diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/NaryReassociate.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/NaryReassociate.cpp | 505 |
1 files changed, 505 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/NaryReassociate.cpp b/contrib/llvm/lib/Transforms/Scalar/NaryReassociate.cpp new file mode 100644 index 0000000..4cf68b0 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/NaryReassociate.cpp @@ -0,0 +1,505 @@ +//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass reassociates n-ary add expressions and eliminates the redundancy +// exposed by the reassociation. +// +// A motivating example: +// +// void foo(int a, int b) { +// bar(a + b); +// bar((a + 2) + b); +// } +// +// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify +// the above code to +// +// int t = a + b; +// bar(t); +// bar(t + 2); +// +// However, the Reassociate pass is unable to do that because it processes each +// instruction individually and believes (a + 2) + b is the best form according +// to its rank system. +// +// To address this limitation, NaryReassociate reassociates an expression in a +// form that reuses existing instructions. As a result, NaryReassociate can +// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that +// (a + b) is computed before. +// +// NaryReassociate works as follows. For every instruction in the form of (a + +// b) + c, it checks whether a + c or b + c is already computed by a dominating +// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + +// c) + a and removes the redundancy accordingly. To efficiently look up whether +// an expression is computed before, we store each instruction seen and its SCEV +// into an SCEV-to-instruction map. +// +// Although the algorithm pattern-matches only ternary additions, it +// automatically handles many >3-ary expressions by walking through the function +// in the depth-first order. For example, given +// +// (a + c) + d +// ((a + b) + c) + d +// +// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites +// ((a + c) + b) + d into ((a + c) + d) + b. +// +// Finally, the above dominator-based algorithm may need to be run multiple +// iterations before emitting optimal code. One source of this need is that we +// only split an operand when it is used only once. The above algorithm can +// eliminate an instruction and decrease the usage count of its operands. As a +// result, an instruction that previously had multiple uses may become a +// single-use instruction and thus eligible for split consideration. For +// example, +// +// ac = a + c +// ab = a + b +// abc = ab + c +// ab2 = ab + b +// ab2c = ab2 + c +// +// In the first iteration, we cannot reassociate abc to ac+b because ab is used +// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a +// result, ab2 becomes dead and ab will be used only once in the second +// iteration. +// +// Limitations and TODO items: +// +// 1) We only considers n-ary adds for now. This should be extended and +// generalized. +// +// 2) Besides arithmetic operations, similar reassociation can be applied to +// GEPs. For example, if +// X = &arr[a] +// dominates +// Y = &arr[a + b] +// we may rewrite Y into X + b. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/Local.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "nary-reassociate" + +namespace { +class NaryReassociate : public FunctionPass { +public: + static char ID; + + NaryReassociate(): FunctionPass(ID) { + initializeNaryReassociatePass(*PassRegistry::getPassRegistry()); + } + + bool doInitialization(Module &M) override { + DL = &M.getDataLayout(); + return false; + } + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<ScalarEvolution>(); + AU.addPreserved<TargetLibraryInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<ScalarEvolution>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.setPreservesCFG(); + } + +private: + // Runs only one iteration of the dominator-based algorithm. See the header + // comments for why we need multiple iterations. + bool doOneIteration(Function &F); + + // Reassociates I for better CSE. + Instruction *tryReassociate(Instruction *I); + + // Reassociate GEP for better CSE. + Instruction *tryReassociateGEP(GetElementPtrInst *GEP); + // Try splitting GEP at the I-th index and see whether either part can be + // CSE'ed. This is a helper function for tryReassociateGEP. + // + // \p IndexedType The element type indexed by GEP's I-th index. This is + // equivalent to + // GEP->getIndexedType(GEP->getPointerOperand(), 0-th index, + // ..., i-th index). + GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP, + unsigned I, Type *IndexedType); + // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or + // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly. + GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP, + unsigned