res; + } + + if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) { + uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType()); + Value *Res = UndefValue::get(AT); + for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { + Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(), + Offset+i*EltSize, Builder); + Res = Builder.CreateInsertValue(Res, Elt, i); + } + return Res; + } + + // Otherwise, this must be a union that was converted to an integer value. + IntegerType *NTy = cast<IntegerType>(FromVal->getType()); + + // If this is a big-endian system and the load is narrower than the + // full alloca type, we need to do a shift to get the right bits. + int ShAmt = 0; + if (TD.isBigEndian()) { + // On big-endian machines, the lowest bit is stored at the bit offset + // from the pointer given by getTypeStoreSizeInBits. This matters for + // integers with a bitwidth that is not a multiple of 8. + ShAmt = TD.getTypeStoreSizeInBits(NTy) - + TD.getTypeStoreSizeInBits(ToType) - Offset; + } else { + ShAmt = Offset; + } + + // Note: we support negative bitwidths (with shl) which are not defined. + // We do this to support (f.e.) loads off the end of a structure where + // only some bits are used. + if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) + FromVal = Builder.CreateLShr(FromVal, + ConstantInt::get(FromVal->getType(), ShAmt)); + else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) + FromVal = Builder.CreateShl(FromVal, + ConstantInt::get(FromVal->getType(), -ShAmt)); + + // Finally, unconditionally truncate the integer to the right width. + unsigned LIBitWidth = TD.getTypeSizeInBits(ToType); + if (LIBitWidth < NTy->getBitWidth()) + FromVal = + Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), + LIBitWidth)); + else if (LIBitWidth > NTy->getBitWidth()) + FromVal = + Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), + LIBitWidth)); + + // If the result is an integer, this is a trunc or bitcast. + if (ToType->isIntegerTy()) { + // Should be done. + } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) { + // Just do a bitcast, we know the sizes match up. + FromVal = Builder.CreateBitCast(FromVal, ToType); + } else { + // Otherwise must be a pointer. + FromVal = Builder.CreateIntToPtr(FromVal, ToType); + } + assert(FromVal->getType() == ToType && "Didn't convert right?"); + return FromVal; +} + +/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer +/// or vector value "Old" at the offset specified by Offset. +/// +/// This happens when we are converting an "integer union" to a +/// single integer scalar, or when we are converting a "vector union" to a +/// vector with insert/extractelement instructions. +/// +/// Offset is an offset from the original alloca, in bits that need to be +/// shifted to the right. +Value *ConvertToScalarInfo:: +ConvertScalar_InsertValue(Value *SV, Value *Old, + uint64_t Offset, IRBuilder<> &Builder) { + // Convert the stored type to the actual type, shift it left to insert + // then 'or' into place. + Type *AllocaType = Old->getType(); + LLVMContext &Context = Old->getContext(); + + if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) { + uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy); + uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType()); + + // Changing the whole vector with memset or with an access of a different + // vector type? + if (ValSize == VecSize) + return Builder.CreateBitCast(SV, AllocaType); + + // Must be an element insertion. + Type *EltTy = VTy->getElementType(); + if (SV->getType() != EltTy) + SV = Builder.CreateBitCast(SV, EltTy); + uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy); + unsigned Elt = Offset/EltSize; + return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt)); + } + + // If SV is a first-class aggregate value, insert each value recursively. + if (StructType *ST = dyn_cast<StructType>(SV->getType())) { + const StructLayout &Layout = *TD.getStructLayout(ST); + for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { + Value *Elt = Builder.CreateExtractValue(SV, i); + Old = ConvertScalar_InsertValue(Elt, Old, + Offset+Layout.getElementOffsetInBits(i), + Builder); + } + return Old; + } + + if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) { + uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType()); + for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { + Value *Elt = Builder.CreateExtractValue(SV, i); + Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder); + } + return Old; + } + + // If SV is a float, convert it to the appropriate integer type. + // If it is a pointer, do the same. + unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType()); + unsigned DestWidth = TD.getTypeSizeInBits(AllocaType); + unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType()); + unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType); + if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy()) + SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth)); + else if (SV->getType()->isPointerTy()) + SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext())); + + // Zero extend or truncate the value if needed. + if (SV->getType() != AllocaType) { + if (SV->getType()->getPrimitiveSizeInBits() < + AllocaType->getPrimitiveSizeInBits()) + SV = Builder.CreateZExt(SV, AllocaType); + else { + // Truncation may be needed if storing more than the alloca can hold + // (undefined behavior). + SV = Builder.CreateTrunc(SV, AllocaType); + SrcWidth = DestWidth; + SrcStoreWidth = DestStoreWidth; + } + } + + // If this is a big-endian system and the store is narrower than the + // full alloca type, we need to do a shift to get the right bits. + int ShAmt = 0; + if (TD.isBigEndian()) { + // On big-endian machines, the lowest bit is stored at the bit offset + // from the pointer given by getTypeStoreSizeInBits. This matters for + // integers with a bitwidth that is not a multiple of 8. + ShAmt = DestStoreWidth - SrcStoreWidth - Offset; + } else { + ShAmt = Offset; + } + + // Note: we support negative bitwidths (with shr) which are not defined. + // We do this to support (f.e.) stores off the end of a structure where + // only some bits in the structure are set. + APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); + if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { + SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt)); + Mask <<= ShAmt; + } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { + SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt)); + Mask = Mask.lshr(-ShAmt); + } + + // Mask out the bits we are about to insert from the old value, and or + // in the new bits. + if (SrcWidth != DestWidth) { + assert(DestWidth > SrcWidth); + Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask"); + SV = Builder.CreateOr(Old, SV, "ins"); + } + return SV; +} + + +//===----------------------------------------------------------------------===// +// SRoA Driver +//===----------------------------------------------------------------------===// + + +bool SROA::runOnFunction(Function &F) { + TD = getAnalysisIfAvailable<TargetData>(); + + bool Changed = performPromotion(F); + + // FIXME: ScalarRepl currently depends on TargetData more than it + // theoretically needs to. It should be refactored in order to support + // target-independent IR. Until this is done, just skip the actual + // scalar-replacement portion of this pass. + if (!TD) return Changed; + + while (1) { + bool LocalChange = performScalarRepl(F); + if (!LocalChange) break; // No need to repromote if no scalarrepl + Changed = true; + LocalChange = performPromotion(F); + if (!LocalChange) break; // No need to re-scalarrepl if no promotion + } + + return Changed; +} + +namespace { +class AllocaPromoter : public LoadAndStorePromoter { + AllocaInst *AI; + DIBuilder *DIB; + SmallVector<DbgDeclareInst *, 4> DDIs; + SmallVector<DbgValueInst *, 4> DVIs; +public: + AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, + DIBuilder *DB) + : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {} + + void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) { + // Remember which alloca we're promoting (for isInstInList). + this->AI = AI; + if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) { + for (Value::use_iterator