diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SROA.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/SROA.cpp | 4421 |
1 files changed, 4421 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SROA.cpp b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp new file mode 100644 index 0000000..ed161fd --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/SROA.cpp @@ -0,0 +1,4421 @@ +//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This transformation implements the well known scalar replacement of +/// aggregates transformation. It tries to identify promotable elements of an +/// aggregate alloca, and promote them to registers. It will also try to +/// convert uses of an element (or set of elements) of an alloca into a vector +/// or bitfield-style integer scalar if appropriate. +/// +/// It works to do this with minimal slicing of the alloca so that regions +/// which are merely transferred in and out of external memory remain unchanged +/// and are not decomposed to scalar code. +/// +/// Because this also performs alloca promotion, it can be thought of as also +/// serving the purpose of SSA formation. The algorithm iterates on the +/// function until all opportunities for promotion have been realized. +/// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/PtrUseVisitor.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Operator.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/TimeValue.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" + +#if __cplusplus >= 201103L && !defined(NDEBUG) +// We only use this for a debug check in C++11 +#include <random> +#endif + +using namespace llvm; + +#define DEBUG_TYPE "sroa" + +STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); +STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); +STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); +STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); +STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); +STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); +STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); +STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); +STATISTIC(NumDeleted, "Number of instructions deleted"); +STATISTIC(NumVectorized, "Number of vectorized aggregates"); + +/// Hidden option to force the pass to not use DomTree and mem2reg, instead +/// forming SSA values through the SSAUpdater infrastructure. +static cl::opt<bool> ForceSSAUpdater("force-ssa-updater", cl::init(false), + cl::Hidden); + +/// Hidden option to enable randomly shuffling the slices to help uncover +/// instability in their order. +static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", + cl::init(false), cl::Hidden); + +/// Hidden option to experiment with completely strict handling of inbounds +/// GEPs. +static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), + cl::Hidden); + +namespace { +/// \brief A custom IRBuilder inserter which prefixes all names if they are +/// preserved. +template <bool preserveNames = true> +class IRBuilderPrefixedInserter + : public IRBuilderDefaultInserter<preserveNames> { + std::string Prefix; + +public: + void SetNamePrefix(const Twine &P) { Prefix = P.str(); } + +protected: + void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, + BasicBlock::iterator InsertPt) const { + IRBuilderDefaultInserter<preserveNames>::InsertHelper( + I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt); + } +}; + +// Specialization for not preserving the name is trivial. +template <> +class IRBuilderPrefixedInserter<false> + : public IRBuilderDefaultInserter<false> { +public: + void SetNamePrefix(const Twine &P) {} +}; + +/// \brief Provide a typedef for IRBuilder that drops names in release builds. +#ifndef NDEBUG +typedef llvm::IRBuilder<true, ConstantFolder, IRBuilderPrefixedInserter<true>> + IRBuilderTy; +#else +typedef llvm::IRBuilder<false, ConstantFolder, IRBuilderPrefixedInserter<false>> + IRBuilderTy; +#endif +} + +namespace { +/// \brief A used slice of an alloca. +/// +/// This structure represents a slice of an alloca used by some instruction. It +/// stores both the begin and end offsets of this use, a pointer to the use +/// itself, and a flag indicating whether we can classify the use as splittable +/// or not when forming partitions of the alloca. +class Slice { + /// \brief The beginning offset of the range. + uint64_t BeginOffset; + + /// \brief The ending offset, not included in the range. + uint64_t EndOffset; + + /// \brief Storage for both the use of this slice and whether it can be + /// split. + PointerIntPair<Use *, 1, bool> UseAndIsSplittable; + +public: + Slice() : BeginOffset(), EndOffset() {} + Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) + : BeginOffset(BeginOffset), EndOffset(EndOffset), + UseAndIsSplittable(U, IsSplittable) {} + + uint64_t beginOffset() const { return BeginOffset; } + uint64_t endOffset() const { return EndOffset; } + + bool isSplittable() const { return UseAndIsSplittable.getInt(); } + void makeUnsplittable() { UseAndIsSplittable.setInt(false); } + + Use *getUse() const { return UseAndIsSplittable.getPointer(); } + + bool isDead() const { return getUse() == nullptr; } + void kill() { UseAndIsSplittable.setPointer(nullptr); } + + /// \brief Support for ordering ranges. + /// + /// This provides an ordering over ranges such that start offsets are + /// always increasing, and within equal start offsets, the end offsets are + /// decreasing. Thus the spanning range comes first in a cluster with the + /// same start position. + bool operator<(const Slice &RHS) const { + if (beginOffset() < RHS.beginOffset()) + return true; + if (beginOffset() > RHS.beginOffset()) + return false; + if (isSplittable() != RHS.isSplittable()) + return !isSplittable(); + if (endOffset() > RHS.endOffset()) + return true; + return false; + } + + /// \brief Support comparison with a single offset to allow binary searches. + friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, + uint64_t RHSOffset) { + return LHS.beginOffset() < RHSOffset; + } + friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, + const Slice &RHS) { + return LHSOffset < RHS.beginOffset(); + } + + bool operator==(const Slice &RHS) const { + return isSplittable() == RHS.isSplittable() && + beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); + } + bool operator!=(const Slice &RHS) const { return !operator==(RHS); } +}; +} // end anonymous namespace + +namespace llvm { +template <typename T> struct isPodLike; +template <> struct isPodLike<Slice> { static const bool value = true; }; +} + +namespace { +/// \brief Representation of the alloca slices. +/// +/// This class represents the slices of an alloca which are formed by its +/// various uses. If a pointer escapes, we can't fully build a representation +/// for the slices used and we reflect that in this structure. The uses are +/// stored, sorted by increasing beginning offset and with unsplittable slices +/// starting at a particular offset before splittable slices. +class AllocaSlices { +public: + /// \brief Construct the slices of a particular alloca. + AllocaSlices(const DataLayout &DL, AllocaInst &AI); + + /// \brief Test whether a pointer to the allocation escapes our analysis. + /// + /// If this is true, the slices are never fully built and should be + /// ignored. + bool isEscaped() const { return PointerEscapingInstr; } + + /// \brief Support for iterating over the slices. + /// @{ + typedef SmallVectorImpl<Slice>::iterator iterator; + typedef iterator_range<iterator> range; + iterator begin() { return Slices.begin(); } + iterator end() { return Slices.end(); } + + typedef SmallVectorImpl<Slice>::const_iterator const_iterator; + typedef iterator_range<const_iterator> const_range; + const_iterator begin() const { return Slices.begin(); } + const_iterator end() const { return Slices.end(); } + /// @} + + /// \brief Erase a range of slices. + void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } + + /// \brief Insert new slices for this alloca. + /// + /// This moves the slices into the alloca's slices collection, and re-sorts + /// everything so that the usual ordering properties of the alloca's slices + /// hold. + void insert(ArrayRef<Slice> NewSlices) { + int OldSize = Slices.size(); + std::move(NewSlices.begin(), NewSlices.end(), std::back_inserter(Slices)); + auto SliceI = Slices.begin() + OldSize; + std::sort(SliceI, Slices.end()); + std::inplace_merge(Slices.begin(), SliceI, Slices.end()); + } + + // Forward declare an iterator to befriend it. + class partition_iterator; + + /// \brief A partition of the slices. + /// + /// An ephemeral representation for a range of slices which can be viewed as + /// a partition of the alloca. This range represents a span of the alloca's + /// memory which cannot be split, and provides access to all of the slices + /// overlapping some part of the partition. + /// + /// Objects of this type are produced by traversing the alloca's slices, but + /// are only ephemeral and not persistent. + class Partition { + private: + friend class AllocaSlices; + friend class AllocaSlices::partition_iterator; + + /// \brief The begining and ending offsets of the alloca for this partition. + uint64_t BeginOffset, EndOffset; + + /// \brief The start end end iterators of this partition. + iterator SI, SJ; + + /// \brief A collection of split slice tails overlapping the partition. + SmallVector<Slice *, 4> SplitTails; + + /// \brief Raw constructor builds an empty partition starting and ending at + /// the given iterator. + Partition(iterator SI) : SI(SI), SJ(SI) {} + + public: + /// \brief The start offset of this partition. + /// + /// All of the contained slices start at or after this offset. + uint64_t beginOffset() const { return BeginOffset; } + + /// \brief The end offset of this partition. + /// + /// All of the contained slices end at or before this offset. + uint64_t endOffset() const { return EndOffset; } + + /// \brief The size of the partition. + /// + /// Note that this can never be zero. + uint64_t size() const { + assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); + return EndOffset - BeginOffset; + } + + /// \brief Test whether this partition contains no slices, and merely spans + /// a region occupied by split slices. + bool empty() const { return SI == SJ; } + + /// \name Iterate slices that start within the partition. + /// These may be splittable or unsplittable. They have a begin offset >= the + /// partition begin offset. + /// @{ + // FIXME: We should probably define a "concat_iterator" helper and use that + // to stitch together pointee_iterators over the split tails and the + // contiguous iterators of the partition. That would give a much nicer + // interface here. We could then additionally expose filtered iterators for + // split, unsplit, and unsplittable splices based on the usage patterns. + iterator begin() const { return SI; } + iterator end() const { return SJ; } + /// @} + + /// \brief Get the sequence of split slice tails. + /// + /// These tails are of slices which start before this partition but are + /// split and overlap into the partition. We accumulate these while forming + /// partitions. + ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } + }; + + /// \brief An iterator over partitions of the alloca's slices. + /// + /// This iterator implements the core algorithm for partitioning the alloca's + /// slices. It is a forward iterator as we don't support backtracking for + /// efficiency reasons, and re-use a single storage area to maintain the + /// current set of split slices. + /// + /// It is templated on the slice iterator type to use so that it can operate + /// with either const or non-const slice iterators. + class partition_iterator + : public iterator_facade_base<partition_iterator, + std::forward_iterator_tag, Partition> { + friend class AllocaSlices; + + /// \brief Most of the state for walking the partitions is held in a class + /// with a nice interface for examining them. + Partition P; + + /// \brief We need to keep the end of the slices to know when to stop. + AllocaSlices::iterator SE; + + /// \brief We also need to keep track of the maximum split end offset seen. + /// FIXME: Do we really? + uint64_t MaxSplitSliceEndOffset; + + /// \brief Sets the partition to be empty at given iterator, and sets the + /// end iterator. + partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) + : P(SI), SE(SE), MaxSplitSliceEndOffset(0) { + // If not already at the end, advance our state to form the initial + // partition. + if (SI != SE) + advance(); + } + + /// \brief Advance the iterator to the next partition. + /// + /// Requires that the iterator not be at the end of the slices. + void advance() { + assert((P.SI != SE || !P.SplitTails.empty()) && + "Cannot advance past the end of the slices!"); + + // Clear out any split uses which have ended. + if (!P.SplitTails.empty()) { + if (P.EndOffset >= MaxSplitSliceEndOffset) { + // If we've finished all splits, this is easy. + P.SplitTails.clear(); + MaxSplitSliceEndOffset = 0; + } else { + // Remove the uses which have ended in the prior partition. This + // cannot change the max split slice end because we just checked that + // the prior partition ended prior to that max. + P.SplitTails.erase( + std::remove_if( + P.SplitTails.begin(), P.SplitTails.end(), + [&](Slice *S) { return S->endOffset() <= P.EndOffset; }), + P.SplitTails.end()); + assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(), + [&](Slice *S) { + return S->endOffset() == MaxSplitSliceEndOffset; + }) && + "Could not find the current max split slice offset!"); + assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(), + [&](Slice *S) { + return S->endOffset() <= MaxSplitSliceEndOffset; + }) && + "Max split slice end offset is not actually the max!"); + } + } + + // If P.SI is already at the end, then we've cleared the split tail and + // now have an end iterator. + if (P.SI == SE) { + assert(P.SplitTails.empty() && "Failed to clear the split slices!"); + return; + } + + // If we had a non-empty partition previously, set up the state for + // subsequent partitions. + if (P.SI != P.SJ) { + // Accumulate all the splittable slices which started in the old + // partition into the split list. + for (Slice &S : P) + if (S.isSplittable() && S.endOffset() > P.EndOffset) { + P.SplitTails.push_back(&S); + MaxSplitSliceEndOffset = + std::max(S.endOffset(), MaxSplitSliceEndOffset); + } + + // Start from the end of the previous partition. + P.SI = P.SJ; + + // If P.SI is now at the end, we at most have a tail of split slices. + if (P.SI == SE) { + P.BeginOffset = P.EndOffset; + P.EndOffset = MaxSplitSliceEndOffset; + return; + } + + // If the we have split slices and the next slice is after a gap and is + // not splittable immediately form an empty partition for the split + // slices up until the next slice begins. + if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && + !P.SI->isSplittable()) { + P.BeginOffset = P.EndOffset; + P.EndOffset = P.SI->beginOffset(); + return; + } + } + + // OK, we need to consume new slices. Set the end offset based on the + // current slice, and step SJ past it. The beginning offset of the + // parttion is the beginning offset of the next slice unless we have + // pre-existing split slices that are continuing, in which case we begin + // at the prior end offset. + P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; + P.EndOffset = P.SI->endOffset(); + ++P.SJ; + + // There are two strategies to form a partition based on whether the + // partition starts with an unsplittable slice or a splittable slice. + if (!P.SI->isSplittable()) { + // When we're forming an unsplittable region, it must always start at + // the first slice and will extend through its end. + assert(P.BeginOffset == P.SI->beginOffset()); + + // Form a partition including all of the overlapping slices with this + // unsplittable slice. + while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { + if (!P.SJ->isSplittable()) + P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); + ++P.SJ; + } + + // We have a partition across a set of overlapping unsplittable + // partitions. + return; + } + + // If we're starting with a splittable slice, then we need to form + // a synthetic partition spanning it and any other overlapping splittable + // splices. + assert(P.SI->isSplittable() && "Forming a splittable partition!"); + + // Collect all of the overlapping splittable slices. + while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && + P.SJ->isSplittable()) { + P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); + ++P.SJ; + } + + // Back upiP.EndOffset if we ended the span early when encountering an + // unsplittable slice. This synthesizes the early end offset of + // a partition spanning only splittable slices. + if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { + assert(!P.SJ->isSplittable()); + P.EndOffset = P.SJ->beginOffset(); + } + } + + public: + bool operator==(const partition_iterator &RHS) const { + assert(SE == RHS.SE && + "End iterators don't match between compared partition iterators!"); + + // The observed positions of partitions is marked by the P.SI iterator and + // the emptyness of the split slices. The latter is only relevant when + // P.SI == SE, as the end iterator will additionally have an empty split + // slices list, but the prior may have the same P.SI and a tail of split + // slices. + if (P.SI == RHS.P.SI && + P.SplitTails.empty() == RHS.P.SplitTails.empty()) { + assert(P.SJ == RHS.P.SJ && + "Same set of slices formed two different sized partitions!"); + assert(P.SplitTails.size() == RHS.P.SplitTails.size() && + "Same slice position with differently sized non-empty split " + "slice tails!"); + return true; + } + return false; + } + + partition_iterator &operator++() { + advance(); + return *this; + } + + Partition &operator*() { return P; } + }; + + /// \brief A forward range over the partitions of the alloca's slices. + /// + /// This accesses an iterator range over the partitions of the alloca's + /// slices. It computes these partitions on the fly based on the overlapping + /// offsets of the slices and the ability to split them. It will visit "empty" + /// partitions to cover regions of the alloca only accessed via split + /// slices. + iterator_range<partition_iterator> partitions() { + return make_range(partition_iterator(begin(), end()), + partition_iterator(end(), end())); + } + + /// \brief Access the dead users for this alloca. + ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } + + /// \brief Access the dead operands referring to this alloca. + /// + /// These are operands which have cannot actually be used to refer to the + /// alloca as they are outside its range and the user doesn't correct for + /// that. These mostly consist of PHI node inputs and the like which we just + /// need to replace with undef. + ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; + void printSlice(raw_ostream &OS, const_iterator I, + StringRef Indent = " ") const; + void printUse(raw_ostream &OS, const_iterator I, + StringRef Indent = " ") const; + void print(raw_ostream &OS) const; + void dump(const_iterator I) const; + void dump() const; +#endif + +private: + template <typename DerivedT, typename RetT = void> class BuilderBase; + class SliceBuilder; + friend class AllocaSlices::SliceBuilder; + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + /// \brief Handle to alloca instruction to simplify method