summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SROA.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SROA.cpp3590
1 files changed, 3590 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
new file mode 100644
index 0000000..9f3fc83
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp
@@ -0,0 +1,3590 @@
+//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This transformation implements the well known scalar replacement of
+/// aggregates transformation. It tries to identify promotable elements of an
+/// aggregate alloca, and promote them to registers. It will also try to
+/// convert uses of an element (or set of elements) of an alloca into a vector
+/// or bitfield-style integer scalar if appropriate.
+///
+/// It works to do this with minimal slicing of the alloca so that regions
+/// which are merely transferred in and out of external memory remain unchanged
+/// and are not decomposed to scalar code.
+///
+/// Because this also performs alloca promotion, it can be thought of as also
+/// serving the purpose of SSA formation. The algorithm iterates on the
+/// function until all opportunities for promotion have been realized.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sroa"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/PtrUseVisitor.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+using namespace llvm;
+
+STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
+STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
+STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
+STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
+STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
+STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
+STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
+STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
+STATISTIC(NumDeleted, "Number of instructions deleted");
+STATISTIC(NumVectorized, "Number of vectorized aggregates");
+
+/// Hidden option to force the pass to not use DomTree and mem2reg, instead
+/// forming SSA values through the SSAUpdater infrastructure.
+static cl::opt<bool>
+ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
+
+namespace {
+/// \brief A custom IRBuilder inserter which prefixes all names if they are
+/// preserved.
+template <bool preserveNames = true>
+class IRBuilderPrefixedInserter :
+ public IRBuilderDefaultInserter<preserveNames> {
+ std::string Prefix;
+
+public:
+ void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
+
+protected:
+ void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
+ BasicBlock::iterator InsertPt) const {
+ IRBuilderDefaultInserter<preserveNames>::InsertHelper(
+ I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
+ }
+};
+
+// Specialization for not preserving the name is trivial.
+template <>
+class IRBuilderPrefixedInserter<false> :
+ public IRBuilderDefaultInserter<false> {
+public:
+ void SetNamePrefix(const Twine &P) {}
+};
+
+/// \brief Provide a typedef for IRBuilder that drops names in release builds.
+#ifndef NDEBUG
+typedef llvm::IRBuilder<true, ConstantFolder,
+ IRBuilderPrefixedInserter<true> > IRBuilderTy;
+#else
+typedef llvm::IRBuilder<false, ConstantFolder,
+ IRBuilderPrefixedInserter<false> > IRBuilderTy;
+#endif
+}
+
+namespace {
+/// \brief A used slice of an alloca.
+///
+/// This structure represents a slice of an alloca used by some instruction. It
+/// stores both the begin and end offsets of this use, a pointer to the use
+/// itself, and a flag indicating whether we can classify the use as splittable
+/// or not when forming partitions of the alloca.
+class Slice {
+ /// \brief The beginning offset of the range.
+ uint64_t BeginOffset;
+
+ /// \brief The ending offset, not included in the range.
+ uint64_t EndOffset;
+
+ /// \brief Storage for both the use of this slice and whether it can be
+ /// split.
+ PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
+
+public:
+ Slice() : BeginOffset(), EndOffset() {}
+ Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
+ : BeginOffset(BeginOffset), EndOffset(EndOffset),
+ UseAndIsSplittable(U, IsSplittable) {}
+
+ uint64_t beginOffset() const { return BeginOffset; }
+ uint64_t endOffset() const { return EndOffset; }
+
+ bool isSplittable() const { return UseAndIsSplittable.getInt(); }
+ void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
+
+ Use *getUse() const { return UseAndIsSplittable.getPointer(); }
+
+ bool isDead() const { return getUse() == 0; }
+ void kill() { UseAndIsSplittable.setPointer(0); }
+
+ /// \brief Support for ordering ranges.
+ ///
+ /// This provides an ordering over ranges such that start offsets are
+ /// always increasing, and within equal start offsets, the end offsets are
+ /// decreasing. Thus the spanning range comes first in a cluster with the
+ /// same start position.
+ bool operator<(const Slice &RHS) const {
+ if (beginOffset() < RHS.beginOffset()) return true;
+ if (beginOffset() > RHS.beginOffset()) return false;
+ if (isSplittable() != RHS.isSplittable()) return !isSplittable();
+ if (endOffset() > RHS.endOffset()) return true;
+ return false;
+ }
+
+ /// \brief Support comparison with a single offset to allow binary searches.
+ friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
+ uint64_t RHSOffset) {
+ return LHS.beginOffset() < RHSOffset;
+ }
+ friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
+ const Slice &RHS) {
+ return LHSOffset < RHS.beginOffset();
+ }
+
+ bool operator==(const Slice &RHS) const {
+ return isSplittable() == RHS.isSplittable() &&
+ beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
+ }
+ bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
+};
+} // end anonymous namespace
+
+namespace llvm {
+template <typename T> struct isPodLike;
+template <> struct isPodLike<Slice> {
+ static const bool value = true;
+};
+}
+
+namespace {
+/// \brief Representation of the alloca slices.
+///
+/// This class represents the slices of an alloca which are formed by its
+/// various uses. If a pointer escapes, we can't fully build a representation
+/// for the slices used and we reflect that in this structure. The uses are
+/// stored, sorted by increasing beginning offset and with unsplittable slices
+/// starting at a particular offset before splittable slices.
+class AllocaSlices {
+public:
+ /// \brief Construct the slices of a particular alloca.
+ AllocaSlices(const DataLayout &DL, AllocaInst &AI);
+
+ /// \brief Test whether a pointer to the allocation escapes our analysis.
+ ///
+ /// If this is true, the slices are never fully built and should be
+ /// ignored.
+ bool isEscaped() const { return PointerEscapingInstr; }
+
+ /// \brief Support for iterating over the slices.
+ /// @{
+ typedef SmallVectorImpl<Slice>::iterator iterator;
+ iterator begin() { return Slices.begin(); }
+ iterator end() { return Slices.end(); }
+
+ typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
+ const_iterator begin() const { return Slices.begin(); }
+ const_iterator end() const { return Slices.end(); }
+ /// @}
+
+ /// \brief Allow iterating the dead users for this alloca.
+ ///
+ /// These are instructions which will never actually use the alloca as they
+ /// are outside the allocated range. They are safe to replace with undef and
+ /// delete.
+ /// @{
+ typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
+ dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
+ dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
+ /// @}
+
+ /// \brief Allow iterating the dead expressions referring to this alloca.
+ ///
+ /// These are operands which have cannot actually be used to refer to the
+ /// alloca as they are outside its range and the user doesn't correct for
+ /// that. These mostly consist of PHI node inputs and the like which we just
+ /// need to replace with undef.
+ /// @{
+ typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
+ dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
+ dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
+ /// @}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
+ void printSlice(raw_ostream &OS, const_iterator I,
+ StringRef Indent = " ") const;
+ void printUse(raw_ostream &OS, const_iterator I,
+ StringRef Indent = " ") const;
+ void print(raw_ostream &OS) const;
+ void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
+ void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
+#endif
+
+private:
+ template <typename DerivedT, typename RetT = void> class BuilderBase;
+ class SliceBuilder;
+ friend class AllocaSlices::SliceBuilder;
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ /// \brief Handle to alloca instruction to simplify method interfaces.
+ AllocaInst &AI;
+#endif
+
+ /// \brief The instruction responsible for this alloca not having a known set
+ /// of slices.
+ ///
+ /// When an instruction (potentially) escapes the pointer to the alloca, we
+ /// store a pointer to that here and abort trying to form slices of the
+ /// alloca. This will be null if the alloca slices are analyzed successfully.
+ Instruction *PointerEscapingInstr;
+
+ /// \brief The slices of the alloca.
+ ///
+ /// We store a vector of the slices formed by uses of the alloca here. This
+ /// vector is sorted by increasing begin offset, and then the unsplittable
+ /// slices before the splittable ones. See the Slice inner class for more
+ /// details.
+ SmallVector<Slice, 8> Slices;
+
+ /// \brief Instructions which will become dead if we rewrite the alloca.
+ ///
+ /// Note that these are not separated by slice. This is because we expect an
+ /// alloca to be completely rewritten or not rewritten at all. If rewritten,
+ /// all these instructions can simply be removed and replaced with undef as
+ /// they come from outside of the allocated space.
+ SmallVector<Instruction *, 8> DeadUsers;
+
+ /// \brief Operands which will become dead if we rewrite the alloca.
+ ///
+ /// These are operands that in their particular use can be replaced with
+ /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
+ /// to PHI nodes and the like. They aren't entirely dead (there might be
+ /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
+ /// want to swap this particular input for undef to simplify the use lists of
+ /// the alloca.
+ SmallVector<Use *, 8> DeadOperands;
+};
+}
+
+static Value *foldSelectInst(SelectInst &SI) {
+ // If the condition being selected on is a constant or the same value is
+ // being selected between, fold the select. Yes this does (rarely) happen
+ // early on.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
+ return SI.getOperand(1+CI->isZero());
+ if (SI.getOperand(1) == SI.getOperand(2))
+ return SI.getOperand(1);
+
+ return 0;
+}
+
+/// \brief Builder for the alloca slices.
+///
+/// This class builds a set of alloca slices by recursively visiting the uses
+/// of an alloca and making a slice for each load and store at each offset.
+class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
+ friend class PtrUseVisitor<SliceBuilder>;
+ friend class InstVisitor<SliceBuilder>;
+ typedef PtrUseVisitor<SliceBuilder> Base;
+
+ const uint64_t AllocSize;
+ AllocaSlices &S;
+
+ SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
+ SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
+
+ /// \brief Set to de-duplicate dead instructions found in the use walk.
+ SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
+
+public:
+ SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
+ : PtrUseVisitor<SliceBuilder>(DL),
+ AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
+
+private:
+ void markAsDead(Instruction &I) {
+ if (VisitedDeadInsts.insert(&I))
+ S.DeadUsers.push_back(&I);
+ }
+
+ void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
+ bool IsSplittable = false) {
+ // Completely skip uses which have a zero size or start either before or
+ // past the end of the allocation.
+ if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
+ DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
+ << " which has zero size or starts outside of the "
+ << AllocSize << " byte alloca:\n"
+ << " alloca: " << S.AI << "\n"
+ << " use: " << I << "\n");
+ return markAsDead(I);
+ }
+
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
+
+ // Clamp the end offset to the end of the allocation. Note that this is
+ // formulated to handle even the case where "BeginOffset + Size" overflows.
+ // This may appear superficially to be something we could ignore entirely,
+ // but that is not so! There may be widened loads or PHI-node uses where
+ // some instructions are dead but not others. We can't completely ignore
+ // them, and so have to record at least the information here.
+ assert(AllocSize >= BeginOffset); // Established above.
+ if (Size > AllocSize - BeginOffset) {
+ DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
+ << " to remain within the " << AllocSize << " byte alloca:\n"
+ << " alloca: " << S.AI << "\n"
+ << " use: " << I << "\n");
+ EndOffset = AllocSize;
+ }
+
+ S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
+ }
+
+ void visitBitCastInst(BitCastInst &BC) {
+ if (BC.use_empty())
+ return markAsDead(BC);
+
+ return Base::visitBitCastInst(BC);
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ if (GEPI.use_empty())
+ return markAsDead(GEPI);
+
+ return Base::visitGetElementPtrInst(GEPI);
+ }
+
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
+ uint64_t Size, bool IsVolatile) {
+ // We allow splitting of loads and stores where the type is an integer type
+ // and cover the entire alloca. This prevents us from splitting over
+ // eagerly.
+ // FIXME: In the great blue eventually, we should eagerly split all integer
+ // loads and stores, and then have a separate step that merges adjacent
+ // alloca partitions into a single partition suitable for integer widening.
+ // Or we should skip the merge step and rely on GVN and other passes to
+ // merge adjacent loads and stores that survive mem2reg.
+ bool IsSplittable =
+ Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
+
+ insertUse(I, Offset, Size, IsSplittable);
+ }
+
+ void visitLoadInst(LoadInst &LI) {
+ assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
+ "All simple FCA loads should have been pre-split");
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&LI);
+
+ uint64_t Size = DL.getTypeStoreSize(LI.getType());
+ return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
+ }
+
+ void visitStoreInst(StoreInst &SI) {
+ Value *ValOp = SI.getValueOperand();
+ if (ValOp == *U)
+ return PI.setEscapedAndAborted(&SI);
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
+
+ uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
+
+ // If this memory access can be shown to *statically* extend outside the
+ // bounds of of the allocation, it's behavior is undefined, so simply
+ // ignore it. Note that this is more strict than the generic clamping
+ // behavior of insertUse. We also try to handle cases which might run the
+ // risk of overflow.
+ // FIXME: We should instead consider the pointer to have escaped if this
+ // function is being instrumented for addressing bugs or race conditions.
+ if (Offset.isNegative() || Size > AllocSize ||
+ Offset.ugt(AllocSize - Size)) {
+ DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
+ << " which extends past the end of the " << AllocSize
+ << " byte alloca:\n"
+ << " alloca: " << S.AI << "\n"
+ << " use: " << SI << "\n");
+ return markAsDead(SI);
+ }
+
+ assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
+ "All simple FCA stores should have been pre-split");
+ handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
+ }
+
+
+ void visitMemSetInst(MemSetInst &II) {
+ assert(II.getRawDest() == *U && "Pointer use is not the destination?");
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return markAsDead(II);
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ insertUse(II, Offset,
+ Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue(),
+ (bool)Length);
+ }
+
+ void visitMemTransferInst(MemTransferInst &II) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return markAsDead(II);
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ uint64_t RawOffset = Offset.getLimitedValue();
+ uint64_t Size = Length ? Length->getLimitedValue()
+ : AllocSize - RawOffset;
+
+ // Check for the special case where the same exact value is used for both
+ // source and dest.