UI = DebugNode->use_begin(), + E = DebugNode->use_end(); UI != E; ++UI) + if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) + DDIs.push_back(DDI); + else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI)) + DVIs.push_back(DVI); + } + + LoadAndStorePromoter::run(Insts); + AI->eraseFromParent(); + for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(), + E = DDIs.end(); I != E; ++I) { + DbgDeclareInst *DDI = *I; + DDI->eraseFromParent(); + } + for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(), + E = DVIs.end(); I != E; ++I) { + DbgValueInst *DVI = *I; + DVI->eraseFromParent(); + } + } + + virtual bool isInstInList(Instruction *I, + const SmallVectorImpl<Instruction*> &Insts) const { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->getOperand(0) == AI; + return cast<StoreInst>(I)->getPointerOperand() == AI; + } + + virtual void updateDebugInfo(Instruction *Inst) const { + for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), + E = DDIs.end(); I != E; ++I) { + DbgDeclareInst *DDI = *I; + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) + ConvertDebugDeclareToDebugValue(DDI, SI, *DIB); + else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) + ConvertDebugDeclareToDebugValue(DDI, LI, *DIB); + } + for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), + E = DVIs.end(); I != E; ++I) { + DbgValueInst *DVI = *I; + Value *Arg = NULL; + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + // If an argument is zero extended then use argument directly. The ZExt + // may be zapped by an optimization pass in future. + if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) + Arg = dyn_cast<Argument>(ZExt->getOperand(0)); + if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) + Arg = dyn_cast<Argument>(SExt->getOperand(0)); + if (!Arg) + Arg = SI->getOperand(0); + } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { + Arg = LI->getOperand(0); + } else { + continue; + } + Instruction *DbgVal = + DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), + Inst); + DbgVal->setDebugLoc(DVI->getDebugLoc()); + } + } +}; +} // end anon namespace + +/// isSafeSelectToSpeculate - Select instructions that use an alloca and are +/// subsequently loaded can be rewritten to load both input pointers and then +/// select between the result, allowing the load of the alloca to be promoted. +/// From this: +/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other +/// %V = load i32* %P2 +/// to: +/// %V1 = load i32* %Alloca -> will be mem2reg'd +/// %V2 = load i32* %Other +/// %V = select i1 %cond, i32 %V1, i32 %V2 +/// +/// We can do this to a select if its only uses are loads and if the operand to +/// the select can be loaded unconditionally. +static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) { + bool TDerefable = SI->getTrueValue()->isDereferenceablePointer(); + bool FDerefable = SI->getFalseValue()->isDereferenceablePointer(); + + for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end(); + UI != UE; ++UI) { + LoadInst *LI = dyn_cast<LoadInst>(*UI); + if (LI == 0 || !LI->isSimple()) return false; + + // Both operands to the select need to be dereferencable, either absolutely + // (e.g. allocas) or at this point because we can see other accesses to it. + if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI, + LI->getAlignment(), TD)) + return false; + if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI, + LI->getAlignment(), TD)) + return false; + } + + return true; +} + +/// isSafePHIToSpeculate - PHI instructions that use an alloca and are +/// subsequently loaded can be rewritten to load both input pointers in the pred +/// blocks and then PHI the results, allowing the load of the alloca to be +/// promoted. +/// From this: +/// %P2 = phi [i32* %Alloca, i32* %Other] +/// %V = load i32* %P2 +/// to: +/// %V1 = load i32* %Alloca -> will be mem2reg'd +/// ... +/// %V2 = load i32* %Other +/// ... +/// %V = phi [i32 %V1, i32 %V2] +/// +/// We can do this to a select if its only uses are loads and if the operand to +/// the select can be loaded unconditionally. +static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) { + // For now, we can only do this promotion if the load is in the same block as + // the PHI, and if there are no stores between the phi and load. + // TODO: Allow recursive phi users. + // TODO: Allow stores. + BasicBlock *BB = PN->getParent(); + unsigned MaxAlign = 0; + for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end(); + UI != UE; ++UI) { + LoadInst *LI = dyn_cast<LoadInst>(*UI); + if (LI == 0 || !LI->isSimple()) return false; + + // For now we only allow loads in the same block as the PHI. This is a + // common case that happens when instcombine merges two loads through a PHI. + if (LI->getParent() != BB) return false; + + // Ensure that there are no instructions between the PHI and the load that + // could store. + for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI) + if (BBI->mayWriteToMemory()) + return false; + + MaxAlign = std::max(MaxAlign, LI->getAlignment()); + } + + // Okay, we know that we have one or more loads in the same block as the PHI. + // We can transform this if it is safe to push the loads into the predecessor + // blocks. The only thing to watch out for is that we can't put a possibly + // trapping load in the predecessor if it is a critical edge. + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *Pred = PN->getIncomingBlock(i); + Value *InVal = PN->getIncomingValue(i); + + // If the terminator of the predecessor has side-effects (an invoke), + // there is no safe place to put a load in the predecessor. + if (Pred->getTerminator()->mayHaveSideEffects()) + return false; + + // If the value is produced by the terminator of the predecessor + // (an invoke), there is no valid place to put a load in the predecessor. + if (Pred->getTerminator() == InVal) + return false; + + // If the predecessor has a single successor, then the edge isn't critical. + if (Pred->getTerminator()->getNumSuccessors() == 1) + continue; + + // If this pointer is always safe to load, or if we can prove that there is + // already a load in the block, then we can move the load to the pred block. + if (InVal->isDereferenceablePointer() || + isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD)) + continue; + + return false; + } + + return true; +} + + +/// tryToMakeAllocaBePromotable - This returns true if the alloca only has +/// direct (non-volatile) loads and stores to it. If the alloca is close but +/// not quite there, this will transform the code to allow promotion. As such, +/// it is a non-pure predicate. +static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) { + SetVector<Instruction*, SmallVector<Instruction*, 4>, + SmallPtrSet<Instruction*, 4> > InstsToRewrite; + + for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); + UI != UE; ++UI) { + User *U = *UI; + if (LoadInst *LI = dyn_cast<LoadInst>(U)) { + if (!LI->isSimple()) + return false; + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(U)) { + if (SI->getOperand(0) == AI || !SI->isSimple()) + return false; // Don't allow a store OF the AI, only INTO the AI. + continue; + } + + if (SelectInst *SI = dyn_cast<SelectInst>(U)) { + // If the condition being selected on is a constant, fold the select, yes + // this does (rarely) happen early on. + if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) { + Value *Result = SI->getOperand(1+CI->isZero()); + SI->replaceAllUsesWith(Result); + SI->eraseFromParent(); + + // This is very rare and we just scrambled the use list of AI, start + // over completely. + return tryToMakeAllocaBePromotable(AI, TD); + } + + // If it is safe to turn "load (select c, AI, ptr)" into a select of two + // loads, then we can transform this by rewriting the select. + if (!isSafeSelectToSpeculate(SI, TD)) + return false; + + InstsToRewrite.insert(SI); + continue; + } + + if (PHINode *PN = dyn_cast<PHINode>(U)) { + if (PN->use_empty()) { // Dead PHIs can be stripped. + InstsToRewrite.insert(PN); + continue; + } + + // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads + // in the pred blocks, then we can transform this by rewriting the PHI. + if (!isSafePHIToSpeculate(PN, TD)) + return