interfaces. + AllocaInst &AI; +#endif + + /// \brief The instruction responsible for this alloca not having a known set + /// of slices. + /// + /// When an instruction (potentially) escapes the pointer to the alloca, we + /// store a pointer to that here and abort trying to form slices of the + /// alloca. This will be null if the alloca slices are analyzed successfully. + Instruction *PointerEscapingInstr; + + /// \brief The slices of the alloca. + /// + /// We store a vector of the slices formed by uses of the alloca here. This + /// vector is sorted by increasing begin offset, and then the unsplittable + /// slices before the splittable ones. See the Slice inner class for more + /// details. + SmallVector<Slice, 8> Slices; + + /// \brief Instructions which will become dead if we rewrite the alloca. + /// + /// Note that these are not separated by slice. This is because we expect an + /// alloca to be completely rewritten or not rewritten at all. If rewritten, + /// all these instructions can simply be removed and replaced with undef as + /// they come from outside of the allocated space. + SmallVector<Instruction *, 8> DeadUsers; + + /// \brief Operands which will become dead if we rewrite the alloca. + /// + /// These are operands that in their particular use can be replaced with + /// undef when we rewrite the alloca. These show up in out-of-bounds inputs + /// to PHI nodes and the like. They aren't entirely dead (there might be + /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we + /// want to swap this particular input for undef to simplify the use lists of + /// the alloca. + SmallVector<Use *, 8> DeadOperands; +}; +} + +static Value *foldSelectInst(SelectInst &SI) { + // If the condition being selected on is a constant or the same value is + // being selected between, fold the select. Yes this does (rarely) happen + // early on. + if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) + return SI.getOperand(1 + CI->isZero()); + if (SI.getOperand(1) == SI.getOperand(2)) + return SI.getOperand(1); + + return nullptr; +} + +/// \brief A helper that folds a PHI node or a select. +static Value *foldPHINodeOrSelectInst(Instruction &I) { + if (PHINode *PN = dyn_cast<PHINode>(&I)) { + // If PN merges together the same value, return that value. + return PN->hasConstantValue(); + } + return foldSelectInst(cast<SelectInst>(I)); +} + +/// \brief Builder for the alloca slices. +/// +/// This class builds a set of alloca slices by recursively visiting the uses +/// of an alloca and making a slice for each load and store at each offset. +class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { + friend class PtrUseVisitor<SliceBuilder>; + friend class InstVisitor<SliceBuilder>; + typedef PtrUseVisitor<SliceBuilder> Base; + + const uint64_t AllocSize; + AllocaSlices &AS; + + SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; + SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; + + /// \brief Set to de-duplicate dead instructions found in the use walk. + SmallPtrSet<Instruction *, 4> VisitedDeadInsts; + +public: + SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) + : PtrUseVisitor<SliceBuilder>(DL), + AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {} + +private: + void markAsDead(Instruction &I) { + if (VisitedDeadInsts.insert(&I).second) + AS.DeadUsers.push_back(&I); + } + + void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, + bool IsSplittable = false) { + // Completely skip uses which have a zero size or start either before or + // past the end of the allocation. + if (Size == 0 || Offset.uge(AllocSize)) { + DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset + << " which has zero size or starts outside of the " + << AllocSize << " byte alloca:\n" + << " alloca: " << AS.AI << "\n" + << " use: " << I << "\n"); + return markAsDead(I); + } + + uint64_t BeginOffset = Offset.getZExtValue(); + uint64_t EndOffset = BeginOffset + Size; + + // Clamp the end offset to the end of the allocation. Note that this is + // formulated to handle even the case where "BeginOffset + Size" overflows. + // This may appear superficially to be something we could ignore entirely, + // but that is not so! There may be widened loads or PHI-node uses where + // some instructions are dead but not others. We can't completely ignore + // them, and so have to record at least the information here. + assert(AllocSize >= BeginOffset); // Established above. + if (Size > AllocSize - BeginOffset) { + DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset + << " to remain within the " << AllocSize << " byte alloca:\n" + << " alloca: " << AS.AI << "\n" + << " use: " << I << "\n"); + EndOffset = AllocSize; + } + + AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); + } + + void visitBitCastInst(BitCastInst &BC) { + if (BC.use_empty()) + return markAsDead(BC); + + return Base::visitBitCastInst(BC); + } + + void visitGetElementPtrInst(GetElementPtrInst &GEPI) { + if (GEPI.use_empty()) + return markAsDead(GEPI); + + if (SROAStrictInbounds && GEPI.isInBounds()) { + // FIXME: This is a manually un-factored variant of the basic code inside + // of GEPs with checking of the inbounds invariant specified in the + // langref in a very strict sense. If we ever want to enable + // SROAStrictInbounds, this code should be factored cleanly into + // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds + // by writing out the code here where we have tho underlying allocation + // size readily available. + APInt GEPOffset = Offset; + for (gep_type_iterator GTI = gep_type_begin(GEPI), + GTE = gep_type_end(GEPI); + GTI != GTE; ++GTI) { + ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); + if (!OpC) + break; + + // Handle a struct index, which adds its field offset to the pointer. + if (StructType *STy = dyn_cast<StructType>(*GTI)) { + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = DL.getStructLayout(STy); + GEPOffset += + APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); + } else { + // For array or vector indices, scale the index by the size of the + // type. + APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); + GEPOffset += Index * APInt(Offset.getBitWidth(), + DL.getTypeAllocSize(GTI.getIndexedType())); + } + + // If this index has computed an intermediate pointer which is not + // inbounds, then the result of the GEP is a poison value and we can + // delete it and all uses. + if (GEPOffset.ugt(AllocSize)) + return markAsDead(GEPI); + } + } + + return Base::visitGetElementPtrInst(GEPI); + } + + void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, + uint64_t Size, bool IsVolatile) { + // We allow splitting of non-volatile loads and stores where the type is an + // integer type. These may be used to implement 'memcpy' or other "transfer + // of bits" patterns. + bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; + + insertUse(I, Offset, Size, IsSplittable); + } + + void visitLoadInst(LoadInst &LI) { + assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && + "All simple FCA loads should have been pre-split"); + + if (!IsOffsetKnown) + return PI.setAborted(&LI); + + uint64_t Size = DL.getTypeStoreSize(LI.getType()); + return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); + } + + void visitStoreInst(StoreInst &SI) { + Value *ValOp = SI.getValueOperand(); + if (ValOp == *U) + return PI.setEscapedAndAborted(&SI); + if (!IsOffsetKnown) + return PI.setAborted(&SI); + + uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); + + // If this memory access can be shown to *statically* extend outside the + // bounds of of the allocation, it's behavior is undefined, so simply + // ignore it. Note that this is more strict than the generic clamping + // behavior of insertUse. We also try to handle cases which might run the + // risk of overflow. + // FIXME: We should instead consider the pointer to have escaped if this + // function is being instrumented for addressing bugs or race conditions. + if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { + DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset + << " which extends past the end of the " << AllocSize + << " byte alloca:\n" + << " alloca: " << AS.AI << "\n" + << " use: " << SI << "\n"); + return markAsDead(SI); + } + + assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && + "All simple FCA stores should have been pre-split"); + handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); + } + + void visitMemSetInst(MemSetInst &II) { + assert(II.getRawDest() == *U && "Pointer use is not the destination?"); + ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); + if ((Length && Length->getValue() == 0) || + (IsOffsetKnown && Offset.uge(AllocSize))) + // Zero-length mem transfer intrinsics can be ignored entirely. + return markAsDead(II); + + if (!IsOffsetKnown) + return PI.setAborted(&II); + + insertUse(II, Offset, Length ? Length->getLimitedValue() + : AllocSize - Offset.getLimitedValue(), + (bool)Length); + } + + void visitMemTransferInst(MemTransferInst &II) { + ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); + if (Length && Length->getValue() == 0) + // Zero-length mem transfer intrinsics can be ignored entirely. + return markAsDead(II); + + // Because we can visit these intrinsics twice, also check to see if the + // first time marked this instruction as dead. If so, skip it. + if (VisitedDeadInsts.count(&II)) + return; + + if (!IsOffsetKnown) + return PI.setAborted(&II); + + // This side of the transfer is completely out-of-bounds, and so we can + // nuke the entire transfer. However, we also need to nuke the other side + // if already added to our partitions. + // FIXME: Yet another place we really should bypass this when + // instrumenting for ASan. + if (Offset.uge(AllocSize)) { + SmallDenseMap<Instruction *, unsigned>::iterator MTPI = + MemTransferSliceMap.find(&II); + if (MTPI != MemTransferSliceMap.end()) + AS.Slices[MTPI->second].kill(); + return markAsDead(II); + } + + uint64_t RawOffset = Offset.getLimitedValue(); + uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; + + // Check for the special case where the same exact value is used for both + // source and dest. + if (*U == II.getRawDest() && *U == II.getRawSource()) { + // For non-volatile transfers this is a no-op. + if (!II.isVolatile()) + return markAsDead(II); + + return insertUse(II, Offset, Size, /*IsSplittable=*/false); + } + + // If we have seen both source and destination for a mem transfer, then + // they both point to the same alloca. + bool Inserted; + SmallDenseMap<Instruction *, unsigned>::iterator MTPI; + std::tie(MTPI, Inserted) = + MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); + unsigned PrevIdx = MTPI->second; + if (!Inserted) { + Slice &PrevP = AS.Slices[PrevIdx]; + + // Check if the begin offsets match and this is a non-volatile transfer. + // In that case, we can completely elide the transfer. + if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { + PrevP.kill(); + return markAsDead(II); + } + + // Otherwise we have an offset transfer within the same alloca. We can't + // split those. + PrevP.makeUnsplittable(); + } + + // Insert the use now that we've fixed up the splittable nature. + insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); + + // Check that we ended up with a valid index in the map. + assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && + "Map index doesn't point back to a slice with this user."); + } + + // Disable SRoA for any intrinsics except for lifetime invariants. + // FIXME: What about debug intrinsics? This matches old behavior, but + // doesn't make sense. + void visitIntrinsicInst(IntrinsicInst &II) { + if (!IsOffsetKnown) + return PI.setAborted(&II); + + if (II.getIntrinsicID() == Intrinsic::lifetime_start || + II.getIntrinsicID() == Intrinsic::lifetime_end) { + ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); + uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), + Length->getLimitedValue()); + insertUse(II, Offset, Size, true); + return; + } + + Base::visitIntrinsicInst(II); + } + + Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { + // We consider any PHI or select that results in a direct load or store of + // the same offset to be a viable use for slicing purposes. These uses + // are considered unsplittable and the size is the maximum loaded or stored + // size. + SmallPtrSet<Instruction *, 4> Visited; + SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; + Visited.insert(Root); + Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); + // If there are no loads or stores, the access is dead. We mark that as + // a size zero access. + Size = 0; + do { + Instruction *I, *UsedI; + std::tie(UsedI, I) = Uses.pop_back_val(); + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); + continue; + } + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + Value *Op = SI->getOperand(0); + if (Op == UsedI) + return SI; + Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); + continue; + } + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { + if (!GEP->hasAllZeroIndices()) + return GEP; + } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && + !isa<SelectInst>(I)) { + return I; + } + + for (User *U : I->users()) + if (Visited.insert(cast<Instruction>(U)).second) + Uses.push_back(std::make_pair(I, cast<Instruction>(U))); + } while (!Uses.empty()); + + return nullptr; + } + + void visitPHINodeOrSelectInst(Instruction &I) { + assert(isa<PHINode>(I) || isa<SelectInst>(I)); + if (I.use_empty()) + return markAsDead(I); + + // TODO: We could use SimplifyInstruction here to fold PHINodes and + // SelectInsts. However, doing so requires to change the current + // dead-operand-tracking mechanism. For instance, suppose neither loading + // from %U nor %other traps. Then "load (select undef, %U, %other)" does not + // trap either. However, if we simply replace %U with undef using the + // current dead-operand-tracking mechanism, "load (select undef, undef, + // %other)" may trap because the select may return the first operand + // "undef". + if (Value *Result = foldPHINodeOrSelectInst(I)) { + if (Result == *U) + // If the result of the constant fold will be the pointer, recurse + // through the PHI/select as if we had RAUW'ed it. + enqueueUsers(I); + else + // Otherwise the operand to the PHI/select is dead, and we can replace + // it with undef. + AS.DeadOperands.push_back(U); + + return; + } + + if (!IsOffsetKnown) + return PI.setAborted(&I); + + // See if we already have computed info on this node. + uint64_t &Size = PHIOrSelectSizes[&I]; + if (!Size) { + // This is a new PHI/Select, check for an unsafe use of it. + if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) + return PI.setAborted(UnsafeI); + } + + // For PHI and select operands outside the alloca, we can't nuke the entire + // phi or select -- the other side might still be relevant, so we special + // case them here and use a separate structure to track the operands + // themselves which should be replaced with undef. + // FIXME: This should instead be escaped in the event we're instrumenting + // for address sanitization. + if (Offset.uge(AllocSize)) { + AS.DeadOperands.push_back(U); + return; + } + + insertUse(I, Offset, Size); + } + + void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } + + void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } + + /// \brief Disable SROA entirely if there are unhandled users of the alloca. + void visitInstruction(Instruction &I) { PI.setAborted(&I); } +}; + +AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) + : +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + AI(AI), +#endif + PointerEscapingInstr(nullptr) { + SliceBuilder PB(DL, AI, *this); + SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); + if (PtrI.isEscaped() || PtrI.isAborted()) { + // FIXME: We should sink the escape vs. abort info into the caller nicely, + // possibly by just storing the PtrInfo in the AllocaSlices. + PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() + : PtrI.getAbortingInst(); + assert(PointerEscapingInstr && "Did not track a bad instruction"); + return; + } + + Slices.erase(std::remove_if(Slices.begin(), Slices.end(), + [](const Slice &S) { + return S.isDead(); + }), + Slices.end()); + +#if __cplusplus >= 201103L && !defined(NDEBUG) + if (SROARandomShuffleSlices) { + std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec())); + std::shuffle(Slices.begin(), Slices.end(), MT); + } +#endif + + // Sort the uses. This arranges for the offsets to be in ascending order, + // and the sizes to be in descending order. + std::sort(Slices.begin(), Slices.end()); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + +void AllocaSlices::print(raw_ostream &OS, const_iterator I, + StringRef Indent) const { + printSlice(OS, I, Indent); + OS << "\n"; + printUse(OS, I, Indent); +} + +void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, + StringRef Indent) const { + OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" + << " slice #" << (I - begin()) + << (I->isSplittable() ? " (splittable)" : ""); +} + +void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, + StringRef Indent) const { + OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; +} + +void AllocaSlices::print(raw_ostream &OS) const { + if (PointerEscapingInstr) { + OS << "Can't analyze slices for alloca: " << AI << "\n" + << " A pointer to this alloca escaped by:\n" + << " " << *PointerEscapingInstr << "\n"; + return; + } + + OS << "Slices of alloca: " << AI << "\n"; + for (const_iterator I = begin(), E = end(); I != E; ++I) + print(OS, I); +} + +LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { + print(dbgs(), I); +} +LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } + +#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + +namespace { +/// \brief Implementation of LoadAndStorePromoter for promoting allocas. +/// +/// This subclass of LoadAndStorePromoter adds overrides to handle promoting +/// the loads and stores of an alloca instruction, as well as updating its +/// debug information. This is used when a domtree is unavailable and thus +/// mem2reg in its full form can't be used to handle promotion of allocas to +/// scalar values. +class AllocaPromoter : public LoadAndStorePromoter { + AllocaInst &AI; + DIBuilder &DIB; + + SmallVector<DbgDeclareInst *, 4> DDIs; + SmallVector<DbgValueInst *, 4> DVIs; + +public: + AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S, + AllocaInst &AI, DIBuilder &DIB) + : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} + + void run(const SmallVectorImpl<Instruction *> &Insts) { + // Retain the debug information attached to the alloca for use when + // rewriting loads and stores. + if (auto *L = LocalAsMetadata::getIfExists(&AI)) { + if (auto *DebugNode = MetadataAsValue::getIfExists(AI.getContext(), L)) { + for (User *U : DebugNode->users()) + if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) + DDIs.push_back(DDI); + else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) + DVIs.push_back(DVI); + } + } + + LoadAndStorePromoter::run(Insts); + + // While we have the debug information, clear it off of the alloca. The + // caller takes care of deleting the alloca. + while (!DDIs.empty()) + DDIs.pop_back_val()->eraseFromParent(); + while (!DVIs.empty()) + DVIs.pop_back_val()->eraseFromParent(); + } + + bool + isInstInList(Instruction *I, + const SmallVectorImpl<Instruction *> &Insts) const override { + Value *Ptr; + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + Ptr = LI->getOperand(0); + else + Ptr = cast<StoreInst>(I)->getPointerOperand(); + + // Only used to detect cycles, which will be rare and quickly found as + // we're walking up a chain of defs rather than down through uses. + SmallPtrSet<Value *, 4> Visited; + + do { + if (Ptr == &AI) + return true; + + if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) + Ptr = BCI->getOperand(0); + else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) + Ptr = GEPI->getPointerOperand(); + else + return false; + + } while (Visited.insert(Ptr).second); + + return false; + } + + void updateDebugInfo(Instruction *Inst) const override { + for (DbgDeclareInst *DDI : DDIs) + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) + ConvertDebugDeclareToDebugValue(DDI, SI, DIB); + else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) + ConvertDebugDeclareToDebugValue(DDI, LI, DIB); + for (DbgValueInst *DVI : DVIs) { + Value *Arg = nullptr; + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + // If an argument is zero extended then use argument directly. The ZExt + // may be zapped by an optimization pass in future. + if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) + Arg = dyn_cast<Argument>(ZExt->getOperand(0)); + else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) + Arg = dyn_cast<Argument>(SExt->getOperand(0)); + if (!Arg) + Arg = SI->getValueOperand(); + } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { + Arg = LI->getPointerOperand(); + } else { + continue; + } + Instruction *DbgVal = + DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), + DIExpression(DVI->getExpression()), Inst); + DbgVal->setDebugLoc(DVI->getDebugLoc()); + } + } +}; +} // end anon namespace + +namespace { +/// \brief An optimization pass providing Scalar Replacement of Aggregates. +/// +/// This pass takes allocations which can be completely analyzed (that is, they +/// don't escape) and tries to turn them into scalar SSA values. There are +/// a few steps to this process. +/// +/// 1) It takes allocations of aggregates and analyzes the ways in which they +/// are used to try to split them into smaller allocations, ideally of +/// a single scalar data type. It will split up memcpy and memset accesses +/// as necessary and try to isolate individual scalar accesses. +/// 2) It will transform accesses into forms which are suitable for SSA value +/// promotion. This can be replacing a memset with a scalar store of an +/// integer value, or it can involve speculating operations on a PHI or +/// select to be a PHI or select of the results. +/// 3) Finally, this will try to detect a pattern of accesses which map cleanly +/// onto insert and extract operations on a vector value, and convert them to +/// this form. By doing so, it will enable promotion of vector aggregates to +/// SSA vector values. +class SROA : public FunctionPass { + const bool RequiresDomTree; + + LLVMContext *C; + const DataLayout *DL; + DominatorTree *DT; + AssumptionCache *AC; + + /// \brief Worklist of alloca instructions to simplify. + /// + /// Each alloca in the function is added to this. Each new alloca formed gets + /// added to it as well to recursively simplify unless that alloca can be + /// directly promoted. Finally, each time we rewrite a use of an alloca other + /// the one being actively rewritten, we add it back onto the list if not + /// already present to ensure it is re-visited. + SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> Worklist; + + /// \brief A collection of instructions to delete. + /// We try to batch deletions to simplify code and make things a bit more + /// efficient. + SetVector<Instruction *, SmallVector<Instruction *, 8>> DeadInsts; + + /// \brief Post-promotion worklist. + /// + /// Sometimes we discover an alloca which has a high probability of becoming + /// viable for SROA after a round of promotion takes place. In those cases, + /// the alloca is enqueued here for re-processing. + /// + /// Note that we have to be very careful to clear allocas out of this list in + /// the event they are deleted. + SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> PostPromotionWorklist; + + /// \brief A collection of alloca instructions we can directly promote. + std::vector<AllocaInst *> PromotableAllocas; + + /// \brief A worklist of PHIs to speculate prior to promoting allocas. + /// + /// All of these PHIs have been checked for the safety of speculation and by + /// being speculated will allow promoting allocas currently in the promotable + /// queue. + SetVector<PHINode *, SmallVector<PHINode *, 2>> SpeculatablePHIs; + + /// \brief A worklist of select instructions to speculate prior to promoting + /// allocas. + /// + /// All of these select instructions have been checked for the safety of + /// speculation and by being speculated will allow promoting allocas + /// currently in the promotable queue. + SetVector<SelectInst *, SmallVector<SelectInst *, 2>> SpeculatableSelects; + +public: + SROA(bool RequiresDomTree = true) + : FunctionPass(ID), RequiresDomTree(RequiresDomTree), C(nullptr), + DL(nullptr), DT(nullptr) { + initializeSROAPass(*PassRegistry::getPassRegistry()); + } + bool runOnFunction(Function &F) override; + void getAnalysisUsage(AnalysisUsage &AU) const override; + + const char *getPassName() const override { return "SROA"; } + static char ID; + +private: + friend class PHIOrSelectSpeculator; + friend class AllocaSliceRewriter; + + bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS); + bool rewritePartition(AllocaInst &AI, AllocaSlices &AS, + AllocaSlices::Partition &P); + bool splitAlloca(AllocaInst &AI, AllocaSlices &AS); + bool runOnAlloca(AllocaInst &AI); + void clobberUse(Use &U); + void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas); + bool promoteAllocas(Function &F); +}; +} + +char SROA::ID = 0; + +FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { + return new SROA(RequiresDomTree); +} + +INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false, + false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false, + false) + +/// Walk the range of a partitioning looking for a common type to cover this +/// sequence of slices. +static Type *findCommonType(AllocaSlices::const_iterator B, + AllocaSlices::const_iterator E, + uint64_t EndOffset) { + Type *Ty = nullptr; + bool TyIsCommon = true; + IntegerType *ITy = nullptr; + + // Note that we need to look at *every* alloca slice's Use to ensure we + // always get consistent results regardless of the order of slices. + for (AllocaSlices::const_iterator I = B; I != E; ++I) { + Use *U = I->getUse(); + if (isa<IntrinsicInst>(*U->getUser())) + continue; + if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) + continue; + + Type *UserTy = nullptr; + if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { + UserTy = LI->getType(); + } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { + UserTy = SI->getValueOperand()->getType(); + } + + if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { + // If the type is larger than the partition, skip it. We only encounter + // this for split integer operations where we want to use the type of the + // entity causing the split. Also skip if the type is not a byte width + // multiple. + if (UserITy->getBitWidth() % 8 != 0 || + UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) + continue; + + // Track the largest bitwidth integer type used in this way in case there + // is no common type. + if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) + ITy = UserITy; + } + + // To avoid depending on the order of slices, Ty and TyIsCommon must not + // depend on types skipped above. + if (!UserTy || (Ty && Ty != UserTy)) + TyIsCommon = false; // Give up on anything but an iN type. + else + Ty = UserTy; + } + + return TyIsCommon ? Ty : ITy; +} + +/// PHI instructions that use an alloca and are subsequently loaded can be +/// rewritten to load both input pointers in the pred blocks and then PHI the +/// results, allowing the load of the alloca to be promoted. +/// From this: +/// %P2 = phi [i32* %Alloca, i32* %Other] +/// %V = load i32* %P2 +/// to: +/// %V1 = load i32* %Alloca -> will be mem2reg'd +/// ... +/// %V2 = load i32* %Other +/// ... +/// %V = phi [i32 %V1, i32 %V2] +/// +/// We can do this to a select if its only uses are loads and if the operands +/// to the select can be loaded unconditionally. +/// +/// FIXME: This should be hoisted into a generic utility, likely in +/// Transforms/Util/Local.h +static bool isSafePHIToSpeculate(PHINode &PN, const DataLayout *DL = nullptr) { + // For now, we can only do this promotion if the load is in the same block + // as the PHI, and if there are no stores between the phi and load. + // TODO: Allow recursive phi users. + // TODO: Allow stores. + BasicBlock *BB = PN.getParent(); + unsigned MaxAlign = 0; + bool HaveLoad = false; + for (User *U : PN.users()) { + LoadInst *LI = dyn_cast<LoadInst>(U); + if (!LI || !LI->isSimple()) + return false; + + // For now we only allow loads in the same block as the PHI. This is + // a common case that happens when instcombine merges two loads through + // a PHI. + if (LI->getParent() != BB) + return false; + + // Ensure that there are no instructions between the PHI and the load that + // could store. + for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) + if (BBI->mayWriteToMemory()) + return false; + + MaxAlign = std::max(MaxAlign, LI->getAlignment()); + HaveLoad = true; + } + + if (!HaveLoad) + return false; + + // We can only transform this if it is safe to push the loads into the + // predecessor blocks. The only thing to watch out for is that we can't put + // a possibly trapping load in the predecessor if it is a critical edge. + for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { + TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); + Value *InVal = PN.getIncomingValue(Idx); + + // If the value is produced by the terminator of the predecessor (an + // invoke) or it has side-effects, there is no valid place to put a load + // in the predecessor. + if (TI == InVal || TI->mayHaveSideEffects()) + return false; + + // If the predecessor has a single successor, then the edge isn't + // critical. + if (TI->getNumSuccessors() == 1) + continue; + + // If this pointer is always safe to load, or if we can prove that there + // is already a load in the block, then we can move the load to the pred + // block. + if (InVal->isDereferenceablePointer(DL) || + isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) + continue; + + return false; + } + + return true; +} + +static void speculatePHINodeLoads(PHINode &PN) { + DEBUG(dbgs() << " original: " << PN << "\n"); + + Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); + IRBuilderTy PHIBuilder(&PN); + PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), + PN.getName() + ".sroa.speculated"); + + // Get the AA tags and alignment to use from one of the loads. It doesn't + // matter which one we get and if any differ. + LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); + + AAMDNodes AATags; + SomeLoad->getAAMetadata(AATags); + unsigned Align = SomeLoad->getAlignment(); + + // Rewrite all loads of the PN to use the new PHI. + while (!PN.use_empty()) { + LoadInst *LI = cast<LoadInst>(PN.user_back()); + LI->replaceAllUsesWith(NewPN); + LI->eraseFromParent(); + } + + // Inject loads into all of the pred blocks. + for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { + BasicBlock *Pred = PN.getIncomingBlock(Idx); + TerminatorInst *TI = Pred->getTerminator(); + Value *InVal = PN.getIncomingValue(Idx); + IRBuilderTy PredBuilder(TI); + + LoadInst *Load = PredBuilder.CreateLoad( + InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); + ++NumLoadsSpeculated; + Load->setAlignment(Align); + if (AATags) + Load->setAAMetadata(AATags); + NewPN->addIncoming(Load, Pred); + } + + DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); + PN.eraseFromParent(); +} + +/// Select instructions that use an alloca and are subsequently loaded can be +/// rewritten to load both input pointers and then select between the result, +/// allowing the load of the alloca to be promoted. +/// From this: +/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other +/// %V = load i32* %P2 +/// to: +/// %V1 = load i32* %Alloca -> will be mem2reg'd +/// %V2 = load i32* %Other +/// %V = select i1 %cond, i32 %V1, i32 %V2 +/// +/// We can do this to a select if its only uses are loads and if the operand +/// to the select can be loaded unconditionally. +static bool isSafeSelectToSpeculate(SelectInst &SI, + const DataLayout *DL = nullptr) { + Value *TValue = SI.getTrueValue(); + Value *FValue = SI.getFalseValue(); + bool TDerefable = TValue->isDereferenceablePointer(DL); + bool FDerefable = FValue->isDereferenceablePointer(DL); + + for (User *U : SI.users()) { + LoadInst *LI = dyn_cast<LoadInst>(U); + if (!LI || !LI->isSimple()) + return false; + + // Both operands to the select need to be dereferencable, either + // absolutely (e.g. allocas) or at this point because we can see other + // accesses to it. + if (!TDerefable && + !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL)) + return false; + if (!FDerefable && + !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL)) + return false; + } + + return true; +} + +static void speculateSelectInstLoads(SelectInst &SI) { + DEBUG(dbgs() << " original: " << SI << "\n"); + + IRBuilderTy IRB(&SI); + Value *TV = SI.getTrueValue(); + Value *FV = SI.getFalseValue(); + // Replace the loads of the select with a select of two loads. + while (!SI.use_empty()) { + LoadInst *LI = cast<LoadInst>(SI.user_back()); + assert(LI->isSimple() && "We only speculate simple loads"); + + IRB.SetInsertPoint(LI); + LoadInst *TL = + IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); + LoadInst *FL = + IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); + NumLoadsSpeculated += 2; + + // Transfer alignment and AA info if present. + TL->setAlignment(LI->getAlignment()); + FL->setAlignment(LI->getAlignment()); + + AAMDNodes Tags; + LI->getAAMetadata(Tags); + if (Tags) { + TL->setAAMetadata(Tags); + FL->setAAMetadata(Tags); + } + + Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, + LI->getName() + ".sroa.speculated"); + + DEBUG(dbgs() << " speculated to: " << *V << "\n"); + LI->replaceAllUsesWith(V); + LI->eraseFromParent(); + } + SI.eraseFromParent(); +} + +/// \brief Build a GEP out of a base pointer and indices. +/// +/// This will return the BasePtr if that is valid, or build a new GEP +/// instruction using the IRBuilder if GEP-ing is needed. +static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, + SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { + if (Indices.empty()) + return BasePtr; + + // A single zero index is a no-op, so check for this and avoid building a GEP + // in that case. + if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) + return BasePtr; + + return IRB.CreateInBoundsGEP(BasePtr, Indices, NamePrefix + "sroa_idx"); +} + +/// \brief Get a natural GEP off of the BasePtr walking through Ty toward +/// TargetTy without changing the offset of the pointer. +/// +/// This routine assumes we've already established a properly offset GEP with +/// Indices, and arrived at the Ty type. The goal is to continue to GEP with +/// zero-indices down through type layers until we find one the same as +/// TargetTy. If we can't find one with the same type, we at least try to use +/// one with the same size. If none of that works, we just produce the GEP as +/// indicated by Indices to have the correct offset. +static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, + Value *BasePtr, Type *Ty, Type *TargetTy, + SmallVectorImpl<Value *> &Indices, + Twine NamePrefix) { + if (Ty == TargetTy) + return buildGEP(IRB, BasePtr, Indices, NamePrefix); + + // Pointer size to use for the indices. + unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType()); + + // See if we can descend into a struct and locate a field with the correct + // type. + unsigned NumLayers = 0; + Type *ElementTy = Ty; + do { + if (ElementTy->isPointerTy()) + break; + + if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { + ElementTy = ArrayTy->getElementType(); + Indices.push_back(IRB.getIntN(PtrSize, 0)); + } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { + ElementTy = VectorTy->getElementType(); + Indices.push_back(IRB.getInt32(0)); + } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { + if (STy->element_begin() == STy->element_end()) + break; // Nothing left to descend into. + ElementTy = *STy->element_begin(); + Indices.push_back(IRB.getInt32(0)); + } else { + break; + } + ++NumLayers; + } while (ElementTy != TargetTy); + if (ElementTy != TargetTy) + Indices.erase(Indices.end() - NumLayers, Indices.end()); + + return buildGEP(IRB, BasePtr, Indices, NamePrefix); +} + +/// \brief Recursively compute indices for a natural GEP. +/// +/// This is the recursive step for getNaturalGEPWithOffset that walks down the +/// element types adding appropriate indices for the GEP. +static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, + Value *Ptr, Type *Ty, APInt &Offset, + Type *TargetTy, + SmallVectorImpl<Value *> &Indices, + Twine NamePrefix) { + if (Offset == 0) + return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, + NamePrefix); + + // We can't recurse through pointer types. + if (Ty->isPointerTy()) + return nullptr; + + // We try to analyze GEPs over vectors here, but note that these GEPs are + // extremely poorly defined currently. The long-term goal is to remove GEPing + // over a vector from the IR completely. + if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { + unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); + if (ElementSizeInBits % 8 != 0) { + // GEPs over non-multiple of 8 size vector elements are invalid. + return nullptr; + } + APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); + APInt NumSkippedElements = Offset.sdiv(ElementSize); + if (NumSkippedElements.ugt(VecTy->getNumElements())) + return nullptr; + Offset -= NumSkippedElements * ElementSize; + Indices.push_back(IRB.getInt(NumSkippedElements)); + return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), + Offset, TargetTy, Indices, NamePrefix); + } + + if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { + Type *ElementTy = ArrTy->getElementType(); + APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); + APInt NumSkippedElements = Offset.sdiv(ElementSize); + if (NumSkippedElements.ugt(ArrTy->getNumElements())) + return nullptr; + + Offset -= NumSkippedElements * ElementSize; + Indices.push_back(IRB.getInt(NumSkippedElements)); + return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, + Indices, NamePrefix); + } + + StructType *STy = dyn_cast<StructType>(Ty); + if (!STy) + return nullptr; + + const StructLayout *SL = DL.getStructLayout(STy); + uint64_t StructOffset = Offset.getZExtValue(); + if (StructOffset >= SL->getSizeInBytes()) + return nullptr; + unsigned Index = SL->getElementContainingOffset(StructOffset); + Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); + Type *ElementTy = STy->getElementType(Index); + if (Offset.uge(DL.getTypeAllocSize(ElementTy))) + return nullptr; // The offset points into alignment padding. + + Indices.push_back(IRB.getInt32(Index)); + return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, + Indices, NamePrefix); +} + +/// \brief Get a natural GEP from a base pointer to a particular offset and +/// resulting in a particular type. +/// +/// The goal is