summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp2306
1 files changed, 2306 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
new file mode 100644
index 0000000..bcadd4e
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
@@ -0,0 +1,2306 @@
+//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass reassociates commutative expressions in an order that is designed
+// to promote better constant propagation, GCSE, LICM, PRE, etc.
+//
+// For example: 4 + (x + 5) -> x + (4 + 5)
+//
+// In the implementation of this algorithm, constants are assigned rank = 0,
+// function arguments are rank = 1, and other values are assigned ranks
+// corresponding to the reverse post order traversal of current function
+// (starting at 2), which effectively gives values in deep loops higher rank
+// than values not in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "reassociate"
+
+STATISTIC(NumChanged, "Number of insts reassociated");
+STATISTIC(NumAnnihil, "Number of expr tree annihilated");
+STATISTIC(NumFactor , "Number of multiplies factored");
+
+namespace {
+ struct ValueEntry {
+ unsigned Rank;
+ Value *Op;
+ ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
+ };
+ inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
+ return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
+ }
+}
+
+#ifndef NDEBUG
+/// Print out the expression identified in the Ops list.
+///
+static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
+ Module *M = I->getModule();
+ dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
+ << *Ops[0].Op->getType() << '\t';
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ dbgs() << "[ ";
+ Ops[i].Op->printAsOperand(dbgs(), false, M);
+ dbgs() << ", #" << Ops[i].Rank << "] ";
+ }
+}
+#endif
+
+namespace {
+ /// \brief Utility class representing a base and exponent pair which form one
+ /// factor of some product.
+ struct Factor {
+ Value *Base;
+ unsigned Power;
+
+ Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
+
+ /// \brief Sort factors in descending order by their power.
+ struct PowerDescendingSorter {
+ bool operator()(const Factor &LHS, const Factor &RHS) {
+ return LHS.Power > RHS.Power;
+ }
+ };
+
+ /// \brief Compare factors for equal powers.
+ struct PowerEqual {
+ bool operator()(const Factor &LHS, const Factor &RHS) {
+ return LHS.Power == RHS.Power;
+ }
+ };
+ };
+
+ /// Utility class representing a non-constant Xor-operand. We classify
+ /// non-constant Xor-Operands into two categories:
+ /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
+ /// C2)
+ /// C2.1) The operand is in the form of "X | C", where C is a non-zero
+ /// constant.
+ /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
+ /// operand as "E | 0"
+ class XorOpnd {
+ public:
+ XorOpnd(Value *V);
+
+ bool isInvalid() const { return SymbolicPart == nullptr; }
+ bool isOrExpr() const { return isOr; }
+ Value *getValue() const { return OrigVal; }
+ Value *getSymbolicPart() const { return SymbolicPart; }
+ unsigned getSymbolicRank() const { return SymbolicRank; }
+ const APInt &getConstPart() const { return ConstPart; }
+
+ void Invalidate() { SymbolicPart = OrigVal = nullptr; }
+ void setSymbolicRank(unsigned R) { SymbolicRank = R; }
+
+ // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
+ // The purpose is twofold:
+ // 1) Cluster together the operands sharing the same symbolic-value.
+ // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
+ // could potentially shorten crital path, and expose more loop-invariants.
+ // Note that values' rank are basically defined in RPO order (FIXME).
+ // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
+ // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
+ // "z" in the order of X-Y-Z is better than any other orders.
+ struct PtrSortFunctor {
+ bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
+ return LHS->getSymbolicRank() < RHS->getSymbolicRank();
+ }
+ };
+ private:
+ Value *OrigVal;
+ Value *SymbolicPart;
+ APInt ConstPart;
+ unsigned SymbolicRank;
+ bool isOr;
+ };
+}
+
+namespace {
+ class Reassociate : public FunctionPass {
+ DenseMap<BasicBlock*, unsigned> RankMap;
+ DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
+ SetVector<AssertingVH<Instruction> > RedoInsts;
+ bool MadeChange;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ Reassociate() : FunctionPass(ID) {
+ initializeReassociatePass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+ private:
+ void BuildRankMap(Function &F);
+ unsigned getRank(Value *V);
+ void canonicalizeOperands(Instruction *I);
+ void ReassociateExpression(BinaryOperator *I);
+ void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
+ Value *OptimizeExpression(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops);
+ Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+ Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+ bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
+ Value *&Res);
+ bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
+ APInt &ConstOpnd, Value *&Res);
+ bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
+ SmallVectorImpl<Factor> &Factors);
+ Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
+ SmallVectorImpl<Factor> &Factors);
+ Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
+ Value *RemoveFactorFromExpression(Value *V, Value *Factor);
+ void EraseInst(Instruction *I);
+ void RecursivelyEraseDeadInsts(Instruction *I,
+ SetVector<AssertingVH<Instruction>> &Insts);
+ void OptimizeInst(Instruction *I);
+ Instruction *canonicalizeNegConstExpr(Instruction *I);
+ };
+}
+
+XorOpnd::XorOpnd(Value *V) {
+ assert(!isa<ConstantInt>(V) && "No ConstantInt");
+ OrigVal = V;
+ Instruction *I = dyn_cast<Instruction>(V);
+ SymbolicRank = 0;
+
+ if (I && (I->getOpcode() == Instruction::Or ||
+ I->getOpcode() == Instruction::And)) {
+ Value *V0 = I->getOperand(0);
+ Value *V1 = I->getOperand(1);
+ if (isa<ConstantInt>(V0))
+ std::swap(V0, V1);
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
+ ConstPart = C->getValue();
+ SymbolicPart = V0;
+ isOr = (I->getOpcode() == Instruction::Or);
+ return;
+ }
+ }
+
+ // view the operand as "V | 0"
+ SymbolicPart = V;
+ ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
+ isOr = true;
+}
+
+char Reassociate::ID = 0;
+INITIALIZE_PASS(Reassociate, "reassociate",
+ "Reassociate expressions", false, false)
+
+// Public interface to the Reassociate pass
+FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
+
+/// Return true if V is an instruction of the specified opcode and if it
+/// only has one use.
+static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
+ if (V->hasOneUse() && isa<Instruction>(V) &&
+ cast<Instruction>(V)->getOpcode() == Opcode &&
+ (!isa<FPMathOperator>(V) ||
+ cast<Instruction>(V)->hasUnsafeAlgebra()))
+ return cast<BinaryOperator>(V);
+ return nullptr;
+}
+
+static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
+ unsigned Opcode2) {
+ if (V->hasOneUse() && isa<Instruction>(V) &&
+ (cast<Instruction>(V)->getOpcode() == Opcode1 ||
+ cast<Instruction>(V)->getOpcode() == Opcode2) &&
+ (!isa<FPMathOperator>(V) ||
+ cast<Instruction>(V)->hasUnsafeAlgebra()))
+ return cast<BinaryOperator>(V);
+ return nullptr;
+}
+
+void Reassociate::BuildRankMap(Function &F) {
+ unsigned i = 2;
+
+ // Assign distinct ranks to function arguments.
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
+ ValueRankMap[&*I] = ++i;
+ DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
+ }
+
+ ReversePostOrderTraversal<Function*> RPOT(&F);
+ for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
+ E = RPOT.end(); I != E; ++I) {
+ BasicBlock *BB = *I;
+ unsigned BBRank = RankMap[BB] = ++i << 16;
+
+ // Walk the basic block, adding precomputed ranks for any instructions that
+ // we cannot move. This ensures that the ranks for these instructions are
+ // all different in the block.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (mayBeMemoryDependent(*I))
+ ValueRankMap[&*I] = ++BBRank;
+ }
+}
+
+unsigned Reassociate::getRank(Value *V) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
+ return 0; // Otherwise it's a global or constant, rank 0.
+ }
+
+ if (unsigned Rank = ValueRankMap[I])
+ return Rank; // Rank already known?
+
+ // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
+ // we can reassociate expressions for code motion! Since we do not recurse
+ // for PHI nodes, we cannot have infinite recursion here, because there
+ // cannot be loops in the value graph that do not go through PHI nodes.
+ unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
+ for (unsigned i = 0, e = I->getNumOperands();
+ i != e && Rank != MaxRank; ++i)
+ Rank = std::max(Rank, getRank(I->getOperand(i)));
+
+ // If this is a not or neg instruction, do not count it for rank. This
+ // assures us that X and ~X will have the same rank.
+ if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
+ !BinaryOperator::isFNeg(I))
+ ++Rank;
+
+ DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
+
+ return ValueRankMap[I] = Rank;
+}
+
+// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
+void Reassociate::canonicalizeOperands(Instruction *I) {
+ assert(isa<BinaryOperator>(I) && "Expected binary operator.");
+ assert(I->isCommutative() && "Expected commutative operator.");
+
+ Value *LHS = I->getOperand(0);
+ Value *RHS = I->getOperand(1);
+ unsigned LHSRank = getRank(LHS);
+ unsigned RHSRank = getRank(RHS);
+
+ if (isa<Constant>(RHS))
+ return;
+
+ if (isa<Constant>(LHS) || RHSRank < LHSRank)
+ cast<BinaryOperator>(I)->swapOperands();
+}
+
+static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
+ Instruction *InsertBefore, Value *FlagsOp) {
+ if (S1->getType()->isIntOrIntVectorTy())
+ return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
+ else {
+ BinaryOperator *Res =
+ BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
+ Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+ return Res;
+ }
+}
+
+static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
+ Instruction *InsertBefore, Value *FlagsOp) {
+ if (S1->getType()->isIntOrIntVectorTy())
+ return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
+ else {
+ BinaryOperator *Res =
+ BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
+ Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+ return Res;
+ }
+}
+
+static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
+ Instruction *InsertBefore, Value *FlagsOp) {
+ if (S1->getType()->isIntOrIntVectorTy())
+ return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
+ else {
+ BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
+ Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
+ return Res;
+ }
+}
+
+/// Replace 0-X with X*-1.