false; + + InstsToRewrite.insert(PN); + continue; + } + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { + if (onlyUsedByLifetimeMarkers(BCI)) { + InstsToRewrite.insert(BCI); + continue; + } + } + + return false; + } + + // If there are no instructions to rewrite, then all uses are load/stores and + // we're done! + if (InstsToRewrite.empty()) + return true; + + // If we have instructions that need to be rewritten for this to be promotable + // take care of it now. + for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) { + if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) { + // This could only be a bitcast used by nothing but lifetime intrinsics. + for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end(); + I != E;) { + Use &U = I.getUse(); + ++I; + cast<Instruction>(U.getUser())->eraseFromParent(); + } + BCI->eraseFromParent(); + continue; + } + + if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) { + // Selects in InstsToRewrite only have load uses. Rewrite each as two + // loads with a new select. + while (!SI->use_empty()) { + LoadInst *LI = cast<LoadInst>(SI->use_back()); + + IRBuilder<> Builder(LI); + LoadInst *TrueLoad = + Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t"); + LoadInst *FalseLoad = + Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f"); + + // Transfer alignment and TBAA info if present. + TrueLoad->setAlignment(LI->getAlignment()); + FalseLoad->setAlignment(LI->getAlignment()); + if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { + TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag); + FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag); + } + + Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad); + V->takeName(LI); + LI->replaceAllUsesWith(V); + LI->eraseFromParent(); + } + + // Now that all the loads are gone, the select is gone too. + SI->eraseFromParent(); + continue; + } + + // Otherwise, we have a PHI node which allows us to push the loads into the + // predecessors. + PHINode *PN = cast<PHINode>(InstsToRewrite[i]); + if (PN->use_empty()) { + PN->eraseFromParent(); + continue; + } + + Type *LoadTy = cast<PointerType>(PN->getType())->getElementType(); + PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(), + PN->getName()+".ld", PN); + + // Get the TBAA tag and alignment to use from one of the loads. It doesn't + // matter which one we get and if any differ, it doesn't matter. + LoadInst *SomeLoad = cast<LoadInst>(PN->use_back()); + MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); + unsigned Align = SomeLoad->getAlignment(); + + // Rewrite all loads of the PN to use the new PHI. + while (!PN->use_empty()) { + LoadInst *LI = cast<LoadInst>(PN->use_back()); + LI->replaceAllUsesWith(NewPN); + LI->eraseFromParent(); + } + + // Inject loads into all of the pred blocks. Keep track of which blocks we + // insert them into in case we have multiple edges from the same block. + DenseMap<BasicBlock*, LoadInst*> InsertedLoads; + + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *Pred = PN->getIncomingBlock(i); + LoadInst *&Load = InsertedLoads[Pred]; + if (Load == 0) { + Load = new LoadInst(PN->getIncomingValue(i), + PN->getName() + "." + Pred->getName(), + Pred->getTerminator()); + Load->setAlignment(Align); + if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); + } + + NewPN->addIncoming(Load, Pred); + } + + PN->eraseFromParent(); + } + + ++NumAdjusted; + return true; +} + +bool SROA::performPromotion(Function &F) { + std::vector<AllocaInst*> Allocas; + DominatorTree *DT = 0; + if (HasDomTree) + DT = &getAnalysis<DominatorTree>(); + + BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function + DIBuilder DIB(*F.getParent()); + bool Changed = false; + SmallVector<Instruction*, 64> Insts; + while (1) { + Allocas.clear(); + + // Find allocas that are safe to promote, by looking at all instructions in + // the entry node + for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca? + if (tryToMakeAllocaBePromotable(AI, TD)) + Allocas.push_back(AI); + + if (Allocas.empty()) break; + + if (HasDomTree) + PromoteMemToReg(Allocas, *DT); + else { + SSAUpdater SSA; + for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { + AllocaInst *AI = Allocas[i]; + + // Build list of instructions to promote. + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); + UI != E; ++UI) + Insts.push_back(cast<Instruction>(*UI)); + AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts); + Insts.clear(); + } + } + NumPromoted += Allocas.size(); + Changed = true; + } + + return Changed; +} + + +/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for +/// SROA. It must be a struct or array type with a small number of elements. +static bool ShouldAttemptScalarRepl(AllocaInst *AI) { + Type *T = AI->getAllocatedType(); + // Do not promote any struct into more than 32 separate vars. + if (StructType *ST = dyn_cast<StructType>(T)) + return ST->getNumElements() <= 32; + // Arrays are much less likely to be safe for SROA; only consider + // them if they are very small. + if (ArrayType *AT = dyn_cast<ArrayType>(T)) + return AT->getNumElements() <= 8; + return false; +} + + +// performScalarRepl - This algorithm is a simple worklist driven algorithm, +// which runs on all of the alloca instructions in the function, removing them +// if they are only used by getelementptr instructions. +// +bool SROA::performScalarRepl(Function &F) { + std::vector<AllocaInst*> WorkList; + + // Scan the entry basic block, adding allocas to the worklist. + BasicBlock &BB = F.getEntryBlock(); + for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) + if (AllocaInst *A = dyn_cast<AllocaInst>(I)) + WorkList.push_back(A); + + // Process the worklist + bool Changed = false; + while (!WorkList.empty()) { + AllocaInst *AI = WorkList.back(); + WorkList.pop_back(); + + // Handle dead allocas trivially. These can be formed by SROA'ing arrays + // with unused elements. + if (AI->use_empty()) { + AI->eraseFromParent(); + Changed = true; + continue; + } + + // If this alloca is impossible for us to promote, reject it early. + if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized()) + continue; + + // Check to see if this allocation is only modified by a memcpy/memmove from + // a constant global. If this is the case, we can change all users to use + // the constant global instead. This is commonly produced by the CFE by + // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' + // is only subsequently read. + SmallVector<Instruction *, 4> ToDelete; + if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) { + DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n'); + DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); + for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) + ToDelete[i]->eraseFromParent(); + Constant *TheSrc = cast<Constant>(Copy->getSource()); + AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); + Copy->eraseFromParent(); // Don't mutate the global. + AI->eraseFromParent(); + ++NumGlobals; + Changed = true; + continue; + } + + // Check to see if we can perform the core SROA transformation. We cannot + // transform the allocation instruction if it is an array allocation + // (allocations OF arrays are ok though), and an allocation of a scalar + // value cannot be decomposed at all. + uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType()); + + // Do not promote [0 x %struct]. + if (AllocaSize == 0) continue; + + // Do not promote any struct whose size is too big. + if (AllocaSize > SRThreshold) continue; + + // If the alloca looks like a good candidate for scalar replacement, and if + // all its users can be transformed, then split up the aggregate into its + // separate elements. + if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) { + DoScalarReplacement(AI, WorkList); + Changed = true; + continue; + } + + // If we can turn this aggregate value (potentially with casts) into a + // simple scalar value that can be mem2reg'd into a register value. + // IsNotTrivial tracks whether this is something that mem2reg could have + // promoted itself. If so, we don't want to transform it needlessly. Note + // that we can't just check based on the type: the alloca may be of an i32 + // but that has pointer arithmetic to set byte 3 of it or something. + if (AllocaInst *NewAI = + ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) { + NewAI->takeName(AI); + AI->eraseFromParent(); + ++NumConverted; + Changed = true; + continue; + } + + // Otherwise, couldn't process this alloca. + } + + return Changed; +} + +/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl +/// predicate, do SROA now. +void SROA::DoScalarReplacement(AllocaInst *AI, + std::vector<AllocaInst*> &WorkList) { + DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n'); + SmallVector<AllocaInst*, 32> ElementAllocas; + if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { + ElementAllocas.reserve(ST->getNumContainedTypes()); + for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { + AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, + AI->getAlignment(), + AI->getName() + "." + Twine(i), AI); + ElementAllocas.push_back(NA); + WorkList.push_back(NA); // Add to worklist for recursive processing + } + } else { + ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); + ElementAllocas.reserve(AT->getNumElements()); + Type *ElTy = AT->getElementType(); + for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { + AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(), + AI->getName() + "." + Twine(i), AI); + ElementAllocas.push_back(NA); + WorkList.push_back(NA); // Add to worklist for recursive processing + } + } + + // Now that we have created the new alloca instructions, rewrite all the + // uses of the old alloca. + RewriteForScalarRepl(AI, AI, 0, ElementAllocas); + + // Now erase any instructions that were made dead while rewriting the alloca. + DeleteDeadInstructions(); + AI->eraseFromParent(); + + ++NumReplaced; +} + +/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list, +/// recursively including all their operands that become trivially dead. +void SROA::DeleteDeadInstructions() { + while (!DeadInsts.empty()) { + Instruction *I = cast<Instruction>(DeadInsts.pop_back_val()); + + for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) + if (Instruction *U = dyn_cast<Instruction>(*OI)) { + // Zero out the operand and see if it becomes trivially dead. + // (But, don't add allocas to the dead instruction list -- they are + // already on the worklist and will be deleted separately.) + *OI = 0; + if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U)) + DeadInsts.push_back(U); + } + + I->eraseFromParent(); + } +} + +/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to +/// performing scalar replacement of alloca AI. The results are flagged in +/// the Info parameter. Offset indicates the position within AI that is +/// referenced by this instruction. +void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, + AllocaInfo &Info) { + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + + if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { + isSafeForScalarRepl(BC, Offset, Info); + } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { + uint64_t GEPOffset = Offset; + isSafeGEP(GEPI, GEPOffset, Info); + if (!Info.isUnsafe) + isSafeForScalarRepl(GEPI, GEPOffset, Info); + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { + ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); + if (Length == 0) + return MarkUnsafe(Info, User); + if (Length->isNegative()) + return MarkUnsafe(Info, User); + + isSafeMemAccess(Offset, Length->getZExtValue(), 0, + UI.getOperandNo() == 0, Info, MI, + true /*AllowWholeAccess*/); + } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + if (!LI->isSimple()) + return MarkUnsafe(Info, User); + Type *LIType = LI->getType(); + isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType), + LIType, false, Info, LI, true /*AllowWholeAccess*/); + Info.hasALoadOrStore = true; + + } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // Store is ok if storing INTO the pointer, not storing the pointer + if (!SI->isSimple() || SI->getOperand(0) == I) + return MarkUnsafe(Info, User); + + Type *SIType = SI->getOperand(0)->getType(); + isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType), + SIType, true, Info, SI, true /*AllowWholeAccess*/); + Info.hasALoadOrStore = true; + } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return MarkUnsafe(Info, User); + } else if (isa<PHINode>(User) || isa<SelectInst>(User)) { + isSafePHISelectUseForScalarRepl(User, Offset, Info); + } else { + return MarkUnsafe(Info, User); + } + if (Info.isUnsafe) return; + } +} + + +/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer +/// derived from the alloca, we can often still split the alloca into elements. +/// This is useful if we have a large alloca where one element is phi'd +/// together somewhere: we can SRoA and promote all the other elements even if +/// we end up not being able to promote this one. +/// +/// All we require is that the uses of the PHI do not index into other parts of +/// the alloca. The most important use case for this is single load and stores +/// that are PHI'd together, which can happen due to code sinking. +void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset, + AllocaInfo &Info) { + // If we've already checked this PHI, don't do it again. + if (PHINode *PN = dyn_cast<PHINode>(I)) + if (!Info.CheckedPHIs.insert(PN)) + return; + + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + + if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { + isSafePHISelectUseForScalarRepl(BC, Offset, Info); + } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { + // Only allow "bitcast" GEPs for simplicity. We could generalize this, + // but would have to prove that we're staying inside of an element being + // promoted. + if (!GEPI->hasAllZeroIndices()) + return MarkUnsafe(Info, User); + isSafePHISelectUseForScalarRepl(GEPI, Offset, Info); + } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + if (!LI->isSimple()) + return MarkUnsafe(Info, User); + Type *LIType = LI->getType(); + isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType), + LIType, false, Info, LI, false /*AllowWholeAccess*/); + Info.hasALoadOrStore = true; + + } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // Store is ok if storing INTO the pointer, not storing the pointer + if (!SI->isSimple() || SI->getOperand(0) == I) + return MarkUnsafe(Info, User); + + Type *SIType = SI->getOperand(0)->getType(); + isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType), + SIType, true, Info, SI, false /*AllowWholeAccess*/); + Info.hasALoadOrStore = true; + } else if (isa<PHINode>(User) || isa<SelectInst>(User)) { + isSafePHISelectUseForScalarRepl(User, Offset, Info); + } else { + return MarkUnsafe(Info, User); + } + if (Info.isUnsafe) return; + } +} + +/// isSafeGEP - Check if a GEP instruction can be handled for scalar +/// replacement. It is safe when all the indices are constant, in-bounds +/// references, and when the resulting offset corresponds to an element within +/// the alloca type. The results are flagged in the Info parameter. Upon +/// return, Offset is adjusted as specified by the GEP indices. +void SROA::isSafeGEP(GetElementPtrInst *GEPI, + uint64_t &Offset, AllocaInfo &Info) { + gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI); + if (GEPIt == E) + return; + + // Walk through the GEP type indices, checking the types that this indexes + // into. + for (; GEPIt != E; ++GEPIt) { + // Ignore struct elements, no extra checking needed for these. + if ((*GEPIt)->isStructTy()) + continue; + + ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand()); + if (!IdxVal) + return MarkUnsafe(Info, GEPI); + } + + // Compute the offset due to this GEP and check if the alloca has a + // component element at that offset. + SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); + Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices); + if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0)) + MarkUnsafe(Info, GEPI); +} + +/// isHomogeneousAggregate - Check if type T is a struct or array containing +/// elements of the same type (which is always true for arrays). If so, +/// return true with NumElts and EltTy set to the number of elements and the +/// element type, respectively. +static bool isHomogeneousAggregate(Type *T, unsigned &NumElts, + Type *&EltTy) { + if (ArrayType *AT = dyn_cast<ArrayType>(T)) { + NumElts = AT->getNumElements(); + EltTy = (NumElts == 0 ? 