+ if (*U == II.getRawDest() && *U == II.getRawSource()) {
+ // For non-volatile transfers this is a no-op.
+ if (!II.isVolatile())
+ return markAsDead(II);
+
+ return insertUse(II, Offset, Size, /*IsSplittable=*/false);
+ }
+
+ // If we have seen both source and destination for a mem transfer, then
+ // they both point to the same alloca.
+ bool Inserted;
+ SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
+ llvm::tie(MTPI, Inserted) =
+ MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
+ unsigned PrevIdx = MTPI->second;
+ if (!Inserted) {
+ Slice &PrevP = S.Slices[PrevIdx];
+
+ // Check if the begin offsets match and this is a non-volatile transfer.
+ // In that case, we can completely elide the transfer.
+ if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
+ PrevP.kill();
+ return markAsDead(II);
+ }
+
+ // Otherwise we have an offset transfer within the same alloca. We can't
+ // split those.
+ PrevP.makeUnsplittable();
+ }
+
+ // Insert the use now that we've fixed up the splittable nature.
+ insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
+
+ // Check that we ended up with a valid index in the map.
+ assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
+ "Map index doesn't point back to a slice with this user.");
+ }
+
+ // Disable SRoA for any intrinsics except for lifetime invariants.
+ // FIXME: What about debug intrinsics? This matches old behavior, but
+ // doesn't make sense.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
+ II.getIntrinsicID() == Intrinsic::lifetime_end) {
+ ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
+ uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
+ Length->getLimitedValue());
+ insertUse(II, Offset, Size, true);
+ return;
+ }
+
+ Base::visitIntrinsicInst(II);
+ }
+
+ Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
+ // We consider any PHI or select that results in a direct load or store of
+ // the same offset to be a viable use for slicing purposes. These uses
+ // are considered unsplittable and the size is the maximum loaded or stored
+ // size.
+ SmallPtrSet<Instruction *, 4> Visited;
+ SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
+ Visited.insert(Root);
+ Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
+ // If there are no loads or stores, the access is dead. We mark that as
+ // a size zero access.
+ Size = 0;
+ do {
+ Instruction *I, *UsedI;
+ llvm::tie(UsedI, I) = Uses.pop_back_val();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
+ continue;
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ Value *Op = SI->getOperand(0);
+ if (Op == UsedI)
+ return SI;
+ Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
+ continue;
+ }
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ if (!GEP->hasAllZeroIndices())
+ return GEP;
+ } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
+ !isa<SelectInst>(I)) {
+ return I;
+ }
+
+ for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
+ ++UI)
+ if (Visited.insert(cast<Instruction>(*UI)))
+ Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
+ } while (!Uses.empty());
+
+ return 0;
+ }
+
+ void visitPHINode(PHINode &PN) {
+ if (PN.use_empty())
+ return markAsDead(PN);
+ if (!IsOffsetKnown)
+ return PI.setAborted(&PN);
+
+ // See if we already have computed info on this node.
+ uint64_t &PHISize = PHIOrSelectSizes[&PN];
+ if (!PHISize) {
+ // This is a new PHI node, check for an unsafe use of the PHI node.
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
+ return PI.setAborted(UnsafeI);
+ }
+
+ // For PHI and select operands outside the alloca, we can't nuke the entire
+ // phi or select -- the other side might still be relevant, so we special
+ // case them here and use a separate structure to track the operands
+ // themselves which should be replaced with undef.
+ // FIXME: This should instead be escaped in the event we're instrumenting
+ // for address sanitization.
+ if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
+ (!Offset.isNegative() && Offset.uge(AllocSize))) {
+ S.DeadOperands.push_back(U);
+ return;
+ }
+
+ insertUse(PN, Offset, PHISize);
+ }
+
+ void visitSelectInst(SelectInst &SI) {
+ if (SI.use_empty())
+ return markAsDead(SI);
+ if (Value *Result = foldSelectInst(SI)) {
+ if (Result == *U)
+ // If the result of the constant fold will be the pointer, recurse
+ // through the select as if we had RAUW'ed it.
+ enqueueUsers(SI);
+ else
+ // Otherwise the operand to the select is dead, and we can replace it
+ // with undef.
+ S.DeadOperands.push_back(U);
+
+ return;
+ }
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
+
+ // See if we already have computed info on this node.
+ uint64_t &SelectSize = PHIOrSelectSizes[&SI];
+ if (!SelectSize) {
+ // This is a new Select, check for an unsafe use of it.
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
+ return PI.setAborted(UnsafeI);
+ }
+
+ // For PHI and select operands outside the alloca, we can't nuke the entire
+ // phi or select -- the other side might still be relevant, so we special
+ // case them here and use a separate structure to track the operands
+ // themselves which should be replaced with undef.
+ // FIXME: This should instead be escaped in the event we're instrumenting
+ // for address sanitization.
+ if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
+ (!Offset.isNegative() && Offset.uge(AllocSize))) {
+ S.DeadOperands.push_back(U);
+ return;
+ }
+
+ insertUse(SI, Offset, SelectSize);
+ }
+
+ /// \brief Disable SROA entirely if there are unhandled users of the alloca.
+ void visitInstruction(Instruction &I) {
+ PI.setAborted(&I);
+ }
+};
+
+AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
+ :
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ AI(AI),
+#endif
+ PointerEscapingInstr(0) {
+ SliceBuilder PB(DL, AI, *this);
+ SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
+ if (PtrI.isEscaped() || PtrI.isAborted()) {
+ // FIXME: We should sink the escape vs. abort info into the caller nicely,
+ // possibly by just storing the PtrInfo in the AllocaSlices.
+ PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
+ : PtrI.getAbortingInst();
+ assert(PointerEscapingInstr && "Did not track a bad instruction");
+ return;
+ }
+
+ Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
+ std::mem_fun_ref(&Slice::isDead)),
+ Slices.end());
+
+ // Sort the uses. This arranges for the offsets to be in ascending order,
+ // and the sizes to be in descending order.
+ std::sort(Slices.begin(), Slices.end());
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+
+void AllocaSlices::print(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ printSlice(OS, I, Indent);
+ printUse(OS, I, Indent);
+}
+
+void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
+ << " slice #" << (I - begin())
+ << (I->isSplittable() ? " (splittable)" : "") << "\n";
+}
+
+void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
+}
+
+void AllocaSlices::print(raw_ostream &OS) const {
+ if (PointerEscapingInstr) {
+ OS << "Can't analyze slices for alloca: " << AI << "\n"
+ << " A pointer to this alloca escaped by:\n"
+ << " " << *PointerEscapingInstr << "\n";
+ return;
+ }
+
+ OS << "Slices of alloca: " << AI << "\n";
+ for (const_iterator I = begin(), E = end(); I != E; ++I)
+ print(OS, I);
+}
+
+void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); }
+void AllocaSlices::dump() const { print(dbgs()); }
+
+#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+
+namespace {
+/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
+///
+/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
+/// the loads and stores of an alloca instruction, as well as updating its
+/// debug information. This is used when a domtree is unavailable and thus
+/// mem2reg in its full form can't be used to handle promotion of allocas to
+/// scalar values.
+class AllocaPromoter : public LoadAndStorePromoter {
+ AllocaInst &AI;
+ DIBuilder &DIB;
+
+ SmallVector<DbgDeclareInst *, 4> DDIs;
+ SmallVector<DbgValueInst *, 4> DVIs;
+
+public:
+ AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
+ AllocaInst &AI, DIBuilder &DIB)
+ : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
+
+ void run(const SmallVectorImpl<Instruction*> &Insts) {
+ // Retain the debug information attached to the alloca for use when
+ // rewriting loads and stores.
+ if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
+ for (Value::use_iterator UI = DebugNode->use_begin(),
+ UE = DebugNode->use_end();
+ UI != UE; ++UI)
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
+ DDIs.push_back(DDI);
+ else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
+ DVIs.push_back(DVI);
+ }
+
+ LoadAndStorePromoter::run(Insts);
+
+ // While we have the debug information, clear it off of the alloca. The
+ // caller takes care of deleting the alloca.
+ while (!DDIs.empty())
+ DDIs.pop_back_val()->eraseFromParent();
+ while (!DVIs.empty())
+ DVIs.pop_back_val()->eraseFromParent();
+ }
+
+ virtual bool isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction*> &Insts) const {
+ Value *Ptr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ Ptr = LI->getOperand(0);
+ else
+ Ptr = cast<StoreInst>(I)->getPointerOperand();
+
+ // Only used to detect cycles, which will be rare and quickly found as
+ // we're walking up a chain of defs rather than down through uses.
+ SmallPtrSet<Value *, 4> Visited;
+
+ do {
+ if (Ptr == &AI)
+ return true;
+
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
+ Ptr = BCI->getOperand(0);
+ else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
+ Ptr = GEPI->getPointerOperand();
+ else
+ return false;
+
+ } while (Visited.insert(Ptr));
+
+ return false;
+ }
+
+ virtual void updateDebugInfo(Instruction *Inst) const {
+ for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
+ E = DDIs.end(); I != E; ++I) {
+ DbgDeclareInst *DDI = *I;
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
+ else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
+ }
+ for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
+ E = DVIs.end(); I != E; ++I) {
+ DbgValueInst *DVI = *I;
+ Value *Arg = 0;
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ // If an argument is zero extended then use argument directly. The ZExt
+ // may be zapped by an optimization pass in future.
+ if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
+ Arg = dyn_cast<Argument>(ZExt->getOperand(0));
+ else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
+ Arg = dyn_cast<Argument>(SExt->getOperand(0));
+ if (!Arg)
+ Arg = SI->getValueOperand();
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ Arg = LI->getPointerOperand();
+ } else {
+ continue;
+ }
+ Instruction *DbgVal =
+ DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
+ Inst);
+ DbgVal->setDebugLoc(DVI->getDebugLoc());
+ }
+ }
+};
+} // end anon namespace
+
+
+namespace {
+/// \brief An optimization pass providing Scalar Replacement of Aggregates.
+///
+/// This pass takes allocations which can be completely analyzed (that is, they
+/// don't escape) and tries to turn them into scalar SSA values. There are
+/// a few steps to this process.
+///
+/// 1) It takes allocations of aggregates and analyzes the ways in which they
+/// are used to try to split them into smaller allocations, ideally of
+/// a single scalar data type. It will split up memcpy and memset accesses
+/// as necessary and try to isolate individual scalar accesses.
+/// 2) It will transform accesses into forms which are suitable for SSA value
+/// promotion. This can be replacing a memset with a scalar store of an
+/// integer value, or it can involve speculating operations on a PHI or
+/// select to be a PHI or select of the results.
+/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
+/// onto insert and extract operations on a vector value, and convert them to
+/// this form. By doing so, it will enable promotion of vector aggregates to
+/// SSA vector values.
+class SROA : public FunctionPass {
+ const bool RequiresDomTree;
+
+ LLVMContext *C;
+ const DataLayout *DL;
+ DominatorTree *DT;
+
+ /// \brief Worklist of alloca instructions to simplify.
+ ///
+ /// Each alloca in the function is added to this. Each new alloca formed gets
+ /// added to it as well to recursively simplify unless that alloca can be
+ /// directly promoted. Finally, each time we rewrite a use of an alloca other
+ /// the one being actively rewritten, we add it back onto the list if not
+ /// already present to ensure it is re-visited.
+ SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
+
+ /// \brief A collection of instructions to delete.
+ /// We try to batch deletions to simplify code and make things a bit more
+ /// efficient.
+ SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
+
+ /// \brief Post-promotion worklist.
+ ///
+ /// Sometimes we discover an alloca which has a high probability of becoming
+ /// viable for SROA after a round of promotion takes place. In those cases,
+ /// the alloca is enqueued here for re-processing.
+ ///
+ /// Note that we have to be very careful to clear allocas out of this list in
+ /// the event they are deleted.
+ SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
+
+ /// \brief A collection of alloca instructions we can directly promote.
+ std::vector<AllocaInst *> PromotableAllocas;
+
+ /// \brief A worklist of PHIs to speculate prior to promoting allocas.
+ ///
+ /// All of these PHIs have been checked for the safety of speculation and by
+ /// being speculated will allow promoting allocas currently in the promotable
+ /// queue.
+ SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
+
+ /// \brief A worklist of select instructions to speculate prior to promoting
+ /// allocas.
+ ///
+ /// All of these select instructions have been checked for the safety of
+ /// speculation and by being speculated will allow promoting allocas
+ /// currently in the promotable queue.
+ SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
+
+public:
+ SROA(bool RequiresDomTree = true)
+ : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
+ C(0), DL(0), DT(0) {
+ initializeSROAPass(*PassRegistry::getPassRegistry());
+ }
+ bool runOnFunction(Function &F);
+ void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ const char *getPassName() const { return "SROA"; }
+ static char ID;
+
+private:
+ friend class PHIOrSelectSpeculator;
+ friend class AllocaSliceRewriter;
+
+ bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
+ AllocaSlices::iterator B, AllocaSlices::iterator E,
+ int64_t BeginOffset, int64_t EndOffset,
+ ArrayRef<AllocaSlices::iterator> SplitUses);
+ bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
+ bool runOnAlloca(AllocaInst &AI);
+ void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
+ bool promoteAllocas(Function &F);
+};
+}
+
+char SROA::ID = 0;
+
+FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
+ return new SROA(RequiresDomTree);
+}
+
+INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
+ false, false)
+
+/// Walk the range of a partitioning looking for a common type to cover this
+/// sequence of slices.
+static Type *findCommonType(AllocaSlices::const_iterator B,
+ AllocaSlices::const_iterator E,
+ uint64_t EndOffset) {
+ Type *Ty = 0;
+ bool IgnoreNonIntegralTypes = false;
+ for (AllocaSlices::const_iterator I = B; I != E; ++I) {
+ Use *U = I->getUse();
+ if (isa<IntrinsicInst>(*U->getUser()))
+ continue;
+ if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
+ continue;
+
+ Type *UserTy = 0;
+ if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
+ UserTy = LI->getType();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
+ UserTy = SI->getValueOperand()->getType();
+ } else {
+ IgnoreNonIntegralTypes = true; // Give up on anything but an iN type.