+static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
+ Type *Ty = Neg->getType();
+ Constant *NegOne = Ty->isIntOrIntVectorTy() ?
+ ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
+
+ BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
+ Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
+ Res->takeName(Neg);
+ Neg->replaceAllUsesWith(Res);
+ Res->setDebugLoc(Neg->getDebugLoc());
+ return Res;
+}
+
+/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
+/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
+/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
+/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
+/// even x in Bitwidth-bit arithmetic.
+static unsigned CarmichaelShift(unsigned Bitwidth) {
+ if (Bitwidth < 3)
+ return Bitwidth - 1;
+ return Bitwidth - 2;
+}
+
+/// Add the extra weight 'RHS' to the existing weight 'LHS',
+/// reducing the combined weight using any special properties of the operation.
+/// The existing weight LHS represents the computation X op X op ... op X where
+/// X occurs LHS times. The combined weight represents X op X op ... op X with
+/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
+/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
+/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
+static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
+ // If we were working with infinite precision arithmetic then the combined
+ // weight would be LHS + RHS. But we are using finite precision arithmetic,
+ // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
+ // for nilpotent operations and addition, but not for idempotent operations
+ // and multiplication), so it is important to correctly reduce the combined
+ // weight back into range if wrapping would be wrong.
+
+ // If RHS is zero then the weight didn't change.
+ if (RHS.isMinValue())
+ return;
+ // If LHS is zero then the combined weight is RHS.
+ if (LHS.isMinValue()) {
+ LHS = RHS;
+ return;
+ }
+ // From this point on we know that neither LHS nor RHS is zero.
+
+ if (Instruction::isIdempotent(Opcode)) {
+ // Idempotent means X op X === X, so any non-zero weight is equivalent to a
+ // weight of 1. Keeping weights at zero or one also means that wrapping is
+ // not a problem.
+ assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
+ return; // Return a weight of 1.
+ }
+ if (Instruction::isNilpotent(Opcode)) {
+ // Nilpotent means X op X === 0, so reduce weights modulo 2.
+ assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
+ LHS = 0; // 1 + 1 === 0 modulo 2.
+ return;
+ }
+ if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
+ // TODO: Reduce the weight by exploiting nsw/nuw?
+ LHS += RHS;
+ return;
+ }
+
+ assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
+ "Unknown associative operation!");
+ unsigned Bitwidth = LHS.getBitWidth();
+ // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
+ // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
+ // bit number x, since either x is odd in which case x^CM = 1, or x is even in
+ // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
+ // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
+ // which by a happy accident means that they can always be represented using
+ // Bitwidth bits.
+ // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
+ // the Carmichael number).
+ if (Bitwidth > 3) {
+ /// CM - The value of Carmichael's lambda function.
+ APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
+ // Any weight W >= Threshold can be replaced with W - CM.
+ APInt Threshold = CM + Bitwidth;
+ assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
+ // For Bitwidth 4 or more the following sum does not overflow.
+ LHS += RHS;
+ while (LHS.uge(Threshold))
+ LHS -= CM;
+ } else {
+ // To avoid problems with overflow do everything the same as above but using
+ // a larger type.
+ unsigned CM = 1U << CarmichaelShift(Bitwidth);
+ unsigned Threshold = CM + Bitwidth;
+ assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
+ "Weights not reduced!");
+ unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
+ while (Total >= Threshold)
+ Total -= CM;
+ LHS = Total;
+ }
+}
+
+typedef std::pair<Value*, APInt> RepeatedValue;
+
+/// Given an associative binary expression, return the leaf
+/// nodes in Ops along with their weights (how many times the leaf occurs). The
+/// original expression is the same as
+/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
+/// op
+/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
+/// op
+/// ...
+/// op
+/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
+///
+/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
+///
+/// This routine may modify the function, in which case it returns 'true'. The
+/// changes it makes may well be destructive, changing the value computed by 'I'
+/// to something completely different. Thus if the routine returns 'true' then
+/// you MUST either replace I with a new expression computed from the Ops array,
+/// or use RewriteExprTree to put the values back in.
+///
+/// A leaf node is either not a binary operation of the same kind as the root
+/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
+/// opcode), or is the same kind of binary operator but has a use which either
+/// does not belong to the expression, or does belong to the expression but is
+/// a leaf node. Every leaf node has at least one use that is a non-leaf node
+/// of the expression, while for non-leaf nodes (except for the root 'I') every
+/// use is a non-leaf node of the expression.
+///
+/// For example:
+/// expression graph node names
+///
+/// + | I
+/// / \ |
+/// + + | A, B
+/// / \ / \ |
+/// * + * | C, D, E
+/// / \ / \ / \ |
+/// + * | F, G
+///
+/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
+/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
+///
+/// The expression is maximal: if some instruction is a binary operator of the
+/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
+/// then the instruction also belongs to the expression, is not a leaf node of
+/// it, and its operands also belong to the expression (but may be leaf nodes).
+///
+/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
+/// order to ensure that every non-root node in the expression has *exactly one*
+/// use by a non-leaf node of the expression. This destruction means that the
+/// caller MUST either replace 'I' with a new expression or use something like
+/// RewriteExprTree to put the values back in if the routine indicates that it
+/// made a change by returning 'true'.
+///
+/// In the above example either the right operand of A or the left operand of B
+/// will be replaced by undef. If it is B's operand then this gives:
+///
+/// + | I
+/// / \ |
+/// + + | A, B - operand of B replaced with undef
+/// / \ \ |
+/// * + * | C, D, E
+/// / \ / \ / \ |
+/// + * | F, G
+///
+/// Note that such undef operands can only be reached by passing through 'I'.
+/// For example, if you visit operands recursively starting from a leaf node
+/// then you will never see such an undef operand unless you get back to 'I',
+/// which requires passing through a phi node.
+///
+/// Note that this routine may also mutate binary operators of the wrong type
+/// that have all uses inside the expression (i.e. only used by non-leaf nodes
+/// of the expression) if it can turn them into binary operators of the right
+/// type and thus make the expression bigger.
+
+static bool LinearizeExprTree(BinaryOperator *I,
+ SmallVectorImpl<RepeatedValue> &Ops) {
+ DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
+ unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
+ unsigned Opcode = I->getOpcode();
+ assert(I->isAssociative() && I->isCommutative() &&
+ "Expected an associative and commutative operation!");
+
+ // Visit all operands of the expression, keeping track of their weight (the
+ // number of paths from the expression root to the operand, or if you like
+ // the number of times that operand occurs in the linearized expression).
+ // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
+ // while A has weight two.
+
+ // Worklist of non-leaf nodes (their operands are in the expression too) along
+ // with their weights, representing a certain number of paths to the operator.
+ // If an operator occurs in the worklist multiple times then we found multiple
+ // ways to get to it.
+ SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
+ Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
+ bool Changed = false;
+
+ // Leaves of the expression are values that either aren't the right kind of
+ // operation (eg: a constant, or a multiply in an add tree), or are, but have
+ // some uses that are not inside the expression. For example, in I = X + X,
+ // X = A + B, the value X has two uses (by I) that are in the expression. If
+ // X has any other uses, for example in a return instruction, then we consider
+ // X to be a leaf, and won't analyze it further. When we first visit a value,
+ // if it has more than one use then at first we conservatively consider it to
+ // be a leaf. Later, as the expression is explored, we may discover some more
+ // uses of the value from inside the expression. If all uses turn out to be
+ // from within the expression (and the value is a binary operator of the right
+ // kind) then the value is no longer considered to be a leaf, and its operands
+ // are explored.
+
+ // Leaves - Keeps track of the set of putative leaves as well as the number of
+ // paths to each leaf seen so far.
+ typedef DenseMap<Value*, APInt> LeafMap;
+ LeafMap Leaves; // Leaf -> Total weight so far.
+ SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
+
+#ifndef NDEBUG
+ SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
+#endif
+ while (!Worklist.empty()) {
+ std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
+ I = P.first; // We examine the operands of this binary operator.
+
+ for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
+ Value *Op = I->getOperand(OpIdx);
+ APInt Weight = P.second; // Number of paths to this operand.
+ DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
+ assert(!Op->use_empty() && "No uses, so how did we get to it?!");
+
+ // If this is a binary operation of the right kind with only one use then
+ // add its operands to the expression.
+ if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
+ assert(Visited.insert(Op).second && "Not first visit!");
+ DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
+ Worklist.push_back(std::make_pair(BO, Weight));
+ continue;
+ }
+
+ // Appears to be a leaf. Is the operand already in the set of leaves?
+ LeafMap::iterator It = Leaves.find(Op);
+ if (It == Leaves.end()) {
+ // Not in the leaf map. Must be the first time we saw this operand.