to produce a "natural" looking GEP that works with the existing +/// composite types to arrive at the appropriate offset and element type for +/// a pointer. TargetTy is the element type the returned GEP should point-to if +/// possible. We recurse by decreasing Offset, adding the appropriate index to +/// Indices, and setting Ty to the result subtype. +/// +/// If no natural GEP can be constructed, this function returns null. +static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, + Value *Ptr, APInt Offset, Type *TargetTy, + SmallVectorImpl<Value *> &Indices, + Twine NamePrefix) { + PointerType *Ty = cast<PointerType>(Ptr->getType()); + + // Don't consider any GEPs through an i8* as natural unless the TargetTy is + // an i8. + if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) + return nullptr; + + Type *ElementTy = Ty->getElementType(); + if (!ElementTy->isSized()) + return nullptr; // We can't GEP through an unsized element. + APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); + if (ElementSize == 0) + return nullptr; // Zero-length arrays can't help us build a natural GEP. + APInt NumSkippedElements = Offset.sdiv(ElementSize); + + Offset -= NumSkippedElements * ElementSize; + Indices.push_back(IRB.getInt(NumSkippedElements)); + return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, + Indices, NamePrefix); +} + +/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the +/// resulting pointer has PointerTy. +/// +/// This tries very hard to compute a "natural" GEP which arrives at the offset +/// and produces the pointer type desired. Where it cannot, it will try to use +/// the natural GEP to arrive at the offset and bitcast to the type. Where that +/// fails, it will try to use an existing i8* and GEP to the byte offset and +/// bitcast to the type. +/// +/// The strategy for finding the more natural GEPs is to peel off layers of the +/// pointer, walking back through bit casts and GEPs, searching for a base +/// pointer from which we can compute a natural GEP with the desired +/// properties. The algorithm tries to fold as many constant indices into +/// a single GEP as possible, thus making each GEP more independent of the +/// surrounding code. +static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, + APInt Offset, Type *PointerTy, Twine NamePrefix) { + // Even though we don't look through PHI nodes, we could be called on an + // instruction in an unreachable block, which may be on a cycle. + SmallPtrSet<Value *, 4> Visited; + Visited.insert(Ptr); + SmallVector<Value *, 4> Indices; + + // We may end up computing an offset pointer that has the wrong type. If we + // never are able to compute one directly that has the correct type, we'll + // fall back to it, so keep it and the base it was computed from around here. + Value *OffsetPtr = nullptr; + Value *OffsetBasePtr; + + // Remember any i8 pointer we come across to re-use if we need to do a raw + // byte offset. + Value *Int8Ptr = nullptr; + APInt Int8PtrOffset(Offset.getBitWidth(), 0); + + Type *TargetTy = PointerTy->getPointerElementType(); + + do { + // First fold any existing GEPs into the offset. + while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { + APInt GEPOffset(Offset.getBitWidth(), 0); + if (!GEP->accumulateConstantOffset(DL, GEPOffset)) + break; + Offset += GEPOffset; + Ptr = GEP->getPointerOperand(); + if (!Visited.insert(Ptr).second) + break; + } + + // See if we can perform a natural GEP here. + Indices.clear(); + if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, + Indices, NamePrefix)) { + // If we have a new natural pointer at the offset, clear out any old + // offset pointer we computed. Unless it is the base pointer or + // a non-instruction, we built a GEP we don't need. Zap it. + if (OffsetPtr && OffsetPtr != OffsetBasePtr) + if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { + assert(I->use_empty() && "Built a GEP with uses some how!"); + I->eraseFromParent(); + } + OffsetPtr = P; + OffsetBasePtr = Ptr; + // If we also found a pointer of the right type, we're done. + if (P->getType() == PointerTy) + return P; + } + + // Stash this pointer if we've found an i8*. + if (Ptr->getType()->isIntegerTy(8)) { + Int8Ptr = Ptr; + Int8PtrOffset = Offset; + } + + // Peel off a layer of the pointer and update the offset appropriately. + if (Operator::getOpcode(Ptr) == Instruction::BitCast) { + Ptr = cast<Operator>(Ptr)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { + if (GA->mayBeOverridden()) + break; + Ptr = GA->getAliasee(); + } else { + break; + } + assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); + } while (Visited.insert(Ptr).second); + + if (!OffsetPtr) { + if (!Int8Ptr) { + Int8Ptr = IRB.CreateBitCast( + Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), + NamePrefix + "sroa_raw_cast"); + Int8PtrOffset = Offset; + } + + OffsetPtr = Int8PtrOffset == 0 + ? Int8Ptr + : IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), + NamePrefix + "sroa_raw_idx"); + } + Ptr = OffsetPtr; + + // On the off chance we were targeting i8*, guard the bitcast here. + if (Ptr->getType() != PointerTy) + Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast"); + + return Ptr; +} + +/// \brief Compute the adjusted alignment for a load or store from an offset. +static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset, + const DataLayout &DL) { + unsigned Alignment; + Type *Ty; + if (auto *LI = dyn_cast<LoadInst>(I)) { + Alignment = LI->getAlignment(); + Ty = LI->getType(); + } else if (auto *SI = dyn_cast<StoreInst>(I)) { + Alignment = SI->getAlignment(); + Ty = SI->getValueOperand()->getType(); + } else { + llvm_unreachable("Only loads and stores are allowed!"); + } + + if (!Alignment) + Alignment = DL.getABITypeAlignment(Ty); + + return MinAlign(Alignment, Offset); +} + +/// \brief Test whether we can convert a value from the old to the new type. +/// +/// This predicate should be used to guard calls to convertValue in order to +/// ensure that we only try to convert viable values. The strategy is that we +/// will peel off single element struct and array wrappings to get to an +/// underlying value, and convert that value. +static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { + if (OldTy == NewTy) + return true; + if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) + if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) + if (NewITy->getBitWidth() >= OldITy->getBitWidth()) + return true; + if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) + return false; + if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) + return false; + + // We can convert pointers to integers and vice-versa. Same for vectors + // of pointers and integers. + OldTy = OldTy->getScalarType(); + NewTy = NewTy->getScalarType(); + if (NewTy->isPointerTy() || OldTy->isPointerTy()) { + if (NewTy->isPointerTy() && OldTy->isPointerTy()) + return true; + if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) + return true; + return false; + } + + return true; +} + +/// \brief Generic routine to convert an SSA value to a value of a different +/// type. +/// +/// This will try various different casting techniques, such as bitcasts, +/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test +/// two types for viability with this routine. +static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, + Type *NewTy) { + Type *OldTy = V->getType(); + assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); + + if (OldTy == NewTy) + return V; + + if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) + if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) + if (NewITy->getBitWidth() > OldITy->getBitWidth()) + return IRB.CreateZExt(V, NewITy); + + // See if we need inttoptr for this type pair. A cast involving both scalars + // and vectors requires and additional bitcast. + if (OldTy->getScalarType()->isIntegerTy() && + NewTy->getScalarType()->isPointerTy()) { + // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* + if (OldTy->isVectorTy() && !NewTy->isVectorTy()) + return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), + NewTy); + + // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> + if (!OldTy->isVectorTy() && NewTy->isVectorTy()) + return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), + NewTy); + + return IRB.CreateIntToPtr(V, NewTy); + } + + // See if we need ptrtoint for this type pair. A cast involving both scalars + // and vectors requires and additional bitcast. + if (OldTy->getScalarType()->isPointerTy() && + NewTy->getScalarType()->isIntegerTy()) { + // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 + if (OldTy->isVectorTy() && !NewTy->isVectorTy()) + return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), + NewTy); + + // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> + if (!OldTy->isVectorTy() && NewTy->isVectorTy()) + return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), + NewTy); + + return IRB.CreatePtrToInt(V, NewTy); + } + + return IRB.CreateBitCast(V, NewTy); +} + +/// \brief Test whether the given slice use can be promoted to a vector. +/// +/// This function is called to test each entry in a partioning which is slated +/// for a single slice. +static bool isVectorPromotionViableForSlice(AllocaSlices::Partition &P, + const Slice &S, VectorType *Ty, + uint64_t ElementSize, + const DataLayout &DL) { + // First validate the slice offsets. + uint64_t BeginOffset = + std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); + uint64_t BeginIndex = BeginOffset / ElementSize; + if (BeginIndex * ElementSize != BeginOffset || + BeginIndex >= Ty->getNumElements()) + return false; + uint64_t EndOffset = + std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); + uint64_t EndIndex = EndOffset / ElementSize; + if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) + return false; + + assert(EndIndex > BeginIndex && "Empty vector!"); + uint64_t NumElements = EndIndex - BeginIndex; + Type *SliceTy = (NumElements == 1) + ? Ty->getElementType() + : VectorType::get(Ty->getElementType(), NumElements); + + Type *SplitIntTy = + Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); + + Use *U = S.getUse(); + + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { + if (MI->isVolatile()) + return false; + if (!S.isSplittable()) + return false; // Skip any unsplittable intrinsics. + } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return false; + } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { + // Disable vector promotion when there are loads or stores of an FCA. + return false; + } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { + if (LI->isVolatile()) + return false; + Type *LTy = LI->getType(); + if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { + assert(LTy->isIntegerTy()); + LTy = SplitIntTy; + } + if (!canConvertValue(DL, SliceTy, LTy)) + return false; + } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { + if (SI->isVolatile()) + return false; + Type *STy = SI->getValueOperand()->getType(); + if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { + assert(STy->isIntegerTy()); + STy = SplitIntTy; + } + if (!canConvertValue(DL, STy, SliceTy)) + return false; + } else { + return false; + } + + return true; +} + +/// \brief Test whether the given alloca partitioning and range of slices can be +/// promoted to a vector. +/// +/// This is a quick test to check whether we can rewrite a particular alloca +/// partition (and its newly formed alloca) into a vector alloca with only +/// whole-vector loads and stores such that it could be promoted to a vector +/// SSA value. We only can ensure this for a limited set of operations, and we +/// don't want to do the rewrites unless we are confident that the result will +/// be promotable, so we have an early test here. +static VectorType *isVectorPromotionViable(AllocaSlices::Partition &P, + const DataLayout &DL) { + // Collect the candidate types for vector-based promotion. Also track whether + // we have different element types. + SmallVector<VectorType *, 4> CandidateTys; + Type *CommonEltTy = nullptr; + bool HaveCommonEltTy = true; + auto CheckCandidateType = [&](Type *Ty) { + if (auto *VTy = dyn_cast<VectorType>(Ty)) { + CandidateTys.push_back(VTy); + if (!CommonEltTy) + CommonEltTy = VTy->getElementType(); + else if (CommonEltTy != VTy->getElementType()) + HaveCommonEltTy = false; + } + }; + // Consider any loads or stores that are the exact size of the slice. + for (const Slice &S : P) + if (S.beginOffset() == P.beginOffset() && + S.endOffset() == P.endOffset()) { + if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) + CheckCandidateType(LI->getType()); + else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) + CheckCandidateType(SI->getValueOperand()->getType()); + } + + // If we didn't find a vector type, nothing to do here. + if (CandidateTys.empty()) + return nullptr; + + // Remove non-integer vector types if we had multiple common element types. + // FIXME: It'd be nice to replace them with integer vector types, but we can't + // do that until all the backends are known to produce good code for all + // integer vector types. + if (!HaveCommonEltTy) { + CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(), + [](VectorType *VTy) { + return !VTy->getElementType()->isIntegerTy(); + }), + CandidateTys.end()); + + // If there were no integer vector types, give up. + if (CandidateTys.empty()) + return nullptr; + + // Rank the remaining candidate vector types. This is easy because we know + // they're all integer vectors. We sort by ascending number of elements. + auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { + assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) && + "Cannot have vector types of different sizes!"); + assert(RHSTy->getElementType()->isIntegerTy() && + "All non-integer types eliminated!"); + assert(LHSTy->getElementType()->isIntegerTy() && + "All non-integer types eliminated!"); + return RHSTy->getNumElements() < LHSTy->getNumElements(); + }; + std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes); + CandidateTys.erase( + std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), + CandidateTys.end()); + } else { +// The only way to have the same element type in every vector type is to +// have the same vector type. Check that and remove all but one. +#ifndef NDEBUG + for (VectorType *VTy : CandidateTys) { + assert(VTy->getElementType() == CommonEltTy && + "Unaccounted for element type!"); + assert(VTy == CandidateTys[0] && + "Different vector types with the same element type!"); + } +#endif + CandidateTys.resize(1); + } + + // Try each vector type, and return the one which works. + auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { + uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType()); + + // While the definition of LLVM vectors is bitpacked, we don't support sizes + // that aren't byte sized. + if (ElementSize % 8) + return false; + assert((DL.getTypeSizeInBits(VTy) % 8) == 0 && + "vector size not a multiple of element size?"); + ElementSize /= 8; + + for (const Slice &S : P) + if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) + return false; + + for (const Slice *S : P.splitSliceTails()) + if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) + return false; + + return true; + }; + for (VectorType *VTy : CandidateTys) + if (CheckVectorTypeForPromotion(VTy)) + return VTy; + + return nullptr; +} + +/// \brief Test whether a slice of an alloca is valid for integer widening. +/// +/// This implements the necessary checking for the \c isIntegerWideningViable +/// test below on a single slice of the alloca. +static bool isIntegerWideningViableForSlice(const Slice &S, + uint64_t AllocBeginOffset, + Type *AllocaTy, + const DataLayout &DL, + bool &WholeAllocaOp) { + uint64_t Size = DL.getTypeStoreSize(AllocaTy); + + uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; + uint64_t RelEnd = S.endOffset() - AllocBeginOffset; + + // We can't reasonably handle cases where the load or store extends past + // the end of the aloca's type and into its padding. + if (RelEnd > Size) + return false; + + Use *U = S.getUse(); + + if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { + if (LI->isVolatile()) + return false; + // Note that we don't count vector loads or stores as whole-alloca + // operations which enable integer widening because we would prefer to use + // vector widening instead. + if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) + WholeAllocaOp = true; + if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { + if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) + return false; + } else if (RelBegin != 0 || RelEnd != Size || + !canConvertValue(DL, AllocaTy, LI->getType())) { + // Non-integer loads need to be convertible from the alloca type so that + // they are promotable. + return false; + } + } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { + Type *ValueTy = SI->getValueOperand()->getType(); + if (SI->isVolatile()) + return false; + // Note that we don't count vector loads or stores as whole-alloca + // operations which enable integer widening because we would prefer to use + // vector widening instead. + if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) + WholeAllocaOp = true; + if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { + if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) + return false; + } else if (RelBegin != 0 || RelEnd != Size || + !canConvertValue(DL, ValueTy, AllocaTy)) { + // Non-integer stores need to be convertible to the alloca type so that + // they are promotable. + return false; + } + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { + if (MI->isVolatile() || !isa<Constant>(MI->getLength())) + return false; + if (!S.isSplittable()) + return false; // Skip any unsplittable intrinsics. + } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return false; + } else { + return false; + } + + return true; +} + +/// \brief Test whether the given alloca partition's integer operations can be +/// widened to promotable ones. +/// +/// This is a quick test to check whether we can rewrite the integer loads and +/// stores to a particular alloca into wider loads and stores and be able to +/// promote the resulting alloca. +static bool isIntegerWideningViable(AllocaSlices::Partition &P, Type *AllocaTy, + const DataLayout &DL) { + uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); + // Don't create integer types larger than the maximum bitwidth. + if (SizeInBits > IntegerType::MAX_INT_BITS) + return false; + + // Don't try to handle allocas with bit-padding. + if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) + return false; + + // We need to ensure that an integer type with the appropriate bitwidth can + // be converted to the alloca type, whatever that is. We don't want to force + // the alloca itself to have an integer type if there is a more suitable one. + Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); + if (!canConvertValue(DL, AllocaTy, IntTy) || + !canConvertValue(DL, IntTy, AllocaTy)) + return false; + + // While examining uses, we ensure that the alloca has a covering load or + // store. We don't want to widen the integer operations only to fail to + // promote due to some other unsplittable entry (which we may make splittable + // later). However, if there are only splittable uses, go ahead and assume + // that we cover the alloca. + // FIXME: We shouldn't consider split slices that happen to start in the + // partition here... + bool WholeAllocaOp = + P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); + + for (const Slice &S : P) + if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, + WholeAllocaOp)) + return false; + + for (const Slice *S : P.splitSliceTails()) + if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, + WholeAllocaOp)) + return false; + + return WholeAllocaOp; +} + +static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, + IntegerType *Ty, uint64_t Offset, + const Twine &Name) { + DEBUG(dbgs() << " start: " << *V << "\n"); + IntegerType *IntTy = cast<IntegerType>(V->getType()); + assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && + "Element extends past full value"); + uint64_t ShAmt = 8 * Offset; + if (DL.isBigEndian()) + ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); + if (ShAmt) { + V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); + DEBUG(dbgs() << " shifted: " << *V << "\n"); + } + assert(Ty->getBitWidth() <= IntTy->getBitWidth() && + "Cannot extract to a larger integer!"); + if (Ty != IntTy) { + V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); + DEBUG(dbgs() << " trunced: " << *V << "\n"); + } + return V; +} + +static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, + Value *V, uint64_t Offset, const Twine &Name) { + IntegerType *IntTy = cast<IntegerType>(Old->getType()); + IntegerType *Ty = cast<IntegerType>(V->getType()); + assert(Ty->getBitWidth() <= IntTy->getBitWidth() && + "Cannot insert a larger integer!"); + DEBUG(dbgs() << " start: " << *V << "\n"); + if (Ty != IntTy) { + V = IRB.CreateZExt(V, IntTy, Name + ".ext"); + DEBUG(dbgs() << " extended: " << *V << "\n"); + } + assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && + "Element store outside of alloca store"); + uint64_t ShAmt = 8 * Offset; + if (DL.isBigEndian()) + ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); + if (ShAmt) { + V = IRB.CreateShl(V, ShAmt, Name + ".shift"); + DEBUG(dbgs() << " shifted: " << *V << "\n"); + } + + if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { + APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); + Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); + DEBUG(dbgs() << " masked: " << *Old << "\n"); + V = IRB.CreateOr(Old, V, Name + ".insert"); + DEBUG(dbgs() << " inserted: " << *V << "\n"); + } + return V; +} + +static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, + unsigned EndIndex, const Twine &Name) { + VectorType *VecTy = cast<VectorType>(V->getType()); + unsigned NumElements = EndIndex - BeginIndex; + assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); + + if (NumElements == VecTy->getNumElements()) + return V; + + if (NumElements == 1) { + V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), + Name + ".extract"); + DEBUG(dbgs() << " extract: " << *V << "\n"); + return V; + } + + SmallVector<Constant *, 8> Mask; + Mask.reserve(NumElements); + for (unsigned i = BeginIndex; i != EndIndex; ++i) + Mask.push_back(IRB.getInt32(i)); + V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), + ConstantVector::get(Mask), Name + ".extract"); + DEBUG(dbgs() << " shuffle: " << *V << "\n"); + return V; +} + +static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, + unsigned BeginIndex, const Twine &Name) { + VectorType *VecTy = cast<VectorType>(Old->getType()); + assert(VecTy && "Can only insert a vector into a vector"); + + VectorType *Ty = dyn_cast<VectorType>(V->getType()); + if (!Ty) { + // Single element to insert. + V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), + Name + ".insert"); + DEBUG(dbgs() << " insert: " << *V << "\n"); + return V; + } + + assert(Ty->getNumElements() <= VecTy->getNumElements() && + "Too many elements!"); + if (Ty->getNumElements() == VecTy->getNumElements()) { + assert(V->getType() == VecTy && "Vector type mismatch"); + return V; + } + unsigned EndIndex = BeginIndex + Ty->getNumElements(); + + // When inserting a smaller vector into the larger to store, we first + // use a shuffle vector to widen it with undef elements, and then + // a second shuffle vector to select between the loaded vector and the + // incoming vector. + SmallVector<Constant *, 8> Mask; + Mask.reserve(VecTy->getNumElements()); + for (unsigned i = 0; i != VecTy->getNumElements(); ++i) + if (i >= BeginIndex && i < EndIndex) + Mask.push_back(IRB.getInt32(i - BeginIndex)); + else + Mask.push_back(UndefValue::get(IRB.getInt32Ty())); + V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), + ConstantVector::get(Mask), Name + ".expand"); + DEBUG(dbgs() << " shuffle: " << *V << "\n"); + + Mask.clear(); + for (unsigned i = 0; i != VecTy->getNumElements(); ++i) + Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); + + V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); + + DEBUG(dbgs() << " blend: " << *V << "\n"); + return V; +} + +namespace { +/// \brief Visitor to rewrite instructions using p particular slice of an alloca +/// to use a new alloca. +/// +/// Also implements the rewriting to vector-based accesses when the partition +/// passes the isVectorPromotionViable predicate. Most of the rewriting logic +/// lives here. +class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { + // Befriend the base class so it can delegate to private visit methods. + friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; + typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; + + const DataLayout &DL; + AllocaSlices &AS; + SROA &Pass; + AllocaInst &OldAI, &NewAI; + const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; + Type *NewAllocaTy; + + // This is a convenience and flag variable that will be null unless the new + // alloca's integer operations should be widened to this integer type due to + // passing isIntegerWideningViable above. If it is non-null, the desired + // integer type will be stored here for easy access during rewriting. + IntegerType *IntTy; + + // If we are rewriting an alloca partition which can be written as pure + // vector operations, we stash extra information here. When VecTy is + // non-null, we have some strict guarantees about the rewritten alloca: + // - The new alloca is exactly the size of the vector type here. + // - The accesses all either map to the entire vector or to a single + // element. + // - The set of accessing instructions is only one of those handled above + // in isVectorPromotionViable. Generally these are the same access kinds + // which are promotable via mem2reg. + VectorType *VecTy; + Type *ElementTy; + uint64_t ElementSize; + + // The original offset of the slice currently being rewritten relative to + // the original alloca. + uint64_t BeginOffset, EndOffset; + // The new offsets of the slice currently being rewritten relative to the + // original alloca. + uint64_t NewBeginOffset, NewEndOffset; + + uint64_t SliceSize; + bool IsSplittable; + bool IsSplit; + Use *OldUse; + Instruction *OldPtr; + + // Track post-rewrite users which are PHI nodes and Selects. + SmallPtrSetImpl<PHINode *> &PHIUsers; + SmallPtrSetImpl<SelectInst *> &SelectUsers; + + // Utility IR builder, whose name prefix is setup for each visited use, and + // the insertion point is set to point to the user. + IRBuilderTy IRB; + +public: + AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, + AllocaInst &OldAI, AllocaInst &NewAI, + uint64_t NewAllocaBeginOffset, + uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, + VectorType *PromotableVecTy, + SmallPtrSetImpl<PHINode *> &PHIUsers, + SmallPtrSetImpl<SelectInst *> &SelectUsers) + : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), + NewAllocaBeginOffset(NewAllocaBeginOffset), + NewAllocaEndOffset(NewAllocaEndOffset), + NewAllocaTy(NewAI.getAllocatedType()), + IntTy(IsIntegerPromotable + ? Type::getIntNTy( + NewAI.getContext(), + DL.getTypeSizeInBits(NewAI.getAllocatedType())) + : nullptr), + VecTy(PromotableVecTy), + ElementTy(VecTy ? VecTy->getElementType() : nullptr), + ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), + BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), + OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers), + IRB(NewAI.getContext(), ConstantFolder()) { + if (VecTy) { + assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && + "Only multiple-of-8 sized vector elements are viable"); + ++NumVectorized; + } + assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); + } + + bool visit(AllocaSlices::const_iterator I) { + bool CanSROA = true; + BeginOffset = I->beginOffset(); + EndOffset = I->endOffset(); + IsSplittable = I->isSplittable(); + IsSplit = + BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; + DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); + DEBUG(AS.printSlice(dbgs(), I, "")); + DEBUG(dbgs() << "\n"); + + // Compute the intersecting offset range. + assert(BeginOffset < NewAllocaEndOffset); + assert(EndOffset > NewAllocaBeginOffset); + NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); + NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); + + SliceSize = NewEndOffset - NewBeginOffset; + + OldUse = I->getUse(); + OldPtr = cast<Instruction>(OldUse->get()); + + Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); + IRB.SetInsertPoint(OldUserI); + IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); + IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); + + CanSROA &= visit(cast<Instruction>(OldUse->getUser())); + if (VecTy || IntTy) + assert(CanSROA); + return CanSROA; + } + +private: + // Make sure the other visit overloads are visible. + using Base::visit; + + // Every instruction which can end up as a user must have a rewrite rule. + bool visitInstruction(Instruction &I) { + DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); + llvm_unreachable("No rewrite rule for this instruction!"); + } + + Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { + // Note that the offset computation can use BeginOffset or NewBeginOffset + // interchangeably for unsplit slices. + assert(IsSplit || BeginOffset == NewBeginOffset); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + +#ifndef NDEBUG + StringRef OldName = OldPtr->getName(); + // Skip through the last '.sroa.' component of the name. + size_t LastSROAPrefix = OldName.rfind(".sroa."); + if (LastSROAPrefix != StringRef::npos) { + OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); + // Look for an SROA slice index. + size_t IndexEnd = OldName.find_first_not_of("0123456789"); + if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { + // Strip the index and look for the offset. + OldName = OldName.substr(IndexEnd + 1); + size_t OffsetEnd = OldName.find_first_not_of("0123456789"); + if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') + // Strip the offset. + OldName = OldName.substr(OffsetEnd + 1); + } + } + // Strip any SROA suffixes as well. + OldName = OldName.substr(0, OldName.find(".sroa_")); +#endif + + return getAdjustedPtr(IRB, DL, &NewAI, + APInt(DL.getPointerSizeInBits(), Offset), PointerTy, +#ifndef NDEBUG + Twine(OldName) + "." +#else + Twine() +#endif + ); + } + + /// \brief Compute suitable alignment to access this slice of the *new* + /// alloca. + /// + /// You can optionally pass a type to this routine and if that type's ABI + /// alignment is itself suitable, this will return zero. + unsigned getSliceAlign(Type *Ty = nullptr) { + unsigned NewAIAlign = NewAI.getAlignment(); + if (!NewAIAlign) + NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); + unsigned Align = + MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); + return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; + } + + unsigned getIndex(uint64_t Offset) { + assert(VecTy && "Can only call getIndex when rewriting a vector"); + uint64_t RelOffset = Offset - NewAllocaBeginOffset; + assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); + uint32_t Index = RelOffset / ElementSize; + assert(Index * ElementSize == RelOffset); + return Index; + } + + void deleteIfTriviallyDead(Value *V) { + Instruction *I = cast<Instruction>(V); + if (isInstructionTriviallyDead(I)) + Pass.DeadInsts.insert(I); + } + + Value *rewriteVectorizedLoadInst() { + unsigned BeginIndex = getIndex(NewBeginOffset); + unsigned EndIndex = getIndex(NewEndOffset); + assert(EndIndex > BeginIndex && "Empty vector!"); + + Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); + return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); + } + + Value *rewriteIntegerLoad(LoadInst &LI) { + assert(IntTy && "We cannot insert an integer to the alloca"); + assert(!LI.isVolatile()); + Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); + V = convertValue(DL, IRB, V, IntTy); + assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) + V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset, + "extract"); + return V; + } + + bool visitLoadInst(LoadInst &LI) { + DEBUG(dbgs() << " original: " << LI << "\n"); + Value *OldOp = LI.getOperand(0); + assert(OldOp == OldPtr); + + Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) + : LI.getType(); + bool IsPtrAdjusted = false; + Value *V; + if (VecTy) { + V = rewriteVectorizedLoadInst(); + } else if (IntTy && LI.getType()->isIntegerTy()) { + V = rewriteIntegerLoad(LI); + } else if (NewBeginOffset == NewAllocaBeginOffset && + canConvertValue(DL, NewAllocaTy, LI.getType())) { + V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), LI.isVolatile(), + LI.getName()); + } else { + Type *LTy = TargetTy->getPointerTo(); + V = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy), + getSliceAlign(TargetTy), LI.isVolatile(), + LI.getName()); + IsPtrAdjusted = true; + } + V = convertValue(DL, IRB, V, TargetTy); + + if (IsSplit) { + assert(!LI.isVolatile()); + assert(LI.getType()->isIntegerTy() && + "Only integer type loads and stores are split"); + assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && + "Split load isn't smaller than original load"); + assert(LI.getType()->getIntegerBitWidth() == + DL.getTypeStoreSizeInBits(LI.getType()) && + "Non-byte-multiple bit width"); + // Move the insertion point just past the load so that we can refer to it. + IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI))); + // Create a placeholder value with the same type as LI to use as the + // basis for the new value. This allows us to replace the uses of LI with + // the computed value, and then replace the placeholder with LI, leaving + // LI only used for this computation. + Value *Placeholder = + new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); + V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, + "insert"); + LI.replaceAllUsesWith(V); + Placeholder->replaceAllUsesWith(&LI); + delete Placeholder; + } else { + LI.replaceAllUsesWith(V); + } + + Pass.DeadInsts.insert(&LI); + deleteIfTriviallyDead(OldOp); + DEBUG(dbgs() << " to: " << *V << "\n"); + return !LI.isVolatile() && !IsPtrAdjusted; + } + + bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) { + if (V->getType() != VecTy) { + unsigned BeginIndex = getIndex(NewBeginOffset); + unsigned EndIndex = getIndex(NewEndOffset); + assert(EndIndex > BeginIndex && "Empty vector!"); + unsigned NumElements = EndIndex - BeginIndex; + assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); + Type *SliceTy = (NumElements == 1) + ? ElementTy + : VectorType::get(ElementTy, NumElements); + if (V->getType() != SliceTy) + V = convertValue(DL, IRB, V, SliceTy); + + // Mix in the existing elements. + Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); + V = insertVector(IRB, Old, V, BeginIndex, "vec"); + } + StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); + Pass.DeadInsts.insert(&SI); + + (void)Store; + DEBUG(dbgs() << " to: " << *Store << "\n"); + return true; + } + + bool rewriteIntegerStore(Value *V, StoreInst &SI) { + assert(IntTy && "We cannot extract an integer from the alloca"); + assert(!SI.isVolatile()); + if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { + Value *Old = + IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); + Old = convertValue(DL, IRB, Old, IntTy); + assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); + uint64_t Offset = BeginOffset - NewAllocaBeginOffset; + V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); + } + V = convertValue(DL, IRB, V, NewAllocaTy); + StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); + Pass.DeadInsts.insert(&SI); + (void)Store; + DEBUG(dbgs() << " to: " << *Store << "\n"); + return true; + } + + bool visitStoreInst(StoreInst &SI) { + DEBUG(dbgs() << " original: " << SI << "\n"); + Value *OldOp = SI.getOperand(1); + assert(OldOp == OldPtr); + + Value *V = SI.getValueOperand(); + + // Strip all inbounds GEPs and pointer casts to try to dig out any root + // alloca that should be re-examined after promoting this alloca. + if (V->getType()->isPointerTy()) + if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) + Pass.PostPromotionWorklist.insert(AI); + + if (SliceSize < DL.getTypeStoreSize(V->getType())) { + assert(!SI.isVolatile()); + assert(V->getType()->isIntegerTy() && + "Only integer type loads and stores are split"); + assert(V->getType()->getIntegerBitWidth() == + DL.getTypeStoreSizeInBits(V->getType()) && + "Non-byte-multiple bit width"); + IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); + V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, + "extract"); + } + + if (VecTy) + return rewriteVectorizedStoreInst(V, SI, OldOp); + if (IntTy && V->getType()->isIntegerTy()) + return rewriteIntegerStore(V, SI); + + StoreInst *NewSI; + if (NewBeginOffset == NewAllocaBeginOffset && + NewEndOffset == NewAllocaEndOffset && + canConvertValue(DL, V->getType(), NewAllocaTy)) { + V = convertValue(DL, IRB, V, NewAllocaTy); + NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), + SI.isVolatile()); + } else { + Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo()); + NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), + SI.isVolatile()); + } + (void)NewSI; + Pass.DeadInsts.insert(&SI); + deleteIfTriviallyDead(OldOp); + + DEBUG(dbgs() << " to: " << *NewSI << "\n"); + return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); + } + + /// \brief Compute an integer value from splatting an i8 across the given + /// number of bytes. + /// + /// Note that this routine assumes an i8 is a byte. If that isn't true, don't + /// call this routine. + /// FIXME: Heed the advice above. + /// + /// \param V The i8 value to splat. + /// \param Size The number of bytes in the output (assuming i8 is one byte) + Value *getIntegerSplat(Value *V, unsigned Size) { + assert(Size > 0 && "Expected a positive number of bytes."); + IntegerType *VTy = cast<IntegerType>(V->getType()); + assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); + if (Size == 1) + return V; + + Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); + V = IRB.CreateMul( + IRB.CreateZExt(V, SplatIntTy, "zext"), + ConstantExpr::getUDiv( + Constant::getAllOnesValue(SplatIntTy), + ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), + SplatIntTy)), + "isplat"); + return V; + } + + /// \brief Compute a vector splat for a given element value. + Value *getVectorSplat(Value *V, unsigned NumElements) { + V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); + DEBUG(dbgs() << " splat: " << *V << "\n"); + return V; + } + + bool visitMemSetInst(MemSetInst &II) { + DEBUG(dbgs() << " original: " << II << "\n"); + assert(II.getRawDest() == OldPtr); + + // If the memset has a variable size, it cannot be split, just adjust the + // pointer to the new alloca. + if (!isa<Constant>(II.getLength())) { + assert(!IsSplit); + assert(NewBeginOffset == BeginOffset); + II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); + Type *CstTy = II.getAlignmentCst()->getType(); + II.setAlignment(ConstantInt::get(CstTy, getSliceAlign())); + + deleteIfTriviallyDead(OldPtr); + return false; + } + + // Record this instruction for deletion. + Pass.DeadInsts.insert(&II); + + Type *AllocaTy = NewAI.getAllocatedType(); + Type *ScalarTy = AllocaTy->getScalarType(); + + // If this doesn't map cleanly onto the alloca type, and that type isn't + // a single value type, just emit a memset. + if (!VecTy && !IntTy && + (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || + SliceSize != DL.getTypeStoreSize(AllocaTy) || + !AllocaTy->isSingleValueType() || + !