0 : AT->getElementType()); + return true; + } + if (StructType *ST = dyn_cast<StructType>(T)) { + NumElts = ST->getNumContainedTypes(); + EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0)); + for (unsigned n = 1; n < NumElts; ++n) { + if (ST->getContainedType(n) != EltTy) + return false; + } + return true; + } + return false; +} + +/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are +/// "homogeneous" aggregates with the same element type and number of elements. +static bool isCompatibleAggregate(Type *T1, Type *T2) { + if (T1 == T2) + return true; + + unsigned NumElts1, NumElts2; + Type *EltTy1, *EltTy2; + if (isHomogeneousAggregate(T1, NumElts1, EltTy1) && + isHomogeneousAggregate(T2, NumElts2, EltTy2) && + NumElts1 == NumElts2 && + EltTy1 == EltTy2) + return true; + + return false; +} + +/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI +/// alloca or has an offset and size that corresponds to a component element +/// within it. The offset checked here may have been formed from a GEP with a +/// pointer bitcasted to a different type. +/// +/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a +/// unit. If false, it only allows accesses known to be in a single element. +void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize, + Type *MemOpType, bool isStore, + AllocaInfo &Info, Instruction *TheAccess, + bool AllowWholeAccess) { + // Check if this is a load/store of the entire alloca. + if (Offset == 0 && AllowWholeAccess && + MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) { + // This can be safe for MemIntrinsics (where MemOpType is 0) and integer + // loads/stores (which are essentially the same as the MemIntrinsics with + // regard to copying padding between elements). But, if an alloca is + // flagged as both a source and destination of such operations, we'll need + // to check later for padding between elements. + if (!MemOpType || MemOpType->isIntegerTy()) { + if (isStore) + Info.isMemCpyDst = true; + else + Info.isMemCpySrc = true; + return; + } + // This is also safe for references using a type that is compatible with + // the type of the alloca, so that loads/stores can be rewritten using + // insertvalue/extractvalue. + if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) { + Info.hasSubelementAccess = true; + return; + } + } + // Check if the offset/size correspond to a component within the alloca type. + Type *T = Info.AI->getAllocatedType(); + if (TypeHasComponent(T, Offset, MemSize)) { + Info.hasSubelementAccess = true; + return; + } + + return MarkUnsafe(Info, TheAccess); +} + +/// TypeHasComponent - Return true if T has a component type with the +/// specified offset and size. If Size is zero, do not check the size. +bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) { + Type *EltTy; + uint64_t EltSize; + if (StructType *ST = dyn_cast<StructType>(T)) { + const StructLayout *Layout = TD->getStructLayout(ST); + unsigned EltIdx = Layout->getElementContainingOffset(Offset); + EltTy = ST->getContainedType(EltIdx); + EltSize = TD->getTypeAllocSize(EltTy); + Offset -= Layout->getElementOffset(EltIdx); + } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { + EltTy = AT->getElementType(); + EltSize = TD->getTypeAllocSize(EltTy); + if (Offset >= AT->getNumElements() * EltSize) + return false; + Offset %= EltSize; + } else { + return false; + } + if (Offset == 0 && (Size == 0 || EltSize == Size)) + return true; + // Check if the component spans multiple elements. + if (Offset + Size > EltSize) + return false; + return TypeHasComponent(EltTy, Offset, Size); +} + +/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite +/// the instruction I, which references it, to use the separate elements. +/// Offset indicates the position within AI that is referenced by this +/// instruction. +void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts) { + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI++); + + if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { + RewriteBitCast(BC, AI, Offset, NewElts); + continue; + } + + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { + RewriteGEP(GEPI, AI, Offset, NewElts); + continue; + } + + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { + ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); + uint64_t MemSize = Length->getZExtValue(); + if (Offset == 0 && + MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) + RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts); + // Otherwise the intrinsic can only touch a single element and the + // address operand will be updated, so nothing else needs to be done. + continue; + } + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { + if (II->getIntrinsicID() == Intrinsic::lifetime_start || + II->getIntrinsicID() == Intrinsic::lifetime_end) { + RewriteLifetimeIntrinsic(II, AI, Offset, NewElts); + } + continue; + } + + if (LoadInst *LI = dyn_cast<LoadInst>(User)) { + Type *LIType = LI->getType(); + + if (isCompatibleAggregate(LIType, AI->getAllocatedType())) { + // Replace: + // %res = load { i32, i32 }* %alloc + // with: + // %load.0 = load i32* %alloc.0 + // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 + // %load.1 = load i32* %alloc.1 + // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 + // (Also works for arrays instead of structs) + Value *Insert = UndefValue::get(LIType); + IRBuilder<> Builder(LI); + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + Value *Load = Builder.CreateLoad(NewElts[i], "load"); + Insert = Builder.CreateInsertValue(Insert, Load, i, "insert"); + } + LI->replaceAllUsesWith(Insert); + DeadInsts.push_back(LI); + } else if (LIType->isIntegerTy() && + TD->getTypeAllocSize(LIType) == + TD->getTypeAllocSize(AI->getAllocatedType())) { + // If this is a load of the entire alloca to an integer, rewrite it. + RewriteLoadUserOfWholeAlloca(LI, AI, NewElts); + } + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + Value *Val = SI->getOperand(0); + Type *SIType = Val->getType(); + if (isCompatibleAggregate(SIType, AI->getAllocatedType())) { + // Replace: + // store { i32, i32 } %val, { i32, i32 }* %alloc + // with: + // %val.0 = extractvalue { i32, i32 } %val, 0 + // store i32 %val.0, i32* %alloc.0 + // %val.1 = extractvalue { i32, i32 } %val, 1 + // store i32 %val.1, i32* %alloc.1 + // (Also works for arrays instead of structs) + IRBuilder<> Builder(SI); + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName()); + Builder.CreateStore(Extract, NewElts[i]); + } + DeadInsts.push_back(SI); + } else if (SIType->isIntegerTy() && + TD->getTypeAllocSize(SIType) == + TD->getTypeAllocSize(AI->getAllocatedType())) { + // If this is a store of the entire alloca from an integer, rewrite it. + RewriteStoreUserOfWholeAlloca(SI, AI, NewElts); + } + continue; + } + + if (isa<SelectInst>(User) || isa<PHINode>(User)) { + // If we have a PHI user of the alloca itself (as opposed to a GEP or + // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to + // the new pointer. + if (!isa<AllocaInst>(I)) continue; + + assert(Offset == 0 && NewElts[0] && + "Direct alloca use should have a zero offset"); + + // If we have a use of the alloca, we know the derived uses will be + // utilizing just the first element of the scalarized result. Insert a + // bitcast of the first alloca before the user as required. + AllocaInst *NewAI = NewElts[0]; + BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI); + NewAI->moveBefore(BCI); + TheUse = BCI; + continue; + } + } +} + +/// RewriteBitCast - Update a bitcast reference to the alloca being replaced +/// and recursively continue updating all of its uses. +void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts) { + RewriteForScalarRepl(BC, AI, Offset, NewElts); + if (BC->getOperand(0) != AI) + return; + + // The bitcast references the original alloca. Replace its uses with + // references to the alloca containing offset zero (which is normally at + // index zero, but might not be in cases involving structs with elements + // of size zero). + Type *T = AI->getAllocatedType(); + uint64_t EltOffset = 0; + Type *IdxTy; + uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy); + Instruction *Val = NewElts[Idx]; + if (Val->getType() != BC->getDestTy()) { + Val = new