+ continue;
+ }
+
+ if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
+ // If the type is larger than the partition, skip it. We only encounter
+ // this for split integer operations where we want to use the type of the
+ // entity causing the split. Also skip if the type is not a byte width
+ // multiple.
+ if (ITy->getBitWidth() % 8 != 0 ||
+ ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
+ continue;
+
+ // If we have found an integer type use covering the alloca, use that
+ // regardless of the other types, as integers are often used for
+ // a "bucket of bits" type.
+ //
+ // NB: This *must* be the only return from inside the loop so that the
+ // order of slices doesn't impact the computed type.
+ return ITy;
+ } else if (IgnoreNonIntegralTypes) {
+ continue;
+ }
+
+ if (Ty && Ty != UserTy)
+ IgnoreNonIntegralTypes = true; // Give up on anything but an iN type.
+
+ Ty = UserTy;
+ }
+ return Ty;
+}
+
+/// PHI instructions that use an alloca and are subsequently loaded can be
+/// rewritten to load both input pointers in the pred blocks and then PHI the
+/// results, allowing the load of the alloca to be promoted.
+/// From this:
+/// %P2 = phi [i32* %Alloca, i32* %Other]
+/// %V = load i32* %P2
+/// to:
+/// %V1 = load i32* %Alloca -> will be mem2reg'd
+/// ...
+/// %V2 = load i32* %Other
+/// ...
+/// %V = phi [i32 %V1, i32 %V2]
+///
+/// We can do this to a select if its only uses are loads and if the operands
+/// to the select can be loaded unconditionally.
+///
+/// FIXME: This should be hoisted into a generic utility, likely in
+/// Transforms/Util/Local.h
+static bool isSafePHIToSpeculate(PHINode &PN,
+ const DataLayout *DL = 0) {
+ // For now, we can only do this promotion if the load is in the same block
+ // as the PHI, and if there are no stores between the phi and load.
+ // TODO: Allow recursive phi users.
+ // TODO: Allow stores.
+ BasicBlock *BB = PN.getParent();
+ unsigned MaxAlign = 0;
+ bool HaveLoad = false;
+ for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
+ ++UI) {
+ LoadInst *LI = dyn_cast<LoadInst>(*UI);
+ if (LI == 0 || !LI->isSimple())
+ return false;
+
+ // For now we only allow loads in the same block as the PHI. This is
+ // a common case that happens when instcombine merges two loads through
+ // a PHI.
+ if (LI->getParent() != BB)
+ return false;
+
+ // Ensure that there are no instructions between the PHI and the load that
+ // could store.
+ for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
+ if (BBI->mayWriteToMemory())
+ return false;
+
+ MaxAlign = std::max(MaxAlign, LI->getAlignment());
+ HaveLoad = true;
+ }
+
+ if (!HaveLoad)
+ return false;
+
+ // We can only transform this if it is safe to push the loads into the
+ // predecessor blocks. The only thing to watch out for is that we can't put
+ // a possibly trapping load in the predecessor if it is a critical edge.
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
+ TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
+ Value *InVal = PN.getIncomingValue(Idx);
+
+ // If the value is produced by the terminator of the predecessor (an
+ // invoke) or it has side-effects, there is no valid place to put a load
+ // in the predecessor.
+ if (TI == InVal || TI->mayHaveSideEffects())
+ return false;
+
+ // If the predecessor has a single successor, then the edge isn't
+ // critical.
+ if (TI->getNumSuccessors() == 1)
+ continue;
+
+ // If this pointer is always safe to load, or if we can prove that there
+ // is already a load in the block, then we can move the load to the pred
+ // block.
+ if (InVal->isDereferenceablePointer() ||
+ isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
+ continue;
+
+ return false;
+ }
+
+ return true;
+}
+
+static void speculatePHINodeLoads(PHINode &PN) {
+ DEBUG(dbgs() << " original: " << PN << "\n");
+
+ Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
+ IRBuilderTy PHIBuilder(&PN);
+ PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
+ PN.getName() + ".sroa.speculated");
+
+ // Get the TBAA tag and alignment to use from one of the loads. It doesn't
+ // matter which one we get and if any differ.
+ LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
+ MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
+ unsigned Align = SomeLoad->getAlignment();
+
+ // Rewrite all loads of the PN to use the new PHI.
+ while (!PN.use_empty()) {
+ LoadInst *LI = cast<LoadInst>(*PN.use_begin());
+ LI->replaceAllUsesWith(NewPN);
+ LI->eraseFromParent();
+ }
+
+ // Inject loads into all of the pred blocks.
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
+ BasicBlock *Pred = PN.getIncomingBlock(Idx);
+ TerminatorInst *TI = Pred->getTerminator();
+ Value *InVal = PN.getIncomingValue(Idx);
+ IRBuilderTy PredBuilder(TI);
+
+ LoadInst *Load = PredBuilder.CreateLoad(
+ InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
+ ++NumLoadsSpeculated;
+ Load->setAlignment(Align);
+ if (TBAATag)
+ Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+ NewPN->addIncoming(Load, Pred);
+ }
+
+ DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
+ PN.eraseFromParent();
+}
+
+/// Select instructions that use an alloca and are subsequently loaded can be
+/// rewritten to load both input pointers and then select between the result,
+/// allowing the load of the alloca to be promoted.
+/// From this:
+/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
+/// %V = load i32* %P2
+/// to:
+/// %V1 = load i32* %Alloca -> will be mem2reg'd
+/// %V2 = load i32* %Other
+/// %V = select i1 %cond, i32 %V1, i32 %V2
+///
+/// We can do this to a select if its only uses are loads and if the operand
+/// to the select can be loaded unconditionally.
+static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
+ Value *TValue = SI.getTrueValue();
+ Value *FValue = SI.getFalseValue();
+ bool TDerefable = TValue->isDereferenceablePointer();
+ bool FDerefable = FValue->isDereferenceablePointer();
+
+ for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
+ ++UI) {
+ LoadInst *LI = dyn_cast<LoadInst>(*UI);
+ if (LI == 0 || !LI->isSimple())
+ return false;
+
+ // Both operands to the select need to be dereferencable, either
+ // absolutely (e.g. allocas) or at this point because we can see other
+ // accesses to it.
+ if (!TDerefable &&
+ !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
+ return false;
+ if (!FDerefable &&
+ !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
+ return false;
+ }
+
+ return true;
+}
+
+static void speculateSelectInstLoads(SelectInst &SI) {
+ DEBUG(dbgs() << " original: " << SI << "\n");
+
+ IRBuilderTy IRB(&SI);
+ Value *TV = SI.getTrueValue();
+ Value *FV = SI.getFalseValue();
+ // Replace the loads of the select with a select of two loads.
+ while (!SI.use_empty()) {
+ LoadInst *LI = cast<LoadInst>(*SI.use_begin());
+ assert(LI->isSimple() && "We only speculate simple loads");
+
+ IRB.SetInsertPoint(LI);
+ LoadInst *TL =
+ IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
+ LoadInst *FL =
+ IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
+ NumLoadsSpeculated += 2;
+
+ // Transfer alignment and TBAA info if present.
+ TL->setAlignment(LI->getAlignment());
+ FL->setAlignment(LI->getAlignment());
+ if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
+ TL->setMetadata(LLVMContext::MD_tbaa, Tag);
+ FL->setMetadata(LLVMContext::MD_tbaa, Tag);
+ }
+
+ Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
+ LI->getName() + ".sroa.speculated");
+
+ DEBUG(dbgs() << " speculated to: " << *V << "\n");
+ LI->replaceAllUsesWith(V);
+ LI->eraseFromParent();
+ }
+ SI.eraseFromParent();
+}
+
+/// \brief Build a GEP out of a base pointer and indices.
+///
+/// This will return the BasePtr if that is valid, or build a new GEP
+/// instruction using the IRBuilder if GEP-ing is needed.
+static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
+ SmallVectorImpl<Value *> &Indices) {
+ if (Indices.empty())
+ return BasePtr;
+
+ // A single zero index is a no-op, so check for this and avoid building a GEP
+ // in that case.
+ if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
+ return BasePtr;
+
+ return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
+}
+
+/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
+/// TargetTy without changing the offset of the pointer.
+///
+/// This routine assumes we've already established a properly offset GEP with
+/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
+/// zero-indices down through type layers until we find one the same as
+/// TargetTy. If we can't find one with the same type, we at least try to use
+/// one with the same size. If none of that works, we just produce the GEP as
+/// indicated by Indices to have the correct offset.
+static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
+ Value *BasePtr, Type *Ty, Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices) {
+ if (Ty == TargetTy)
+ return buildGEP(IRB, BasePtr, Indices);
+
+ // See if we can descend into a struct and locate a field with the correct
+ // type.
+ unsigned NumLayers = 0;
+ Type *ElementTy = Ty;
+ do {
+ if (ElementTy->isPointerTy())
+ break;
+ if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
+ ElementTy = SeqTy->getElementType();
+ // Note that we use the default address space as this index is over an
+ // array or a vector, not a pointer.
+ Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
+ } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
+ if (STy->element_begin() == STy->element_end())
+ break; // Nothing left to descend into.
+ ElementTy = *STy->element_begin();
+ Indices.push_back(IRB.getInt32(0));
+ } else {
+ break;
+ }
+ ++NumLayers;
+ } while (ElementTy != TargetTy);
+ if (ElementTy != TargetTy)
+ Indices.erase(Indices.end() - NumLayers, Indices.end());
+
+ return buildGEP(IRB, BasePtr, Indices);
+}
+
+/// \brief Recursively compute indices for a natural GEP.
+///
+/// This is the recursive step for getNaturalGEPWithOffset that walks down the
+/// element types adding appropriate indices for the GEP.
+static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
+ Value *Ptr, Type *Ty, APInt &Offset,
+ Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices) {
+ if (Offset == 0)
+ return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
+
+ // We can't recurse through pointer types.
+ if (Ty->isPointerTy())
+ return 0;
+
+ // We try to analyze GEPs over vectors here, but note that these GEPs are
+ // extremely poorly defined currently. The long-term goal is to remove GEPing
+ // over a vector from the IR completely.
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
+ unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
+ if (ElementSizeInBits % 8)
+ return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
+ APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
+ APInt NumSkippedElements = Offset.sdiv(ElementSize);
+ if (NumSkippedElements.ugt(VecTy->getNumElements()))
+ return 0;
+ Offset -= NumSkippedElements * ElementSize;
+ Indices.push_back(IRB.getInt(NumSkippedElements));
+ return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
+ Offset, TargetTy, Indices);
+ }
+
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
+ Type *ElementTy = ArrTy->getElementType();
+ APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
+ APInt NumSkippedElements = Offset.sdiv(ElementSize);
+ if (NumSkippedElements.ugt(ArrTy->getNumElements()))
+ return 0;
+
+ Offset -= NumSkippedElements * ElementSize;
+ Indices.push_back(IRB.getInt(NumSkippedElements));
+ return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
+ Indices);
+ }
+
+ StructType *STy = dyn_cast<StructType>(Ty);
+ if (!STy)
+ return 0;
+
+ const StructLayout *SL = DL.getStructLayout(STy);
+ uint64_t StructOffset = Offset.getZExtValue();
+ if (StructOffset >= SL->getSizeInBytes())
+ return 0;
+ unsigned Index = SL->getElementContainingOffset(StructOffset);
+ Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
+ Type *ElementTy = STy->getElementType(Index);
+ if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
+ return 0; // The offset points into alignment padding.
+
+ Indices.push_back(IRB.getInt32(Index));
+ return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
+ Indices);
+}
+
+/// \brief Get a natural GEP from a base pointer to a particular offset and
+/// resulting in a particular type.
+///
+/// The goal is to produce a "natural" looking GEP that works with the existing
+/// composite types to arrive at the appropriate offset and element type for
+/// a pointer. TargetTy is the element type the returned GEP should point-to if
+/// possible. We recurse by decreasing Offset, adding the appropriate index to
+/// Indices, and setting Ty to the result subtype.
+///
+/// If no natural GEP can be constructed, this function returns null.
+static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
+ Value *Ptr, APInt Offset, Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices) {
+ PointerType *Ty = cast<PointerType>(Ptr->getType());
+
+ // Don't consider any GEPs through an i8* as natural unless the TargetTy is
+ // an i8.
+ if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
+ return 0;
+
+ Type *ElementTy = Ty->getElementType();
+ if (!ElementTy->isSized())
+ return 0; // We can't GEP through an unsized element.
+ APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
+ if (ElementSize == 0)
+ return 0; // Zero-length arrays can't help us build a natural GEP.
+ APInt NumSkippedElements = Offset.sdiv(ElementSize);
+
+ Offset -= NumSkippedElements * ElementSize;
+ Indices.push_back(IRB.getInt(NumSkippedElements));
+ return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
+ Indices);
+}
+
+/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
+/// resulting pointer has PointerTy.
+///
+/// This tries very hard to compute a "natural" GEP which arrives at the offset
+/// and produces the pointer type desired. Where it cannot, it will try to use
+/// the natural GEP to arrive at the offset and bitcast to the type. Where that
+/// fails, it will try to use an existing i8* and GEP to the byte offset and
+/// bitcast to the type.
+///
+/// The strategy for finding the more natural GEPs is to peel off layers of the
+/// pointer, walking back through bit casts and GEPs, searching for a base
+/// pointer from which we can compute a natural GEP with the desired
+/// properties. The algorithm tries to fold as many constant indices into
+/// a single GEP as possible, thus making each GEP more independent of the
+/// surrounding code.
+static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
+ Value *Ptr, APInt Offset, Type *PointerTy) {
+ // Even though we don't look through PHI nodes, we could be called on an
+ // instruction in an unreachable block, which may be on a cycle.