+ assert(Visited.insert(Op).second && "Not first visit!");
+ if (!Op->hasOneUse()) {
+ // This value has uses not accounted for by the expression, so it is
+ // not safe to modify. Mark it as being a leaf.
+ DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
+ LeafOrder.push_back(Op);
+ Leaves[Op] = Weight;
+ continue;
+ }
+ // No uses outside the expression, try morphing it.
+ } else if (It != Leaves.end()) {
+ // Already in the leaf map.
+ assert(Visited.count(Op) && "In leaf map but not visited!");
+
+ // Update the number of paths to the leaf.
+ IncorporateWeight(It->second, Weight, Opcode);
+
+#if 0 // TODO: Re-enable once PR13021 is fixed.
+ // The leaf already has one use from inside the expression. As we want
+ // exactly one such use, drop this new use of the leaf.
+ assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
+ I->setOperand(OpIdx, UndefValue::get(I->getType()));
+ Changed = true;
+
+ // If the leaf is a binary operation of the right kind and we now see
+ // that its multiple original uses were in fact all by nodes belonging
+ // to the expression, then no longer consider it to be a leaf and add
+ // its operands to the expression.
+ if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
+ DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
+ Worklist.push_back(std::make_pair(BO, It->second));
+ Leaves.erase(It);
+ continue;
+ }
+#endif
+
+ // If we still have uses that are not accounted for by the expression
+ // then it is not safe to modify the value.
+ if (!Op->hasOneUse())
+ continue;
+
+ // No uses outside the expression, try morphing it.
+ Weight = It->second;
+ Leaves.erase(It); // Since the value may be morphed below.
+ }
+
+ // At this point we have a value which, first of all, is not a binary
+ // expression of the right kind, and secondly, is only used inside the
+ // expression. This means that it can safely be modified. See if we
+ // can usefully morph it into an expression of the right kind.
+ assert((!isa<Instruction>(Op) ||
+ cast<Instruction>(Op)->getOpcode() != Opcode
+ || (isa<FPMathOperator>(Op) &&
+ !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
+ "Should have been handled above!");
+ assert(Op->hasOneUse() && "Has uses outside the expression tree!");
+
+ // If this is a multiply expression, turn any internal negations into
+ // multiplies by -1 so they can be reassociated.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
+ if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
+ (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
+ DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
+ BO = LowerNegateToMultiply(BO);
+ DEBUG(dbgs() << *BO << '\n');
+ Worklist.push_back(std::make_pair(BO, Weight));
+ Changed = true;
+ continue;
+ }
+
+ // Failed to morph into an expression of the right type. This really is
+ // a leaf.
+ DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
+ assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
+ LeafOrder.push_back(Op);
+ Leaves[Op] = Weight;
+ }
+ }
+
+ // The leaves, repeated according to their weights, represent the linearized
+ // form of the expression.
+ for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
+ Value *V = LeafOrder[i];
+ LeafMap::iterator It = Leaves.find(V);
+ if (It == Leaves.end())
+ // Node initially thought to be a leaf wasn't.
+ continue;
+ assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
+ APInt Weight = It->second;
+ if (Weight.isMinValue())
+ // Leaf already output or weight reduction eliminated it.
+ continue;
+ // Ensure the leaf is only output once.
+ It->second = 0;
+ Ops.push_back(std::make_pair(V, Weight));
+ }
+
+ // For nilpotent operations or addition there may be no operands, for example
+ // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
+ // in both cases the weight reduces to 0 causing the value to be skipped.
+ if (Ops.empty()) {
+ Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
+ assert(Identity && "Associative operation without identity!");
+ Ops.emplace_back(Identity, APInt(Bitwidth, 1));
+ }
+
+ return Changed;
+}
+
+/// Now that the operands for this expression tree are
+/// linearized and optimized, emit them in-order.
+void Reassociate::RewriteExprTree(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ assert(Ops.size() > 1 && "Single values should be used directly!");
+
+ // Since our optimizations should never increase the number of operations, the
+ // new expression can usually be written reusing the existing binary operators
+ // from the original expression tree, without creating any new instructions,
+ // though the rewritten expression may have a completely different topology.
+ // We take care to not change anything if the new expression will be the same
+ // as the original. If more than trivial changes (like commuting operands)
+ // were made then we are obliged to clear out any optional subclass data like
+ // nsw flags.
+
+ /// NodesToRewrite - Nodes from the original expression available for writing
+ /// the new expression into.
+ SmallVector<BinaryOperator*, 8> NodesToRewrite;
+ unsigned Opcode = I->getOpcode();
+ BinaryOperator *Op = I;
+
+ /// NotRewritable - The operands being written will be the leaves of the new
+ /// expression and must not be used as inner nodes (via NodesToRewrite) by
+ /// mistake. Inner nodes are always reassociable, and usually leaves are not
+ /// (if they were they would have been incorporated into the expression and so
+ /// would not be leaves), so most of the time there is no danger of this. But
+ /// in rare cases a leaf may become reassociable if an optimization kills uses
+ /// of it, or it may momentarily become reassociable during rewriting (below)
+ /// due it being removed as an operand of one of its uses. Ensure that misuse
+ /// of leaf nodes as inner nodes cannot occur by remembering all of the future
+ /// leaves and refusing to reuse any of them as inner nodes.
+ SmallPtrSet<Value*, 8> NotRewritable;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ NotRewritable.insert(Ops[i].Op);
+
+ // ExpressionChanged - Non-null if the rewritten expression differs from the
+ // original in some non-trivial way, requiring the clearing of optional flags.
+ // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
+ BinaryOperator *ExpressionChanged = nullptr;
+ for (unsigned i = 0; ; ++i) {
+ // The last operation (which comes earliest in the IR) is special as both
+ // operands will come from Ops, rather than just one with the other being
+ // a subexpression.
+ if (i+2 == Ops.size()) {
+ Value *NewLHS = Ops[i].Op;
+ Value *NewRHS = Ops[i+1].Op;
+ Value *OldLHS = Op->getOperand(0);
+ Value *OldRHS = Op->getOperand(1);
+
+ if (NewLHS == OldLHS && NewRHS == OldRHS)
+ // Nothing changed, leave it alone.
+ break;
+
+ if (NewLHS == OldRHS && NewRHS == OldLHS) {
+ // The order of the operands was reversed. Swap them.
+ DEBUG(dbgs() << "RA: " << *Op << '\n');
+ Op->swapOperands();
+ DEBUG(dbgs() << "TO: " << *Op << '\n');
+ MadeChange = true;
+ ++NumChanged;
+ break;
+ }
+
+ // The new operation differs non-trivially from the original. Overwrite
+ // the old operands with the new ones.
+ DEBUG(dbgs() << "RA: " << *Op << '\n');
+ if (NewLHS != OldLHS) {
+ BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
+ if (BO && !NotRewritable.count(BO))
+ NodesToRewrite.push_back(BO);
+ Op->setOperand(0, NewLHS);
+ }
+ if (NewRHS != OldRHS) {
+ BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
+ if (BO && !NotRewritable.count(BO))
+ NodesToRewrite.push_back(BO);
+ Op->setOperand(1, NewRHS);
+ }
+ DEBUG(dbgs() << "TO: " << *Op << '\n');
+
+ ExpressionChanged = Op;
+ MadeChange = true;
+ ++NumChanged;
+
+ break;
+ }
+
+ // Not the last operation. The left-hand side will be a sub-expression
+ // while the right-hand side will be the current element of Ops.
+ Value *NewRHS = Ops[i].Op;
+ if (NewRHS != Op->getOperand(1)) {
+ DEBUG(dbgs() << "RA: " << *Op << '\n');
+ if (NewRHS == Op->getOperand(0)) {
+ // The new right-hand side was already present as the left operand. If
+ // we are lucky then swapping the operands will sort out both of them.
+ Op->swapOperands();
+ } else {
+ // Overwrite with the new right-hand side.
+ BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
+ if (BO && !NotRewritable.count(BO))
+ NodesToRewrite.push_back(BO);
+ Op->setOperand(1, NewRHS);
+ ExpressionChanged = Op;
+ }
+ DEBUG(dbgs() << "TO: " << *Op << '\n');
+ MadeChange = true;
+ ++NumChanged;
+ }
+
+ // Now deal with the left-hand side. If this is already an operation node
+ // from the original expression then just rewrite the rest of the expression
+ // into it.
+ BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
+ if (BO && !NotRewritable.count(BO)) {
+ Op = BO;
+ continue;
+ }
+
+ // Otherwise, grab a spare node from the original expression and use that as
+ // the left-hand side. If there are no nodes left then the optimizers made
+ // an expression with more nodes than the original! This usually means that
+ // they did something stupid but it might mean that the problem was just too
+ // hard (finding the mimimal number of multiplications needed to realize a
+ // multiplication expression is NP-complete). Whatever the reason, smart or
+ // stupid, create a new node if there are none left.
+ BinaryOperator *NewOp;
+ if (NodesToRewrite.empty()) {
+ Constant *Undef = UndefValue::get(I->getType());
+ NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
+ Undef, Undef, "", I);
+ if (NewOp->getType()->isFPOrFPVectorTy())
+ NewOp->setFastMathFlags(I->getFastMathFlags());
+ } else {
+ NewOp = NodesToRewrite.pop_back_val();
+ }
+
+ DEBUG(dbgs() << "RA: " << *Op << '\n');
+ Op->setOperand(0, NewOp);
+ DEBUG(dbgs() << "TO: " << *Op << '\n');
+ ExpressionChanged = Op;
+ MadeChange = true;
+ ++NumChanged;
+ Op = NewOp;
+ }
+
+ // If the expression changed non-trivially then clear out all subclass data
+ // starting from the operator specified in ExpressionChanged, and compactify
+ // the operators to just before the expression root to guarantee that the
+ // expression tree is dominated by all of Ops.
