summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp1835
1 files changed, 1835 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
new file mode 100644
index 0000000..fee317d
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -0,0 +1,1835 @@
+//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation implements the well known scalar replacement of
+// aggregates transformation. This xform breaks up alloca instructions of
+// aggregate type (structure or array) into individual alloca instructions for
+// each member (if possible). Then, if possible, it transforms the individual
+// alloca instructions into nice clean scalar SSA form.
+//
+// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
+// often interact, especially for C++ programs. As such, iterating between
+// SRoA, then Mem2Reg until we run out of things to promote works well.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "scalarrepl"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+STATISTIC(NumReplaced, "Number of allocas broken up");
+STATISTIC(NumPromoted, "Number of allocas promoted");
+STATISTIC(NumConverted, "Number of aggregates converted to scalar");
+STATISTIC(NumGlobals, "Number of allocas copied from constant global");
+
+namespace {
+ struct SROA : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ explicit SROA(signed T = -1) : FunctionPass(ID) {
+ if (T == -1)
+ SRThreshold = 128;
+ else
+ SRThreshold = T;
+ }
+
+ bool runOnFunction(Function &F);
+
+ bool performScalarRepl(Function &F);
+ bool performPromotion(Function &F);
+
+ // getAnalysisUsage - This pass does not require any passes, but we know it
+ // will not alter the CFG, so say so.
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<DominanceFrontier>();
+ AU.setPreservesCFG();
+ }
+
+ private:
+ TargetData *TD;
+
+ /// DeadInsts - Keep track of instructions we have made dead, so that
+ /// we can remove them after we are done working.
+ SmallVector<Value*, 32> DeadInsts;
+
+ /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
+ /// information about the uses. All these fields are initialized to false
+ /// and set to true when something is learned.
+ struct AllocaInfo {
+ /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
+ bool isUnsafe : 1;
+
+ /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
+ bool isMemCpySrc : 1;
+
+ /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
+ bool isMemCpyDst : 1;
+
+ AllocaInfo()
+ : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
+ };
+
+ unsigned SRThreshold;
+
+ void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
+
+ bool isSafeAllocaToScalarRepl(AllocaInst *AI);
+
+ void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
+ AllocaInfo &Info);
+ void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
+ AllocaInfo &Info);
+ void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
+ const Type *MemOpType, bool isStore, AllocaInfo &Info);
+ bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
+ uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
+ const Type *&IdxTy);
+
+ void DoScalarReplacement(AllocaInst *AI,
+ std::vector<AllocaInst*> &WorkList);
+ void DeleteDeadInstructions();
+
+ void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
+ SmallVector<AllocaInst*, 32> &NewElts);
+ void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
+ SmallVector<AllocaInst*, 32> &NewElts);
+ void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
+ SmallVector<AllocaInst*, 32> &NewElts);
+ void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+ AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts);
+ void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts);
+ void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts);
+
+ static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
+ };
+}
+
+char SROA::ID = 0;
+INITIALIZE_PASS(SROA, "scalarrepl",
+ "Scalar Replacement of Aggregates", false, false);
+
+// Public interface to the ScalarReplAggregates pass
+FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
+ return new SROA(Threshold);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Convert To Scalar Optimization.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
+/// optimization, which scans the uses of an alloca and determines if it can
+/// rewrite it in terms of a single new alloca that can be mem2reg'd.
+class ConvertToScalarInfo {
+ /// AllocaSize - The size of the alloca being considered.
+ unsigned AllocaSize;
+ const TargetData &TD;
+
+ /// IsNotTrivial - This is set to true if there is some access to the object
+ /// which means that mem2reg can't promote it.
+ bool IsNotTrivial;
+
+ /// VectorTy - This tracks the type that we should promote the vector to if
+ /// it is possible to turn it into a vector. This starts out null, and if it
+ /// isn't possible to turn into a vector type, it gets set to VoidTy.
+ const Type *VectorTy;
+
+ /// HadAVector - True if there is at least one vector access to the alloca.
+ /// We don't want to turn random arrays into vectors and use vector element
+ /// insert/extract, but if there are element accesses to something that is
+ /// also declared as a vector, we do want to promote to a vector.
+ bool HadAVector;
+
+public:
+ explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
+ : AllocaSize(Size), TD(td) {
+ IsNotTrivial = false;
+ VectorTy = 0;
+ HadAVector = false;
+ }
+
+ AllocaInst *TryConvert(AllocaInst *AI);
+
+private:
+ bool CanConvertToScalar(Value *V, uint64_t Offset);
+ void MergeInType(const Type *In, uint64_t Offset);
+ void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
+
+ Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
+ uint64_t Offset, IRBuilder<> &Builder);
+ Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
+ uint64_t Offset, IRBuilder<> &Builder);
+};
+} // end anonymous namespace.
+
+
+/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
+/// allowed to form. We do this to avoid MMX types, which is a complete hack,
+/// but is required until the backend is fixed.
+static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
+ StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
+ if (!Triple.startswith("i386") &&
+ !Triple.startswith("x86_64"))
+ return false;
+
+ // Reject all the MMX vector types.
+ switch (VTy->getNumElements()) {
+ default: return false;
+ case 1: return VTy->getElementType()->isIntegerTy(64);
+ case 2: return VTy->getElementType()->isIntegerTy(32);
+ case 4: return VTy->getElementType()->isIntegerTy(16);
+ case 8: return VTy->getElementType()->isIntegerTy(8);
+ }
+}
+
+
+/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
+/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
+/// alloca if possible or null if not.
+AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
+ // If we can't convert this scalar, or if mem2reg can trivially do it, bail
+ // out.
+ if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
+ return 0;
+
+ // If we were able to find a vector type that can handle this with
+ // insert/extract elements, and if there was at least one use that had
+ // a vector type, promote this to a vector. We don't want to promote
+ // random stuff that doesn't use vectors (e.g. <9 x double>) because then
+ // we just get a lot of insert/extracts. If at least one vector is
+ // involved, then we probably really do have a union of vector/array.
+ const Type *NewTy;
+ if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
+ !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
+ DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
+ << *VectorTy << '\n');
+ NewTy = VectorTy; // Use the vector type.
+ } else {
+ DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
+ // Create and insert the integer alloca.
+ NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
+ }
+ AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
+ ConvertUsesToScalar(AI, NewAI, 0);
+ return NewAI;
+}
+
+/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
+/// so far at the offset specified by Offset (which is specified in bytes).
+///
+/// There are two cases we handle here:
+/// 1) A union of vector types of the same size and potentially its elements.
+/// Here we turn element accesses into insert/extract element operations.
+/// This promotes a <4 x float> with a store of float to the third element
+/// into a <4 x float> that uses insert element.
+/// 2) A fully general blob of memory, which we turn into some (potentially
+/// large) integer type with extract and insert operations where the loads
+/// and stores would mutate the memory. We mark this by setting VectorTy
+/// to VoidTy.
+void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
+ // If we already decided to turn this into a blob of integer memory, there is
+ // nothing to be done.