+ SmallPtrSet<Value *, 4> Visited;
+ Visited.insert(Ptr);
+ SmallVector<Value *, 4> Indices;
+
+ // We may end up computing an offset pointer that has the wrong type. If we
+ // never are able to compute one directly that has the correct type, we'll
+ // fall back to it, so keep it around here.
+ Value *OffsetPtr = 0;
+
+ // Remember any i8 pointer we come across to re-use if we need to do a raw
+ // byte offset.
+ Value *Int8Ptr = 0;
+ APInt Int8PtrOffset(Offset.getBitWidth(), 0);
+
+ Type *TargetTy = PointerTy->getPointerElementType();
+
+ do {
+ // First fold any existing GEPs into the offset.
+ while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ APInt GEPOffset(Offset.getBitWidth(), 0);
+ if (!GEP->accumulateConstantOffset(DL, GEPOffset))
+ break;
+ Offset += GEPOffset;
+ Ptr = GEP->getPointerOperand();
+ if (!Visited.insert(Ptr))
+ break;
+ }
+
+ // See if we can perform a natural GEP here.
+ Indices.clear();
+ if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
+ Indices)) {
+ if (P->getType() == PointerTy) {
+ // Zap any offset pointer that we ended up computing in previous rounds.
+ if (OffsetPtr && OffsetPtr->use_empty())
+ if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
+ I->eraseFromParent();
+ return P;
+ }
+ if (!OffsetPtr) {
+ OffsetPtr = P;
+ }
+ }
+
+ // Stash this pointer if we've found an i8*.
+ if (Ptr->getType()->isIntegerTy(8)) {
+ Int8Ptr = Ptr;
+ Int8PtrOffset = Offset;
+ }
+
+ // Peel off a layer of the pointer and update the offset appropriately.
+ if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
+ Ptr = cast<Operator>(Ptr)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
+ if (GA->mayBeOverridden())
+ break;
+ Ptr = GA->getAliasee();
+ } else {
+ break;
+ }
+ assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
+ } while (Visited.insert(Ptr));
+
+ if (!OffsetPtr) {
+ if (!Int8Ptr) {
+ Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
+ "raw_cast");
+ Int8PtrOffset = Offset;
+ }
+
+ OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
+ IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
+ "raw_idx");
+ }
+ Ptr = OffsetPtr;
+
+ // On the off chance we were targeting i8*, guard the bitcast here.
+ if (Ptr->getType() != PointerTy)
+ Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
+
+ return Ptr;
+}
+
+/// \brief Test whether we can convert a value from the old to the new type.
+///
+/// This predicate should be used to guard calls to convertValue in order to
+/// ensure that we only try to convert viable values. The strategy is that we
+/// will peel off single element struct and array wrappings to get to an
+/// underlying value, and convert that value.
+static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
+ if (OldTy == NewTy)
+ return true;
+ if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
+ if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
+ if (NewITy->getBitWidth() >= OldITy->getBitWidth())
+ return true;
+ if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
+ return false;
+ if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
+ return false;
+
+ // We can convert pointers to integers and vice-versa. Same for vectors
+ // of pointers and integers.
+ OldTy = OldTy->getScalarType();
+ NewTy = NewTy->getScalarType();
+ if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
+ if (NewTy->isPointerTy() && OldTy->isPointerTy())
+ return true;
+ if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
+ return true;
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Generic routine to convert an SSA value to a value of a different
+/// type.
+///
+/// This will try various different casting techniques, such as bitcasts,
+/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
+/// two types for viability with this routine.
+static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
+ Type *NewTy) {
+ Type *OldTy = V->getType();
+ assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
+
+ if (OldTy == NewTy)
+ return V;
+
+ if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
+ if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
+ if (NewITy->getBitWidth() > OldITy->getBitWidth())
+ return IRB.CreateZExt(V, NewITy);
+
+ // See if we need inttoptr for this type pair. A cast involving both scalars
+ // and vectors requires and additional bitcast.
+ if (OldTy->getScalarType()->isIntegerTy() &&
+ NewTy->getScalarType()->isPointerTy()) {
+ // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
+ if (OldTy->isVectorTy() && !NewTy->isVectorTy())
+ return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
+ NewTy);
+
+ // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
+ if (!OldTy->isVectorTy() && NewTy->isVectorTy())
+ return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
+ NewTy);
+
+ return IRB.CreateIntToPtr(V, NewTy);
+ }
+
+ // See if we need ptrtoint for this type pair. A cast involving both scalars
+ // and vectors requires and additional bitcast.
+ if (OldTy->getScalarType()->isPointerTy() &&
+ NewTy->getScalarType()->isIntegerTy()) {
+ // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
+ if (OldTy->isVectorTy() && !NewTy->isVectorTy())
+ return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
+ NewTy);
+
+ // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
+ if (!OldTy->isVectorTy() && NewTy->isVectorTy())
+ return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
+ NewTy);
+
+ return IRB.CreatePtrToInt(V, NewTy);
+ }
+
+ return IRB.CreateBitCast(V, NewTy);
+}
+
+/// \brief Test whether the given slice use can be promoted to a vector.
+///
+/// This function is called to test each entry in a partioning which is slated
+/// for a single slice.
+static bool isVectorPromotionViableForSlice(
+ const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
+ uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
+ AllocaSlices::const_iterator I) {
+ // First validate the slice offsets.
+ uint64_t BeginOffset =
+ std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
+ uint64_t BeginIndex = BeginOffset / ElementSize;
+ if (BeginIndex * ElementSize != BeginOffset ||
+ BeginIndex >= Ty->getNumElements())
+ return false;
+ uint64_t EndOffset =
+ std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
+ uint64_t EndIndex = EndOffset / ElementSize;
+ if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
+ return false;
+
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ uint64_t NumElements = EndIndex - BeginIndex;
+ Type *SliceTy =
+ (NumElements == 1) ? Ty->getElementType()
+ : VectorType::get(Ty->getElementType(), NumElements);
+
+ Type *SplitIntTy =
+ Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
+
+ Use *U = I->getUse();
+
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
+ if (MI->isVolatile())
+ return false;
+ if (!I->isSplittable())
+ return false; // Skip any unsplittable intrinsics.
+ } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
+ // Disable vector promotion when there are loads or stores of an FCA.
+ return false;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
+ if (LI->isVolatile())
+ return false;
+ Type *LTy = LI->getType();
+ if (SliceBeginOffset > I->beginOffset() ||
+ SliceEndOffset < I->endOffset()) {
+ assert(LTy->isIntegerTy());
+ LTy = SplitIntTy;
+ }
+ if (!canConvertValue(DL, SliceTy, LTy))
+ return false;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
+ if (SI->isVolatile())
+ return false;
+ Type *STy = SI->getValueOperand()->getType();
+ if (SliceBeginOffset > I->beginOffset() ||
+ SliceEndOffset < I->endOffset()) {
+ assert(STy->isIntegerTy());
+ STy = SplitIntTy;
+ }
+ if (!canConvertValue(DL, STy, SliceTy))
+ return false;
+ } else {
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Test whether the given alloca partitioning and range of slices can be
+/// promoted to a vector.
+///
+/// This is a quick test to check whether we can rewrite a particular alloca
+/// partition (and its newly formed alloca) into a vector alloca with only
+/// whole-vector loads and stores such that it could be promoted to a vector
+/// SSA value. We only can ensure this for a limited set of operations, and we
+/// don't want to do the rewrites unless we are confident that the result will
+/// be promotable, so we have an early test here.
+static bool
+isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
+ uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
+ AllocaSlices::const_iterator I,
+ AllocaSlices::const_iterator E,
+ ArrayRef<AllocaSlices::iterator> SplitUses) {
+ VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
+ if (!Ty)
+ return false;
+
+ uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
+
+ // While the definition of LLVM vectors is bitpacked, we don't support sizes
+ // that aren't byte sized.
+ if (ElementSize % 8)
+ return false;
+ assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
+ "vector size not a multiple of element size?");
+ ElementSize /= 8;
+
+ for (; I != E; ++I)
+ if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
+ SliceEndOffset, Ty, ElementSize, I))
+ return false;
+
+ for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
+ SUE = SplitUses.end();
+ SUI != SUE; ++SUI)
+ if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
+ SliceEndOffset, Ty, ElementSize, *SUI))
+ return false;
+
+ return true;
+}
+
+/// \brief Test whether a slice of an alloca is valid for integer widening.
+///
+/// This implements the necessary checking for the \c isIntegerWideningViable
+/// test below on a single slice of the alloca.
+static bool isIntegerWideningViableForSlice(const DataLayout &DL,
+ Type *AllocaTy,
+ uint64_t AllocBeginOffset,
+ uint64_t Size, AllocaSlices &S,
+ AllocaSlices::const_iterator I,
+ bool &WholeAllocaOp) {
+ uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
+ uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
+
+ // We can't reasonably handle cases where the load or store extends past
+ // the end of the aloca's type and into its padding.
+ if (RelEnd > Size)
+ return false;
+
+ Use *U = I->getUse();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
+ if (LI->isVolatile())
+ return false;
+ if (RelBegin == 0 && RelEnd == Size)
+ WholeAllocaOp = true;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
+ if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
+ return false;
+ } else if (RelBegin != 0 || RelEnd != Size ||
+ !canConvertValue(DL, AllocaTy, LI->getType())) {
+ // Non-integer loads need to be convertible from the alloca type so that
+ // they are promotable.
+ return false;
+ }
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
+ Type *ValueTy = SI->getValueOperand()->getType();
+ if (SI->isVolatile())
+ return false;
+ if (RelBegin == 0 && RelEnd == Size)
+ WholeAllocaOp = true;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
+ if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
+ return false;
+ } else if (RelBegin != 0 || RelEnd != Size ||
+ !canConvertValue(DL, ValueTy, AllocaTy)) {
+ // Non-integer stores need to be convertible to the alloca type so that
+ // they are promotable.
+ return false;
+ }
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
+ if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
+ return false;
+ if (!I->isSplittable())
+ return false; // Skip any unsplittable intrinsics.
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
+ if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+ II->getIntrinsicID() != Intrinsic::lifetime_end)
+ return false;
+ } else {
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Test whether the given alloca partition's integer operations can be
+/// widened to promotable ones.
+///
+/// This is a quick test to check whether we can rewrite the integer loads and
+/// stores to a particular alloca into wider loads and stores and be able to
+/// promote the resulting alloca.
+static bool
+isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
+ uint64_t AllocBeginOffset, AllocaSlices &S,
+ AllocaSlices::const_iterator I,
+ AllocaSlices::const_iterator E,
+ ArrayRef<AllocaSlices::iterator> SplitUses) {
+ uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
+ // Don't create integer types larger than the maximum bitwidth.
+ if (SizeInBits > IntegerType::MAX_INT_BITS)
+ return false;
+
+ // Don't try to handle allocas with bit-padding.
+ if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
+ return false;
+
+ // We need to ensure that an integer type with the appropriate bitwidth can
+ // be converted to the alloca type, whatever that is. We don't want to force
+ // the alloca itself to have an integer type if there is a more suitable one.
+ Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
+ if (!canConvertValue(DL, AllocaTy, IntTy) ||
+ !canConvertValue(DL, IntTy, AllocaTy))
+ return false;
+
+ uint64_t Size = DL.getTypeStoreSize(AllocaTy);
+
+ // While examining uses, we ensure that the alloca has a covering load or
+ // store. We don't want to widen the integer operations only to fail to
+ // promote due to some other unsplittable entry (which we may make splittable
+ // later). However, if there are only splittable uses, go ahead and assume
+ // that we cover the alloca.
+ bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
+
+ for (; I != E; ++I)
+ if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
+ S, I, WholeAllocaOp))
+ return false;
+
+ for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
+ SUE = SplitUses.end();
+ SUI != SUE; ++SUI)
+ if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
+ S, *SUI, WholeAllocaOp))
+ return false;
+
+ return WholeAllocaOp;
+}
+
+static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
+ IntegerType *Ty, uint64_t Offset,
+ const Twine &Name) {
+ DEBUG(dbgs() << " start: " << *V << "\n");
+ IntegerType *IntTy = cast<IntegerType>(V->getType());
+ assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
+ "Element extends past full value");
+ uint64_t ShAmt = 8*Offset;
+ if (DL.isBigEndian())
+ ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
+ if (ShAmt) {
+ V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
+ DEBUG(dbgs() << " shifted: " << *V << "\n");
+ }
+ assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
+ "Cannot extract to a larger integer!");
+ if (Ty != IntTy) {
+ V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
+ DEBUG(dbgs() << " trunced: " << *V << "\n");
+ }
+ return V;
+}
+
+static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
+ Value *V, uint64_t Offset, const Twine &Name) {
+ IntegerType *IntTy = cast<IntegerType>(Old->getType());
+ IntegerType *Ty = cast<IntegerType>(V->getType());
+ assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
+ "Cannot insert a larger integer!");
+ DEBUG(dbgs() << " start: " << *V << "\n");
+ if (Ty != IntTy) {
+ V = IRB.CreateZExt(V, IntTy, Name + ".ext");
+ DEBUG(dbgs() << " extended: " << *V << "\n");
+ }
+ assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
+ "Element store outside of alloca store");
+ uint64_t ShAmt = 8*Offset;
+ if (DL.isBigEndian())
+ ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
+ if (ShAmt) {
+ V = IRB.CreateShl(V, ShAmt, Name + ".shift");
+ DEBUG(dbgs() << " shifted: " << *V << "\n");
+ }
+
+ if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
+ APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
+ Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
+ DEBUG(dbgs() << " masked: " << *Old << "\n");
+ V = IRB.CreateOr(Old, V, Name + ".insert");
+ DEBUG(dbgs() << " inserted: " << *V << "\n");
+ }
+ return V;
+}
+
+static Value *extractVector(IRBuilderTy &IRB, Value *V,
+ unsigned BeginIndex, unsigned EndIndex,
+ const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ if (NumElements == VecTy->getNumElements())
+ return V;
+
+ if (NumElements == 1) {
+ V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
+ Name + ".extract");
+ DEBUG(dbgs() << " extract: " << *V << "\n");
+ return V;
+ }
+
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(NumElements);
+ for (unsigned i = BeginIndex; i != EndIndex; ++i)
+ Mask.push_back(IRB.getInt32(i));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".extract");
+ DEBUG(dbgs() << " shuffle: " << *V << "\n");
+ return V;
+}
+
+static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
+ unsigned BeginIndex, const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(Old->getType());
+ assert(VecTy && "Can only insert a vector into a vector");
+
+ VectorType *Ty = dyn_cast<VectorType>(V->getType());
+ if (!Ty) {
+ // Single element to insert.