+ if (ExpressionChanged)
+ do {
+ // Preserve FastMathFlags.
+ if (isa<FPMathOperator>(I)) {
+ FastMathFlags Flags = I->getFastMathFlags();
+ ExpressionChanged->clearSubclassOptionalData();
+ ExpressionChanged->setFastMathFlags(Flags);
+ } else
+ ExpressionChanged->clearSubclassOptionalData();
+
+ if (ExpressionChanged == I)
+ break;
+ ExpressionChanged->moveBefore(I);
+ ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
+ } while (1);
+
+ // Throw away any left over nodes from the original expression.
+ for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
+ RedoInsts.insert(NodesToRewrite[i]);
+}
+
+/// Insert instructions before the instruction pointed to by BI,
+/// that computes the negative version of the value specified. The negative
+/// version of the value is returned, and BI is left pointing at the instruction
+/// that should be processed next by the reassociation pass.
+/// Also add intermediate instructions to the redo list that are modified while
+/// pushing the negates through adds. These will be revisited to see if
+/// additional opportunities have been exposed.
+static Value *NegateValue(Value *V, Instruction *BI,
+ SetVector<AssertingVH<Instruction>> &ToRedo) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->getType()->isFPOrFPVectorTy()) {
+ return ConstantExpr::getFNeg(C);
+ }
+ return ConstantExpr::getNeg(C);
+ }
+
+
+ // We are trying to expose opportunity for reassociation. One of the things
+ // that we want to do to achieve this is to push a negation as deep into an
+ // expression chain as possible, to expose the add instructions. In practice,
+ // this means that we turn this:
+ // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
+ // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
+ // the constants. We assume that instcombine will clean up the mess later if
+ // we introduce tons of unnecessary negation instructions.
+ //
+ if (BinaryOperator *I =
+ isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
+ // Push the negates through the add.
+ I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
+ I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
+ if (I->getOpcode() == Instruction::Add) {
+ I->setHasNoUnsignedWrap(false);
+ I->setHasNoSignedWrap(false);
+ }
+
+ // We must move the add instruction here, because the neg instructions do
+ // not dominate the old add instruction in general. By moving it, we are
+ // assured that the neg instructions we just inserted dominate the
+ // instruction we are about to insert after them.
+ //
+ I->moveBefore(BI);
+ I->setName(I->getName()+".neg");
+
+ // Add the intermediate negates to the redo list as processing them later
+ // could expose more reassociating opportunities.
+ ToRedo.insert(I);
+ return I;
+ }
+
+ // Okay, we need to materialize a negated version of V with an instruction.
+ // Scan the use lists of V to see if we have one already.
+ for (User *U : V->users()) {
+ if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
+ continue;
+
+ // We found one! Now we have to make sure that the definition dominates
+ // this use. We do this by moving it to the entry block (if it is a
+ // non-instruction value) or right after the definition. These negates will
+ // be zapped by reassociate later, so we don't need much finesse here.
+ BinaryOperator *TheNeg = cast<BinaryOperator>(U);
+
+ // Verify that the negate is in this function, V might be a constant expr.
+ if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
+ continue;
+
+ BasicBlock::iterator InsertPt;
+ if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
+ if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
+ InsertPt = II->getNormalDest()->begin();
+ } else {
+ InsertPt = ++InstInput->getIterator();
+ }
+ while (isa<PHINode>(InsertPt)) ++InsertPt;
+ } else {
+ InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
+ }
+ TheNeg->moveBefore(&*InsertPt);
+ if (TheNeg->getOpcode() == Instruction::Sub) {
+ TheNeg->setHasNoUnsignedWrap(false);
+ TheNeg->setHasNoSignedWrap(false);
+ } else {
+ TheNeg->andIRFlags(BI);
+ }
+ ToRedo.insert(TheNeg);
+ return TheNeg;
+ }
+
+ // Insert a 'neg' instruction that subtracts the value from zero to get the
+ // negation.
+ BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
+ ToRedo.insert(NewNeg);
+ return NewNeg;
+}
+
+/// Return true if we should break up this subtract of X-Y into (X + -Y).
+static bool ShouldBreakUpSubtract(Instruction *Sub) {
+ // If this is a negation, we can't split it up!
+ if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
+ return false;
+
+ // Don't breakup X - undef.
+ if (isa<UndefValue>(Sub->getOperand(1)))
+ return false;
+
+ // Don't bother to break this up unless either the LHS is an associable add or
+ // subtract or if this is only used by one.
+ Value *V0 = Sub->getOperand(0);
+ if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
+ isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
+ return true;
+ Value *V1 = Sub->getOperand(1);
+ if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
+ isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
+ return true;
+ Value *VB = Sub->user_back();
+ if (Sub->hasOneUse() &&
+ (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
+ isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
+ return true;
+
+ return false;
+}
+
+/// If we have (X-Y), and if either X is an add, or if this is only used by an
+/// add, transform this into (X+(0-Y)) to promote better reassociation.
+static BinaryOperator *
+BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
+ // Convert a subtract into an add and a neg instruction. This allows sub
+ // instructions to be commuted with other add instructions.
+ //
+ // Calculate the negative value of Operand 1 of the sub instruction,
+ // and set it as the RHS of the add instruction we just made.
+ //
+ Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
+ BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
+ Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
+ Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
+ New->takeName(Sub);
+
+ // Everyone now refers to the add instruction.
+ Sub->replaceAllUsesWith(New);
+ New->setDebugLoc(Sub->getDebugLoc());
+
+ DEBUG(dbgs() << "Negated: " << *New << '\n');
+ return New;
+}
+
+/// If this is a shift of a reassociable multiply or is used by one, change
+/// this into a multiply by a constant to assist with further reassociation.
+static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
+ Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
+ MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
+
+ BinaryOperator *Mul =
+ BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
+ Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
+ Mul->takeName(Shl);
+
+ // Everyone now refers to the mul instruction.
+ Shl->replaceAllUsesWith(Mul);
+ Mul->setDebugLoc(Shl->getDebugLoc());
+
+ // We can safely preserve the nuw flag in all cases. It's also safe to turn a
+ // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
+ // handling.
+ bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
+ bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
+ if (NSW && NUW)
+ Mul->setHasNoSignedWrap(true);
+ Mul->setHasNoUnsignedWrap(NUW);
+ return Mul;
+}
+
+/// Scan backwards and forwards among values with the same rank as element i
+/// to see if X exists. If X does not exist, return i. This is useful when
+/// scanning for 'x' when we see '-x' because they both get the same rank.
+static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
+ Value *X) {
+ unsigned XRank = Ops[i].Rank;
+ unsigned e = Ops.size();
+ for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
+ if (Ops[j].Op == X)
+ return j;
+ if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+ if (Instruction *I2 = dyn_cast<Instruction>(X))
+ if (I1->isIdenticalTo(I2))
+ return j;
+ }
+ // Scan backwards.
+ for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
+ if (Ops[j].Op == X)
+ return j;
+ if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
+ if (Instruction *I2 = dyn_cast<Instruction>(X))
+ if (I1->isIdenticalTo(I2))
+ return j;
+ }
+ return i;
+}
+
+/// Emit a tree of add instructions, summing Ops together
+/// and returning the result. Insert the tree before I.
+static Value *EmitAddTreeOfValues(Instruction *I,
+ SmallVectorImpl<WeakVH> &Ops){
+ if (Ops.size() == 1) return Ops.back();
+
+ Value *V1 = Ops.back();
+ Ops.pop_back();
+ Value *V2 = EmitAddTreeOfValues(I, Ops);
+ return CreateAdd(V2, V1, "tmp", I, I);
+}
+
+/// If V is an expression tree that is a multiplication sequence,
+/// and if this sequence contains a multiply by Factor,
+/// remove Factor from the tree and return the new tree.
+Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
+ BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
+ if (!BO)
+ return nullptr;
+
+ SmallVector<RepeatedValue, 8> Tree;
+ MadeChange |= LinearizeExprTree(BO, Tree);
+ SmallVector<ValueEntry, 8> Factors;
+ Factors.reserve(Tree.size());
+ for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
+ RepeatedValue E = Tree[i];
+ Factors.append(E.second.getZExtValue(),
+ ValueEntry(getRank(E.first), E.first));
+ }
+
+ bool FoundFactor = false;
+ bool NeedsNegate = false;
+ for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
+ if (Factors[i].Op == Factor) {
+ FoundFactor = true;
+ Factors.erase(Factors.begin()+i);
+ break;
+ }
+
+ // If this is a negative version of this factor, remove it.
+ if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
+ if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
+ if (FC1->getValue() == -FC2->getValue()) {
+ FoundFactor = NeedsNegate = true;
+ Factors.erase(Factors.begin()+i);
+ break;
+ }
+ } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
+ if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
+ APFloat F1(FC1->getValueAPF());
+ APFloat F2(FC2->getValueAPF());
+ F2.changeSign();
+ if (F1.compare(F2) == APFloat::cmpEqual) {
+ FoundFactor = NeedsNegate = true;
+ Factors.erase(Factors.begin() + i);
+ break;
+ }
+ }
+ }
+ }
+
+ if (!FoundFactor) {
+ // Make sure to restore the operands to the expression tree.