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || + DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) { + Type *SizeTy = II.getLength()->getType(); + Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); + CallInst *New = IRB.CreateMemSet( + getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, + getSliceAlign(), II.isVolatile()); + (void)New; + DEBUG(dbgs() << " to: " << *New << "\n"); + return false; + } + + // If we can represent this as a simple value, we have to build the actual + // value to store, which requires expanding the byte present in memset to + // a sensible representation for the alloca type. This is essentially + // splatting the byte to a sufficiently wide integer, splatting it across + // any desired vector width, and bitcasting to the final type. + Value *V; + + if (VecTy) { + // If this is a memset of a vectorized alloca, insert it. + assert(ElementTy == ScalarTy); + + unsigned BeginIndex = getIndex(NewBeginOffset); + unsigned EndIndex = getIndex(NewEndOffset); + assert(EndIndex > BeginIndex && "Empty vector!"); + unsigned NumElements = EndIndex - BeginIndex; + assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); + + Value *Splat = + getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); + Splat = convertValue(DL, IRB, Splat, ElementTy); + if (NumElements > 1) + Splat = getVectorSplat(Splat, NumElements); + + Value *Old = + IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); + V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); + } else if (IntTy) { + // If this is a memset on an alloca where we can widen stores, insert the + // set integer. + assert(!II.isVolatile()); + + uint64_t Size = NewEndOffset - NewBeginOffset; + V = getIntegerSplat(II.getValue(), Size); + + if (IntTy && (BeginOffset != NewAllocaBeginOffset || + EndOffset != NewAllocaBeginOffset)) { + Value *Old = + IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); + Old = convertValue(DL, IRB, Old, IntTy); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + V = insertInteger(DL, IRB, Old, V, Offset, "insert"); + } else { + assert(V->getType() == IntTy && + "Wrong type for an alloca wide integer!"); + } + V = convertValue(DL, IRB, V, AllocaTy); + } else { + // Established these invariants above. + assert(NewBeginOffset == NewAllocaBeginOffset); + assert(NewEndOffset == NewAllocaEndOffset); + + V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); + if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) + V = getVectorSplat(V, AllocaVecTy->getNumElements()); + + V = convertValue(DL, IRB, V, AllocaTy); + } + + Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), + II.isVolatile()); + (void)New; + DEBUG(dbgs() << " to: " << *New << "\n"); + return !II.isVolatile(); + } + + bool visitMemTransferInst(MemTransferInst &II) { + // Rewriting of memory transfer instructions can be a bit tricky. We break + // them into two categories: split intrinsics and unsplit intrinsics. + + DEBUG(dbgs() << " original: " << II << "\n"); + + bool IsDest = &II.getRawDestUse() == OldUse; + assert((IsDest && II.getRawDest() == OldPtr) || + (!IsDest && II.getRawSource() == OldPtr)); + + unsigned SliceAlign = getSliceAlign(); + + // For unsplit intrinsics, we simply modify the source and destination + // pointers in place. This isn't just an optimization, it is a matter of + // correctness. With unsplit intrinsics we may be dealing with transfers + // within a single alloca before SROA ran, or with transfers that have + // a variable length. We may also be dealing with memmove instead of + // memcpy, and so simply updating the pointers is the necessary for us to + // update both source and dest of a single call. + if (!IsSplittable) { + Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); + if (IsDest) + II.setDest(AdjustedPtr); + else + II.setSource(AdjustedPtr); + + if (II.getAlignment() > SliceAlign) { + Type *CstTy = II.getAlignmentCst()->getType(); + II.setAlignment( + ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign))); + } + + DEBUG(dbgs() << " to: " << II << "\n"); + deleteIfTriviallyDead(OldPtr); + return false; + } + // For split transfer intrinsics we have an incredibly useful assurance: + // the source and destination do not reside within the same alloca, and at + // least one of them does not escape. This means that we can replace + // memmove with memcpy, and we don't need to worry about all manner of + // downsides to splitting and transforming the operations. + + // If this doesn't map cleanly onto the alloca type, and that type isn't + // a single value type, just emit a memcpy. + bool EmitMemCpy = + !VecTy && !IntTy && + (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || + SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) || + !NewAI.getAllocatedType()->isSingleValueType()); + + // If we're just going to emit a memcpy, the alloca hasn't changed, and the + // size hasn't been shrunk based on analysis of the viable range, this is + // a no-op. + if (EmitMemCpy && &OldAI == &NewAI) { + // Ensure the start lines up. + assert(NewBeginOffset == BeginOffset); + + // Rewrite the size as needed. + if (NewEndOffset != EndOffset) + II.setLength(ConstantInt::get(II.getLength()->getType(), + NewEndOffset - NewBeginOffset)); + return false; + } + // Record this instruction for deletion. + Pass.DeadInsts.insert(&II); + + // Strip all inbounds GEPs and pointer casts to try to dig out any root + // alloca that should be re-examined after rewriting this instruction. + Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); + if (AllocaInst *AI = + dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { + assert(AI != &OldAI && AI != &NewAI && + "Splittable transfers cannot reach the same alloca on both ends."); + Pass.Worklist.insert(AI); + } + + Type *OtherPtrTy = OtherPtr->getType(); + unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); + + // Compute the relative offset for the other pointer within the transfer. + unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS); + APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset); + unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1, + OtherOffset.zextOrTrunc(64).getZExtValue()); + + if (EmitMemCpy) { + // Compute the other pointer, folding as much as possible to produce + // a single, simple GEP in most cases. + OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, + OtherPtr->getName() + "."); + + Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); + Type *SizeTy = II.getLength()->getType(); + Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); + + CallInst *New = IRB.CreateMemCpy( + IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, + MinAlign(SliceAlign, OtherAlign), II.isVolatile()); + (void)New; + DEBUG(dbgs() << " to: " << *New << "\n"); + return false; + } + + bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && + NewEndOffset == NewAllocaEndOffset; + uint64_t Size = NewEndOffset - NewBeginOffset; + unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; + unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; + unsigned NumElements = EndIndex - BeginIndex; + IntegerType *SubIntTy = + IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; + + // Reset the other pointer type to match the register type we're going to + // use, but using the address space of the original other pointer. + if (VecTy && !IsWholeAlloca) { + if (NumElements == 1) + OtherPtrTy = VecTy->getElementType(); + else + OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); + + OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS); + } else if (IntTy && !IsWholeAlloca) { + OtherPtrTy = SubIntTy->getPointerTo(OtherAS); + } else { + OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS); + } + + Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, + OtherPtr->getName() + "."); + unsigned SrcAlign = OtherAlign; + Value *DstPtr = &NewAI; + unsigned DstAlign = SliceAlign; + if (!IsDest) { + std::swap(SrcPtr, DstPtr); + std::swap(SrcAlign, DstAlign); + } + + Value *Src; + if (VecTy && !IsWholeAlloca && !IsDest) { + Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); + Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); + } else if (IntTy && !IsWholeAlloca && !IsDest) { + Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); + Src = convertValue(DL, IRB, Src, IntTy); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); + } else { + Src = + IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload"); + } + + if (VecTy && !IsWholeAlloca && IsDest) { + Value *Old = + IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); + Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); + } else if (IntTy && !IsWholeAlloca && IsDest) { + Value *Old = + IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); + Old = convertValue(DL, IRB, Old, IntTy); + uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; + Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); + Src = convertValue(DL, IRB, Src, NewAllocaTy); + } + + StoreInst *Store = cast<StoreInst>( + IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); + (void)Store; + DEBUG(dbgs() << " to: " << *Store << "\n"); + return !II.isVolatile(); + } + + bool visitIntrinsicInst(IntrinsicInst &II) { + assert(II.getIntrinsicID() == Intrinsic::lifetime_start || + II.getIntrinsicID() == Intrinsic::lifetime_end); + DEBUG(dbgs() << " original: " << II << "\n"); + assert(II.getArgOperand(1) == OldPtr); + + // Record this instruction for deletion. + Pass.DeadInsts.insert(&II); + + ConstantInt *Size = + ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), + NewEndOffset - NewBeginOffset); + Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); + Value *New; + if (II.getIntrinsicID() == Intrinsic::lifetime_start) + New = IRB.CreateLifetimeStart(Ptr, Size); + else + New = IRB.CreateLifetimeEnd(Ptr, Size); + + (void)New; + DEBUG(dbgs() << " to: " << *New << "\n"); + return true; + } + + bool visitPHINode(PHINode &PN) { + DEBUG(dbgs() << " original: " << PN << "\n"); + assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); + assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); + + // We would like to compute a new pointer in only one place, but have it be + // as local as possible to the PHI. To do that, we re-use the location of + // the old pointer, which necessarily must be in the right position to + // dominate the PHI. + IRBuilderTy PtrBuilder(IRB); + if (isa<PHINode>(OldPtr)) + PtrBuilder.SetInsertPoint(OldPtr->getParent()->getFirstInsertionPt()); + else + PtrBuilder.SetInsertPoint(OldPtr); + PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); + + Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); + // Replace the operands which were using the old pointer. + std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); + + DEBUG(dbgs() << " to: " << PN << "\n"); + deleteIfTriviallyDead(OldPtr); + + // PHIs can't be promoted on their own, but often can be speculated. We + // check the speculation outside of the rewriter so that we see the + // fully-rewritten alloca. + PHIUsers.insert(&PN); + return true; + } + + bool visitSelectInst(SelectInst &SI) { + DEBUG(dbgs() << " original: " << SI << "\n"); + assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && + "Pointer isn't an operand!"); + assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); + assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); + + Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); + // Replace the operands which were using the old pointer. + if (SI.getOperand(1) == OldPtr) + SI.setOperand(1, NewPtr); + if (SI.getOperand(2) == OldPtr) + SI.setOperand(2, NewPtr); + + DEBUG(dbgs() << " to: " << SI << "\n"); + deleteIfTriviallyDead(OldPtr); + + // Selects can't be promoted on their own, but often can be speculated. We + // check the speculation outside of the rewriter so that we see the + // fully-rewritten alloca. + SelectUsers.insert(&SI); + return true; + } +}; +} + +namespace { +/// \brief Visitor to rewrite aggregate loads and stores as scalar. +/// +/// This pass aggressively rewrites all aggregate loads and stores on +/// a particular pointer (or any pointer derived from it which we can identify) +/// with scalar loads and stores. +class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { + // Befriend the base class so it can delegate to private visit methods. + friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; + + const DataLayout &DL; + + /// Queue of pointer uses to analyze and potentially rewrite. + SmallVector<Use *, 8> Queue; + + /// Set to prevent us from cycling with phi nodes and loops. + SmallPtrSet<User *, 8> Visited; + + /// The current pointer use being rewritten. This is used to dig up the used + /// value (as opposed to the user). + Use *U; + +public: + AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} + + /// Rewrite loads and stores through a pointer and all pointers derived from + /// it. + bool rewrite(Instruction &I) { + DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); + enqueueUsers(I); + bool Changed = false; + while (!Queue.empty()) { + U = Queue.pop_back_val(); + Changed |= visit(cast<Instruction>(U->getUser())); + } + return Changed; + } + +private: + /// Enqueue all the users of the given instruction for further processing. + /// This uses a set to de-duplicate users. + void enqueueUsers(Instruction &I) { + for (Use &U : I.uses()) + if (Visited.insert(U.getUser()).second) + Queue.push_back(&U); + } + + // Conservative default is to not rewrite anything. + bool visitInstruction(Instruction &I) { return false; } + + /// \brief Generic recursive split emission class. + template <typename Derived> class OpSplitter { + protected: + /// The builder used to form new instructions. + IRBuilderTy IRB; + /// The indices which to be used with insert- or extractvalue to select the + /// appropriate value within the aggregate. + SmallVector<unsigned, 4> Indices; + /// The indices to a GEP instruction which will move Ptr to the correct slot + /// within the aggregate. + SmallVector<Value *, 4> GEPIndices; + /// The base pointer of the original op, used as a base for GEPing the + /// split operations. + Value *Ptr; + + /// Initialize the splitter with an insertion point, Ptr and start with a + /// single zero GEP index. + OpSplitter(Instruction *InsertionPoint, Value *Ptr) + : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} + + public: + /// \brief Generic recursive split emission routine. + /// + /// This method recursively splits an aggregate op (load or store) into + /// scalar or vector ops. It splits recursively until it hits a single value + /// and emits that single value operation via the template argument. + /// + /// The logic of this routine relies on GEPs and insertvalue and + /// extractvalue all operating with the same fundamental index list, merely + /// formatted differently (GEPs need actual values). + /// + /// \param Ty The type being split recursively into smaller ops. + /// \param Agg The aggregate value being built up or stored, depending on + /// whether this is splitting a load or a store respectively. + void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { + if (Ty->isSingleValueType()) + return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); + + if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + unsigned OldSize = Indices.size(); + (void)OldSize; + for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; + ++Idx) { + assert(Indices.size() == OldSize && "Did not return to the old size"); + Indices.push_back(Idx); + GEPIndices.push_back(IRB.getInt32(Idx)); + emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); + GEPIndices.pop_back(); + Indices.pop_back(); + } + return; + } + + if (StructType *STy = dyn_cast<StructType>(Ty)) { + unsigned OldSize = Indices.size(); + (void)OldSize; + for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; + ++Idx) { + assert(Indices.size() == OldSize && "Did not return to the old size"); + Indices.push_back(Idx); + GEPIndices.push_back(IRB.getInt32(Idx)); + emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); + GEPIndices.pop_back(); + Indices.pop_back(); + } + return; + } + + llvm_unreachable("Only arrays and structs are aggregate loadable types"); + } + }; + + struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { + LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) + : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} + + /// Emit a leaf load of a single value. This is called at the leaves of the + /// recursive emission to actually load values. + void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { + assert(Ty->isSingleValueType()); + // Load the single value and insert it using the indices. + Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"); + Value *Load = IRB.CreateLoad(GEP, Name + ".load"); + Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); + DEBUG(dbgs() << " to: " << *Load << "\n"); + } + }; + + bool visitLoadInst(LoadInst &LI) { + assert(LI.getPointerOperand() == *U); + if (!LI.isSimple() || LI.getType()->isSingleValueType()) + return false; + + // We have an aggregate being loaded, split it apart. + DEBUG(dbgs() << " original: " << LI << "\n"); + LoadOpSplitter Splitter(&LI, *U); + Value *V = UndefValue::get(LI.getType()); + Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); + LI.replaceAllUsesWith(V); + LI.eraseFromParent(); + return true; + } + + struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { + StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) + : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} + + /// Emit a leaf store of a single value. This is called at the leaves of the + /// recursive emission to actually produce stores. + void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { + assert(Ty->isSingleValueType()); + // Extract the single value and store it using the indices. + Value *Store = IRB.CreateStore( + IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), + IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); + (void)Store; + DEBUG(dbgs() << " to: " << *Store << "\n"); + } + }; + + bool visitStoreInst(StoreInst &SI) { + if (!SI.isSimple() || SI.getPointerOperand() != *U) + return false; + Value *V = SI.getValueOperand(); + if (V->getType()->isSingleValueType()) + return false; + + // We have an aggregate being stored, split it apart. + DEBUG(dbgs() << " original: " << SI << "\n"); + StoreOpSplitter Splitter(&SI, *U); + Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); + SI.eraseFromParent(); + return true; + } + + bool visitBitCastInst(BitCastInst &BC) { + enqueueUsers(BC); + return false; + } + + bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { + enqueueUsers(GEPI); + return false; + } + + bool visitPHINode(PHINode &PN) { + enqueueUsers(PN); + return false; + } + + bool visitSelectInst(SelectInst &SI) { + enqueueUsers(SI); + return false; + } +}; +} + +/// \brief Strip aggregate type