+ V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
+ Name + ".insert");
+ DEBUG(dbgs() << " insert: " << *V << "\n");
+ return V;
+ }
+
+ assert(Ty->getNumElements() <= VecTy->getNumElements() &&
+ "Too many elements!");
+ if (Ty->getNumElements() == VecTy->getNumElements()) {
+ assert(V->getType() == VecTy && "Vector type mismatch");
+ return V;
+ }
+ unsigned EndIndex = BeginIndex + Ty->getNumElements();
+
+ // When inserting a smaller vector into the larger to store, we first
+ // use a shuffle vector to widen it with undef elements, and then
+ // a second shuffle vector to select between the loaded vector and the
+ // incoming vector.
+ SmallVector<Constant*, 8> Mask;
+ Mask.reserve(VecTy->getNumElements());
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(IRB.getInt32(i - BeginIndex));
+ else
+ Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
+ V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(Mask),
+ Name + ".expand");
+ DEBUG(dbgs() << " shuffle: " << *V << "\n");
+
+ Mask.clear();
+ for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
+ Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
+
+ V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
+
+ DEBUG(dbgs() << " blend: " << *V << "\n");
+ return V;
+}
+
+namespace {
+/// \brief Visitor to rewrite instructions using p particular slice of an alloca
+/// to use a new alloca.
+///
+/// Also implements the rewriting to vector-based accesses when the partition
+/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
+/// lives here.
+class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
+ typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
+
+ const DataLayout &DL;
+ AllocaSlices &S;
+ SROA &Pass;
+ AllocaInst &OldAI, &NewAI;
+ const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
+ Type *NewAllocaTy;
+
+ // If we are rewriting an alloca partition which can be written as pure
+ // vector operations, we stash extra information here. When VecTy is
+ // non-null, we have some strict guarantees about the rewritten alloca:
+ // - The new alloca is exactly the size of the vector type here.
+ // - The accesses all either map to the entire vector or to a single
+ // element.
+ // - The set of accessing instructions is only one of those handled above
+ // in isVectorPromotionViable. Generally these are the same access kinds
+ // which are promotable via mem2reg.
+ VectorType *VecTy;
+ Type *ElementTy;
+ uint64_t ElementSize;
+
+ // This is a convenience and flag variable that will be null unless the new
+ // alloca's integer operations should be widened to this integer type due to
+ // passing isIntegerWideningViable above. If it is non-null, the desired
+ // integer type will be stored here for easy access during rewriting.
+ IntegerType *IntTy;
+
+ // The offset of the slice currently being rewritten.
+ uint64_t BeginOffset, EndOffset;
+ bool IsSplittable;
+ bool IsSplit;
+ Use *OldUse;
+ Instruction *OldPtr;
+
+ // Output members carrying state about the result of visiting and rewriting
+ // the slice of the alloca.
+ bool IsUsedByRewrittenSpeculatableInstructions;
+
+ // Utility IR builder, whose name prefix is setup for each visited use, and
+ // the insertion point is set to point to the user.
+ IRBuilderTy IRB;
+
+public:
+ AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
+ AllocaInst &OldAI, AllocaInst &NewAI,
+ uint64_t NewBeginOffset, uint64_t NewEndOffset,
+ bool IsVectorPromotable = false,
+ bool IsIntegerPromotable = false)
+ : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
+ NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
+ NewAllocaTy(NewAI.getAllocatedType()),
+ VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
+ ElementTy(VecTy ? VecTy->getElementType() : 0),
+ ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
+ IntTy(IsIntegerPromotable
+ ? Type::getIntNTy(
+ NewAI.getContext(),
+ DL.getTypeSizeInBits(NewAI.getAllocatedType()))
+ : 0),
+ BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
+ OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false),
+ IRB(NewAI.getContext(), ConstantFolder()) {
+ if (VecTy) {
+ assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
+ "Only multiple-of-8 sized vector elements are viable");
+ ++NumVectorized;
+ }
+ assert((!IsVectorPromotable && !IsIntegerPromotable) ||
+ IsVectorPromotable != IsIntegerPromotable);
+ }
+
+ bool visit(AllocaSlices::const_iterator I) {
+ bool CanSROA = true;
+ BeginOffset = I->beginOffset();
+ EndOffset = I->endOffset();
+ IsSplittable = I->isSplittable();
+ IsSplit =
+ BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
+
+ OldUse = I->getUse();
+ OldPtr = cast<Instruction>(OldUse->get());
+
+ Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
+ IRB.SetInsertPoint(OldUserI);
+ IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
+ IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
+
+ CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
+ if (VecTy || IntTy)
+ assert(CanSROA);
+ return CanSROA;
+ }
+
+ /// \brief Query whether this slice is used by speculatable instructions after
+ /// rewriting.
+ ///
+ /// These instructions (PHIs and Selects currently) require the alloca slice
+ /// to run back through the rewriter. Thus, they are promotable, but not on
+ /// this iteration. This is distinct from a slice which is unpromotable for
+ /// some other reason, in which case we don't even want to perform the
+ /// speculation. This can be querried at any time and reflects whether (at
+ /// that point) a visit call has rewritten a speculatable instruction on the
+ /// current slice.
+ bool isUsedByRewrittenSpeculatableInstructions() const {
+ return IsUsedByRewrittenSpeculatableInstructions;
+ }
+
+private:
+ // Make sure the other visit overloads are visible.
+ using Base::visit;
+
+ // Every instruction which can end up as a user must have a rewrite rule.
+ bool visitInstruction(Instruction &I) {
+ DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
+ llvm_unreachable("No rewrite rule for this instruction!");
+ }
+
+ Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
+ Type *PointerTy) {
+ assert(Offset >= NewAllocaBeginOffset);
+ return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
+ Offset - NewAllocaBeginOffset),
+ PointerTy);
+ }
+
+ /// \brief Compute suitable alignment to access an offset into the new alloca.
+ unsigned getOffsetAlign(uint64_t Offset) {
+ unsigned NewAIAlign = NewAI.getAlignment();
+ if (!NewAIAlign)
+ NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
+ return MinAlign(NewAIAlign, Offset);
+ }
+
+ /// \brief Compute suitable alignment to access a type at an offset of the
+ /// new alloca.
+ ///
+ /// \returns zero if the type's ABI alignment is a suitable alignment,
+ /// otherwise returns the maximal suitable alignment.
+ unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
+ unsigned Align = getOffsetAlign(Offset);
+ return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
+ }
+
+ unsigned getIndex(uint64_t Offset) {
+ assert(VecTy && "Can only call getIndex when rewriting a vector");
+ uint64_t RelOffset = Offset - NewAllocaBeginOffset;
+ assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
+ uint32_t Index = RelOffset / ElementSize;
+ assert(Index * ElementSize == RelOffset);
+ return Index;
+ }
+
+ void deleteIfTriviallyDead(Value *V) {
+ Instruction *I = cast<Instruction>(V);
+ if (isInstructionTriviallyDead(I))
+ Pass.DeadInsts.insert(I);
+ }
+
+ Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
+ uint64_t NewEndOffset) {
+ unsigned BeginIndex = getIndex(NewBeginOffset);
+ unsigned EndIndex = getIndex(NewEndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
+ }
+
+ Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
+ uint64_t NewEndOffset) {
+ assert(IntTy && "We cannot insert an integer to the alloca");
+ assert(!LI.isVolatile());
+ Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ V = convertValue(DL, IRB, V, IntTy);
+ assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
+ V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
+ "extract");
+ return V;
+ }
+
+ bool visitLoadInst(LoadInst &LI) {
+ DEBUG(dbgs() << " original: " << LI << "\n");
+ Value *OldOp = LI.getOperand(0);
+ assert(OldOp == OldPtr);
+
+ // Compute the intersecting offset range.
+ assert(BeginOffset < NewAllocaEndOffset);
+ assert(EndOffset > NewAllocaBeginOffset);
+ uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
+ uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
+
+ uint64_t Size = NewEndOffset - NewBeginOffset;
+
+ Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
+ : LI.getType();
+ bool IsPtrAdjusted = false;
+ Value *V;
+ if (VecTy) {
+ V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
+ } else if (IntTy && LI.getType()->isIntegerTy()) {
+ V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
+ } else if (NewBeginOffset == NewAllocaBeginOffset &&
+ canConvertValue(DL, NewAllocaTy, LI.getType())) {
+ V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ LI.isVolatile(), "load");
+ } else {
+ Type *LTy = TargetTy->getPointerTo();
+ V = IRB.CreateAlignedLoad(
+ getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
+ getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
+ LI.isVolatile(), "load");
+ IsPtrAdjusted = true;
+ }
+ V = convertValue(DL, IRB, V, TargetTy);
+
+ if (IsSplit) {
+ assert(!LI.isVolatile());
+ assert(LI.getType()->isIntegerTy() &&
+ "Only integer type loads and stores are split");
+ assert(Size < DL.getTypeStoreSize(LI.getType()) &&
+ "Split load isn't smaller than original load");
+ assert(LI.getType()->getIntegerBitWidth() ==
+ DL.getTypeStoreSizeInBits(LI.getType()) &&
+ "Non-byte-multiple bit width");
+ // Move the insertion point just past the load so that we can refer to it.
+ IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
+ // Create a placeholder value with the same type as LI to use as the
+ // basis for the new value. This allows us to replace the uses of LI with
+ // the computed value, and then replace the placeholder with LI, leaving
+ // LI only used for this computation.
+ Value *Placeholder
+ = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
+ V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
+ "insert");
+ LI.replaceAllUsesWith(V);
+ Placeholder->replaceAllUsesWith(&LI);
+ delete Placeholder;
+ } else {
+ LI.replaceAllUsesWith(V);
+ }
+
+ Pass.DeadInsts.insert(&LI);
+ deleteIfTriviallyDead(OldOp);
+ DEBUG(dbgs() << " to: " << *V << "\n");
+ return !LI.isVolatile() && !IsPtrAdjusted;
+ }
+
+ bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
+ uint64_t NewBeginOffset,
+ uint64_t NewEndOffset) {
+ if (V->getType() != VecTy) {
+ unsigned BeginIndex = getIndex(NewBeginOffset);
+ unsigned EndIndex = getIndex(NewEndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+ Type *SliceTy =
+ (NumElements == 1) ? ElementTy
+ : VectorType::get(ElementTy, NumElements);
+ if (V->getType() != SliceTy)
+ V = convertValue(DL, IRB, V, SliceTy);
+
+ // Mix in the existing elements.
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ V = insertVector(IRB, Old, V, BeginIndex, "vec");
+ }
+ StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
+ Pass.DeadInsts.insert(&SI);
+
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ return true;
+ }
+
+ bool rewriteIntegerStore(Value *V, StoreInst &SI,
+ uint64_t NewBeginOffset, uint64_t NewEndOffset) {
+ assert(IntTy && "We cannot extract an integer from the alloca");
+ assert(!SI.isVolatile());
+ if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
+ Old = convertValue(DL, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
+ "insert");
+ }
+ V = convertValue(DL, IRB, V, NewAllocaTy);
+ StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
+ Pass.DeadInsts.insert(&SI);
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ return true;
+ }
+
+ bool visitStoreInst(StoreInst &SI) {
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ Value *OldOp = SI.getOperand(1);
+ assert(OldOp == OldPtr);
+
+ Value *V = SI.getValueOperand();
+
+ // Strip all inbounds GEPs and pointer casts to try to dig out any root
+ // alloca that should be re-examined after promoting this alloca.
+ if (V->getType()->isPointerTy())
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
+ Pass.PostPromotionWorklist.insert(AI);
+
+ // Compute the intersecting offset range.
+ assert(BeginOffset < NewAllocaEndOffset);
+ assert(EndOffset > NewAllocaBeginOffset);
+ uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
+ uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
+
+ uint64_t Size = NewEndOffset - NewBeginOffset;
+ if (Size < DL.getTypeStoreSize(V->getType())) {
+ assert(!SI.isVolatile());
+ assert(V->getType()->isIntegerTy() &&
+ "Only integer type loads and stores are split");
+ assert(V->getType()->getIntegerBitWidth() ==
+ DL.getTypeStoreSizeInBits(V->getType()) &&
+ "Non-byte-multiple bit width");
+ IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
+ V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
+ "extract");
+ }
+
+ if (VecTy)
+ return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
+ NewEndOffset);
+ if (IntTy && V->getType()->isIntegerTy())
+ return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
+
+ StoreInst *NewSI;
+ if (NewBeginOffset == NewAllocaBeginOffset &&
+ NewEndOffset == NewAllocaEndOffset &&
+ canConvertValue(DL, V->getType(), NewAllocaTy)) {
+ V = convertValue(DL, IRB, V, NewAllocaTy);
+ NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
+ SI.isVolatile());
+ } else {
+ Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
+ V->getType()->getPointerTo());
+ NewSI = IRB.CreateAlignedStore(
+ V, NewPtr, getOffsetTypeAlign(
+ V->getType(), NewBeginOffset - NewAllocaBeginOffset),
+ SI.isVolatile());
+ }
+ (void)NewSI;
+ Pass.DeadInsts.insert(&SI);
+ deleteIfTriviallyDead(OldOp);
+
+ DEBUG(dbgs() << " to: " << *NewSI << "\n");
+ return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
+ }
+
+ /// \brief Compute an integer value from splatting an i8 across the given
+ /// number of bytes.