+ RewriteExprTree(BO, Factors);
+ return nullptr;
+ }
+
+ BasicBlock::iterator InsertPt = ++BO->getIterator();
+
+ // If this was just a single multiply, remove the multiply and return the only
+ // remaining operand.
+ if (Factors.size() == 1) {
+ RedoInsts.insert(BO);
+ V = Factors[0].Op;
+ } else {
+ RewriteExprTree(BO, Factors);
+ V = BO;
+ }
+
+ if (NeedsNegate)
+ V = CreateNeg(V, "neg", &*InsertPt, BO);
+
+ return V;
+}
+
+/// If V is a single-use multiply, recursively add its operands as factors,
+/// otherwise add V to the list of factors.
+///
+/// Ops is the top-level list of add operands we're trying to factor.
+static void FindSingleUseMultiplyFactors(Value *V,
+ SmallVectorImpl<Value*> &Factors,
+ const SmallVectorImpl<ValueEntry> &Ops) {
+ BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
+ if (!BO) {
+ Factors.push_back(V);
+ return;
+ }
+
+ // Otherwise, add the LHS and RHS to the list of factors.
+ FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
+ FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
+}
+
+/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
+/// This optimizes based on identities. If it can be reduced to a single Value,
+/// it is returned, otherwise the Ops list is mutated as necessary.
+static Value *OptimizeAndOrXor(unsigned Opcode,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
+ // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ // First, check for X and ~X in the operand list.
+ assert(i < Ops.size());
+ if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
+ Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
+ unsigned FoundX = FindInOperandList(Ops, i, X);
+ if (FoundX != i) {
+ if (Opcode == Instruction::And) // ...&X&~X = 0
+ return Constant::getNullValue(X->getType());
+
+ if (Opcode == Instruction::Or) // ...|X|~X = -1
+ return Constant::getAllOnesValue(X->getType());
+ }
+ }
+
+ // Next, check for duplicate pairs of values, which we assume are next to
+ // each other, due to our sorting criteria.
+ assert(i < Ops.size());
+ if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
+ if (Opcode == Instruction::And || Opcode == Instruction::Or) {
+ // Drop duplicate values for And and Or.
+ Ops.erase(Ops.begin()+i);
+ --i; --e;
+ ++NumAnnihil;
+ continue;
+ }
+
+ // Drop pairs of values for Xor.
+ assert(Opcode == Instruction::Xor);
+ if (e == 2)
+ return Constant::getNullValue(Ops[0].Op->getType());
+
+ // Y ^ X^X -> Y
+ Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
+ i -= 1; e -= 2;
+ ++NumAnnihil;
+ }
+ }
+ return nullptr;
+}
+
+/// Helper function of CombineXorOpnd(). It creates a bitwise-and
+/// instruction with the given two operands, and return the resulting
+/// instruction. There are two special cases: 1) if the constant operand is 0,
+/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
+/// be returned.
+static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
+ const APInt &ConstOpnd) {
+ if (ConstOpnd != 0) {
+ if (!ConstOpnd.isAllOnesValue()) {
+ LLVMContext &Ctx = Opnd->getType()->getContext();
+ Instruction *I;
+ I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
+ "and.ra", InsertBefore);
+ I->setDebugLoc(InsertBefore->getDebugLoc());
+ return I;
+ }
+ return Opnd;
+ }
+ return nullptr;
+}
+
+// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
+// into "R ^ C", where C would be 0, and R is a symbolic value.
+//
+// If it was successful, true is returned, and the "R" and "C" is returned
+// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
+// and both "Res" and "ConstOpnd" remain unchanged.
+//
+bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+ APInt &ConstOpnd, Value *&Res) {
+ // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
+ // = ((x | c1) ^ c1) ^ (c1 ^ c2)
+ // = (x & ~c1) ^ (c1 ^ c2)
+ // It is useful only when c1 == c2.
+ if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
+ if (!Opnd1->getValue()->hasOneUse())
+ return false;
+
+ const APInt &C1 = Opnd1->getConstPart();
+ if (C1 != ConstOpnd)
+ return false;
+
+ Value *X = Opnd1->getSymbolicPart();
+ Res = createAndInstr(I, X, ~C1);
+ // ConstOpnd was C2, now C1 ^ C2.
+ ConstOpnd ^= C1;
+
+ if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+ RedoInsts.insert(T);
+ return true;
+ }
+ return false;
+}
+
+
+// Helper function of OptimizeXor(). It tries to simplify
+// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
+// symbolic value.
+//
+// If it was successful, true is returned, and the "R" and "C" is returned
+// via "Res" and "ConstOpnd", respectively (If the entire expression is
+// evaluated to a constant, the Res is set to NULL); otherwise, false is
+// returned, and both "Res" and "ConstOpnd" remain unchanged.
+bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
+ APInt &ConstOpnd, Value *&Res) {
+ Value *X = Opnd1->getSymbolicPart();
+ if (X != Opnd2->getSymbolicPart())
+ return false;
+
+ // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
+ int DeadInstNum = 1;
+ if (Opnd1->getValue()->hasOneUse())
+ DeadInstNum++;
+ if (Opnd2->getValue()->hasOneUse())
+ DeadInstNum++;
+
+ // Xor-Rule 2:
+ // (x | c1) ^ (x & c2)
+ // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
+ // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
+ // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
+ //
+ if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
+ if (Opnd2->isOrExpr())
+ std::swap(Opnd1, Opnd2);
+
+ const APInt &C1 = Opnd1->getConstPart();
+ const APInt &C2 = Opnd2->getConstPart();
+ APInt C3((~C1) ^ C2);
+
+ // Do not increase code size!
+ if (C3 != 0 && !C3.isAllOnesValue()) {
+ int NewInstNum = ConstOpnd != 0 ? 1 : 2;
+ if (NewInstNum > DeadInstNum)
+ return false;
+ }
+
+ Res = createAndInstr(I, X, C3);
+ ConstOpnd ^= C1;
+
+ } else if (Opnd1->isOrExpr()) {
+ // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
+ //
+ const APInt &C1 = Opnd1->getConstPart();
+ const APInt &C2 = Opnd2->getConstPart();
+ APInt C3 = C1 ^ C2;
+
+ // Do not increase code size
+ if (C3 != 0 && !C3.isAllOnesValue()) {
+ int NewInstNum = ConstOpnd != 0 ? 1 : 2;
+ if (NewInstNum > DeadInstNum)
+ return false;
+ }
+
+ Res = createAndInstr(I, X, C3);
+ ConstOpnd ^= C3;
+ } else {
+ // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
+ //
+ const APInt &C1 = Opnd1->getConstPart();
+ const APInt &C2 = Opnd2->getConstPart();
+ APInt C3 = C1 ^ C2;
+ Res = createAndInstr(I, X, C3);
+ }
+
+ // Put the original operands in the Redo list; hope they will be deleted
+ // as dead code.
+ if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
+ RedoInsts.insert(T);
+ if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
+ RedoInsts.insert(T);
+
+ return true;
+}
+
+/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
+/// to a single Value, it is returned, otherwise the Ops list is mutated as
+/// necessary.
+Value *Reassociate::OptimizeXor(Instruction *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
+ return V;
+
+ if (Ops.size() == 1)
+ return nullptr;
+
+ SmallVector<XorOpnd, 8> Opnds;
+ SmallVector<XorOpnd*, 8> OpndPtrs;
+ Type *Ty = Ops[0].Op->getType();
+ APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
+
+ // Step 1: Convert ValueEntry to XorOpnd
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ Value *V = Ops[i].Op;
+ if (!isa<ConstantInt>(V)) {
+ XorOpnd O(V);
+ O.setSymbolicRank(getRank(O.getSymbolicPart()));
+ Opnds.push_back(O);
+ } else
+ ConstOpnd ^= cast<ConstantInt>(V)->getValue();
+ }
+
+ // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
+ // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
+ // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
+ // with the previous loop --- the iterator of the "Opnds" may be invalidated
+ // when new elements are added to the vector.
+ for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
+ OpndPtrs.push_back(&Opnds[i]);
+
+ // Step 2: Sort the Xor-Operands in a way such that the operands containing
+ // the same symbolic value cluster together. For instance, the input operand
+ // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
+ // ("x | 123", "x & 789", "y & 456").