+ if (VectorTy && VectorTy->isVoidTy())
+ return;
+
+ // If this could be contributing to a vector, analyze it.
+
+ // If the In type is a vector that is the same size as the alloca, see if it
+ // matches the existing VecTy.
+ if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
+ // Remember if we saw a vector type.
+ HadAVector = true;
+
+ if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
+ // If we're storing/loading a vector of the right size, allow it as a
+ // vector. If this the first vector we see, remember the type so that
+ // we know the element size. If this is a subsequent access, ignore it
+ // even if it is a differing type but the same size. Worst case we can
+ // bitcast the resultant vectors.
+ if (VectorTy == 0)
+ VectorTy = VInTy;
+ return;
+ }
+ } else if (In->isFloatTy() || In->isDoubleTy() ||
+ (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
+ isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
+ // If we're accessing something that could be an element of a vector, see
+ // if the implied vector agrees with what we already have and if Offset is
+ // compatible with it.
+ unsigned EltSize = In->getPrimitiveSizeInBits()/8;
+ if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
+ (VectorTy == 0 ||
+ cast<VectorType>(VectorTy)->getElementType()
+ ->getPrimitiveSizeInBits()/8 == EltSize)) {
+ if (VectorTy == 0)
+ VectorTy = VectorType::get(In, AllocaSize/EltSize);
+ return;
+ }
+ }
+
+ // Otherwise, we have a case that we can't handle with an optimized vector
+ // form. We can still turn this into a large integer.
+ VectorTy = Type::getVoidTy(In->getContext());
+}
+
+/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
+/// its accesses to a single vector type, return true and set VecTy to
+/// the new type. If we could convert the alloca into a single promotable
+/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
+/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
+/// is the current offset from the base of the alloca being analyzed.
+///
+/// If we see at least one access to the value that is as a vector type, set the
+/// SawVec flag.
+bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ // Don't break volatile loads.
+ if (LI->isVolatile())
+ return false;
+ MergeInType(LI->getType(), Offset);
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ // Storing the pointer, not into the value?
+ if (SI->getOperand(0) == V || SI->isVolatile()) return false;
+ MergeInType(SI->getOperand(0)->getType(), Offset);
+ continue;
+ }
+
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
+ IsNotTrivial = true; // Can't be mem2reg'd.
+ if (!CanConvertToScalar(BCI, Offset))
+ return false;
+ continue;
+ }
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
+ // If this is a GEP with a variable indices, we can't handle it.
+ if (!GEP->hasAllConstantIndices())
+ return false;
+
+ // Compute the offset that this GEP adds to the pointer.
+ SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
+ uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
+ &Indices[0], Indices.size());
+ // See if all uses can be converted.
+ if (!CanConvertToScalar(GEP, Offset+GEPOffset))
+ return false;
+ IsNotTrivial = true; // Can't be mem2reg'd.
+ continue;
+ }
+
+ // If this is a constant sized memset of a constant value (e.g. 0) we can
+ // handle it.
+ if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
+ // Store of constant value and constant size.
+ if (!isa<ConstantInt>(MSI->getValue()) ||
+ !isa<ConstantInt>(MSI->getLength()))
+ return false;
+ IsNotTrivial = true; // Can't be mem2reg'd.
+ continue;
+ }
+
+ // If this is a memcpy or memmove into or out of the whole allocation, we
+ // can handle it like a load or store of the scalar type.
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
+ ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
+ if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
+ return false;
+
+ IsNotTrivial = true; // Can't be mem2reg'd.
+ continue;
+ }
+
+ // Otherwise, we cannot handle this!
+ return false;
+ }
+
+ return true;
+}
+
+/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
+/// directly. This happens when we are converting an "integer union" to a
+/// single integer scalar, or when we are converting a "vector union" to a
+/// vector with insert/extractelement instructions.
+///
+/// Offset is an offset from the original alloca, in bits that need to be
+/// shifted to the right. By the end of this, there should be no uses of Ptr.
+void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
+ uint64_t Offset) {
+ while (!Ptr->use_empty()) {
+ Instruction *User = cast<Instruction>(Ptr->use_back());
+
+ if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
+ ConvertUsesToScalar(CI, NewAI, Offset);
+ CI->eraseFromParent();
+ continue;
+ }
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
+ // Compute the offset that this GEP adds to the pointer.
+ SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
+ uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
+ &Indices[0], Indices.size());
+ ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
+ GEP->eraseFromParent();
+ continue;
+ }
+
+ IRBuilder<> Builder(User->getParent(), User);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ // The load is a bit extract from NewAI shifted right by Offset bits.
+ Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
+ Value *NewLoadVal
+ = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
+ LI->replaceAllUsesWith(NewLoadVal);
+ LI->eraseFromParent();
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ assert(SI->getOperand(0) != Ptr && "Consistency error!");
+ Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
+ Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
+ Builder);
+ Builder.CreateStore(New, NewAI);
+ SI->eraseFromParent();
+
+ // If the load we just inserted is now dead, then the inserted store
+ // overwrote the entire thing.
+ if (Old->use_empty())
+ Old->eraseFromParent();
+ continue;
+ }
+
+ // If this is a constant sized memset of a constant value (e.g. 0) we can
+ // transform it into a store of the expanded constant value.
+ if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
+ assert(MSI->getRawDest() == Ptr && "Consistency error!");
+ unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
+ if (NumBytes != 0) {
+ unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
+
+ // Compute the value replicated the right number of times.
+ APInt APVal(NumBytes*8, Val);
+
+ // Splat the value if non-zero.
+ if (Val)
+ for (unsigned i = 1; i != NumBytes; ++i)
+ APVal |= APVal << 8;
+
+ Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
+ Value *New = ConvertScalar_InsertValue(
+ ConstantInt::get(User->getContext(), APVal),
+ Old, Offset, Builder);
+ Builder.CreateStore(New, NewAI);
+
+ // If the load we just inserted is now dead, then the memset overwrote
+ // the entire thing.
+ if (Old->use_empty())
+ Old->eraseFromParent();
+ }
+ MSI->eraseFromParent();
+ continue;
+ }
+
+ // If this is a memcpy or memmove into or out of the whole allocation, we
+ // can handle it like a load or store of the scalar type.
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
+ assert(Offset == 0 && "must be store to start of alloca");
+
+ // If the source and destination are both to the same alloca, then this is
+ // a noop copy-to-self, just delete it. Otherwise, emit a load and store
+ // as appropriate.
+ AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject(0));
+
+ if (MTI->getSource()->getUnderlyingObject(0) != OrigAI) {
+ // Dest must be OrigAI, change this to be a load from the original
+ // pointer (bitcasted), then a store to our new alloca.
+ assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
+ Value *SrcPtr = MTI->getSource();
+ SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
+
+ LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
+ SrcVal->setAlignment(MTI->getAlignment());
+ Builder.CreateStore(SrcVal, NewAI);
+ } else if (MTI->getDest()->getUnderlyingObject(0) != OrigAI) {
+ // Src must be OrigAI, change this to be a load from NewAI then a store
+ // through the original dest pointer (bitcasted).
+ assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
+ LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
+
+ Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
+ StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
+ NewStore->setAlignment(MTI->getAlignment());
+ } else {
+ // Noop transfer. Src == Dst
+ }
+
+ MTI->eraseFromParent();
+ continue;
+ }
+
+ llvm_unreachable("Unsupported operation!");
+ }
+}
+
+/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
+/// or vector value FromVal, extracting the bits from the offset specified by
+/// Offset. This returns the value, which is of type ToType.
+///
+/// This happens when we are converting an "integer union" to a single
+/// integer scalar, or when we are converting a "vector union" to a vector with
+/// insert/extractelement instructions.
+///
+/// Offset is an offset from the original alloca, in bits that need to be
+/// shifted to the right.
+Value *ConvertToScalarInfo::
+ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
+ uint64_t Offset, IRBuilder<> &Builder) {
+ // If the load is of the whole new alloca, no conversion is needed.
+ if (FromVal->getType() == ToType && Offset == 0)
+ return FromVal;
+
+ // If the result alloca is a vector type, this is either an element
+ // access or a bitcast to another vector type of the same size.
+ if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
+ if (ToType->isVectorTy())
+ return Builder.CreateBitCast(FromVal, ToType, "tmp");
+
+ // Otherwise it must be an element access.
+ unsigned Elt = 0;
+ if (Offset) {
+ unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+ Elt = Offset/EltSize;
+ assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
+ }
+ // Return the element extracted out of it.
+ Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
+ Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
+ if (V->getType() != ToType)
+ V = Builder.CreateBitCast(V, ToType, "tmp");
+ return V;
+ }
+
+ // If ToType is a first class aggregate, extract out each of the pieces and
+ // use insertvalue's to form the FCA.
+ if (const StructType *ST = dyn_cast<StructType>(ToType)) {
+ const StructLayout &Layout = *TD.getStructLayout(ST);
+ Value *Res = UndefValue::get(ST);
+ for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
+ Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
+ Offset+Layout.getElementOffsetInBits(i),
+ Builder);
+ Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
+ }
+ return Res;
+ }
+
+ if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
+ uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+ Value *Res = UndefValue::get(AT);
+ for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+ Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
+ Offset+i*EltSize, Builder);
+ Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
+ }
+ return Res;
+ }
+
+ // Otherwise, this must be a union that was converted to an integer value.
+ const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
+
+ // If this is a big-endian system and the load is narrower than the
+ // full alloca type, we need to do a shift to get the right bits.
+ int ShAmt = 0;
+ if (TD.isBigEndian()) {
+ // On big-endian machines, the lowest bit is stored at the bit offset
+ // from the pointer given by getTypeStoreSizeInBits. This matters for
+ // integers with a bitwidth that is not a multiple of 8.
+ ShAmt = TD.getTypeStoreSizeInBits(NTy) -
+ TD.getTypeStoreSizeInBits(ToType) - Offset;
+ } else {
+ ShAmt = Offset;
+ }
+
+ // Note: we support negative bitwidths (with shl) which are not defined.
+ // We do this to support (f.e.) loads off the end of a structure where
+ // only some bits are used.
+ if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
+ FromVal = Builder.CreateLShr(FromVal,
+ ConstantInt::get(FromVal->getType(),
+ ShAmt), "tmp");
+ else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
+ FromVal = Builder.CreateShl(FromVal,
+ ConstantInt::get(FromVal->getType(),
+ -ShAmt), "tmp");
+
+ // Finally, unconditionally truncate the integer to the right width.
+ unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
+ if (LIBitWidth < NTy->getBitWidth())
+ FromVal =
+ Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
+ LIBitWidth), "tmp");
+ else if (LIBitWidth > NTy->getBitWidth())
+ FromVal =
+ Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
+ LIBitWidth), "tmp");
+
+ // If the result is an integer, this is a trunc or bitcast.
+ if (ToType->isIntegerTy()) {
+ // Should be done.
+ } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
+ // Just do a bitcast, we know the sizes match up.
+ FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
+ } else {
+ // Otherwise must be a pointer.
+ FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
+ }
+ assert(FromVal->getType() == ToType && "Didn't convert right?");
+ return FromVal;
+}
+
+/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
+/// or vector value "Old" at the offset specified by Offset.
+///
+/// This happens when we are converting an "integer union" to a
+/// single integer scalar, or when we are converting a "vector union" to a
+/// vector with insert/extractelement instructions.
+///
+/// Offset is an offset from the original alloca, in bits that need to be
+/// shifted to the right.
+Value *ConvertToScalarInfo::
+ConvertScalar_InsertValue(Value *SV, Value *Old,
+ uint64_t Offset, IRBuilder<> &Builder) {
+ // Convert the stored type to the actual type, shift it left to insert
+ // then 'or' into place.
+ const Type *AllocaType = Old->getType();
+ LLVMContext &Context = Old->getContext();
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
+ uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
+ uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
+
+ // Changing the whole vector with memset or with an access of a different
+ // vector type?
+ if (ValSize == VecSize)
+ return Builder.CreateBitCast(SV, AllocaType, "tmp");
+
+ uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
+
+ // Must be an element insertion.
+ unsigned Elt = Offset/EltSize;
+
+ if (SV->getType() != VTy->getElementType())
+ SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
+
+ SV = Builder.CreateInsertElement(Old, SV,
+ ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
+ "tmp");
+ return SV;
+ }
+
+ // If SV is a first-class aggregate value, insert each value recursively.
+ if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
+ const StructLayout &Layout = *TD.getStructLayout(ST);
+ for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
+ Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
+ Old = ConvertScalar_InsertValue(Elt, Old,
+ Offset+Layout.getElementOffsetInBits(i),
+ Builder);
+ }
+ return Old;
+ }
+
+ if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
+ uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
+ for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+ Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
+ Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
+ }
+ return Old;
+ }
+
+ // If SV is a float, convert it to the appropriate integer type.
+ // If it is a pointer, do the same.
+ unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
+ unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
+ unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
+ unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
+ if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
+ SV = Builder.CreateBitCast(SV,
+ IntegerType::get(SV->getContext(),SrcWidth), "tmp");
+ else if (SV->getType()->isPointerTy())
+ SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
+
+ // Zero extend or truncate the value if needed.
+ if (SV->getType() != AllocaType) {
+ if (SV->getType()->getPrimitiveSizeInBits() <
+ AllocaType->getPrimitiveSizeInBits())
+ SV = Builder.CreateZExt(SV, AllocaType, "tmp");
+ else {
+ // Truncation may be needed if storing more than the alloca can hold
+ // (undefined behavior).
+ SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
+ SrcWidth = DestWidth;
+ SrcStoreWidth = DestStoreWidth;
+ }
+ }
+
+ // If this is a big-endian system and the store is narrower than the
+ // full alloca type, we need to do a shift to get the right bits.
+ int ShAmt = 0;
+ if (TD.isBigEndian()) {
+ // On big-endian machines, the lowest bit is stored at the bit offset
+ // from the pointer given by getTypeStoreSizeInBits. This matters for
+ // integers with a bitwidth that is not a multiple of 8.
+ ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
+ } else {
+ ShAmt = Offset;
+ }
+
+ // Note: we support negative bitwidths (with shr) which are not defined.