+ ///
+ /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
+ /// call this routine.
+ /// FIXME: Heed the advice above.
+ ///
+ /// \param V The i8 value to splat.
+ /// \param Size The number of bytes in the output (assuming i8 is one byte)
+ Value *getIntegerSplat(Value *V, unsigned Size) {
+ assert(Size > 0 && "Expected a positive number of bytes.");
+ IntegerType *VTy = cast<IntegerType>(V->getType());
+ assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
+ if (Size == 1)
+ return V;
+
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
+ V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
+ ConstantExpr::getUDiv(
+ Constant::getAllOnesValue(SplatIntTy),
+ ConstantExpr::getZExt(
+ Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ "isplat");
+ return V;
+ }
+
+ /// \brief Compute a vector splat for a given element value.
+ Value *getVectorSplat(Value *V, unsigned NumElements) {
+ V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
+ DEBUG(dbgs() << " splat: " << *V << "\n");
+ return V;
+ }
+
+ bool visitMemSetInst(MemSetInst &II) {
+ DEBUG(dbgs() << " original: " << II << "\n");
+ assert(II.getRawDest() == OldPtr);
+
+ // If the memset has a variable size, it cannot be split, just adjust the
+ // pointer to the new alloca.
+ if (!isa<Constant>(II.getLength())) {
+ assert(!IsSplit);
+ assert(BeginOffset >= NewAllocaBeginOffset);
+ II.setDest(
+ getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
+ Type *CstTy = II.getAlignmentCst()->getType();
+ II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
+
+ deleteIfTriviallyDead(OldPtr);
+ return false;
+ }
+
+ // Record this instruction for deletion.
+ Pass.DeadInsts.insert(&II);
+
+ Type *AllocaTy = NewAI.getAllocatedType();
+ Type *ScalarTy = AllocaTy->getScalarType();
+
+ // Compute the intersecting offset range.
+ assert(BeginOffset < NewAllocaEndOffset);
+ assert(EndOffset > NewAllocaBeginOffset);
+ uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
+ uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
+ uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
+
+ // If this doesn't map cleanly onto the alloca type, and that type isn't
+ // a single value type, just emit a memset.
+ if (!VecTy && !IntTy &&
+ (BeginOffset > NewAllocaBeginOffset ||
+ EndOffset < NewAllocaEndOffset ||
+ !AllocaTy->isSingleValueType() ||
+ !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
+ DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
+ Type *SizeTy = II.getLength()->getType();
+ Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
+ CallInst *New = IRB.CreateMemSet(
+ getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
+ II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile());
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return false;
+ }
+
+ // If we can represent this as a simple value, we have to build the actual
+ // value to store, which requires expanding the byte present in memset to
+ // a sensible representation for the alloca type. This is essentially
+ // splatting the byte to a sufficiently wide integer, splatting it across
+ // any desired vector width, and bitcasting to the final type.
+ Value *V;
+
+ if (VecTy) {
+ // If this is a memset of a vectorized alloca, insert it.
+ assert(ElementTy == ScalarTy);
+
+ unsigned BeginIndex = getIndex(NewBeginOffset);
+ unsigned EndIndex = getIndex(NewEndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ Value *Splat =
+ getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
+ Splat = convertValue(DL, IRB, Splat, ElementTy);
+ if (NumElements > 1)
+ Splat = getVectorSplat(Splat, NumElements);
+
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
+ V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
+ } else if (IntTy) {
+ // If this is a memset on an alloca where we can widen stores, insert the
+ // set integer.
+ assert(!II.isVolatile());
+
+ uint64_t Size = NewEndOffset - NewBeginOffset;
+ V = getIntegerSplat(II.getValue(), Size);
+
+ if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaBeginOffset)) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
+ Old = convertValue(DL, IRB, Old, IntTy);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(DL, IRB, Old, V, Offset, "insert");
+ } else {
+ assert(V->getType() == IntTy &&
+ "Wrong type for an alloca wide integer!");
+ }
+ V = convertValue(DL, IRB, V, AllocaTy);
+ } else {
+ // Established these invariants above.
+ assert(NewBeginOffset == NewAllocaBeginOffset);
+ assert(NewEndOffset == NewAllocaEndOffset);
+
+ V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
+ if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
+ V = getVectorSplat(V, AllocaVecTy->getNumElements());
+
+ V = convertValue(DL, IRB, V, AllocaTy);
+ }
+
+ Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
+ II.isVolatile());
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return !II.isVolatile();
+ }
+
+ bool visitMemTransferInst(MemTransferInst &II) {
+ // Rewriting of memory transfer instructions can be a bit tricky. We break
+ // them into two categories: split intrinsics and unsplit intrinsics.
+
+ DEBUG(dbgs() << " original: " << II << "\n");
+
+ // Compute the intersecting offset range.
+ assert(BeginOffset < NewAllocaEndOffset);
+ assert(EndOffset > NewAllocaBeginOffset);
+ uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
+ uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
+
+ assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
+ bool IsDest = II.getRawDest() == OldPtr;
+
+ // Compute the relative offset within the transfer.
+ unsigned IntPtrWidth = DL.getPointerSizeInBits();
+ APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
+
+ unsigned Align = II.getAlignment();
+ uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
+ if (Align > 1)
+ Align =
+ MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
+ MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset)));
+
+ // For unsplit intrinsics, we simply modify the source and destination
+ // pointers in place. This isn't just an optimization, it is a matter of
+ // correctness. With unsplit intrinsics we may be dealing with transfers
+ // within a single alloca before SROA ran, or with transfers that have
+ // a variable length. We may also be dealing with memmove instead of
+ // memcpy, and so simply updating the pointers is the necessary for us to
+ // update both source and dest of a single call.
+ if (!IsSplittable) {
+ Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
+ if (IsDest)
+ II.setDest(
+ getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
+ else
+ II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
+ II.getRawSource()->getType()));
+
+ Type *CstTy = II.getAlignmentCst()->getType();
+ II.setAlignment(ConstantInt::get(CstTy, Align));
+
+ DEBUG(dbgs() << " to: " << II << "\n");
+ deleteIfTriviallyDead(OldOp);
+ return false;
+ }
+ // For split transfer intrinsics we have an incredibly useful assurance:
+ // the source and destination do not reside within the same alloca, and at
+ // least one of them does not escape. This means that we can replace
+ // memmove with memcpy, and we don't need to worry about all manner of
+ // downsides to splitting and transforming the operations.
+
+ // If this doesn't map cleanly onto the alloca type, and that type isn't
+ // a single value type, just emit a memcpy.
+ bool EmitMemCpy
+ = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
+ EndOffset < NewAllocaEndOffset ||
+ !NewAI.getAllocatedType()->isSingleValueType());
+
+ // If we're just going to emit a memcpy, the alloca hasn't changed, and the
+ // size hasn't been shrunk based on analysis of the viable range, this is
+ // a no-op.
+ if (EmitMemCpy && &OldAI == &NewAI) {
+ // Ensure the start lines up.
+ assert(NewBeginOffset == BeginOffset);
+
+ // Rewrite the size as needed.
+ if (NewEndOffset != EndOffset)
+ II.setLength(ConstantInt::get(II.getLength()->getType(),
+ NewEndOffset - NewBeginOffset));
+ return false;
+ }
+ // Record this instruction for deletion.
+ Pass.DeadInsts.insert(&II);
+
+ // Strip all inbounds GEPs and pointer casts to try to dig out any root
+ // alloca that should be re-examined after rewriting this instruction.
+ Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
+ if (AllocaInst *AI
+ = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
+ Pass.Worklist.insert(AI);
+
+ if (EmitMemCpy) {
+ Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
+ : II.getRawDest()->getType();
+
+ // Compute the other pointer, folding as much as possible to produce
+ // a single, simple GEP in most cases.
+ OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
+
+ Value *OurPtr = getAdjustedAllocaPtr(
+ IRB, NewBeginOffset,
+ IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
+ Type *SizeTy = II.getLength()->getType();
+ Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
+
+ CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
+ IsDest ? OtherPtr : OurPtr,
+ Size, Align, II.isVolatile());
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return false;
+ }
+
+ // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
+ // is equivalent to 1, but that isn't true if we end up rewriting this as
+ // a load or store.
+ if (!Align)
+ Align = 1;
+
+ bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
+ NewEndOffset == NewAllocaEndOffset;
+ uint64_t Size = NewEndOffset - NewBeginOffset;
+ unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
+ unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
+ unsigned NumElements = EndIndex - BeginIndex;
+ IntegerType *SubIntTy
+ = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
+
+ Type *OtherPtrTy = NewAI.getType();
+ if (VecTy && !IsWholeAlloca) {
+ if (NumElements == 1)
+ OtherPtrTy = VecTy->getElementType();
+ else
+ OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
+
+ OtherPtrTy = OtherPtrTy->getPointerTo();
+ } else if (IntTy && !IsWholeAlloca) {
+ OtherPtrTy = SubIntTy->getPointerTo();
+ }
+
+ Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
+ Value *DstPtr = &NewAI;
+ if (!IsDest)
+ std::swap(SrcPtr, DstPtr);
+
+ Value *Src;
+ if (VecTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
+ } else if (IntTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "load");
+ Src = convertValue(DL, IRB, Src, IntTy);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
+ } else {
+ Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
+ "copyload");
+ }
+
+ if (VecTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
+ Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
+ } else if (IntTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
+ "oldload");
+ Old = convertValue(DL, IRB, Old, IntTy);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
+ Src = convertValue(DL, IRB, Src, NewAllocaTy);
+ }
+
+ StoreInst *Store = cast<StoreInst>(
+ IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ return !II.isVolatile();
+ }
+
+ bool visitIntrinsicInst(IntrinsicInst &II) {
+ assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
+ II.getIntrinsicID() == Intrinsic::lifetime_end);
+ DEBUG(dbgs() << " original: " << II << "\n");
+ assert(II.getArgOperand(1) == OldPtr);
+
+ // Compute the intersecting offset range.
+ assert(BeginOffset < NewAllocaEndOffset);
+ assert(EndOffset > NewAllocaBeginOffset);
+ uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
+ uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
+
+ // Record this instruction for deletion.
+ Pass.DeadInsts.insert(&II);
+
+ ConstantInt *Size
+ = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
+ NewEndOffset - NewBeginOffset);
+ Value *Ptr =
+ getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
+ Value *New;
+ if (II.getIntrinsicID() == Intrinsic::lifetime_start)
+ New = IRB.CreateLifetimeStart(Ptr, Size);
+ else
+ New = IRB.CreateLifetimeEnd(Ptr, Size);
+
+ (void)New;
+ DEBUG(dbgs() << " to: " << *New << "\n");
+ return true;
+ }
+
+ bool visitPHINode(PHINode &PN) {
+ DEBUG(dbgs() << " original: " << PN << "\n");
+ assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
+ assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
+
+ // We would like to compute a new pointer in only one place, but have it be
+ // as local as possible to the PHI. To do that, we re-use the location of
+ // the old pointer, which necessarily must be in the right position to
+ // dominate the PHI.
+ IRBuilderTy PtrBuilder(OldPtr);
+ PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
+ ".");
+
+ Value *NewPtr =
+ getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
+ // Replace the operands which were using the old pointer.
+ std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
+
+ DEBUG(dbgs() << " to: " << PN << "\n");
+ deleteIfTriviallyDead(OldPtr);
+
+ // Check whether we can speculate this PHI node, and if so remember that
+ // fact and queue it up for another iteration after the speculation
+ // occurs.
+ if (isSafePHIToSpeculate(PN, &DL)) {
+ Pass.SpeculatablePHIs.insert(&PN);
+ IsUsedByRewrittenSpeculatableInstructions = true;
+ return true;
+ }
+
+ return false; // PHIs can't be promoted on their own.
+ }
+
+ bool visitSelectInst(SelectInst &SI) {
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
+ "Pointer isn't an operand!");
+ assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
+ assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
+
+ Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
+ // Replace the operands which were using the old pointer.
+ if (SI.getOperand(1) == OldPtr)
+ SI.setOperand(1, NewPtr);
+ if (SI.getOperand(2) == OldPtr)
+ SI.setOperand(2, NewPtr);
+
+ DEBUG(dbgs() << " to: " << SI << "\n");
+ deleteIfTriviallyDead(OldPtr);
+
+ // Check whether we can speculate this select instruction, and if so
+ // remember that fact and queue it up for another iteration after the
+ // speculation occurs.
+ if (isSafeSelectToSpeculate(SI, &DL)) {
+ Pass.SpeculatableSelects.insert(&SI);
+ IsUsedByRewrittenSpeculatableInstructions = true;
+ return true;
+ }
+
+ return false; // Selects can't be promoted on their own.
+ }
+
+};
+}
+
+namespace {
+/// \brief Visitor to rewrite aggregate loads and stores as scalar.
+///
+/// This pass aggressively rewrites all aggregate loads and stores on
+/// a particular pointer (or any pointer derived from it which we can identify)
+/// with scalar loads and stores.
+class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
+
+ const DataLayout &DL;
+
+ /// Queue of pointer uses to analyze and potentially rewrite.
+ SmallVector<Use *, 8> Queue;
+
+ /// Set to prevent us from cycling with phi nodes and loops.
+ SmallPtrSet<User *, 8> Visited;
+
+ /// The current pointer use being rewritten. This is used to dig up the used
+ /// value (as opposed to the user).
+ Use *U;
+
+public:
+ AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
+
+ /// Rewrite loads and stores through a pointer and all pointers derived from
+ /// it.