+ std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
+
+ // Step 3: Combine adjacent operands
+ XorOpnd *PrevOpnd = nullptr;
+ bool Changed = false;
+ for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
+ XorOpnd *CurrOpnd = OpndPtrs[i];
+ // The combined value
+ Value *CV;
+
+ // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
+ if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
+ Changed = true;
+ if (CV)
+ *CurrOpnd = XorOpnd(CV);
+ else {
+ CurrOpnd->Invalidate();
+ continue;
+ }
+ }
+
+ if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
+ PrevOpnd = CurrOpnd;
+ continue;
+ }
+
+ // step 3.2: When previous and current operands share the same symbolic
+ // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
+ //
+ if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
+ // Remove previous operand
+ PrevOpnd->Invalidate();
+ if (CV) {
+ *CurrOpnd = XorOpnd(CV);
+ PrevOpnd = CurrOpnd;
+ } else {
+ CurrOpnd->Invalidate();
+ PrevOpnd = nullptr;
+ }
+ Changed = true;
+ }
+ }
+
+ // Step 4: Reassemble the Ops
+ if (Changed) {
+ Ops.clear();
+ for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
+ XorOpnd &O = Opnds[i];
+ if (O.isInvalid())
+ continue;
+ ValueEntry VE(getRank(O.getValue()), O.getValue());
+ Ops.push_back(VE);
+ }
+ if (ConstOpnd != 0) {
+ Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
+ ValueEntry VE(getRank(C), C);
+ Ops.push_back(VE);
+ }
+ int Sz = Ops.size();
+ if (Sz == 1)
+ return Ops.back().Op;
+ else if (Sz == 0) {
+ assert(ConstOpnd == 0);
+ return ConstantInt::get(Ty->getContext(), ConstOpnd);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Optimize a series of operands to an 'add' instruction. This
+/// optimizes based on identities. If it can be reduced to a single Value, it
+/// is returned, otherwise the Ops list is mutated as necessary.
+Value *Reassociate::OptimizeAdd(Instruction *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ // Scan the operand lists looking for X and -X pairs. If we find any, we
+ // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
+ // scan for any
+ // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
+
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ Value *TheOp = Ops[i].Op;
+ // Check to see if we've seen this operand before. If so, we factor all
+ // instances of the operand together. Due to our sorting criteria, we know
+ // that these need to be next to each other in the vector.
+ if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
+ // Rescan the list, remove all instances of this operand from the expr.
+ unsigned NumFound = 0;
+ do {
+ Ops.erase(Ops.begin()+i);
+ ++NumFound;
+ } while (i != Ops.size() && Ops[i].Op == TheOp);
+
+ DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
+ ++NumFactor;
+
+ // Insert a new multiply.
+ Type *Ty = TheOp->getType();
+ Constant *C = Ty->isIntOrIntVectorTy() ?
+ ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
+ Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
+
+ // Now that we have inserted a multiply, optimize it. This allows us to
+ // handle cases that require multiple factoring steps, such as this:
+ // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
+ RedoInsts.insert(Mul);
+
+ // If every add operand was a duplicate, return the multiply.
+ if (Ops.empty())
+ return Mul;
+
+ // Otherwise, we had some input that didn't have the dupe, such as
+ // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
+ // things being added by this operation.
+ Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
+
+ --i;
+ e = Ops.size();
+ continue;
+ }
+
+ // Check for X and -X or X and ~X in the operand list.
+ if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
+ !BinaryOperator::isNot(TheOp))
+ continue;
+
+ Value *X = nullptr;
+ if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
+ X = BinaryOperator::getNegArgument(TheOp);
+ else if (BinaryOperator::isNot(TheOp))
+ X = BinaryOperator::getNotArgument(TheOp);
+
+ unsigned FoundX = FindInOperandList(Ops, i, X);
+ if (FoundX == i)
+ continue;
+
+ // Remove X and -X from the operand list.
+ if (Ops.size() == 2 &&
+ (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
+ return Constant::getNullValue(X->getType());
+
+ // Remove X and ~X from the operand list.
+ if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
+ return Constant::getAllOnesValue(X->getType());
+
+ Ops.erase(Ops.begin()+i);
+ if (i < FoundX)
+ --FoundX;
+ else
+ --i; // Need to back up an extra one.
+ Ops.erase(Ops.begin()+FoundX);
+ ++NumAnnihil;
+ --i; // Revisit element.
+ e -= 2; // Removed two elements.
+
+ // if X and ~X we append -1 to the operand list.
+ if (BinaryOperator::isNot(TheOp)) {
+ Value *V = Constant::getAllOnesValue(X->getType());
+ Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
+ e += 1;
+ }
+ }
+
+ // Scan the operand list, checking to see if there are any common factors
+ // between operands. Consider something like A*A+A*B*C+D. We would like to
+ // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
+ // To efficiently find this, we count the number of times a factor occurs
+ // for any ADD operands that are MULs.
+ DenseMap<Value*, unsigned> FactorOccurrences;
+
+ // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
+ // where they are actually the same multiply.
+ unsigned MaxOcc = 0;
+ Value *MaxOccVal = nullptr;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ BinaryOperator *BOp =
+ isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
+ if (!BOp)
+ continue;
+
+ // Compute all of the factors of this added value.
+ SmallVector<Value*, 8> Factors;
+ FindSingleUseMultiplyFactors(BOp, Factors, Ops);
+ assert(Factors.size() > 1 && "Bad linearize!");
+
+ // Add one to FactorOccurrences for each unique factor in this op.
+ SmallPtrSet<Value*, 8> Duplicates;
+ for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
+ Value *Factor = Factors[i];
+ if (!Duplicates.insert(Factor).second)
+ continue;
+
+ unsigned Occ = ++FactorOccurrences[Factor];
+ if (Occ > MaxOcc) {
+ MaxOcc = Occ;
+ MaxOccVal = Factor;
+ }
+
+ // If Factor is a negative constant, add the negated value as a factor
+ // because we can percolate the negate out. Watch for minint, which
+ // cannot be positivified.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
+ if (CI->isNegative() && !CI->isMinValue(true)) {
+ Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
+ assert(!Duplicates.count(Factor) &&
+ "Shouldn't have two constant factors, missed a canonicalize");
+ unsigned Occ = ++FactorOccurrences[Factor];
+ if (Occ > MaxOcc) {
+ MaxOcc = Occ;
+ MaxOccVal = Factor;
+ }
+ }
+ } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
+ if (CF->isNegative()) {
+ APFloat F(CF->getValueAPF());
+ F.changeSign();
+ Factor = ConstantFP::get(CF->getContext(), F);
+ assert(!Duplicates.count(Factor) &&
+ "Shouldn't have two constant factors, missed a canonicalize");
+ unsigned Occ = ++FactorOccurrences[Factor];
+ if (Occ > MaxOcc) {
+ MaxOcc = Occ;
+ MaxOccVal = Factor;
+ }
+ }
+ }
+ }
+ }
+
+ // If any factor occurred more than one time, we can pull it out.
+ if (MaxOcc > 1) {
+ DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
+ ++NumFactor;
+
+ // Create a new instruction that uses the MaxOccVal twice. If we don't do
+ // this, we could otherwise run into situations where removing a factor
+ // from an expression will drop a use of maxocc, and this can cause
+ // RemoveFactorFromExpression on successive values to behave differently.
+ Instruction *DummyInst =
+ I->getType()->isIntOrIntVectorTy()
+ ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
+ : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
+
+ SmallVector<WeakVH, 4> NewMulOps;
+ for (unsigned i = 0; i != Ops.size(); ++i) {
+ // Only try to remove factors from expressions we're allowed to.
+ BinaryOperator *BOp =
+ isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
+ if (!BOp)
+ continue;
+
+ if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
+ // The factorized operand may occur several times. Convert them all in
+ // one fell swoop.
+ for (unsigned j = Ops.size(); j != i;) {
+ --j;
+ if (Ops[j].Op == Ops[i].Op) {
+ NewMulOps.push_back(V);
+ Ops.erase(Ops.begin()+j);
+ }
+ }
+ --i;
+ }
+ }
+
+ // No need for extra uses anymore.
+ delete DummyInst;
+
+ unsigned NumAddedValues = NewMulOps.size();
+ Value *V = EmitAddTreeOfValues(I, NewMulOps);
+
+ // Now that we have inserted the add tree, optimize it. This allows us to
+ // handle cases that require multiple factoring steps, such as this:
+ // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
+ assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
+ (void)NumAddedValues;
+ if (Instruction *VI = dyn_cast<Instruction>(V))
+ RedoInsts.insert(VI);
+
+ // Create the multiply.
+ Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
+
+ // Rerun associate on the multiply in case the inner expression turned into
+ // a multiply. We want to make sure that we keep things in canonical form.
+ RedoInsts.insert(V2);
+
+ // If every add operand included the factor (e.g. "A*B + A*C"), then the
+ // entire result expression is just the multiply "A*(B+C)".
+ if (Ops.empty())
+ return V2;
+
+ // Otherwise, we had some input that didn't have the factor, such as
+ // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
+ // things being added by this operation.
+ Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
+ }
+
+ return nullptr;
+}
+
+/// \brief Build up a vector of value/power pairs factoring a product.
+///
+/// Given a series of multiplication operands, build a vector of factors and
+/// the powers each is raised to when forming the final product. Sort them in
+/// the order of descending power.
+///
+/// (x*x) -> [(x, 2)]
+/// ((x*x)*x) -> [(x, 3)]
+/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
+///
+/// \returns Whether any factors have a power greater than one.
+bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
+ SmallVectorImpl<Factor> &Factors) {
+ // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
+ // Compute the sum of powers of simplifiable factors.
+ unsigned FactorPowerSum = 0;
+ for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
+ Value *Op = Ops[Idx-1].Op;
+
+ // Count the number of occurrences of this value.
+ unsigned Count = 1;
+ for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
+ ++Count;
+ // Track for simplification all factors which occur 2 or more times.