+ // We do this to support (f.e.) stores off the end of a structure where
+ // only some bits in the structure are set.
+ APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
+ if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
+ SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
+ ShAmt), "tmp");
+ Mask <<= ShAmt;
+ } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
+ SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
+ -ShAmt), "tmp");
+ Mask = Mask.lshr(-ShAmt);
+ }
+
+ // Mask out the bits we are about to insert from the old value, and or
+ // in the new bits.
+ if (SrcWidth != DestWidth) {
+ assert(DestWidth > SrcWidth);
+ Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
+ SV = Builder.CreateOr(Old, SV, "ins");
+ }
+ return SV;
+}
+
+
+//===----------------------------------------------------------------------===//
+// SRoA Driver
+//===----------------------------------------------------------------------===//
+
+
+bool SROA::runOnFunction(Function &F) {
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ bool Changed = performPromotion(F);
+
+ // FIXME: ScalarRepl currently depends on TargetData more than it
+ // theoretically needs to. It should be refactored in order to support
+ // target-independent IR. Until this is done, just skip the actual
+ // scalar-replacement portion of this pass.
+ if (!TD) return Changed;
+
+ while (1) {
+ bool LocalChange = performScalarRepl(F);
+ if (!LocalChange) break; // No need to repromote if no scalarrepl
+ Changed = true;
+ LocalChange = performPromotion(F);
+ if (!LocalChange) break; // No need to re-scalarrepl if no promotion
+ }
+
+ return Changed;
+}
+
+
+bool SROA::performPromotion(Function &F) {
+ std::vector<AllocaInst*> Allocas;
+ DominatorTree &DT = getAnalysis<DominatorTree>();
+ DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
+
+ BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
+
+ bool Changed = false;
+
+ while (1) {
+ Allocas.clear();
+
+ // Find allocas that are safe to promote, by looking at all instructions in
+ // the entry node
+ for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
+ if (isAllocaPromotable(AI))
+ Allocas.push_back(AI);
+
+ if (Allocas.empty()) break;
+
+ PromoteMemToReg(Allocas, DT, DF);
+ NumPromoted += Allocas.size();
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+
+/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
+/// SROA. It must be a struct or array type with a small number of elements.
+static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
+ const Type *T = AI->getAllocatedType();
+ // Do not promote any struct into more than 32 separate vars.
+ if (const StructType *ST = dyn_cast<StructType>(T))
+ return ST->getNumElements() <= 32;
+ // Arrays are much less likely to be safe for SROA; only consider
+ // them if they are very small.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+ return AT->getNumElements() <= 8;
+ return false;
+}
+
+
+// performScalarRepl - This algorithm is a simple worklist driven algorithm,
+// which runs on all of the malloc/alloca instructions in the function, removing
+// them if they are only used by getelementptr instructions.
+//
+bool SROA::performScalarRepl(Function &F) {
+ std::vector<AllocaInst*> WorkList;
+
+ // Scan the entry basic block, adding allocas to the worklist.
+ BasicBlock &BB = F.getEntryBlock();
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
+ if (AllocaInst *A = dyn_cast<AllocaInst>(I))
+ WorkList.push_back(A);
+
+ // Process the worklist
+ bool Changed = false;
+ while (!WorkList.empty()) {
+ AllocaInst *AI = WorkList.back();
+ WorkList.pop_back();
+
+ // Handle dead allocas trivially. These can be formed by SROA'ing arrays
+ // with unused elements.
+ if (AI->use_empty()) {
+ AI->eraseFromParent();
+ Changed = true;
+ continue;
+ }
+
+ // If this alloca is impossible for us to promote, reject it early.
+ if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
+ continue;
+
+ // Check to see if this allocation is only modified by a memcpy/memmove from
+ // a constant global. If this is the case, we can change all users to use
+ // the constant global instead. This is commonly produced by the CFE by
+ // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
+ // is only subsequently read.
+ if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
+ DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
+ DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
+ Constant *TheSrc = cast<Constant>(TheCopy->getSource());
+ AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
+ TheCopy->eraseFromParent(); // Don't mutate the global.
+ AI->eraseFromParent();
+ ++NumGlobals;
+ Changed = true;
+ continue;
+ }
+
+ // Check to see if we can perform the core SROA transformation. We cannot
+ // transform the allocation instruction if it is an array allocation
+ // (allocations OF arrays are ok though), and an allocation of a scalar
+ // value cannot be decomposed at all.
+ uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
+
+ // Do not promote [0 x %struct].
+ if (AllocaSize == 0) continue;
+
+ // Do not promote any struct whose size is too big.
+ if (AllocaSize > SRThreshold) continue;
+
+ // If the alloca looks like a good candidate for scalar replacement, and if
+ // all its users can be transformed, then split up the aggregate into its
+ // separate elements.
+ if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
+ DoScalarReplacement(AI, WorkList);
+ Changed = true;
+ continue;
+ }
+
+ // If we can turn this aggregate value (potentially with casts) into a
+ // simple scalar value that can be mem2reg'd into a register value.
+ // IsNotTrivial tracks whether this is something that mem2reg could have
+ // promoted itself. If so, we don't want to transform it needlessly. Note
+ // that we can't just check based on the type: the alloca may be of an i32
+ // but that has pointer arithmetic to set byte 3 of it or something.
+ if (AllocaInst *NewAI =
+ ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
+ NewAI->takeName(AI);
+ AI->eraseFromParent();
+ ++NumConverted;
+ Changed = true;
+ continue;
+ }
+
+ // Otherwise, couldn't process this alloca.
+ }
+
+ return Changed;
+}
+
+/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
+/// predicate, do SROA now.
+void SROA::DoScalarReplacement(AllocaInst *AI,
+ std::vector<AllocaInst*> &WorkList) {
+ DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
+ SmallVector<AllocaInst*, 32> ElementAllocas;
+ if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
+ ElementAllocas.reserve(ST->getNumContainedTypes());
+ for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
+ AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
+ AI->getAlignment(),
+ AI->getName() + "." + Twine(i), AI);
+ ElementAllocas.push_back(NA);
+ WorkList.push_back(NA); // Add to worklist for recursive processing
+ }
+ } else {
+ const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
+ ElementAllocas.reserve(AT->getNumElements());
+ const Type *ElTy = AT->getElementType();
+ for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
+ AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
+ AI->getName() + "." + Twine(i), AI);
+ ElementAllocas.push_back(NA);
+ WorkList.push_back(NA); // Add to worklist for recursive processing
+ }
+ }
+
+ // Now that we have created the new alloca instructions, rewrite all the
+ // uses of the old alloca.
+ RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
+
+ // Now erase any instructions that were made dead while rewriting the alloca.
+ DeleteDeadInstructions();
+ AI->eraseFromParent();
+
+ ++NumReplaced;
+}
+
+/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
+/// recursively including all their operands that become trivially dead.
+void SROA::DeleteDeadInstructions() {
+ while (!DeadInsts.empty()) {
+ Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
+
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ // Zero out the operand and see if it becomes trivially dead.