+ bool rewrite(Instruction &I) {
+ DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
+ enqueueUsers(I);
+ bool Changed = false;
+ while (!Queue.empty()) {
+ U = Queue.pop_back_val();
+ Changed |= visit(cast<Instruction>(U->getUser()));
+ }
+ return Changed;
+ }
+
+private:
+ /// Enqueue all the users of the given instruction for further processing.
+ /// This uses a set to de-duplicate users.
+ void enqueueUsers(Instruction &I) {
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
+ ++UI)
+ if (Visited.insert(*UI))
+ Queue.push_back(&UI.getUse());
+ }
+
+ // Conservative default is to not rewrite anything.
+ bool visitInstruction(Instruction &I) { return false; }
+
+ /// \brief Generic recursive split emission class.
+ template <typename Derived>
+ class OpSplitter {
+ protected:
+ /// The builder used to form new instructions.
+ IRBuilderTy IRB;
+ /// The indices which to be used with insert- or extractvalue to select the
+ /// appropriate value within the aggregate.
+ SmallVector<unsigned, 4> Indices;
+ /// The indices to a GEP instruction which will move Ptr to the correct slot
+ /// within the aggregate.
+ SmallVector<Value *, 4> GEPIndices;
+ /// The base pointer of the original op, used as a base for GEPing the
+ /// split operations.
+ Value *Ptr;
+
+ /// Initialize the splitter with an insertion point, Ptr and start with a
+ /// single zero GEP index.
+ OpSplitter(Instruction *InsertionPoint, Value *Ptr)
+ : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
+
+ public:
+ /// \brief Generic recursive split emission routine.
+ ///
+ /// This method recursively splits an aggregate op (load or store) into
+ /// scalar or vector ops. It splits recursively until it hits a single value
+ /// and emits that single value operation via the template argument.
+ ///
+ /// The logic of this routine relies on GEPs and insertvalue and
+ /// extractvalue all operating with the same fundamental index list, merely
+ /// formatted differently (GEPs need actual values).
+ ///
+ /// \param Ty The type being split recursively into smaller ops.
+ /// \param Agg The aggregate value being built up or stored, depending on
+ /// whether this is splitting a load or a store respectively.
+ void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
+ if (Ty->isSingleValueType())
+ return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
+
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned OldSize = Indices.size();
+ (void)OldSize;
+ for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
+ ++Idx) {
+ assert(Indices.size() == OldSize && "Did not return to the old size");
+ Indices.push_back(Idx);
+ GEPIndices.push_back(IRB.getInt32(Idx));
+ emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
+ GEPIndices.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ unsigned OldSize = Indices.size();
+ (void)OldSize;
+ for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
+ ++Idx) {
+ assert(Indices.size() == OldSize && "Did not return to the old size");
+ Indices.push_back(Idx);
+ GEPIndices.push_back(IRB.getInt32(Idx));
+ emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
+ GEPIndices.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ llvm_unreachable("Only arrays and structs are aggregate loadable types");
+ }
+ };
+
+ struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
+ LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
+ : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
+
+ /// Emit a leaf load of a single value. This is called at the leaves of the
+ /// recursive emission to actually load values.
+ void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
+ assert(Ty->isSingleValueType());
+ // Load the single value and insert it using the indices.
+ Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
+ Value *Load = IRB.CreateLoad(GEP, Name + ".load");
+ Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
+ DEBUG(dbgs() << " to: " << *Load << "\n");
+ }
+ };
+
+ bool visitLoadInst(LoadInst &LI) {
+ assert(LI.getPointerOperand() == *U);
+ if (!LI.isSimple() || LI.getType()->isSingleValueType())
+ return false;
+
+ // We have an aggregate being loaded, split it apart.
+ DEBUG(dbgs() << " original: " << LI << "\n");
+ LoadOpSplitter Splitter(&LI, *U);
+ Value *V = UndefValue::get(LI.getType());
+ Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
+ LI.replaceAllUsesWith(V);
+ LI.eraseFromParent();
+ return true;
+ }
+
+ struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
+ StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
+ : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
+
+ /// Emit a leaf store of a single value. This is called at the leaves of the
+ /// recursive emission to actually produce stores.
+ void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
+ assert(Ty->isSingleValueType());
+ // Extract the single value and store it using the indices.
+ Value *Store = IRB.CreateStore(
+ IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
+ IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
+ (void)Store;
+ DEBUG(dbgs() << " to: " << *Store << "\n");
+ }
+ };
+
+ bool visitStoreInst(StoreInst &SI) {
+ if (!SI.isSimple() || SI.getPointerOperand() != *U)
+ return false;
+ Value *V = SI.getValueOperand();
+ if (V->getType()->isSingleValueType())
+ return false;
+
+ // We have an aggregate being stored, split it apart.
+ DEBUG(dbgs() << " original: " << SI << "\n");
+ StoreOpSplitter Splitter(&SI, *U);
+ Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
+ SI.eraseFromParent();
+ return true;
+ }
+
+ bool visitBitCastInst(BitCastInst &BC) {
+ enqueueUsers(BC);
+ return false;
+ }
+
+ bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ enqueueUsers(GEPI);
+ return false;
+ }
+
+ bool visitPHINode(PHINode &PN) {
+ enqueueUsers(PN);
+ return false;
+ }
+
+ bool visitSelectInst(SelectInst &SI) {
+ enqueueUsers(SI);
+ return false;
+ }
+};
+}
+
+/// \brief Strip aggregate type wrapping.
+///
+/// This removes no-op aggregate types wrapping an underlying type. It will
+/// strip as many layers of types as it can without changing either the type
+/// size or the allocated size.
+static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
+ if (Ty->isSingleValueType())
+ return Ty;
+
+ uint64_t AllocSize = DL.getTypeAllocSize(Ty);
+ uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
+
+ Type *InnerTy;
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
+ InnerTy = ArrTy->getElementType();
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Index = SL->getElementContainingOffset(0);
+ InnerTy = STy->getElementType(Index);
+ } else {
+ return Ty;
+ }
+
+ if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
+ TypeSize > DL.getTypeSizeInBits(InnerTy))
+ return Ty;
+
+ return stripAggregateTypeWrapping(DL, InnerTy);
+}
+
+/// \brief Try to find a partition of the aggregate type passed in for a given
+/// offset and size.
+///
+/// This recurses through the aggregate type and tries to compute a subtype
+/// based on the offset and size. When the offset and size span a sub-section
+/// of an array, it will even compute a new array type for that sub-section,
+/// and the same for structs.
+///
+/// Note that this routine is very strict and tries to find a partition of the
+/// type which produces the *exact* right offset and size. It is not forgiving
+/// when the size or offset cause either end of type-based partition to be off.
+/// Also, this is a best-effort routine. It is reasonable to give up and not
+/// return a type if necessary.
+static Type *getTypePartition(const DataLayout &DL, Type *Ty,
+ uint64_t Offset, uint64_t Size) {
+ if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
+ return stripAggregateTypeWrapping(DL, Ty);
+ if (Offset > DL.getTypeAllocSize(Ty) ||
+ (DL.getTypeAllocSize(Ty) - Offset) < Size)
+ return 0;
+
+ if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
+ // We can't partition pointers...
+ if (SeqTy->isPointerTy())
+ return 0;
+
+ Type *ElementTy = SeqTy->getElementType();
+ uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
+ uint64_t NumSkippedElements = Offset / ElementSize;
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
+ if (NumSkippedElements >= ArrTy->getNumElements())
+ return 0;
+ } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
+ if (NumSkippedElements >= VecTy->getNumElements())
+ return 0;
+ }
+ Offset -= NumSkippedElements * ElementSize;
+
+ // First check if we need to recurse.
+ if (Offset > 0 || Size < ElementSize) {
+ // Bail if the partition ends in a different array element.
+ if ((Offset + Size) > ElementSize)
+ return 0;
+ // Recurse through the element type trying to peel off offset bytes.
+ return getTypePartition(DL, ElementTy, Offset, Size);
+ }
+ assert(Offset == 0);
+
+ if (Size == ElementSize)
+ return stripAggregateTypeWrapping(DL, ElementTy);
+ assert(Size > ElementSize);
+ uint64_t NumElements = Size / ElementSize;
+ if (NumElements * ElementSize != Size)
+ return 0;
+ return ArrayType::get(ElementTy, NumElements);
+ }
+
+ StructType *STy = dyn_cast<StructType>(Ty);
+ if (!STy)
+ return 0;
+
+ const StructLayout *SL = DL.getStructLayout(STy);
+ if (Offset >= SL->getSizeInBytes())
+ return 0;
+ uint64_t EndOffset = Offset + Size;
+ if (EndOffset > SL->getSizeInBytes())
+ return 0;
+
+ unsigned Index = SL->getElementContainingOffset(Offset);
+ Offset -= SL->getElementOffset(Index);
+
+ Type *ElementTy = STy->getElementType(Index);
+ uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
+ if (Offset >= ElementSize)
+ return 0; // The offset points into alignment padding.
+
+ // See if any partition must be contained by the element.
+ if (Offset > 0 || Size < ElementSize) {
+ if ((Offset + Size) > ElementSize)
+ return 0;
+ return getTypePartition(DL, ElementTy, Offset, Size);
+ }
+ assert(Offset == 0);
+
+ if (Size == ElementSize)
+ return stripAggregateTypeWrapping(DL, ElementTy);
+
+ StructType::element_iterator EI = STy->element_begin() + Index,
+ EE = STy->element_end();
+ if (EndOffset < SL->getSizeInBytes()) {
+ unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
+ if (Index == EndIndex)
+ return 0; // Within a single element and its padding.
+
+ // Don't try to form "natural" types if the elements don't line up with the
+ // expected size.
+ // FIXME: We could potentially recurse down through the last element in the
+ // sub-struct to find a natural end point.
+ if (SL->getElementOffset(EndIndex) != EndOffset)
+ return 0;
+
+ assert(Index < EndIndex);
+ EE = STy->element_begin() + EndIndex;
+ }
+
+ // Try to build up a sub-structure.
+ StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
+ STy->isPacked());
+ const StructLayout *SubSL = DL.getStructLayout(SubTy);
+ if (Size != SubSL->getSizeInBytes())
+ return 0; // The sub-struct doesn't have quite the size needed.
+
+ return SubTy;
+}
+
+/// \brief Rewrite an alloca partition's users.
+///
+/// This routine drives both of the rewriting goals of the SROA pass. It tries
+/// to rewrite uses of an alloca partition to be conducive for SSA value
+/// promotion. If the partition needs a new, more refined alloca, this will
+/// build that new alloca, preserving as much type information as possible, and
+/// rewrite the uses of the old alloca to point at the new one and have the
+/// appropriate new offsets. It also evaluates how successful the rewrite was
+/// at enabling promotion and if it was successful queues the alloca to be
+/// promoted.
+bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
+ AllocaSlices::iterator B, AllocaSlices::iterator E,
+ int64_t BeginOffset, int64_t EndOffset,
+ ArrayRef<AllocaSlices::iterator> SplitUses) {
+ assert(BeginOffset < EndOffset);
+ uint64_t SliceSize = EndOffset - BeginOffset;
+
+ // Try to compute a friendly type for this partition of the alloca. This
+ // won't always succeed, in which case we fall back to a legal integer type
+ // or an i8 array of an appropriate size.
+ Type *SliceTy = 0;
+ if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
+ if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
+ SliceTy = CommonUseTy;
+ if (!SliceTy)
+ if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
+ BeginOffset, SliceSize))
+ SliceTy = TypePartitionTy;
+ if ((!SliceTy || (SliceTy->isArrayTy() &&
+ SliceTy->getArrayElementType()->isIntegerTy())) &&
+ DL->isLegalInteger(SliceSize * 8))
+ SliceTy = Type::getIntNTy(*C, SliceSize * 8);
+ if (!SliceTy)
+ SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
+ assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
+
+ bool IsVectorPromotable = isVectorPromotionViable(
+ *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
+
+ bool IsIntegerPromotable =
+ !IsVectorPromotable &&
+ isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
+
+ // Check for the case where we're going to rewrite to a new alloca of the
+ // exact same type as the original, and with the same access offsets. In that
+ // case, re-use the existing alloca, but still run through the rewriter to
+ // perform phi and select speculation.
+ AllocaInst *NewAI;
+ if (SliceTy == AI.getAllocatedType()) {
+ assert(BeginOffset == 0 &&
+ "Non-zero begin offset but same alloca type");
+ NewAI = &AI;
+ // FIXME: We should be able to bail at this point with "nothing changed".
+ // FIXME: We might want to defer PHI speculation until after here.
+ } else {
+ unsigned Alignment = AI.getAlignment();
+ if (!Alignment) {
+ // The minimum alignment which users can rely on when the explicit
+ // alignment is omitted or zero is that required by the ABI for this
+ // type.
+ Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
+ }
+ Alignment = MinAlign(Alignment, BeginOffset);
+ // If we will get at least this much alignment from the type alone, leave
+ // the alloca's alignment unconstrained.
+ if (Alignment <= DL->getABITypeAlignment(SliceTy))
+ Alignment = 0;
+ NewAI = new AllocaInst(SliceTy, 0, Alignment,
+ AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
+ ++NumNewAllocas;
+ }
+
+ DEBUG(dbgs() << "Rewriting alloca partition "
+ << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
+ << "\n");
+
+ // Track the high watermark on several worklists that are only relevant for
+ // promoted allocas. We will reset it to this point if the alloca is not in
+ // fact scheduled for promotion.