+ if (Count > 1)
+ FactorPowerSum += Count;
+ }
+
+ // We can only simplify factors if the sum of the powers of our simplifiable
+ // factors is 4 or higher. When that is the case, we will *always* have
+ // a simplification. This is an important invariant to prevent cyclicly
+ // trying to simplify already minimal formations.
+ if (FactorPowerSum < 4)
+ return false;
+
+ // Now gather the simplifiable factors, removing them from Ops.
+ FactorPowerSum = 0;
+ for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
+ Value *Op = Ops[Idx-1].Op;
+
+ // Count the number of occurrences of this value.
+ unsigned Count = 1;
+ for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
+ ++Count;
+ if (Count == 1)
+ continue;
+ // Move an even number of occurrences to Factors.
+ Count &= ~1U;
+ Idx -= Count;
+ FactorPowerSum += Count;
+ Factors.push_back(Factor(Op, Count));
+ Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
+ }
+
+ // None of the adjustments above should have reduced the sum of factor powers
+ // below our mininum of '4'.
+ assert(FactorPowerSum >= 4);
+
+ std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
+ return true;
+}
+
+/// \brief Build a tree of multiplies, computing the product of Ops.
+static Value *buildMultiplyTree(IRBuilder<> &Builder,
+ SmallVectorImpl<Value*> &Ops) {
+ if (Ops.size() == 1)
+ return Ops.back();
+
+ Value *LHS = Ops.pop_back_val();
+ do {
+ if (LHS->getType()->isIntOrIntVectorTy())
+ LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
+ else
+ LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
+ } while (!Ops.empty());
+
+ return LHS;
+}
+
+/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
+///
+/// Given a vector of values raised to various powers, where no two values are
+/// equal and the powers are sorted in decreasing order, compute the minimal
+/// DAG of multiplies to compute the final product, and return that product
+/// value.
+Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
+ SmallVectorImpl<Factor> &Factors) {
+ assert(Factors[0].Power);
+ SmallVector<Value *, 4> OuterProduct;
+ for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
+ Idx < Size && Factors[Idx].Power > 0; ++Idx) {
+ if (Factors[Idx].Power != Factors[LastIdx].Power) {
+ LastIdx = Idx;
+ continue;
+ }
+
+ // We want to multiply across all the factors with the same power so that
+ // we can raise them to that power as a single entity. Build a mini tree
+ // for that.
+ SmallVector<Value *, 4> InnerProduct;
+ InnerProduct.push_back(Factors[LastIdx].Base);
+ do {
+ InnerProduct.push_back(Factors[Idx].Base);
+ ++Idx;
+ } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
+
+ // Reset the base value of the first factor to the new expression tree.
+ // We'll remove all the factors with the same power in a second pass.
+ Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
+ if (Instruction *MI = dyn_cast<Instruction>(M))
+ RedoInsts.insert(MI);
+
+ LastIdx = Idx;
+ }
+ // Unique factors with equal powers -- we've folded them into the first one's
+ // base.
+ Factors.erase(std::unique(Factors.begin(), Factors.end(),
+ Factor::PowerEqual()),
+ Factors.end());
+
+ // Iteratively collect the base of each factor with an add power into the
+ // outer product, and halve each power in preparation for squaring the
+ // expression.
+ for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
+ if (Factors[Idx].Power & 1)
+ OuterProduct.push_back(Factors[Idx].Base);
+ Factors[Idx].Power >>= 1;
+ }
+ if (Factors[0].Power) {
+ Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
+ OuterProduct.push_back(SquareRoot);
+ OuterProduct.push_back(SquareRoot);
+ }
+ if (OuterProduct.size() == 1)
+ return OuterProduct.front();
+
+ Value *V = buildMultiplyTree(Builder, OuterProduct);
+ return V;
+}
+
+Value *Reassociate::OptimizeMul(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ // We can only optimize the multiplies when there is a chain of more than
+ // three, such that a balanced tree might require fewer total multiplies.
+ if (Ops.size() < 4)
+ return nullptr;
+
+ // Try to turn linear trees of multiplies without other uses of the
+ // intermediate stages into minimal multiply DAGs with perfect sub-expression
+ // re-use.
+ SmallVector<Factor, 4> Factors;
+ if (!collectMultiplyFactors(Ops, Factors))
+ return nullptr; // All distinct factors, so nothing left for us to do.
+
+ IRBuilder<> Builder(I);
+ Value *V = buildMinimalMultiplyDAG(Builder, Factors);
+ if (Ops.empty())
+ return V;
+
+ ValueEntry NewEntry = ValueEntry(getRank(V), V);
+ Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
+ return nullptr;
+}
+
+Value *Reassociate::OptimizeExpression(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ // Now that we have the linearized expression tree, try to optimize it.
+ // Start by folding any constants that we found.
+ Constant *Cst = nullptr;
+ unsigned Opcode = I->getOpcode();
+ while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
+ Constant *C = cast<Constant>(Ops.pop_back_val().Op);
+ Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
+ }
+ // If there was nothing but constants then we are done.
+ if (Ops.empty())
+ return Cst;
+
+ // Put the combined constant back at the end of the operand list, except if
+ // there is no point. For example, an add of 0 gets dropped here, while a
+ // multiplication by zero turns the whole expression into zero.
+ if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
+ if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
+ return Cst;
+ Ops.push_back(ValueEntry(0, Cst));
+ }
+
+ if (Ops.size() == 1) return Ops[0].Op;
+
+ // Handle destructive annihilation due to identities between elements in the
+ // argument list here.
+ unsigned NumOps = Ops.size();
+ switch (Opcode) {
+ default: break;
+ case Instruction::And:
+ case Instruction::Or:
+ if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
+ return Result;
+ break;
+
+ case Instruction::Xor:
+ if (Value *Result = OptimizeXor(I, Ops))
+ return Result;
+ break;
+
+ case Instruction::Add:
+ case Instruction::FAdd:
+ if (Value *Result = OptimizeAdd(I, Ops))
+ return Result;
+ break;
+
+ case Instruction::Mul:
+ case Instruction::FMul:
+ if (Value *Result = OptimizeMul(I, Ops))
+ return Result;
+ break;
+ }
+
+ if (Ops.size() != NumOps)
+ return OptimizeExpression(I, Ops);
+ return nullptr;
+}
+
+// Remove dead instructions and if any operands are trivially dead add them to
+// Insts so they will be removed as well.
+void Reassociate::RecursivelyEraseDeadInsts(
+ Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
+ assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
+ SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
+ ValueRankMap.erase(I);
+ Insts.remove(I);
+ RedoInsts.remove(I);
+ I->eraseFromParent();
+ for (auto Op : Ops)
+ if (Instruction *OpInst = dyn_cast<Instruction>(Op))
+ if (OpInst->use_empty())
+ Insts.insert(OpInst);
+}
+
+/// Zap the given instruction, adding interesting operands to the work list.
+void Reassociate::EraseInst(Instruction *I) {
+ assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
+ SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
+ // Erase the dead instruction.
+ ValueRankMap.erase(I);
+ RedoInsts.remove(I);
+ I->eraseFromParent();
+ // Optimize its operands.
+ SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
+ // If this is a node in an expression tree, climb to the expression root
+ // and add that since that's where optimization actually happens.
+ unsigned Opcode = Op->getOpcode();
+ while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
+ Visited.insert(Op).second)
+ Op = Op->user_back();
+ RedoInsts.insert(Op);
+ }
+}
+
+// Canonicalize expressions of the following form:
+// x + (-Constant * y) -> x - (Constant * y)
+// x - (-Constant * y) -> x + (Constant * y)
+Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
+ if (!I->hasOneUse() || I->getType()->isVectorTy())
+ return nullptr;
+
+ // Must be a fmul or fdiv instruction.
+ unsigned Opcode = I->getOpcode();
+ if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
+ return nullptr;
+
+ auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
+ auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
+
+ // Both operands are constant, let it get constant folded away.
+ if (C0 && C1)
+ return nullptr;
+
+ ConstantFP *CF = C0 ? C0 : C1;
+
+ // Must have one constant operand.
+ if (!CF)
+ return nullptr;
+
+ // Must be a negative ConstantFP.
+ if (!CF->isNegative())
+ return nullptr;
+
+ // User must be a binary operator with one or more uses.
+ Instruction *User = I->user_back();
+ if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
+ return nullptr;
+
+ unsigned UserOpcode = User->getOpcode();
+ if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
+ return nullptr;
+
+ // Subtraction is not commutative. Explicitly, the following transform is
+ // not valid: (-Constant * y) - x -> x + (Constant * y)
+ if (!User->isCommutative() && User->getOperand(1) != I)
+ return nullptr;
+
+ // Change the sign of the constant.
+ APFloat Val = CF->getValueAPF();
+ Val.changeSign();
+ I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
+
+ // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
+ // ((-Const*y) + x) -> (x + (-Const*y)).
+ if (User->getOperand(0) == I && User->isCommutative())
+ cast<BinaryOperator>(User)->swapOperands();
+
+ Value *Op0 = User->getOperand(0);
+ Value *Op1 = User->getOperand(1);
+ BinaryOperator *NI;
+ switch (UserOpcode) {
+ default:
+ llvm_unreachable("Unexpected Opcode!");
+ case Instruction::FAdd:
+ NI = BinaryOperator::CreateFSub(Op0, Op1);
+ NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
+ break;
+ case Instruction::FSub:
+ NI = BinaryOperator::CreateFAdd(Op0, Op1);
+ NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
+ break;
+ }
+
+ NI->insertBefore(User);
+ NI->setName(User->getName());
+ User->replaceAllUsesWith(NI);
+ NI->setDebugLoc(I->getDebugLoc());
+ RedoInsts.insert(I);
+ MadeChange = true;
+ return NI;
+}
+
+/// Inspect and optimize the given instruction. Note that erasing
+/// instructions is not allowed.