wrapping. +/// +/// This removes no-op aggregate types wrapping an underlying type. It will +/// strip as many layers of types as it can without changing either the type +/// size or the allocated size. +static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { + if (Ty->isSingleValueType()) + return Ty; + + uint64_t AllocSize = DL.getTypeAllocSize(Ty); + uint64_t TypeSize = DL.getTypeSizeInBits(Ty); + + Type *InnerTy; + if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { + InnerTy = ArrTy->getElementType(); + } else if (StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = DL.getStructLayout(STy); + unsigned Index = SL->getElementContainingOffset(0); + InnerTy = STy->getElementType(Index); + } else { + return Ty; + } + + if (AllocSize > DL.getTypeAllocSize(InnerTy) || + TypeSize > DL.getTypeSizeInBits(InnerTy)) + return Ty; + + return stripAggregateTypeWrapping(DL, InnerTy); +} + +/// \brief Try to find a partition of the aggregate type passed in for a given +/// offset and size. +/// +/// This recurses through the aggregate type and tries to compute a subtype +/// based on the offset and size. When the offset and size span a sub-section +/// of an array, it will even compute a new array type for that sub-section, +/// and the same for structs. +/// +/// Note that this routine is very strict and tries to find a partition of the +/// type which produces the *exact* right offset and size. It is not forgiving +/// when the size or offset cause either end of type-based partition to be off. +/// Also, this is a best-effort routine. It is reasonable to give up and not +/// return a type if necessary. +static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, + uint64_t Size) { + if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) + return stripAggregateTypeWrapping(DL, Ty); + if (Offset > DL.getTypeAllocSize(Ty) || + (DL.getTypeAllocSize(Ty) - Offset) < Size) + return nullptr; + + if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { + // We can't partition pointers... + if (SeqTy->isPointerTy()) + return nullptr; + + Type *ElementTy = SeqTy->getElementType(); + uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); + uint64_t NumSkippedElements = Offset / ElementSize; + if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { + if (NumSkippedElements >= ArrTy->getNumElements()) + return nullptr; + } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) { + if (NumSkippedElements >= VecTy->getNumElements()) + return nullptr; + } + Offset -= NumSkippedElements * ElementSize; + + // First check if we need to recurse. + if (Offset > 0 || Size < ElementSize) { + // Bail if the partition ends in a different array element. + if ((Offset + Size) > ElementSize) + return nullptr; + // Recurse through the element type trying to peel off offset bytes. + return getTypePartition(DL, ElementTy, Offset, Size); + } + assert(Offset == 0); + + if (Size == ElementSize) + return stripAggregateTypeWrapping(DL, ElementTy); + assert(Size > ElementSize); + uint64_t NumElements = Size / ElementSize; + if (NumElements * ElementSize != Size) + return nullptr; + return ArrayType::get(ElementTy, NumElements); + } + + StructType *STy = dyn_cast<StructType>(Ty); + if (!STy) + return nullptr; + + const StructLayout *SL = DL.getStructLayout(STy); + if (Offset >= SL->getSizeInBytes()) + return nullptr; + uint64_t EndOffset = Offset + Size; + if (EndOffset > SL->getSizeInBytes()) + return nullptr; + + unsigned Index = SL->getElementContainingOffset(Offset); + Offset -= SL->getElementOffset(Index); + + Type *ElementTy = STy->getElementType(Index); + uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); + if (Offset >= ElementSize) + return nullptr; // The offset points into alignment padding. + + // See if any partition must be contained by the element. + if (Offset > 0 || Size < ElementSize) { + if ((Offset + Size) > ElementSize) + return nullptr; + return getTypePartition(DL, ElementTy, Offset, Size); + } + assert(Offset == 0); + + if (Size == ElementSize) + return stripAggregateTypeWrapping(DL, ElementTy); + + StructType::element_iterator EI = STy->element_begin() + Index, + EE = STy->element_end(); + if (EndOffset < SL->getSizeInBytes()) { + unsigned EndIndex = SL->getElementContainingOffset(EndOffset); + if (Index == EndIndex) + return nullptr; // Within a single element and its padding. + + // Don't try to form "natural" types if the elements don't line up with the + // expected size. + // FIXME: We could potentially recurse down through the last element in the + // sub-struct to find a natural end point. + if (SL->getElementOffset(EndIndex) != EndOffset) + return nullptr; + + assert(Index < EndIndex); + EE = STy->element_begin() + EndIndex; + } + + // Try to build up a sub-structure. + StructType *SubTy = + StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); + const StructLayout *SubSL = DL.getStructLayout(SubTy); + if (Size != SubSL->getSizeInBytes()) + return nullptr; // The sub-struct doesn't have quite the size needed. + + return SubTy; +} + +/// \brief Pre-split loads and stores to simplify rewriting. +/// +/// We want to break up the splittable load+store pairs as much as +/// possible. This is important to do as a preprocessing step, as once we +/// start rewriting the accesses to partitions of the alloca we lose the +/// necessary information to correctly split apart paired loads and stores +/// which both point into this alloca. The case to consider is something like +/// the following: +/// +/// %a = alloca [12 x i8] +/// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 +/// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 +/// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 +/// %iptr1 = bitcast i8* %gep1 to i64* +/// %iptr2 = bitcast i8* %gep2 to i64* +/// %fptr1 = bitcast i8* %gep1 to float* +/// %fptr2 = bitcast i8* %gep2 to float* +/// %fptr3 = bitcast i8* %gep3 to float* +/// store float 0.0, float* %fptr1 +/// store float 1.0, float* %fptr2 +/// %v = load i64* %iptr1 +/// store i64 %v, i64* %iptr2 +/// %f1 = load float* %fptr2 +/// %f2 = load float* %fptr3 +/// +/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and +/// promote everything so we recover the 2 SSA values that should have been +/// there all along. +/// +/// \returns true if any changes are made. +bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { + DEBUG(dbgs() << "Pre-splitting loads and stores\n"); + + // Track the loads and stores which are candidates for pre-splitting here, in + // the order they first appear during the partition scan. These give stable + // iteration order and a basis for tracking which loads and stores we + // actually split. + SmallVector<LoadInst *, 4> Loads; + SmallVector<StoreInst *, 4> Stores; + + // We need to accumulate the splits required of each load or store where we + // can find them via a direct lookup. This is important to cross-check loads + // and stores against each other. We also track the slice so that we can kill + // all the slices that end up split. + struct SplitOffsets { + Slice *S; + std::vector<uint64_t> Splits; + }; + SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; + + // Track loads out of this alloca which cannot, for any reason, be pre-split. + // This is important as we also cannot pre-split stores of those loads! + // FIXME: This is all pretty gross. It means that we can be more aggressive + // in pre-splitting when the load feeding the store happens to come from + // a separate alloca. Put another way, the effectiveness of SROA would be + // decreased by a frontend which just concatenated all of its local allocas + // into one big flat alloca. But defeating such patterns is exactly the job + // SROA is tasked with! Sadly, to not have this discrepancy we would have + // change store pre-splitting to actually force pre-splitting of the load + // that feeds it *and all stores*. That makes pre-splitting much harder, but + // maybe it would make it more principled? + SmallPtrSet<LoadInst *, 8> UnsplittableLoads; + + DEBUG(dbgs() << " Searching for candidate loads and stores\n"); + for (auto &P : AS.partitions()) { + for (Slice &S : P) { + Instruction *I = cast<Instruction>(S.getUse()->getUser()); + if (!S.isSplittable() ||S.endOffset() <= P.endOffset()) { + // If this was a load we have to track that it can't participate in any + // pre-splitting! + if (auto *LI = dyn_cast<LoadInst>(I)) + UnsplittableLoads.insert(LI); + continue; + } + assert(P.endOffset() > S.beginOffset() && + "Empty or backwards partition!"); + + // Determine if this is a pre-splittable slice. + if (auto *LI = dyn_cast<LoadInst>(I)) { + assert(!LI->isVolatile() && "Cannot split volatile loads!"); + + // The load must be used exclusively to store into other pointers for + // us to be able to arbitrarily pre-split it. The stores must also be + // simple to avoid changing semantics. + auto IsLoadSimplyStored = [](LoadInst *LI) { + for (User *LU : LI->users()) { + auto *SI = dyn_cast<StoreInst>(LU); + if (!SI || !SI->isSimple()) + return false; + } + return true; + }; + if (!IsLoadSimplyStored(LI)) { + UnsplittableLoads.insert(LI); + continue; + } + + Loads.push_back(LI); + } else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) { + if (!SI || + S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) + continue; + auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); + if (!StoredLoad || !StoredLoad->isSimple()) + continue; + assert(!SI->isVolatile() && "Cannot split volatile stores!"); + + Stores.push_back(SI); + } else { + // Other uses cannot be pre-split. + continue; + } + + // Record the initial split. + DEBUG(dbgs() << " Candidate: " << *I << "\n"); + auto &Offsets = SplitOffsetsMap[I]; + assert(Offsets.Splits.empty() && + "Should not have splits the first time we see an instruction!"); + Offsets.S = &S; + Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); + } + + // Now scan the already split slices, and add a split for any of them which + // we're going to pre-split. + for (Slice *S : P.splitSliceTails()) { + auto SplitOffsetsMapI = + SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); + if (SplitOffsetsMapI == SplitOffsetsMap.end()) + continue; + auto &Offsets = SplitOffsetsMapI->second; + + assert(Offsets.S == S && "Found a mismatched slice!"); + assert(!Offsets.Splits.empty() && + "Cannot have an empty set of splits on the second partition!"); + assert(Offsets.Splits.back() == + P.beginOffset() - Offsets.S->beginOffset() && + "Previous split does not end where this one begins!"); + + // Record each split. The last partition's end isn't needed as the size + // of the slice dictates that. + if (S->endOffset() > P.endOffset()) + Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); + } + } + + // We may have split loads where some of their stores are split stores. For + // such loads and stores, we can only pre-split them if their splits exactly + // match relative to their starting offset. We have to verify this prior to + // any rewriting. + Stores.erase( + std::remove_if(Stores.begin(), Stores.end(), + [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { + // Lookup the load we are storing in our map of split + // offsets. + auto *LI = cast<LoadInst>(SI->getValueOperand()); + // If it was completely unsplittable, then we're done, + // and this store can't be pre-split. + if (UnsplittableLoads.count(LI)) + return true; + + auto LoadOffsetsI = SplitOffsetsMap.find(LI); + if (LoadOffsetsI == SplitOffsetsMap.end()) + return false; // Unrelated loads are definitely safe. + auto &LoadOffsets = LoadOffsetsI->second; + + // Now lookup the store's offsets. + auto &StoreOffsets = SplitOffsetsMap[SI]; + + // If the relative offsets of each split in the load and + // store match exactly, then we can split them and we + // don't need to remove them here. + if (LoadOffsets.Splits == StoreOffsets.Splits) + return false; + + DEBUG(dbgs() + << " Mismatched splits for load and store:\n" + << " " << *LI << "\n" + << " " << *SI << "\n"); + + // We've found a store and load that we need to split + // with mismatched relative splits. Just give up on them + // and remove both instructions from our list of + // candidates. + UnsplittableLoads.insert(LI); + return true; + }), + Stores.end()); + // Now we have to go *back* through all te stores, because a later store may + // have caused an earlier store's load to become unsplittable and if it is + // unsplittable for the later store, then we can't rely on it being split in + // the earlier store either. + Stores.erase(std::remove_if(Stores.begin(), Stores.end(), + [&UnsplittableLoads](StoreInst *SI) { + auto *LI = + cast<LoadInst>(SI->getValueOperand()); + return UnsplittableLoads.count(LI); + }), + Stores.end()); + // Once we've established all the loads that can't be split for some reason, + // filter any that made it into our list out. + Loads.erase(std::remove_if(Loads.begin(), Loads.end(), + [&UnsplittableLoads](LoadInst *LI) { + return UnsplittableLoads.count(LI); + }), + Loads.end()); + + + // If no loads or stores are left, there is no pre-splitting to be done for + // this alloca. + if (Loads.empty() && Stores.empty()) + return false; + + // From here on, we can't fail and will be building new accesses, so rig up + // an IR builder. + IRBuilderTy IRB(&AI); + + // Collect the new slices which we will merge into the alloca slices. + SmallVector<Slice, 4> NewSlices; + + // Track any allocas we end up splitting loads and stores for so we iterate + // on them. + SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; + + // At this point, we have collected all of the loads and stores we can + // pre-split, and the specific splits needed for them. We actually do the + // splitting in a specific order in order to handle when one of the loads in + // the value operand to one of the stores. + // + // First, we rewrite all of the split loads, and just accumulate each split + // load in a parallel structure. We also build the slices for them and append + // them to the alloca slices. + SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; + std::vector<LoadInst *> SplitLoads; + for (LoadInst *LI : Loads) { + SplitLoads.clear(); + + IntegerType *Ty = cast<IntegerType>(LI->getType()); + uint64_t LoadSize = Ty->getBitWidth() / 8; + assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); + + auto &Offsets = SplitOffsetsMap[LI]; + assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && + "Slice size should always match load size exactly!"); + uint64_t BaseOffset = Offsets.S->beginOffset(); + assert(BaseOffset + LoadSize > BaseOffset && + "Cannot represent alloca access size using 64-bit integers!"); + + Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); + IRB.SetInsertPoint(BasicBlock::iterator(LI)); + + DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); + + uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); + int Idx = 0, Size = Offsets.Splits.size(); + for (;;) { + auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); + auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); + LoadInst *PLoad = IRB.CreateAlignedLoad( + getAdjustedPtr(IRB, *DL, BasePtr, + APInt(DL->getPointerSizeInBits(), PartOffset), + PartPtrTy, BasePtr->getName() + "."), + getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false, + LI->getName()); + + // Append this load onto the list of split loads so we can find it later + // to rewrite the stores. + SplitLoads.push_back(PLoad); + + // Now build a new slice for the alloca. + NewSlices.push_back( + Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, + &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), + /*IsSplittable*/ false)); + DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() + << ", " << NewSlices.back().endOffset() << "): " << *PLoad + << "\n"); + + // See if we've handled all the splits. + if (Idx >= Size) + break; + + // Setup the next partition. + PartOffset = Offsets.Splits[Idx]; + ++Idx; + PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; + } + + // Now that we have the split loads, do the slow walk over all uses of the + // load and rewrite them as split stores, or save the split loads to use + // below if the store is going to be split there anyways. + bool DeferredStores = false; + for (User *LU : LI->users()) { + StoreInst *SI = cast<StoreInst>(LU); + if (!Stores.empty() && SplitOffsetsMap.count(SI)) { + DeferredStores = true; + DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n"); + continue; + } + + Value *StoreBasePtr = SI->getPointerOperand(); + IRB.SetInsertPoint(BasicBlock::iterator(SI)); + + DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); + + for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { + LoadInst *PLoad = SplitLoads[Idx]; + uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; + auto *PartPtrTy = + PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); + + StoreInst *PStore = IRB.CreateAlignedStore( + PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr, + APInt(DL->getPointerSizeInBits(), PartOffset), + PartPtrTy, StoreBasePtr->getName() + "."), + getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false); + (void)PStore; + DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); + } + + // We want to immediately iterate on any allocas impacted by splitting + // this store, and we have to track any promotable alloca (indicated by + // a direct store) as needing to be resplit because it is no longer + // promotable. + if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { + ResplitPromotableAllocas.insert(OtherAI); + Worklist.insert(OtherAI); + } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( + StoreBasePtr->stripInBoundsOffsets())) { + Worklist.insert(OtherAI); + } + + // Mark the original store as dead. + DeadInsts.insert(SI); + } + + // Save the split loads if there are deferred stores among the users. + if (DeferredStores) + SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); + + // Mark the original load as dead and kill the original slice. + DeadInsts.insert(LI); + Offsets.S->kill(); + } + + // Second, we rewrite all of the split stores. At this point, we know that + // all loads from this alloca have been split already. For stores of such + // loads, we can simply look up the pre-existing split loads. For stores of + // other loads, we split those loads first and then write split stores of + // them. + for (StoreInst *SI : Stores) { + auto *LI = cast<LoadInst>(SI->getValueOperand()); + IntegerType *Ty = cast<IntegerType>(LI->getType()); + uint64_t StoreSize = Ty->getBitWidth() / 8; + assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); + + auto &Offsets = SplitOffsetsMap[SI]; + assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && + "Slice size should always match load size exactly!"); + uint64_t BaseOffset = Offsets.S->beginOffset(); + assert(BaseOffset + StoreSize > BaseOffset && + "Cannot represent alloca access size using 64-bit integers!"); + + Value *LoadBasePtr = LI->getPointerOperand(); + Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); + + DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); + + // Check whether we have an already split load. + auto SplitLoadsMapI = SplitLoadsMap.find(LI); + std::vector<LoadInst *> *SplitLoads = nullptr; + if (SplitLoadsMapI != SplitLoadsMap.end()) { + SplitLoads = &SplitLoadsMapI->second; + assert(SplitLoads->size() == Offsets.Splits.size() + 1 && + "Too few split loads for the number of splits in the store!"); + } else { + DEBUG(dbgs() << " of load: " << *LI << "\n"); + } + + uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); + int Idx = 0, Size = Offsets.Splits.size(); + for (;;) { + auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); + auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); + + // Either lookup a split load or create one. + LoadInst *PLoad; + if (SplitLoads) { + PLoad = (*SplitLoads)[Idx]; + } else { + IRB.SetInsertPoint(BasicBlock::iterator(LI)); + PLoad = IRB.CreateAlignedLoad( + getAdjustedPtr(IRB, *DL, LoadBasePtr, + APInt(DL->getPointerSizeInBits(), PartOffset), + PartPtrTy, LoadBasePtr->getName() + "."), + getAdjustedAlignment(LI, PartOffset, *DL), /*IsVolatile*/ false, + LI->getName()); + } + + // And store this partition. + IRB.SetInsertPoint(BasicBlock::iterator(SI)); + StoreInst *PStore = IRB.CreateAlignedStore( + PLoad, getAdjustedPtr(IRB, *DL, StoreBasePtr, + APInt(DL->getPointerSizeInBits(), PartOffset), + PartPtrTy, StoreBasePtr->getName() + "."), + getAdjustedAlignment(SI, PartOffset, *DL), /*IsVolatile*/ false); + + // Now build a new slice for the alloca. + NewSlices.push_back( + Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, + &PStore->getOperandUse(PStore->getPointerOperandIndex()), + /*IsSplittable*/ false)); + DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() + << ", " << NewSlices.back().endOffset() << "): " << *PStore + << "\n"); + if (!SplitLoads) { + DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); + } + + // See if we've finished all the splits. + if (Idx >= Size) + break; + + // Setup the next partition. + PartOffset = Offsets.Splits[Idx]; + ++Idx; + PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; + } + + // We want to immediately iterate on any allocas impacted by splitting + // this load, which is only relevant if it isn't a load of this alloca and + // thus we didn't already split the loads above. We also have to keep track + // of any promotable allocas we split loads on as they can no longer be + // promoted. + if (!SplitLoads) { + if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { + assert(OtherAI != &AI && "We can't re-split our own alloca!"); + ResplitPromotableAllocas.insert(OtherAI); + Worklist.insert(OtherAI); + } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( + LoadBasePtr->stripInBoundsOffsets())) { + assert(OtherAI != &AI && "We can't re-split our own alloca!"); + Worklist.insert(OtherAI); + } + } + + // Mark the original store as dead now that we've split it up and kill its + // slice. Note that we leave the original load in place unless this store + // was its ownly use. It may in turn be split up if it is an alloca load + // for some other alloca, but it may be a normal load. This may introduce + // redundant loads, but where those can be merged the rest of the optimizer + // should handle the merging, and this uncovers SSA splits which is more + // important. In practice, the original loads will almost always be fully + // split and removed eventually, and the splits will be merged by any + // trivial CSE, including instcombine. + if (LI->hasOneUse()) { + assert(*LI->user_begin() == SI && "Single use isn't this store!"); + DeadInsts.insert(LI); + } + DeadInsts.insert(SI); + Offsets.S->kill(); + } + + // Remove the killed slices that have ben pre-split. + AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) { + return S.isDead(); + }), AS.end()); + + // Insert our new slices. This will sort and merge them into the sorted + // sequence. + AS.insert(NewSlices); + + DEBUG(dbgs() << " Pre-split slices:\n"); +#ifndef NDEBUG + for (auto I = AS.begin(), E = AS.end(); I != E; ++I) + DEBUG(AS.print(dbgs(), I, " ")); +#endif + + // Finally, don't try to promote any allocas that new require re-splitting. + // They have already been added to the worklist above. + PromotableAllocas.erase( + std::remove_if( + PromotableAllocas.begin(), PromotableAllocas.end(), + [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), + PromotableAllocas.end()); + + return true; +} + +/// \brief Rewrite an alloca partition's users. +/// +/// This routine drives both of the rewriting goals of the SROA pass. It tries +/// to rewrite uses of an alloca partition to be conducive for SSA value +/// promotion. If the partition needs a new, more refined alloca, this will +/// build that new alloca, preserving as much type information as possible, and +/// rewrite the uses of the old alloca to point at the new one and have the +/// appropriate new offsets. It also evaluates how successful the rewrite was +/// at enabling promotion and if it was successful queues the alloca to be +/// promoted. +bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, + AllocaSlices::Partition &P) { + // Try to compute a friendly type for this partition of the alloca. This + // won't always succeed, in which case we fall back to a legal integer type + // or an i8 array of an appropriate size. + Type *SliceTy = nullptr; + if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset())) + if (DL->getTypeAllocSize(CommonUseTy) >= P.size()) + SliceTy = CommonUseTy; + if (!SliceTy) + if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(), + P.beginOffset(), P.size())) + SliceTy = TypePartitionTy; + if ((!SliceTy || (SliceTy->isArrayTy() && + SliceTy->getArrayElementType()->isIntegerTy())) && + DL->isLegalInteger(P.size() * 8)) + SliceTy = Type::getIntNTy(*C, P.size() * 8); + if (!SliceTy) + SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); + assert(DL->getTypeAllocSize(SliceTy) >= P.size()); + + bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, *DL); + + VectorType *VecTy = + IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, *DL); + if (VecTy) + SliceTy = VecTy; + + // Check for the case where we're going to rewrite to a new alloca of the + // exact same type as the original, and with the same access offsets. In that + // case, re-use the existing alloca, but still run through the rewriter to + // perform phi and select speculation. + AllocaInst *NewAI; + if (SliceTy == AI.getAllocatedType()) { + assert(P.beginOffset() == 0 && + "Non-zero begin offset but same alloca type"); + NewAI = &AI; + // FIXME: We should be able to bail at this point with "nothing changed". + // FIXME: We might want to defer PHI speculation until after here. + } else { + unsigned Alignment = AI.getAlignment(); + if (!Alignment) { + // The minimum alignment which users can rely on when the explicit + // alignment is omitted or zero is that required by the ABI for this + // type. + Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); + } + Alignment = MinAlign(Alignment, P.beginOffset()); + // If we will get at least this much alignment from the type alone, leave + // the alloca's alignment unconstrained. + if (Alignment <= DL->getABITypeAlignment(SliceTy)) + Alignment = 0; + NewAI = new AllocaInst( + SliceTy, nullptr, Alignment, + AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); + ++NumNewAllocas; + } + + DEBUG(dbgs() << "Rewriting alloca partition " + << "[" << P.beginOffset() << "," << P.endOffset() + << ") to: " << *NewAI << "\n"); + + // Track the high watermark on the worklist as it is only relevant for + // promoted allocas. We will reset it to this point if the alloca is not in + // fact scheduled for promotion. + unsigned PPWOldSize = PostPromotionWorklist.size(); + unsigned NumUses = 0; + SmallPtrSet<PHINode *, 8> PHIUsers; + SmallPtrSet<SelectInst *, 8> SelectUsers; + + AllocaSliceRewriter Rewriter(*DL, AS, *this, AI, *NewAI, P.beginOffset(), + P.endOffset(), IsIntegerPromotable, VecTy, + PHIUsers, SelectUsers); + bool Promotable = true; + for (Slice *S : P.splitSliceTails()) { + Promotable &= Rewriter.visit(S); + ++NumUses; + } + for (Slice &S : P) { + Promotable &= Rewriter.visit(&S); + ++NumUses; + } + + NumAllocaPartitionUses += NumUses; + MaxUsesPerAllocaPartition = + std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition); + + // Now that we've processed all the slices in the new partition, check if any + // PHIs or Selects would block promotion. + for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(), + E = PHIUsers.end(); + I != E; ++I) + if (!isSafePHIToSpeculate(**I, DL)) { + Promotable = false; + PHIUsers.clear(); + SelectUsers.clear(); + break; + } + for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(), + E = SelectUsers.end(); + I != E; ++I) + if (!isSafeSelectToSpeculate(**I, DL)) { + Promotable = false; + PHIUsers.clear(); + SelectUsers.clear(); + break; + } + + if (Promotable) { + if (PHIUsers.empty() && SelectUsers.empty()) { + // Promote the alloca. + PromotableAllocas.push_back(NewAI); + } else { + // If we have either PHIs or Selects to speculate, add them to those + // worklists and re-queue the new alloca so that we promote in on the + // next iteration. + for (PHINode *PHIUser : PHIUsers) + SpeculatablePHIs.insert(PHIUser); + for (SelectInst *SelectUser : SelectUsers) + SpeculatableSelects.insert(SelectUser); + Worklist.insert(NewAI); + } + } else { + // If we can't promote the alloca, iterate on it to check for new + // refinements exposed by splitting the current alloca. Don't iterate on an + // alloca which didn't actually change and didn't get promoted. + if (NewAI != &AI) + Worklist.insert(NewAI); + + // Drop any post-promotion work items if promotion didn't happen. + while (PostPromotionWorklist.size() > PPWOldSize) + PostPromotionWorklist.pop_back(); + } + + return true; +} + +/// \brief Walks the slices of an alloca and form partitions based on them, +/// rewriting each of their uses. +bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { + if (AS.begin() == AS.end()) + return false; + + unsigned NumPartitions = 0; + bool Changed = false; + + // First try to pre-split loads and stores. + Changed |= presplitLoadsAndStores(AI, AS); + + // Now that we have identified any pre-splitting opportunities, mark any + // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail + // to split these during pre-splitting, we want to force them to be + // rewritten into a partition. + bool IsSorted = true; + for (Slice &S : AS) { + if (!S.isSplittable()) + continue; + // FIXME: We currently leave whole-alloca splittable loads and stores. This + // used to be the only splittable loads and stores and we need to be + // confident that the above handling of splittable loads and stores is + // completely sufficient before we forcibly disable the remaining handling. + if (S.beginOffset() == 0 && + S.endOffset() >= DL->getTypeAllocSize(AI.getAllocatedType())) + continue; + if (isa<LoadInst>(S.getUse()->getUser()) || + isa<StoreInst>(S.getUse()->getUser())) { + S.makeUnsplittable(); + IsSorted = false; + } + } + if (!IsSorted) + std::sort(AS.begin(), AS.end()); + + // Rewrite each partition. + for (auto &P : AS.partitions()) { + Changed |= rewritePartition(AI, AS, P); + ++NumPartitions; + } + + NumAllocaPartitions += NumPartitions; + MaxPartitionsPerAlloca = + std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca); + + return Changed; +} + +/// \brief Clobber a use with undef, deleting the used value if it becomes dead. +void SROA::clobberUse(Use &U) { + Value *OldV = U; + // Replace the use with an undef value. + U = UndefValue::get(OldV->getType()); + + // Check for this making an instruction dead. We have to garbage collect + // all the dead instructions to ensure the uses of any alloca end up being + // minimal. + if (Instruction *OldI = dyn_cast<Instruction>(OldV)) + if (isInstructionTriviallyDead(OldI)) { + DeadInsts.insert(OldI); + } +} + +/// \brief Analyze an alloca for SROA. +/// +/// This analyzes the alloca to ensure we can reason about it, builds +/// the slices of the alloca, and then hands it off to be split and +/// rewritten as needed. +bool SROA::runOnAlloca(AllocaInst &AI) { + DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); + ++NumAllocasAnalyzed; + + // Special case dead allocas, as they're trivial. + if (AI.use_empty()) { + AI.eraseFromParent(); + return true; + } + + // Skip alloca forms that this analysis can't handle. + if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || + DL->getTypeAllocSize(AI.getAllocatedType()) == 0) + return false; + + bool Changed = false; + + // First, split any FCA loads and stores touching this alloca to promote + // better splitting and promotion opportunities. + AggLoadStoreRewriter AggRewriter(*DL); + Changed |= AggRewriter.rewrite(AI); + + // Build the slices using a recursive instruction-visiting builder. + AllocaSlices AS(*DL, AI); + DEBUG(AS.print(dbgs())); + if (AS.isEscaped()) + return Changed; + + // Delete all the dead users of this alloca before splitting and rewriting it. + for (Instruction *DeadUser : AS.getDeadUsers()) { + // Free up everything used by this instruction. + for (Use &DeadOp : DeadUser->operands()) + clobberUse(DeadOp); + + // Now replace the uses of this instruction. + DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); + + // And mark it for deletion. + DeadInsts.insert(DeadUser); + Changed = true; + } + for (Use *DeadOp : AS.getDeadOperands()) { + clobberUse(*DeadOp); + Changed = true; + } + + // No slices to split. Leave the dead alloca for a later pass to clean up. + if (AS.begin() == AS.end()) + return Changed; + + Changed |= splitAlloca(AI, AS); + + DEBUG(dbgs() << " Speculating PHIs\n"); + while (!SpeculatablePHIs.empty()) + speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); + + DEBUG(dbgs() << " Speculating Selects\n"); + while (!SpeculatableSelects.empty()) + speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); + + return Changed; +} + +/// \brief Delete the dead instructions accumulated in this run. +/// +/// Recursively deletes the dead instructions we've accumulated. This is done +/// at the very end to maximize locality of the recursive delete and to +/// minimize the problems of invalidated instruction pointers as such pointers +/// are used heavily in the intermediate stages of the algorithm. +/// +/// We also record the alloca instructions deleted here so that they aren't +/// subsequently handed to mem2reg to promote. +void SROA::deleteDeadInstructions( + SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { + while (!DeadInsts.empty()) { + Instruction *I = DeadInsts.pop_back_val(); + DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); + + I->replaceAllUsesWith(UndefValue::get(I->getType())); + + for (Use &Operand : I->operands()) + if (Instruction *U = dyn_cast<Instruction>(Operand)) { + // Zero out the operand and see if it becomes trivially dead. + Operand = nullptr; + if (isInstructionTriviallyDead(U)) + DeadInsts.insert(U); + } + + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) + DeletedAllocas.insert(AI); + + ++NumDeleted; + I->eraseFromParent(); + } +} + +static void enqueueUsersInWorklist(Instruction &I, + SmallVectorImpl<Instruction *> &Worklist, + SmallPtrSetImpl<Instruction *> &Visited) { + for (User *U : I.users()) + if (Visited.insert(cast<Instruction>(U)).second) + Worklist.push_back(cast<Instruction>(U)); +} + +/// \brief Promote the allocas, using the best available technique. +/// +/// This attempts to promote whatever allocas have been identified as viable in +/// the PromotableAllocas list. If that list is empty, there is nothing to do. +/// If there is a domtree available, we attempt to promote using the full power +/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is +/// based on the SSAUpdater utilities. This function returns whether any +/// promotion occurred. +bool SROA::promoteAllocas(Function &F) { + if (PromotableAllocas.empty()) + return false; + + NumPromoted += PromotableAllocas.size(); + + if (DT && !ForceSSAUpdater) { + DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); + PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC); + PromotableAllocas.clear(); + return true; + } + + DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); + SSAUpdater SSA; + DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); + SmallVector<Instruction *, 64> Insts; + + // We need a worklist to walk the uses of each alloca. + SmallVector<Instruction *, 8> Worklist; + SmallPtrSet<Instruction *, 8> Visited; + SmallVector<Instruction *, 32> DeadInsts; + + for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { + AllocaInst *AI = PromotableAllocas[Idx]; + Insts.clear(); + Worklist.clear(); + Visited.clear(); + + enqueueUsersInWorklist(*AI, Worklist, Visited); + + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + + // FIXME: Currently the SSAUpdater infrastructure doesn't reason about + // lifetime intrinsics and so we strip them (and the bitcasts+GEPs + // leading to them) here. Eventually it should use them to optimize the + // scalar values produced. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + assert(II->getIntrinsicID() == Intrinsic::lifetime_start || + II->getIntrinsicID() == Intrinsic::lifetime_end); + II->eraseFromParent(); + continue; + } + + // Push the loads and stores we find onto the list. SROA will already + // have validated that all loads and stores are viable candidates for + // promotion. + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + assert(LI->getType() == AI->getAllocatedType()); + Insts.push_back(LI); + continue; + } + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + assert(SI->getValueOperand()->getType() == AI->getAllocatedType()); + Insts.push_back(SI); + continue; + } + + // For everything else, we know that only no-op bitcasts and GEPs will + // make it this far, just recurse through them and recall them for later + // removal. + DeadInsts.push_back(I); + enqueueUsersInWorklist(*I, Worklist, Visited); + } + AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); + while (!DeadInsts.empty()) + DeadInsts.pop_back_val()->eraseFromParent(); + AI->eraseFromParent(); + } + + PromotableAllocas.clear(); + return true; +} + +bool SROA::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); + C = &F.getContext(); + DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); + if (!DLP) { + DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); + return false; + } + DL = &DLP->getDataLayout(); + DominatorTreeWrapperPass *DTWP = + getAnalysisIfAvailable<DominatorTreeWrapperPass>(); + DT = DTWP ? &DTWP->getDomTree() : nullptr; + AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + + BasicBlock &EntryBB = F.getEntryBlock(); + for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); + I != E; ++I) + if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) + Worklist.insert(AI); + + bool Changed = false; + // A set of deleted alloca instruction pointers which should be removed from + // the list of promotable allocas. + SmallPtrSet<AllocaInst *, 4> DeletedAllocas; + + do { + while (!Worklist.empty()) { + Changed |= runOnAlloca(*Worklist.pop_back_val()); + deleteDeadInstructions(DeletedAllocas); + + // Remove the deleted allocas from various lists so that we don't try to + // continue processing them. + if (!DeletedAllocas.empty()) { + auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; + Worklist.remove_if(IsInSet); + PostPromotionWorklist.remove_if(IsInSet); + PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), + PromotableAllocas.end(), + IsInSet), + PromotableAllocas.end()); + DeletedAllocas.clear(); + } + } + + Changed |= promoteAllocas(F); + + Worklist = PostPromotionWorklist; + PostPromotionWorklist.clear(); + } while (!Worklist.empty()); + + return Changed; +} + +void SROA::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<AssumptionCacheTracker>(); + if (RequiresDomTree) + AU.addRequired<DominatorTreeWrapperPass>(); + AU.setPreservesCFG(); +} |