BitCastInst(Val, BC->getDestTy(), "", BC); + Val->takeName(BC); + } + BC->replaceAllUsesWith(Val); + DeadInsts.push_back(BC); +} + +/// FindElementAndOffset - Return the index of the element containing Offset +/// within the specified type, which must be either a struct or an array. +/// Sets T to the type of the element and Offset to the offset within that +/// element. IdxTy is set to the type of the index result to be used in a +/// GEP instruction. +uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, + Type *&IdxTy) { + uint64_t Idx = 0; + if (StructType *ST = dyn_cast<StructType>(T)) { + const StructLayout *Layout = TD->getStructLayout(ST); + Idx = Layout->getElementContainingOffset(Offset); + T = ST->getContainedType(Idx); + Offset -= Layout->getElementOffset(Idx); + IdxTy = Type::getInt32Ty(T->getContext()); + return Idx; + } + ArrayType *AT = cast<ArrayType>(T); + T = AT->getElementType(); + uint64_t EltSize = TD->getTypeAllocSize(T); + Idx = Offset / EltSize; + Offset -= Idx * EltSize; + IdxTy = Type::getInt64Ty(T->getContext()); + return Idx; +} + +/// RewriteGEP - Check if this GEP instruction moves the pointer across +/// elements of the alloca that are being split apart, and if so, rewrite +/// the GEP to be relative to the new element. +void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts) { + uint64_t OldOffset = Offset; + SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); + Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices); + + RewriteForScalarRepl(GEPI, AI, Offset, NewElts); + + Type *T = AI->getAllocatedType(); + Type *IdxTy; + uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy); + if (GEPI->getOperand(0) == AI) + OldIdx = ~0ULL; // Force the GEP to be rewritten. + + T = AI->getAllocatedType(); + uint64_t EltOffset = Offset; + uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy); + + // If this GEP does not move the pointer across elements of the alloca + // being split, then it does not needs to be rewritten. + if (Idx == OldIdx) + return; + + Type *i32Ty = Type::getInt32Ty(AI->getContext()); + SmallVector<Value*, 8> NewArgs; + NewArgs.push_back(Constant::getNullValue(i32Ty)); + while (EltOffset != 0) { + uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy); + NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx)); + } + Instruction *Val = NewElts[Idx]; + if (NewArgs.size() > 1) { + Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI); + Val->takeName(GEPI); + } + if (Val->getType() != GEPI->getType()) + Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI); + GEPI->replaceAllUsesWith(Val); + DeadInsts.push_back(GEPI); +} + +/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it +/// to mark the lifetime of the scalarized memory. +void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, + uint64_t Offset, + SmallVector<AllocaInst*, 32> &NewElts) { + ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0)); + // Put matching lifetime markers on everything from Offset up to + // Offset+OldSize. + Type *AIType = AI->getAllocatedType(); + uint64_t NewOffset = Offset; + Type *IdxTy; + uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy); + + IRBuilder<> Builder(II); + uint64_t Size = OldSize->getLimitedValue(); + + if (NewOffset) { + // Splice the first element and index 'NewOffset' bytes in. SROA will + // split the alloca again later. + Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy()); + V = Builder.CreateGEP(V, Builder.getInt64(NewOffset)); + + IdxTy = NewElts[Idx]->getAllocatedType(); + uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset; + if (EltSize > Size) { + EltSize = Size; + Size = 0; + } else { + Size -= EltSize; + } + if (II->getIntrinsicID() == Intrinsic::lifetime_start) + Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize)); + else + Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize)); + ++Idx; + } + + for (; Idx != NewElts.size() && Size; ++Idx) { + IdxTy = NewElts[Idx]->getAllocatedType(); + uint64_t EltSize = TD->getTypeAllocSize(IdxTy); + if (EltSize > Size) { + EltSize = Size; + Size = 0; + } else { + Size -= EltSize; + } + if (II->getIntrinsicID() == Intrinsic::lifetime_start) + Builder.CreateLifetimeStart(NewElts[Idx], + Builder.getInt64(EltSize)); + else + Builder.CreateLifetimeEnd(NewElts[Idx], + Builder.getInt64(EltSize)); + } + DeadInsts.push_back(II); +} + +/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI. +/// Rewrite it to copy or set the elements of the scalarized memory. +void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, + AllocaInst *AI, + SmallVector<AllocaInst*, 32> &NewElts) { + // If this is a memcpy/memmove, construct the other pointer as the + // appropriate type. The "Other" pointer is the pointer that goes to memory + // that doesn't have anything to do with the alloca that we are promoting. For + // memset, this Value* stays null. + Value *OtherPtr = 0; + unsigned MemAlignment = MI->getAlignment(); + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy + if (Inst == MTI->getRawDest()) + OtherPtr = MTI->getRawSource(); + else { + assert(Inst == MTI->getRawSource()); + OtherPtr = MTI->getRawDest(); + } + } + + // If there is an other pointer, we want to convert it to the same pointer + // type as AI has, so we can GEP through it safely. + if (OtherPtr) { + unsigned AddrSpace = + cast<PointerType>(OtherPtr->getType())->getAddressSpace(); + + // Remove bitcasts and all-zero GEPs from OtherPtr. This is an + // optimization, but it's also required to detect the corner case where + // both pointer operands are referencing the same memory, and where + // OtherPtr may be a bitcast or GEP that currently being rewritten. (This + // function is only called for mem intrinsics that access the whole + // aggregate, so non-zero GEPs are not an issue here.) + OtherPtr = OtherPtr->stripPointerCasts(); + + // Copying the alloca to itself is a no-op: just delete it. + if (OtherPtr == AI || OtherPtr == NewElts[0]) { + // This code will run twice for a no-op memcpy -- once for each operand. + // Put only one reference to MI on the DeadInsts list. + for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(), + E = DeadInsts.end(); I != E; ++I) + if (*I == MI) return; + DeadInsts.push_back(MI); + return; + } + + // If the pointer is not the right type, insert a bitcast to the right + // type. + Type *NewTy = + PointerType::get(AI->getType()->getElementType(), AddrSpace); + + if (OtherPtr->getType() != NewTy) + OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI); + } + + // Process each element of the aggregate. + bool SROADest = MI->getRawDest() == Inst; + + Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext())); + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // If this is a memcpy/memmove, emit a GEP of the other element address. + Value *OtherElt = 0; + unsigned OtherEltAlign = MemAlignment; + + if (OtherPtr) { + Value *Idx[2] = { Zero, + ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) }; + OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, + OtherPtr->getName()+"."+Twine(i), + MI); + uint64_t EltOffset; + PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType()); + Type *OtherTy = OtherPtrTy->getElementType(); + if (StructType *ST = dyn_cast<StructType>(OtherTy)) { + EltOffset = TD->getStructLayout(ST)->getElementOffset(i); + } else { + Type *EltTy = cast<SequentialType>(OtherTy)->getElementType(); + EltOffset = TD->getTypeAllocSize(EltTy)*i; + } + + // The alignment of the other pointer is the guaranteed alignment of the + // element, which is affected by both the known alignment of the whole + // mem intrinsic and the alignment of the element. If the alignment of + // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the + // known alignment is just 4 bytes. + OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset); + } + + Value *EltPtr = NewElts[i]; + Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType(); + + // If we got down to a scalar, insert a load or store as appropriate. + if (EltTy->isSingleValueType()) { + if (isa<MemTransferInst>(MI)) { + if (SROADest) { + // From Other to Alloca. + Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI); + new StoreInst(Elt, EltPtr, MI); + } else { + // From Alloca to Other. + Value *Elt = new