+ // (But, don't add allocas to the dead instruction list -- they are
+ // already on the worklist and will be deleted separately.)
+ *OI = 0;
+ if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
+ DeadInsts.push_back(U);
+ }
+
+ I->eraseFromParent();
+ }
+}
+
+/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
+/// performing scalar replacement of alloca AI. The results are flagged in
+/// the Info parameter. Offset indicates the position within AI that is
+/// referenced by this instruction.
+void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
+ AllocaInfo &Info) {
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
+ isSafeForScalarRepl(BC, AI, Offset, Info);
+ } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
+ uint64_t GEPOffset = Offset;
+ isSafeGEP(GEPI, AI, GEPOffset, Info);
+ if (!Info.isUnsafe)
+ isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+ if (Length)
+ isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
+ UI.getOperandNo() == 0, Info);
+ else
+ MarkUnsafe(Info);
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ if (!LI->isVolatile()) {
+ const Type *LIType = LI->getType();
+ isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
+ LIType, false, Info);
+ } else
+ MarkUnsafe(Info);
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ // Store is ok if storing INTO the pointer, not storing the pointer
+ if (!SI->isVolatile() && SI->getOperand(0) != I) {
+ const Type *SIType = SI->getOperand(0)->getType();
+ isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
+ SIType, true, Info);
+ } else
+ MarkUnsafe(Info);
+ } else {
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
+ MarkUnsafe(Info);
+ }
+ if (Info.isUnsafe) return;
+ }
+}
+
+/// isSafeGEP - Check if a GEP instruction can be handled for scalar
+/// replacement. It is safe when all the indices are constant, in-bounds
+/// references, and when the resulting offset corresponds to an element within
+/// the alloca type. The results are flagged in the Info parameter. Upon
+/// return, Offset is adjusted as specified by the GEP indices.
+void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
+ uint64_t &Offset, AllocaInfo &Info) {
+ gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
+ if (GEPIt == E)
+ return;
+
+ // Walk through the GEP type indices, checking the types that this indexes
+ // into.
+ for (; GEPIt != E; ++GEPIt) {
+ // Ignore struct elements, no extra checking needed for these.
+ if ((*GEPIt)->isStructTy())
+ continue;
+
+ ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
+ if (!IdxVal)
+ return MarkUnsafe(Info);
+ }
+
+ // Compute the offset due to this GEP and check if the alloca has a
+ // component element at that offset.
+ SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
+ Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
+ &Indices[0], Indices.size());
+ if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
+ MarkUnsafe(Info);
+}
+
+/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
+/// alloca or has an offset and size that corresponds to a component element
+/// within it. The offset checked here may have been formed from a GEP with a
+/// pointer bitcasted to a different type.
+void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
+ const Type *MemOpType, bool isStore,
+ AllocaInfo &Info) {
+ // Check if this is a load/store of the entire alloca.
+ if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
+ bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
+ // This is safe for MemIntrinsics (where MemOpType is 0), integer types
+ // (which are essentially the same as the MemIntrinsics, especially with
+ // regard to copying padding between elements), or references using the
+ // aggregate type of the alloca.
+ if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
+ if (!UsesAggregateType) {
+ if (isStore)
+ Info.isMemCpyDst = true;
+ else
+ Info.isMemCpySrc = true;
+ }
+ return;
+ }
+ }
+ // Check if the offset/size correspond to a component within the alloca type.
+ const Type *T = AI->getAllocatedType();
+ if (TypeHasComponent(T, Offset, MemSize))
+ return;
+
+ return MarkUnsafe(Info);
+}
+
+/// TypeHasComponent - Return true if T has a component type with the
+/// specified offset and size. If Size is zero, do not check the size.
+bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
+ const Type *EltTy;
+ uint64_t EltSize;
+ if (const StructType *ST = dyn_cast<StructType>(T)) {
+ const StructLayout *Layout = TD->getStructLayout(ST);
+ unsigned EltIdx = Layout->getElementContainingOffset(Offset);
+ EltTy = ST->getContainedType(EltIdx);
+ EltSize = TD->getTypeAllocSize(EltTy);
+ Offset -= Layout->getElementOffset(EltIdx);
+ } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
+ EltTy = AT->getElementType();
+ EltSize = TD->getTypeAllocSize(EltTy);
+ if (Offset >= AT->getNumElements() * EltSize)
+ return false;
+ Offset %= EltSize;
+ } else {
+ return false;
+ }
+ if (Offset == 0 && (Size == 0 || EltSize == Size))
+ return true;
+ // Check if the component spans multiple elements.
+ if (Offset + Size > EltSize)
+ return false;
+ return TypeHasComponent(EltTy, Offset, Size);
+}
+
+/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
+/// the instruction I, which references it, to use the separate elements.
+/// Offset indicates the position within AI that is referenced by this
+/// instruction.
+void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
+ SmallVector<AllocaInst*, 32> &NewElts) {
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
+ RewriteBitCast(BC, AI, Offset, NewElts);
+ } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
+ RewriteGEP(GEPI, AI, Offset, NewElts);
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
+ uint64_t MemSize = Length->getZExtValue();
+ if (Offset == 0 &&
+ MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
+ RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
+ // Otherwise the intrinsic can only touch a single element and the
+ // address operand will be updated, so nothing else needs to be done.
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ const Type *LIType = LI->getType();
+ if (LIType == AI->getAllocatedType()) {
+ // Replace:
+ // %res = load { i32, i32 }* %alloc
+ // with:
+ // %load.0 = load i32* %alloc.0
+ // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
+ // %load.1 = load i32* %alloc.1
+ // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
+ // (Also works for arrays instead of structs)
+ Value *Insert = UndefValue::get(LIType);
+ for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+ Value *Load = new LoadInst(NewElts[i], "load", LI);
+ Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
+ }
+ LI->replaceAllUsesWith(Insert);
+ DeadInsts.push_back(LI);
+ } else if (LIType->isIntegerTy() &&
+ TD->getTypeAllocSize(LIType) ==
+ TD->getTypeAllocSize(AI->getAllocatedType())) {
+ // If this is a load of the entire alloca to an integer, rewrite it.
+ RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
+ }
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+ Value *Val = SI->getOperand(0);
+ const Type *SIType = Val->getType();
+ if (SIType == AI->getAllocatedType()) {
+ // Replace:
+ // store { i32, i32 } %val, { i32, i32 }* %alloc
+ // with:
+ // %val.0 = extractvalue { i32, i32 } %val, 0
+ // store i32 %val.0, i32* %alloc.0
+ // %val.1 = extractvalue { i32, i32 } %val, 1
+ // store i32 %val.1, i32* %alloc.1
+ // (Also works for arrays instead of structs)
+ for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+ Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
+ new StoreInst(Extract, NewElts[i], SI);
+ }
+ DeadInsts.push_back(SI);
+ } else if (SIType->isIntegerTy() &&
+ TD->getTypeAllocSize(SIType) ==
+ TD->getTypeAllocSize(AI->getAllocatedType())) {
+ // If this is a store of the entire alloca from an integer, rewrite it.
+ RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
+ }
+ }
+ }
+}
+
+/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
+/// and recursively continue updating all of its uses.
+void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
+ SmallVector<AllocaInst*, 32> &NewElts) {
+ RewriteForScalarRepl(BC, AI, Offset, NewElts);
+ if (BC->getOperand(0) != AI)
+ return;
+
+ // The bitcast references the original alloca. Replace its uses with
+ // references to the first new element alloca.
+ Instruction *Val = NewElts[0];
+ if (Val->getType() != BC->getDestTy()) {
+ Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
+ Val->takeName(BC);
+ }
+ BC->replaceAllUsesWith(Val);
+ DeadInsts.push_back(BC);
+}
+
+/// FindElementAndOffset - Return the index of the element containing Offset
+/// within the specified type, which must be either a struct or an array.
+/// Sets T to the type of the element and Offset to the offset within that
+/// element. IdxTy is set to the type of the index result to be used in a
+/// GEP instruction.
+uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
+ const Type *&IdxTy) {
+ uint64_t Idx = 0;
+ if (const StructType *ST = dyn_cast<StructType>(T)) {
+ const StructLayout *Layout = TD->getStructLayout(ST);
+ Idx = Layout->getElementContainingOffset(Offset);
+ T = ST->getContainedType(Idx);
+ Offset -= Layout->getElementOffset(Idx);
+ IdxTy = Type::getInt32Ty(T->getContext());
+ return Idx;
+ }
+ const ArrayType *AT = cast<ArrayType>(T);
+ T = AT->getElementType();
+ uint64_t EltSize = TD->getTypeAllocSize(T);
+ Idx = Offset / EltSize;
+ Offset -= Idx * EltSize;
+ IdxTy = Type::getInt64Ty(T->getContext());
+ return Idx;
+}
+
+/// RewriteGEP - Check if this GEP instruction moves the pointer across
+/// elements of the alloca that are being split apart, and if so, rewrite
+/// the GEP to be relative to the new element.
+void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
+ SmallVector<AllocaInst*, 32> &NewElts) {
+ uint64_t OldOffset = Offset;
+ SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
+ Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
+ &Indices[0], Indices.size());
+
+ RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
+
+ const Type *T = AI->getAllocatedType();
+ const Type *IdxTy;
+ uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
+ if (GEPI->getOperand(0) == AI)
+ OldIdx = ~0ULL; // Force the GEP to be rewritten.
+
+ T = AI->getAllocatedType();
+ uint64_t EltOffset = Offset;
+ uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
+
+ // If this GEP does not move the pointer across elements of the alloca
+ // being split, then it does not needs to be rewritten.
+ if (Idx == OldIdx)
+ return;
+
+ const Type *i32Ty = Type::getInt32Ty(AI->getContext());
+ SmallVector<Value*, 8> NewArgs;
+ NewArgs.push_back(Constant::getNullValue(i32Ty));
+ while (EltOffset != 0) {
+ uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
+ NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
+ }
+ Instruction *Val = NewElts[Idx];
+ if (NewArgs.size() > 1) {
+ Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
+ NewArgs.end(), "", GEPI);
+ Val->takeName(GEPI);
+ }
+ if (Val->getType() != GEPI->getType())
+ Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
+ GEPI->replaceAllUsesWith(Val);
+ DeadInsts.push_back(GEPI);
+}
+
+/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
+/// Rewrite it to copy or set the elements of the scalarized memory.
+void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
+ AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts) {
+ // If this is a memcpy/memmove, construct the other pointer as the
+ // appropriate type. The "Other" pointer is the pointer that goes to memory
+ // that doesn't have anything to do with the alloca that we are promoting. For
+ // memset, this Value* stays null.
+ Value *OtherPtr = 0;
+ unsigned MemAlignment = MI->getAlignment();
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
+ if (Inst == MTI->getRawDest())
+ OtherPtr = MTI->getRawSource();
+ else {
+ assert(Inst == MTI->getRawSource());
+ OtherPtr = MTI->getRawDest();
+ }
+ }
+
+ // If there is an other pointer, we want to convert it to the same pointer
+ // type as AI has, so we can GEP through it safely.
+ if (OtherPtr) {
+ unsigned AddrSpace =
+ cast<PointerType>(OtherPtr->getType())->getAddressSpace();
+
+ // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
+ // optimization, but it's also required to detect the corner case where
+ // both pointer operands are referencing the same memory, and where
+ // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
+ // function is only called for mem intrinsics that access the whole
+ // aggregate, so non-zero GEPs are not an issue here.)
+ OtherPtr = OtherPtr->stripPointerCasts();
+
+ // Copying the alloca to itself is a no-op: just delete it.
+ if (OtherPtr == AI || OtherPtr == NewElts[0]) {
+ // This code will run twice for a no-op memcpy -- once for each operand.
+ // Put only one reference to MI on the DeadInsts list.
+ for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
+ E = DeadInsts.end(); I != E; ++I)
+ if (*I == MI) return;
+ DeadInsts.push_back(MI);
+ return;
+ }
+
+ // If the pointer is not the right type, insert a bitcast to the right
+ // type.
+ const Type *NewTy =
+ PointerType::get(AI->getType()->getElementType(), AddrSpace);
+
+ if (OtherPtr->getType() != NewTy)
+ OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
+ }
+
+ // Process each element of the aggregate.
+ Value *TheFn = MI->getCalledValue();
+ const Type *BytePtrTy = MI->getRawDest()->getType();
+ bool SROADest = MI->getRawDest() == Inst;
+
+ Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
+
+ for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+ // If this is a memcpy/memmove, emit a GEP of the other element address.
+ Value *OtherElt = 0;
+ unsigned OtherEltAlign = MemAlignment;
+
+ if (OtherPtr) {
+ Value *Idx[2] = { Zero,
+ ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
+ OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
+ OtherPtr->getName()+"."+Twine(i),
+ MI);
+ uint64_t EltOffset;
+ const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
+ const Type *OtherTy = OtherPtrTy->getElementType();
+ if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
+ EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
+ } else {
+ const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
+ EltOffset = TD->getTypeAllocSize(EltTy)*i;
+ }
+
+ // The alignment of the other pointer is the guaranteed alignment of the
+ // element, which is affected by both the known alignment of the whole
+ // mem intrinsic and the alignment of the element. If the alignment of
+ // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
+ // known alignment is just 4 bytes.
+ OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
+ }
+
+ Value *EltPtr = NewElts[i];
+ const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
+
+ // If we got down to a scalar, insert a load or store as appropriate.
+ if (EltTy->isSingleValueType()) {
+ if (isa<MemTransferInst>(MI)) {
+ if (SROADest) {
+ // From Other to Alloca.
+ Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
+ new StoreInst(Elt, EltPtr, MI);
+ } else {
+ // From Alloca to Other.
+ Value *Elt = new LoadInst(EltPtr, "tmp", MI);
+ new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
+ }
+ continue;
+ }
+ assert(isa<MemSetInst>(MI));
+
+ // If the stored element is zero (common case), just store a null
+ // constant.