+void Reassociate::OptimizeInst(Instruction *I) {
+ // Only consider operations that we understand.
+ if (!isa<BinaryOperator>(I))
+ return;
+
+ if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
+ // If an operand of this shift is a reassociable multiply, or if the shift
+ // is used by a reassociable multiply or add, turn into a multiply.
+ if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
+ (I->hasOneUse() &&
+ (isReassociableOp(I->user_back(), Instruction::Mul) ||
+ isReassociableOp(I->user_back(), Instruction::Add)))) {
+ Instruction *NI = ConvertShiftToMul(I);
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ }
+
+ // Canonicalize negative constants out of expressions.
+ if (Instruction *Res = canonicalizeNegConstExpr(I))
+ I = Res;
+
+ // Commute binary operators, to canonicalize the order of their operands.
+ // This can potentially expose more CSE opportunities, and makes writing other
+ // transformations simpler.
+ if (I->isCommutative())
+ canonicalizeOperands(I);
+
+ // TODO: We should optimize vector Xor instructions, but they are
+ // currently unsupported.
+ if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
+ return;
+
+ // Don't optimize floating point instructions that don't have unsafe algebra.
+ if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
+ return;
+
+ // Do not reassociate boolean (i1) expressions. We want to preserve the
+ // original order of evaluation for short-circuited comparisons that
+ // SimplifyCFG has folded to AND/OR expressions. If the expression
+ // is not further optimized, it is likely to be transformed back to a
+ // short-circuited form for code gen, and the source order may have been
+ // optimized for the most likely conditions.
+ if (I->getType()->isIntegerTy(1))
+ return;
+
+ // If this is a subtract instruction which is not already in negate form,
+ // see if we can convert it to X+-Y.
+ if (I->getOpcode() == Instruction::Sub) {
+ if (ShouldBreakUpSubtract(I)) {
+ Instruction *NI = BreakUpSubtract(I, RedoInsts);
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ } else if (BinaryOperator::isNeg(I)) {
+ // Otherwise, this is a negation. See if the operand is a multiply tree
+ // and if this is not an inner node of a multiply tree.
+ if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
+ (!I->hasOneUse() ||
+ !isReassociableOp(I->user_back(), Instruction::Mul))) {
+ Instruction *NI = LowerNegateToMultiply(I);
+ // If the negate was simplified, revisit the users to see if we can
+ // reassociate further.
+ for (User *U : NI->users()) {
+ if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
+ RedoInsts.insert(Tmp);
+ }
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ }
+ }
+ } else if (I->getOpcode() == Instruction::FSub) {
+ if (ShouldBreakUpSubtract(I)) {
+ Instruction *NI = BreakUpSubtract(I, RedoInsts);
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ } else if (BinaryOperator::isFNeg(I)) {
+ // Otherwise, this is a negation. See if the operand is a multiply tree
+ // and if this is not an inner node of a multiply tree.
+ if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
+ (!I->hasOneUse() ||
+ !isReassociableOp(I->user_back(), Instruction::FMul))) {
+ // If the negate was simplified, revisit the users to see if we can
+ // reassociate further.
+ Instruction *NI = LowerNegateToMultiply(I);
+ for (User *U : NI->users()) {
+ if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
+ RedoInsts.insert(Tmp);
+ }
+ RedoInsts.insert(I);
+ MadeChange = true;
+ I = NI;
+ }
+ }
+ }
+
+ // If this instruction is an associative binary operator, process it.
+ if (!I->isAssociative()) return;
+ BinaryOperator *BO = cast<BinaryOperator>(I);
+
+ // If this is an interior node of a reassociable tree, ignore it until we
+ // get to the root of the tree, to avoid N^2 analysis.
+ unsigned Opcode = BO->getOpcode();
+ if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
+ // During the initial run we will get to the root of the tree.
+ // But if we get here while we are redoing instructions, there is no
+ // guarantee that the root will be visited. So Redo later
+ if (BO->user_back() != BO &&
+ BO->getParent() == BO->user_back()->getParent())
+ RedoInsts.insert(BO->user_back());
+ return;
+ }
+
+ // If this is an add tree that is used by a sub instruction, ignore it
+ // until we process the subtract.
+ if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
+ cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
+ return;
+ if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
+ cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
+ return;
+
+ ReassociateExpression(BO);
+}
+
+void Reassociate::ReassociateExpression(BinaryOperator *I) {
+ // First, walk the expression tree, linearizing the tree, collecting the
+ // operand information.
+ SmallVector<RepeatedValue, 8> Tree;
+ MadeChange |= LinearizeExprTree(I, Tree);
+ SmallVector<ValueEntry, 8> Ops;
+ Ops.reserve(Tree.size());
+ for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
+ RepeatedValue E = Tree[i];
+ Ops.append(E.second.getZExtValue(),
+ ValueEntry(getRank(E.first), E.first));
+ }
+
+ DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
+
+ // Now that we have linearized the tree to a list and have gathered all of
+ // the operands and their ranks, sort the operands by their rank. Use a
+ // stable_sort so that values with equal ranks will have their relative
+ // positions maintained (and so the compiler is deterministic). Note that
+ // this sorts so that the highest ranking values end up at the beginning of
+ // the vector.
+ std::stable_sort(Ops.begin(), Ops.end());
+
+ // Now that we have the expression tree in a convenient
+ // sorted form, optimize it globally if possible.
+ if (Value *V = OptimizeExpression(I, Ops)) {
+ if (V == I)
+ // Self-referential expression in unreachable code.
+ return;
+ // This expression tree simplified to something that isn't a tree,
+ // eliminate it.
+ DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
+ I->replaceAllUsesWith(V);
+ if (Instruction *VI = dyn_cast<Instruction>(V))
+ VI->setDebugLoc(I->getDebugLoc());
+ RedoInsts.insert(I);
+ ++NumAnnihil;
+ return;
+ }
+
+ // We want to sink immediates as deeply as possible except in the case where
+ // this is a multiply tree used only by an add, and the immediate is a -1.
+ // In this case we reassociate to put the negation on the outside so that we
+ // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
+ if (I->hasOneUse()) {
+ if (I->getOpcode() == Instruction::Mul &&
+ cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
+ isa<ConstantInt>(Ops.back().Op) &&
+ cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
+ ValueEntry Tmp = Ops.pop_back_val();
+ Ops.insert(Ops.begin(), Tmp);
+ } else if (I->getOpcode() == Instruction::FMul &&
+ cast<Instruction>(I->user_back())->getOpcode() ==
+ Instruction::FAdd &&
+ isa<ConstantFP>(Ops.back().Op) &&
+ cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
+ ValueEntry Tmp = Ops.pop_back_val();
+ Ops.insert(Ops.begin(), Tmp);
+ }
+ }
+
+ DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
+
+ if (Ops.size() == 1) {
+ if (Ops[0].Op == I)
+ // Self-referential expression in unreachable code.
+ return;
+
+ // This expression tree simplified to something that isn't a tree,
+ // eliminate it.
+ I->replaceAllUsesWith(Ops[0].Op);
+ if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
+ OI->setDebugLoc(I->getDebugLoc());
+ RedoInsts.insert(I);
+ return;
+ }
+
+ // Now that we ordered and optimized the expressions, splat them back into
+ // the expression tree, removing any unneeded nodes.
+ RewriteExprTree(I, Ops);
+}
+
+bool Reassociate::runOnFunction(Function &F) {
+ if (skipOptnoneFunction(F))
+ return false;
+
+ // Calculate the rank map for F
+ BuildRankMap(F);
+
+ MadeChange = false;
+ for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+ // Optimize every instruction in the basic block.
+ for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
+ if (isInstructionTriviallyDead(&*II)) {
+ EraseInst(&*II++);
+ } else {
+ OptimizeInst(&*II);
+ assert(II->getParent() == BI && "Moved to a different block!");
+ ++II;
+ }
+
+ // Make a copy of all the instructions to be redone so we can remove dead
+ // instructions.
+ SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
+ // Iterate over all instructions to be reevaluated and remove trivially dead
+ // instructions. If any operand of the trivially dead instruction becomes
+ // dead mark it for deletion as well. Continue this process until all
+ // trivially dead instructions have been removed.
+ while (!ToRedo.empty()) {
+ Instruction *I = ToRedo.pop_back_val();
+ if (isInstructionTriviallyDead(I))
+ RecursivelyEraseDeadInsts(I, ToRedo);
+ }
+
+ // Now that we have removed dead instructions, we can reoptimize the
+ // remaining instructions.
+ while (!RedoInsts.empty()) {
+ Instruction *I = RedoInsts.pop_back_val();
+ if (isInstructionTriviallyDead(I))
+ EraseInst(I);
+ else
+ OptimizeInst(I);
+ }
+ }
+
+ // We are done with the rank map.
+ RankMap.clear();
+ ValueRankMap.clear();
+
+ return MadeChange;
+}
OpenPOWER on IntegriCloud