LoadInst(EltPtr, "tmp", MI); + new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI); + } + continue; + } + assert(isa<MemSetInst>(MI)); + + // If the stored element is zero (common case), just store a null + // constant. + Constant *StoreVal; + if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) { + if (CI->isZero()) { + StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> + } else { + // If EltTy is a vector type, get the element type. + Type *ValTy = EltTy->getScalarType(); + + // Construct an integer with the right value. + unsigned EltSize = TD->getTypeSizeInBits(ValTy); + APInt OneVal(EltSize, CI->getZExtValue()); + APInt TotalVal(OneVal); + // Set each byte. + for (unsigned i = 0; 8*i < EltSize; ++i) { + TotalVal = TotalVal.shl(8); + TotalVal |= OneVal; + } + + // Convert the integer value to the appropriate type. + StoreVal = ConstantInt::get(CI->getContext(), TotalVal); + if (ValTy->isPointerTy()) + StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); + else if (ValTy->isFloatingPointTy()) + StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); + assert(StoreVal->getType() == ValTy && "Type mismatch!"); + + // If the requested value was a vector constant, create it. + if (EltTy->isVectorTy()) { + unsigned NumElts = cast<VectorType>(EltTy)->getNumElements(); + StoreVal = ConstantVector::getSplat(NumElts, StoreVal); + } + } + new StoreInst(StoreVal, EltPtr, MI); + continue; + } + // Otherwise, if we're storing a byte variable, use a memset call for + // this element. + } + + unsigned EltSize = TD->getTypeAllocSize(EltTy); + if (!EltSize) + continue; + + IRBuilder<> Builder(MI); + + // Finally, insert the meminst for this element. + if (isa<MemSetInst>(MI)) { + Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize, + MI->isVolatile()); + } else { + assert(isa<MemTransferInst>(MI)); + Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr + Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr + + if (isa<MemCpyInst>(MI)) + Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile()); + else + Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile()); + } + } + DeadInsts.push_back(MI); +} + +/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that +/// overwrites the entire allocation. Extract out the pieces of the stored +/// integer and store them individually. +void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, + SmallVector<AllocaInst*, 32> &NewElts){ + // Extract each element out of the integer according to its structure offset + // and store the element value to the individual alloca. + Value *SrcVal = SI->getOperand(0); + Type *AllocaEltTy = AI->getAllocatedType(); + uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy); + + IRBuilder<> Builder(SI); + + // Handle tail padding by extending the operand + if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) + SrcVal = Builder.CreateZExt(SrcVal, + IntegerType::get(SI->getContext(), AllocaSizeBits)); + + DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI + << '\n'); + + // There are two forms here: AI could be an array or struct. Both cases + // have different ways to compute the element offset. + if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { + const StructLayout *Layout = TD->getStructLayout(EltSTy); + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // Get the number of bits to shift SrcVal to get the value. + Type *FieldTy = EltSTy->getElementType(i); + uint64_t Shift = Layout->getElementOffsetInBits(i); + + if (TD->isBigEndian()) + Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy); + + Value *EltVal = SrcVal; + if (Shift) { + Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); + EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); + } + + // Truncate down to an integer of the right size. + uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy); + + // Ignore zero sized fields like {}, they obviously contain no data. + if (FieldSizeBits == 0) continue; + + if (FieldSizeBits != AllocaSizeBits) + EltVal = Builder.CreateTrunc(EltVal, + IntegerType::get(SI->getContext(), FieldSizeBits)); + Value *DestField = NewElts[i]; + if (EltVal->getType() == FieldTy) { + // Storing to an integer field of this size, just do it. + } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) { + // Bitcast to the right element type (for fp/vector values). + EltVal = Builder.CreateBitCast(EltVal, FieldTy); + } else { + // Otherwise, bitcast the dest pointer (for aggregates). + DestField = Builder.CreateBitCast(DestField, + PointerType::getUnqual(EltVal->getType())); + } + new StoreInst(EltVal, DestField, SI); + } + + } else { + ArrayType *ATy = cast<ArrayType>(AllocaEltTy); + Type *ArrayEltTy = ATy->getElementType(); + uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy); + uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy); + + uint64_t Shift; + + if (TD->isBigEndian()) + Shift = AllocaSizeBits-ElementOffset; + else + Shift = 0; + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // Ignore zero sized fields like {}, they obviously contain no data. + if (ElementSizeBits == 0) continue; + + Value *EltVal = SrcVal; + if (Shift) { + Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); + EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); + } + + // Truncate down to an integer of the right size. + if (ElementSizeBits != AllocaSizeBits) + EltVal = Builder.CreateTrunc(EltVal, + IntegerType::get(SI->getContext(), + ElementSizeBits)); + Value *DestField = NewElts[i]; + if (EltVal->getType() == ArrayEltTy) { + // Storing to an integer field of this size, just do it. + } else if (ArrayEltTy->isFloatingPointTy() || + ArrayEltTy->isVectorTy()) { + // Bitcast to the right element type (for fp/vector values). + EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy); + } else { + // Otherwise, bitcast the dest pointer (for aggregates). + DestField = Builder.CreateBitCast(DestField, + PointerType::getUnqual(EltVal->getType())); + } + new StoreInst(EltVal, DestField, SI); + + if (TD->isBigEndian()) + Shift -= ElementOffset; + else + Shift += ElementOffset; + } + } + + DeadInsts.push_back(SI); +} + +/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to +/// an integer. Load the individual pieces to form the aggregate value. +void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, + SmallVector<AllocaInst*, 32> &NewElts) { + // Extract each element out of the NewElts according to its structure offset + // and form the result value. + Type *AllocaEltTy = AI->getAllocatedType(); + uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy); + + DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI + << '\n'); + + // There are two forms here: AI could be an array or struct. Both cases + // have different ways to compute the element offset. + const StructLayout *Layout = 0; + uint64_t ArrayEltBitOffset = 0; + if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { + Layout = TD->getStructLayout(EltSTy); + } else { + Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType(); + ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy); + } + + Value *ResultVal = + Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits)); + + for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { + // Load the value from the alloca. If the NewElt is an aggregate, cast + // the pointer to an integer of the same size before doing the load. + Value *SrcField = NewElts[i]; + Type *FieldTy = + cast<PointerType>(SrcField->getType())->getElementType(); + uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy); + + // Ignore zero sized fields like {}, they obviously contain no data. + if (FieldSizeBits == 0) continue; + + IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), + FieldSizeBits); + if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() && + !FieldTy->isVectorTy()) + SrcField = new BitCastInst(SrcField, + PointerType::getUnqual(FieldIntTy), + "", LI); + SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); + + // If SrcField is a fp or vector of the right size but that isn't an + // integer type, bitcast to an integer so we can shift it. + if (SrcField->getType() != FieldIntTy) + SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI); + + // Zero extend the field to be the same size as the final alloca so that + // we can shift and insert it. + if (SrcField->getType() != ResultVal->getType()) + SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI); + + // Determine the number of bits to shift SrcField. + uint64_t Shift; + if (Layout) // Struct case. + Shift = Layout->getElementOffsetInBits(i); + else // Array case. + Shift = i*ArrayEltBitOffset; + + if (TD->isBigEndian()) + Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); + + if (Shift) { + Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); + SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); + } + + // Don't create an 'or x, 0' on the first iteration. + if (!isa<Constant>(ResultVal) || + !cast<Constant>(ResultVal)->isNullValue()) + ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI); + else + ResultVal = SrcField; + } + + // Handle tail padding by truncating the result + if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits) + ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI); + + LI->replaceAllUsesWith(ResultVal); + DeadInsts.push_back(LI); +} + +/// HasPadding - Return true if the specified type has any structure or +/// alignment padding in between the elements that would be split apart +/// by SROA; return false otherwise. +static bool HasPadding(Type *Ty, const TargetData &TD) { + if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + Ty = ATy->getElementType(); + return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty); + } + + // SROA currently handles only Arrays and Structs. + StructType *STy = cast<StructType>(Ty); + const StructLayout *SL = TD.getStructLayout(STy); + unsigned PrevFieldBitOffset = 0; + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + unsigned FieldBitOffset = SL->getElementOffsetInBits(i); + + // Check to see if there is any padding between this element and the + // previous one. + if (i) { + unsigned PrevFieldEnd = + PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1)); + if (PrevFieldEnd < FieldBitOffset) + return true; + } + PrevFieldBitOffset = FieldBitOffset; + } + // Check for tail padding. + if (unsigned EltCount = STy->getNumElements()) { + unsigned PrevFieldEnd = PrevFieldBitOffset + + TD.getTypeSizeInBits(STy->getElementType(EltCount-1)); + if (PrevFieldEnd < SL->getSizeInBits()) + return true; + } + return false; +} + +/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of +/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe, +/// or 1 if safe after canonicalization has been performed. +bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) { + // Loop over the use list of the alloca. We can only transform it if all of + // the users are safe to transform. + AllocaInfo Info(AI); + + isSafeForScalarRepl(AI, 0, Info); + if (Info.isUnsafe) { + DEBUG(dbgs() << "Cannot transform: " << *AI << '\n'); + return false; + } + + // Okay, we know all the users are promotable. If the aggregate is a memcpy + // source and destination, we have to be careful. In particular, the memcpy + // could be moving around elements that live in structure padding of the LLVM + // types, but may actually be used. In these cases, we refuse to promote the + // struct. + if (Info.isMemCpySrc && Info.isMemCpyDst && + HasPadding(AI->getAllocatedType(), *TD)) + return false; + + // If the alloca never has an access to just *part* of it, but is accessed + // via loads and stores, then we should use ConvertToScalarInfo to promote + // the alloca instead of promoting each piece at a time and inserting fission + // and fusion code. + if (!Info.hasSubelementAccess && Info.hasALoadOrStore) { + // If the struct/array just has one element, use basic SRoA. + if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { + if (ST->getNumElements() > 1) return false; + } else { + if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1) + return false; + } + } + + return true; +} + + + +/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to +/// some part of a constant global variable. This intentionally only accepts +/// constant expressions because we don't can't rewrite arbitrary instructions. +static bool PointsToConstantGlobal(Value *V) { + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return GV->isConstant(); + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) + return PointsToConstantGlobal(CE->getOperand(0)); + return false; +} + +/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) +/// pointer to an alloca. Ignore any reads of the pointer, return false if we +/// see any stores or other unknown uses. If we see pointer arithmetic, keep +/// track of whether it moves the pointer (with isOffset) but otherwise traverse +/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to +/// the alloca, and if the source pointer is a pointer to a constant global, we +/// can optimize this. +static bool +isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, + bool isOffset, + SmallVector<Instruction *, 4> &LifetimeMarkers) { + // We track lifetime intrinsics as we encounter them. If we decide to go + // ahead and replace the value with the global, this lets the caller quickly + // eliminate the markers. + + for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { + User *U = cast<Instruction>(*UI); + + if (LoadInst *LI = dyn_cast<LoadInst>(U)) { + // Ignore non-volatile loads, they are always ok. + if (!LI->isSimple()) return false; + continue; + } + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { + // If uses of the bitcast are ok, we are ok. + if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset, + LifetimeMarkers)) + return false; + continue; + } + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { + // If the GEP has all zero indices, it doesn't offset the pointer. If it + // doesn't, it does. + if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, + isOffset || !GEP->hasAllZeroIndices(), + LifetimeMarkers)) + return false; + continue; + } + + if (CallSite CS = U) { + // If this is the function being called then we treat it like a load and + // ignore it. + if (CS.isCallee(UI)) + continue; + + // If this is a readonly/readnone call site, then we know it is just a + // load (but one that potentially returns the value itself), so we can + // ignore it if we know that the value isn't captured. + unsigned ArgNo = CS.getArgumentNo(UI); + if (CS.onlyReadsMemory() && + (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo))) + continue; + + // If this is being passed as a byval argument, the caller is making a + // copy, so it is only a read of the alloca. + if (CS.isByValArgument(ArgNo)) + continue; + } + + // Lifetime intrinsics can be handled by the caller. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { + if (II->getIntrinsicID() == Intrinsic::lifetime_start || + II->getIntrinsicID() == Intrinsic::lifetime_end) { + assert(II->use_empty() && "Lifetime markers have no result to use!"); + LifetimeMarkers.push_back(II); + continue; + } + } + + // If this is isn't our memcpy/memmove, reject it as something we can't + // handle. + MemTransferInst *MI = dyn_cast<MemTransferInst>(U); + if (MI == 0) + return false; + + // If the transfer is using the alloca as a source of the transfer, then + // ignore it since it is a load (unless the transfer is volatile). + if (UI.getOperandNo() == 1) { + if (MI->isVolatile()) return false; + continue; + } + + // If we already have seen a copy, reject the second one. + if (TheCopy) return false; + + // If the pointer has been offset from the start of the alloca, we can't + // safely handle this. + if (isOffset) return false; + + // If the memintrinsic isn't using the alloca as the dest, reject it. + if (UI.getOperandNo() != 0) return false; + + // If the source of the memcpy/move is not a constant global, reject it. + if (!PointsToConstantGlobal(MI->getSource())) + return false; + + // Otherwise, the transform is safe. Remember the copy instruction. + TheCopy = MI; + } + return true; +} + +/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only +/// modified by a copy from a constant global. If we can prove this, we can +/// replace any uses of the alloca with uses of the global directly. +MemTransferInst * +SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI, + SmallVector<Instruction*, 4> &ToDelete) { + MemTransferInst *TheCopy = 0; + if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete)) + return TheCopy; + return 0; +} |