+ unsigned PPWOldSize = PostPromotionWorklist.size();
+ unsigned SPOldSize = SpeculatablePHIs.size();
+ unsigned SSOldSize = SpeculatableSelects.size();
+ unsigned NumUses = 0;
+
+ AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
+ EndOffset, IsVectorPromotable,
+ IsIntegerPromotable);
+ bool Promotable = true;
+ for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
+ SUE = SplitUses.end();
+ SUI != SUE; ++SUI) {
+ DEBUG(dbgs() << " rewriting split ");
+ DEBUG(S.printSlice(dbgs(), *SUI, ""));
+ Promotable &= Rewriter.visit(*SUI);
+ ++NumUses;
+ }
+ for (AllocaSlices::iterator I = B; I != E; ++I) {
+ DEBUG(dbgs() << " rewriting ");
+ DEBUG(S.printSlice(dbgs(), I, ""));
+ Promotable &= Rewriter.visit(I);
+ ++NumUses;
+ }
+
+ NumAllocaPartitionUses += NumUses;
+ MaxUsesPerAllocaPartition =
+ std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
+
+ if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) {
+ DEBUG(dbgs() << " and queuing for promotion\n");
+ PromotableAllocas.push_back(NewAI);
+ } else if (NewAI != &AI ||
+ (Promotable &&
+ Rewriter.isUsedByRewrittenSpeculatableInstructions())) {
+ // If we can't promote the alloca, iterate on it to check for new
+ // refinements exposed by splitting the current alloca. Don't iterate on an
+ // alloca which didn't actually change and didn't get promoted.
+ //
+ // Alternatively, if we could promote the alloca but have speculatable
+ // instructions then we will speculate them after finishing our processing
+ // of the original alloca. Mark the new one for re-visiting in the next
+ // iteration so the speculated operations can be rewritten.
+ //
+ // FIXME: We should actually track whether the rewriter changed anything.
+ Worklist.insert(NewAI);
+ }
+
+ // Drop any post-promotion work items if promotion didn't happen.
+ if (!Promotable) {
+ while (PostPromotionWorklist.size() > PPWOldSize)
+ PostPromotionWorklist.pop_back();
+ while (SpeculatablePHIs.size() > SPOldSize)
+ SpeculatablePHIs.pop_back();
+ while (SpeculatableSelects.size() > SSOldSize)
+ SpeculatableSelects.pop_back();
+ }
+
+ return true;
+}
+
+namespace {
+struct IsSliceEndLessOrEqualTo {
+ uint64_t UpperBound;
+
+ IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
+
+ bool operator()(const AllocaSlices::iterator &I) {
+ return I->endOffset() <= UpperBound;
+ }
+};
+}
+
+static void
+removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
+ uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
+ if (Offset >= MaxSplitUseEndOffset) {
+ SplitUses.clear();
+ MaxSplitUseEndOffset = 0;
+ return;
+ }
+
+ size_t SplitUsesOldSize = SplitUses.size();
+ SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
+ IsSliceEndLessOrEqualTo(Offset)),
+ SplitUses.end());
+ if (SplitUsesOldSize == SplitUses.size())
+ return;
+
+ // Recompute the max. While this is linear, so is remove_if.
+ MaxSplitUseEndOffset = 0;
+ for (SmallVectorImpl<AllocaSlices::iterator>::iterator
+ SUI = SplitUses.begin(),
+ SUE = SplitUses.end();
+ SUI != SUE; ++SUI)
+ MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
+}
+
+/// \brief Walks the slices of an alloca and form partitions based on them,
+/// rewriting each of their uses.
+bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
+ if (S.begin() == S.end())
+ return false;
+
+ unsigned NumPartitions = 0;
+ bool Changed = false;
+ SmallVector<AllocaSlices::iterator, 4> SplitUses;
+ uint64_t MaxSplitUseEndOffset = 0;
+
+ uint64_t BeginOffset = S.begin()->beginOffset();
+
+ for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end();
+ SI != SE; SI = SJ) {
+ uint64_t MaxEndOffset = SI->endOffset();
+
+ if (!SI->isSplittable()) {
+ // When we're forming an unsplittable region, it must always start at the
+ // first slice and will extend through its end.
+ assert(BeginOffset == SI->beginOffset());
+
+ // Form a partition including all of the overlapping slices with this
+ // unsplittable slice.
+ while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
+ if (!SJ->isSplittable())
+ MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
+ ++SJ;
+ }
+ } else {
+ assert(SI->isSplittable()); // Established above.
+
+ // Collect all of the overlapping splittable slices.
+ while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
+ SJ->isSplittable()) {
+ MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
+ ++SJ;
+ }
+
+ // Back up MaxEndOffset and SJ if we ended the span early when
+ // encountering an unsplittable slice.
+ if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
+ assert(!SJ->isSplittable());
+ MaxEndOffset = SJ->beginOffset();
+ }
+ }
+
+ // Check if we have managed to move the end offset forward yet. If so,
+ // we'll have to rewrite uses and erase old split uses.
+ if (BeginOffset < MaxEndOffset) {
+ // Rewrite a sequence of overlapping slices.
+ Changed |=
+ rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
+ ++NumPartitions;
+
+ removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
+ }
+
+ // Accumulate all the splittable slices from the [SI,SJ) region which
+ // overlap going forward.
+ for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
+ if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
+ SplitUses.push_back(SK);
+ MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
+ }
+
+ // If we're already at the end and we have no split uses, we're done.
+ if (SJ == SE && SplitUses.empty())
+ break;
+
+ // If we have no split uses or no gap in offsets, we're ready to move to
+ // the next slice.
+ if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
+ BeginOffset = SJ->beginOffset();
+ continue;
+ }
+
+ // Even if we have split slices, if the next slice is splittable and the
+ // split slices reach it, we can simply set up the beginning offset of the
+ // next iteration to bridge between them.
+ if (SJ != SE && SJ->isSplittable() &&
+ MaxSplitUseEndOffset > SJ->beginOffset()) {
+ BeginOffset = MaxEndOffset;
+ continue;
+ }
+
+ // Otherwise, we have a tail of split slices. Rewrite them with an empty
+ // range of slices.
+ uint64_t PostSplitEndOffset =
+ SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
+
+ Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
+ SplitUses);
+ ++NumPartitions;
+
+ if (SJ == SE)
+ break; // Skip the rest, we don't need to do any cleanup.
+
+ removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
+ PostSplitEndOffset);
+
+ // Now just reset the begin offset for the next iteration.
+ BeginOffset = SJ->beginOffset();
+ }
+
+ NumAllocaPartitions += NumPartitions;
+ MaxPartitionsPerAlloca =
+ std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
+
+ return Changed;
+}
+
+/// \brief Analyze an alloca for SROA.
+///
+/// This analyzes the alloca to ensure we can reason about it, builds
+/// the slices of the alloca, and then hands it off to be split and
+/// rewritten as needed.
+bool SROA::runOnAlloca(AllocaInst &AI) {
+ DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
+ ++NumAllocasAnalyzed;
+
+ // Special case dead allocas, as they're trivial.
+ if (AI.use_empty()) {
+ AI.eraseFromParent();
+ return true;
+ }
+
+ // Skip alloca forms that this analysis can't handle.
+ if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
+ DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
+ return false;
+
+ bool Changed = false;
+
+ // First, split any FCA loads and stores touching this alloca to promote
+ // better splitting and promotion opportunities.
+ AggLoadStoreRewriter AggRewriter(*DL);
+ Changed |= AggRewriter.rewrite(AI);
+
+ // Build the slices using a recursive instruction-visiting builder.
+ AllocaSlices S(*DL, AI);
+ DEBUG(S.print(dbgs()));
+ if (S.isEscaped())
+ return Changed;
+
+ // Delete all the dead users of this alloca before splitting and rewriting it.
+ for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
+ DE = S.dead_user_end();
+ DI != DE; ++DI) {
+ Changed = true;
+ (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
+ DeadInsts.insert(*DI);
+ }
+ for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
+ DE = S.dead_op_end();
+ DO != DE; ++DO) {
+ Value *OldV = **DO;
+ // Clobber the use with an undef value.
+ **DO = UndefValue::get(OldV->getType());
+ if (Instruction *OldI = dyn_cast<Instruction>(OldV))
+ if (isInstructionTriviallyDead(OldI)) {
+ Changed = true;
+ DeadInsts.insert(OldI);
+ }
+ }
+
+ // No slices to split. Leave the dead alloca for a later pass to clean up.
+ if (S.begin() == S.end())
+ return Changed;
+
+ Changed |= splitAlloca(AI, S);
+
+ DEBUG(dbgs() << " Speculating PHIs\n");
+ while (!SpeculatablePHIs.empty())
+ speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
+
+ DEBUG(dbgs() << " Speculating Selects\n");
+ while (!SpeculatableSelects.empty())
+ speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
+
+ return Changed;
+}
+
+/// \brief Delete the dead instructions accumulated in this run.
+///
+/// Recursively deletes the dead instructions we've accumulated. This is done
+/// at the very end to maximize locality of the recursive delete and to
+/// minimize the problems of invalidated instruction pointers as such pointers
+/// are used heavily in the intermediate stages of the algorithm.
+///
+/// We also record the alloca instructions deleted here so that they aren't
+/// subsequently handed to mem2reg to promote.
+void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
+ while (!DeadInsts.empty()) {
+ Instruction *I = DeadInsts.pop_back_val();
+ DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
+
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ // Zero out the operand and see if it becomes trivially dead.
+ *OI = 0;
+ if (isInstructionTriviallyDead(U))
+ DeadInsts.insert(U);
+ }
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ DeletedAllocas.insert(AI);
+
+ ++NumDeleted;
+ I->eraseFromParent();
+ }
+}
+
+static void enqueueUsersInWorklist(Instruction &I,
+ SmallVectorImpl<Instruction *> &Worklist,
+ SmallPtrSet<Instruction *, 8> &Visited) {
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
+ ++UI)
+ if (Visited.insert(cast<Instruction>(*UI)))
+ Worklist.push_back(cast<Instruction>(*UI));
+}
+
+/// \brief Promote the allocas, using the best available technique.
+///
+/// This attempts to promote whatever allocas have been identified as viable in
+/// the PromotableAllocas list. If that list is empty, there is nothing to do.
+/// If there is a domtree available, we attempt to promote using the full power
+/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
+/// based on the SSAUpdater utilities. This function returns whether any
+/// promotion occurred.
+bool SROA::promoteAllocas(Function &F) {
+ if (PromotableAllocas.empty())
+ return false;
+
+ NumPromoted += PromotableAllocas.size();
+
+ if (DT && !ForceSSAUpdater) {
+ DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
+ PromoteMemToReg(PromotableAllocas, *DT);
+ PromotableAllocas.clear();
+ return true;
+ }
+
+ DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
+ SSAUpdater SSA;
+ DIBuilder DIB(*F.getParent());
+ SmallVector<Instruction *, 64> Insts;
+
+ // We need a worklist to walk the uses of each alloca.
+ SmallVector<Instruction *, 8> Worklist;
+ SmallPtrSet<Instruction *, 8> Visited;
+ SmallVector<Instruction *, 32> DeadInsts;
+
+ for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
+ AllocaInst *AI = PromotableAllocas[Idx];
+ Insts.clear();
+ Worklist.clear();
+ Visited.clear();
+
+ enqueueUsersInWorklist(*AI, Worklist, Visited);
+
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+
+ // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
+ // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
+ // leading to them) here. Eventually it should use them to optimize the
+ // scalar values produced.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
+ II->getIntrinsicID() == Intrinsic::lifetime_end);
+ II->eraseFromParent();
+ continue;
+ }
+
+ // Push the loads and stores we find onto the list. SROA will already
+ // have validated that all loads and stores are viable candidates for
+ // promotion.
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ assert(LI->getType() == AI->getAllocatedType());
+ Insts.push_back(LI);
+ continue;
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
+ Insts.push_back(SI);
+ continue;
+ }
+
+ // For everything else, we know that only no-op bitcasts and GEPs will
+ // make it this far, just recurse through them and recall them for later
+ // removal.
+ DeadInsts.push_back(I);
+ enqueueUsersInWorklist(*I, Worklist, Visited);
+ }
+ AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
+ while (!DeadInsts.empty())
+ DeadInsts.pop_back_val()->eraseFromParent();
+ AI->eraseFromParent();
+ }
+
+ PromotableAllocas.clear();
+ return true;
+}
+
+namespace {
+ /// \brief A predicate to test whether an alloca belongs to a set.
+ class IsAllocaInSet {
+ typedef SmallPtrSet<AllocaInst *, 4> SetType;
+ const SetType &Set;
+
+ public:
+ typedef AllocaInst *argument_type;
+
+ IsAllocaInSet(const SetType &Set) : Set(Set) {}
+ bool operator()(AllocaInst *AI) const { return Set.count(AI); }
+ };
+}
+
+bool SROA::runOnFunction(Function &F) {
+ DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
+ C = &F.getContext();
+ DL = getAnalysisIfAvailable<DataLayout>();
+ if (!DL) {
+ DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
+ return false;
+ }
+ DT = getAnalysisIfAvailable<DominatorTree>();
+
+ BasicBlock &EntryBB = F.getEntryBlock();
+ for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
+ I != E; ++I)
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ Worklist.insert(AI);
+
+ bool Changed = false;
+ // A set of deleted alloca instruction pointers which should be removed from
+ // the list of promotable allocas.
+ SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
+
+ do {
+ while (!Worklist.empty()) {
+ Changed |= runOnAlloca(*Worklist.pop_back_val());
+ deleteDeadInstructions(DeletedAllocas);
+
+ // Remove the deleted allocas from various lists so that we don't try to
+ // continue processing them.
+ if (!DeletedAllocas.empty()) {
+ Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
+ PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
+ PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
+ PromotableAllocas.end(),
+ IsAllocaInSet(DeletedAllocas)),
+ PromotableAllocas.end());
+ DeletedAllocas.clear();
+ }
+ }
+
+ Changed |= promoteAllocas(F);
+
+ Worklist = PostPromotionWorklist;
+ PostPromotionWorklist.clear();
+ } while (!Worklist.empty());
+
+ return Changed;
+}
+
+void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
+ if (RequiresDomTree)
+ AU.addRequired<DominatorTree>();
+ AU.setPreservesCFG();
+}
OpenPOWER on IntegriCloud