+ Constant *StoreVal;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
+ if (CI->isZero()) {
+ StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
+ } else {
+ // If EltTy is a vector type, get the element type.
+ const Type *ValTy = EltTy->getScalarType();
+
+ // Construct an integer with the right value.
+ unsigned EltSize = TD->getTypeSizeInBits(ValTy);
+ APInt OneVal(EltSize, CI->getZExtValue());
+ APInt TotalVal(OneVal);
+ // Set each byte.
+ for (unsigned i = 0; 8*i < EltSize; ++i) {
+ TotalVal = TotalVal.shl(8);
+ TotalVal |= OneVal;
+ }
+
+ // Convert the integer value to the appropriate type.
+ StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
+ if (ValTy->isPointerTy())
+ StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
+ else if (ValTy->isFloatingPointTy())
+ StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
+ assert(StoreVal->getType() == ValTy && "Type mismatch!");
+
+ // If the requested value was a vector constant, create it.
+ if (EltTy != ValTy) {
+ unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
+ SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
+ StoreVal = ConstantVector::get(&Elts[0], NumElts);
+ }
+ }
+ new StoreInst(StoreVal, EltPtr, MI);
+ continue;
+ }
+ // Otherwise, if we're storing a byte variable, use a memset call for
+ // this element.
+ }
+
+ // Cast the element pointer to BytePtrTy.
+ if (EltPtr->getType() != BytePtrTy)
+ EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getName(), MI);
+
+ // Cast the other pointer (if we have one) to BytePtrTy.
+ if (OtherElt && OtherElt->getType() != BytePtrTy) {
+ // Preserve address space of OtherElt
+ const PointerType* OtherPTy = cast<PointerType>(OtherElt->getType());
+ const PointerType* PTy = cast<PointerType>(BytePtrTy);
+ if (OtherPTy->getElementType() != PTy->getElementType()) {
+ Type *NewOtherPTy = PointerType::get(PTy->getElementType(),
+ OtherPTy->getAddressSpace());
+ OtherElt = new BitCastInst(OtherElt, NewOtherPTy,
+ OtherElt->getNameStr(), MI);
+ }
+ }
+
+ unsigned EltSize = TD->getTypeAllocSize(EltTy);
+
+ // Finally, insert the meminst for this element.
+ if (isa<MemTransferInst>(MI)) {
+ Value *Ops[] = {
+ SROADest ? EltPtr : OtherElt, // Dest ptr
+ SROADest ? OtherElt : EltPtr, // Src ptr
+ ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
+ // Align
+ ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign),
+ MI->getVolatileCst()
+ };
+ // In case we fold the address space overloaded memcpy of A to B
+ // with memcpy of B to C, change the function to be a memcpy of A to C.
+ const Type *Tys[] = { Ops[0]->getType(), Ops[1]->getType(),
+ Ops[2]->getType() };
+ Module *M = MI->getParent()->getParent()->getParent();
+ TheFn = Intrinsic::getDeclaration(M, MI->getIntrinsicID(), Tys, 3);
+ CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
+ } else {
+ assert(isa<MemSetInst>(MI));
+ Value *Ops[] = {
+ EltPtr, MI->getArgOperand(1), // Dest, Value,
+ ConstantInt::get(MI->getArgOperand(2)->getType(), EltSize), // Size
+ Zero, // Align
+ ConstantInt::get(Type::getInt1Ty(MI->getContext()), 0) // isVolatile
+ };
+ const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
+ Module *M = MI->getParent()->getParent()->getParent();
+ TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
+ CallInst::Create(TheFn, Ops, Ops + 5, "", MI);
+ }
+ }
+ DeadInsts.push_back(MI);
+}
+
+/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
+/// overwrites the entire allocation. Extract out the pieces of the stored
+/// integer and store them individually.
+void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts){
+ // Extract each element out of the integer according to its structure offset
+ // and store the element value to the individual alloca.
+ Value *SrcVal = SI->getOperand(0);
+ const Type *AllocaEltTy = AI->getAllocatedType();
+ uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+
+ // Handle tail padding by extending the operand
+ if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
+ SrcVal = new ZExtInst(SrcVal,
+ IntegerType::get(SI->getContext(), AllocaSizeBits),
+ "", SI);
+
+ DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
+ << '\n');
+
+ // There are two forms here: AI could be an array or struct. Both cases
+ // have different ways to compute the element offset.
+ if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
+ const StructLayout *Layout = TD->getStructLayout(EltSTy);
+
+ for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+ // Get the number of bits to shift SrcVal to get the value.
+ const Type *FieldTy = EltSTy->getElementType(i);
+ uint64_t Shift = Layout->getElementOffsetInBits(i);
+
+ if (TD->isBigEndian())
+ Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
+
+ Value *EltVal = SrcVal;
+ if (Shift) {
+ Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
+ EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
+ "sroa.store.elt", SI);
+ }
+
+ // Truncate down to an integer of the right size.
+ uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+
+ // Ignore zero sized fields like {}, they obviously contain no data.
+ if (FieldSizeBits == 0) continue;
+
+ if (FieldSizeBits != AllocaSizeBits)
+ EltVal = new TruncInst(EltVal,
+ IntegerType::get(SI->getContext(), FieldSizeBits),
+ "", SI);
+ Value *DestField = NewElts[i];
+ if (EltVal->getType() == FieldTy) {
+ // Storing to an integer field of this size, just do it.
+ } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
+ // Bitcast to the right element type (for fp/vector values).
+ EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
+ } else {
+ // Otherwise, bitcast the dest pointer (for aggregates).
+ DestField = new BitCastInst(DestField,
+ PointerType::getUnqual(EltVal->getType()),
+ "", SI);
+ }
+ new StoreInst(EltVal, DestField, SI);
+ }
+
+ } else {
+ const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
+ const Type *ArrayEltTy = ATy->getElementType();
+ uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
+ uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
+
+ uint64_t Shift;
+
+ if (TD->isBigEndian())
+ Shift = AllocaSizeBits-ElementOffset;
+ else
+ Shift = 0;
+
+ for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+ // Ignore zero sized fields like {}, they obviously contain no data.
+ if (ElementSizeBits == 0) continue;
+
+ Value *EltVal = SrcVal;
+ if (Shift) {
+ Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
+ EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
+ "sroa.store.elt", SI);
+ }
+
+ // Truncate down to an integer of the right size.
+ if (ElementSizeBits != AllocaSizeBits)
+ EltVal = new TruncInst(EltVal,
+ IntegerType::get(SI->getContext(),
+ ElementSizeBits),"",SI);
+ Value *DestField = NewElts[i];
+ if (EltVal->getType() == ArrayEltTy) {
+ // Storing to an integer field of this size, just do it.
+ } else if (ArrayEltTy->isFloatingPointTy() ||
+ ArrayEltTy->isVectorTy()) {
+ // Bitcast to the right element type (for fp/vector values).
+ EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
+ } else {
+ // Otherwise, bitcast the dest pointer (for aggregates).
+ DestField = new BitCastInst(DestField,
+ PointerType::getUnqual(EltVal->getType()),
+ "", SI);
+ }
+ new StoreInst(EltVal, DestField, SI);
+
+ if (TD->isBigEndian())
+ Shift -= ElementOffset;
+ else
+ Shift += ElementOffset;
+ }
+ }
+
+ DeadInsts.push_back(SI);
+}
+
+/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
+/// an integer. Load the individual pieces to form the aggregate value.
+void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
+ SmallVector<AllocaInst*, 32> &NewElts) {
+ // Extract each element out of the NewElts according to its structure offset
+ // and form the result value.
+ const Type *AllocaEltTy = AI->getAllocatedType();
+ uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
+
+ DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
+ << '\n');
+
+ // There are two forms here: AI could be an array or struct. Both cases
+ // have different ways to compute the element offset.
+ const StructLayout *Layout = 0;
+ uint64_t ArrayEltBitOffset = 0;
+ if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
+ Layout = TD->getStructLayout(EltSTy);
+ } else {
+ const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
+ ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
+ }
+
+ Value *ResultVal =
+ Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
+
+ for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
+ // Load the value from the alloca. If the NewElt is an aggregate, cast
+ // the pointer to an integer of the same size before doing the load.
+ Value *SrcField = NewElts[i];
+ const Type *FieldTy =
+ cast<PointerType>(SrcField->getType())->getElementType();
+ uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
+
+ // Ignore zero sized fields like {}, they obviously contain no data.
+ if (FieldSizeBits == 0) continue;
+
+ const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
+ FieldSizeBits);
+ if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
+ !FieldTy->isVectorTy())
+ SrcField = new BitCastInst(SrcField,
+ PointerType::getUnqual(FieldIntTy),
+ "", LI);
+ SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
+
+ // If SrcField is a fp or vector of the right size but that isn't an
+ // integer type, bitcast to an integer so we can shift it.
+ if (SrcField->getType() != FieldIntTy)
+ SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
+
+ // Zero extend the field to be the same size as the final alloca so that
+ // we can shift and insert it.
+ if (SrcField->getType() != ResultVal->getType())
+ SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
+
+ // Determine the number of bits to shift SrcField.
+ uint64_t Shift;
+ if (Layout) // Struct case.
+ Shift = Layout->getElementOffsetInBits(i);
+ else // Array case.
+ Shift = i*ArrayEltBitOffset;
+
+ if (TD->isBigEndian())
+ Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
+
+ if (Shift) {
+ Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
+ SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
+ }
+
+ // Don't create an 'or x, 0' on the first iteration.
+ if (!isa<Constant>(ResultVal) ||
+ !cast<Constant>(ResultVal)->isNullValue())
+ ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
+ else
+ ResultVal = SrcField;
+ }
+
+ // Handle tail padding by truncating the result
+ if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
+ ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
+
+ LI->replaceAllUsesWith(ResultVal);
+ DeadInsts.push_back(LI);
+}
+
+/// HasPadding - Return true if the specified type has any structure or
+/// alignment padding, false otherwise.
+static bool HasPadding(const Type *Ty, const TargetData &TD) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
+ return HasPadding(ATy->getElementType(), TD);
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return HasPadding(VTy->getElementType(), TD);
+
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = TD.getStructLayout(STy);
+ unsigned PrevFieldBitOffset = 0;
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
+
+ // Padding in sub-elements?
+ if (HasPadding(STy->getElementType(i), TD))
+ return true;
+
+ // Check to see if there is any padding between this element and the
+ // previous one.
+ if (i) {
+ unsigned PrevFieldEnd =
+ PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
+ if (PrevFieldEnd < FieldBitOffset)
+ return true;
+ }
+
+ PrevFieldBitOffset = FieldBitOffset;
+ }
+
+ // Check for tail padding.
+ if (unsigned EltCount = STy->getNumElements()) {
+ unsigned PrevFieldEnd = PrevFieldBitOffset +
+ TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
+ if (PrevFieldEnd < SL->getSizeInBits())
+ return true;
+ }
+ }
+
+ return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
+}
+
+/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
+/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
+/// or 1 if safe after canonicalization has been performed.
+bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
+ // Loop over the use list of the alloca. We can only transform it if all of
+ // the users are safe to transform.
+ AllocaInfo Info;
+
+ isSafeForScalarRepl(AI, AI, 0, Info);
+ if (Info.isUnsafe) {
+ DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
+ return false;
+ }
+
+ // Okay, we know all the users are promotable. If the aggregate is a memcpy
+ // source and destination, we have to be careful. In particular, the memcpy
+ // could be moving around elements that live in structure padding of the LLVM
+ // types, but may actually be used. In these cases, we refuse to promote the
+ // struct.
+ if (Info.isMemCpySrc && Info.isMemCpyDst &&
+ HasPadding(AI->getAllocatedType(), *TD))
+ return false;
+
+ return true;
+}
+
+
+
+/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
+/// some part of a constant global variable. This intentionally only accepts
+/// constant expressions because we don't can't rewrite arbitrary instructions.
+static bool PointsToConstantGlobal(Value *V) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return GV->isConstant();
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::BitCast ||
+ CE->getOpcode() == Instruction::GetElementPtr)
+ return PointsToConstantGlobal(CE->getOperand(0));
+ return false;
+}
+
+/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
+/// pointer to an alloca. Ignore any reads of the pointer, return false if we
+/// see any stores or other unknown uses. If we see pointer arithmetic, keep
+/// track of whether it moves the pointer (with isOffset) but otherwise traverse
+/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
+/// the alloca, and if the source pointer is a pointer to a constant global, we
+/// can optimize this.
+static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
+ bool isOffset) {
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
+ User *U = cast<Instruction>(*UI);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U))
+ // Ignore non-volatile loads, they are always ok.
+ if (!LI->isVolatile())
+ continue;
+
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
+ // If uses of the bitcast are ok, we are ok.
+ if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
+ return false;
+ continue;
+ }
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
+ // If the GEP has all zero indices, it doesn't offset the pointer. If it
+ // doesn't, it does.
+ if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
+ isOffset || !GEP->hasAllZeroIndices()))
+ return false;
+ continue;
+ }
+
+ // If this is isn't our memcpy/memmove, reject it as something we can't
+ // handle.
+ MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
+ if (MI == 0)
+ return false;
+
+ // If we already have seen a copy, reject the second one.
+ if (TheCopy) return false;
+
+ // If the pointer has been offset from the start of the alloca, we can't
+ // safely handle this.
+ if (isOffset) return false;
+
+ // If the memintrinsic isn't using the alloca as the dest, reject it.
+ if (UI.getOperandNo() != 0) return false;
+
+ // If the source of the memcpy/move is not a constant global, reject it.
+ if (!PointsToConstantGlobal(MI->getSource()))
+ return false;
+
+ // Otherwise, the transform is safe. Remember the copy instruction.
+ TheCopy = MI;
+ }
+ return true;
+}
+
+/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
+/// modified by a copy from a constant global. If we can prove this, we can
+/// replace any uses of the alloca with uses of the global directly.
+MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
+ MemTransferInst *TheCopy = 0;
+ if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
+ return TheCopy;
+ return 0;
+}
OpenPOWER on IntegriCloud