I, Value *LHS, + Value *RHS, Type *IndexedType); + + // Reassociate Add for better CSE. + Instruction *tryReassociateAdd(BinaryOperator *I); + // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed. + Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I); + // Rewrites I to LHS + RHS if LHS is computed already. + Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I); + + // Returns the closest dominator of \c Dominatee that computes + // \c CandidateExpr. Returns null if not found. + Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr, + Instruction *Dominatee); + // GetElementPtrInst implicitly sign-extends an index if the index is shorter + // than the pointer size. This function returns whether Index is shorter than + // GEP's pointer size, i.e., whether Index needs to be sign-extended in order + // to be an index of GEP. + bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP); + + DominatorTree *DT; + ScalarEvolution *SE; + TargetLibraryInfo *TLI; + TargetTransformInfo *TTI; + const DataLayout *DL; + // A lookup table quickly telling which instructions compute the given SCEV. + // Note that there can be multiple instructions at different locations + // computing to the same SCEV, so we map a SCEV to an instruction list. For + // example, + // + // if (p1) + // foo(a + b); + // if (p2) + // bar(a + b); + DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs; +}; +} // anonymous namespace + +char NaryReassociate::ID = 0; +INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation", + false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation", + false, false) + +FunctionPass *llvm::createNaryReassociatePass() { + return new NaryReassociate(); +} + +bool NaryReassociate::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + SE = &getAnalysis<ScalarEvolution>(); + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + + bool Changed = false, ChangedInThisIteration; + do { + ChangedInThisIteration = doOneIteration(F); + Changed |= ChangedInThisIteration; + } while (ChangedInThisIteration); + return Changed; +} + +// Whitelist the instruction types NaryReassociate handles for now. +static bool isPotentiallyNaryReassociable(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::GetElementPtr: + return true; + default: + return false; + } +} + +bool NaryReassociate::doOneIteration(Function &F) { + bool Changed = false; + SeenExprs.clear(); + // Process the basic blocks in pre-order of the dominator tree. This order + // ensures that all bases of a candidate are in Candidates when we process it. + for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT); + Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) { + BasicBlock *BB = Node->getBlock(); + for (auto I = BB->begin(); I != BB->end(); ++I) { + if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) { + const SCEV *OldSCEV = SE->getSCEV(I); + if (Instruction *NewI = tryReassociate(I)) { + Changed = true; + SE->forgetValue(I); + I->replaceAllUsesWith(NewI); + RecursivelyDeleteTriviallyDeadInstructions(I, TLI); + I = NewI; + } + // Add the rewritten instruction to SeenExprs; the original instruction + // is deleted. + const SCEV *NewSCEV = SE->getSCEV(I); + SeenExprs[NewSCEV].push_back(I); + // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) + // is equivalent to I. However, ScalarEvolution::getSCEV may + // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose + // we reassociate + // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 + // to + // NewI = &a[sext(i)] + sext(j). + // + // ScalarEvolution computes + // getSCEV(I) = a + 4 * sext(i + j) + // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) + // which are different SCEVs. + // + // To alleviate this issue of ScalarEvolution not always capturing + // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can + // map both SCEV before and after tryReassociate(I) to I. + // + // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll. + if (NewSCEV != OldSCEV) + SeenExprs[OldSCEV].push_back(I); + } + } + } + return Changed; +} + +Instruction *NaryReassociate::tryReassociate(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + return tryReassociateAdd(cast<BinaryOperator>(I)); + case Instruction::GetElementPtr: + return tryReassociateGEP(cast<GetElementPtrInst>(I)); + default: + llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable"); + } +} + +// FIXME: extract this method into TTI->getGEPCost. +static bool isGEPFoldable(GetElementPtrInst *GEP, + const TargetTransformInfo *TTI, + const DataLayout *DL) { + GlobalVariable *BaseGV = nullptr; + int64_t BaseOffset = 0; + bool HasBaseReg = false; + int64_t Scale = 0; + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand())) + BaseGV = GV; + else + HasBaseReg = true; + + gep_type_iterator GTI = gep_type_begin(GEP); + for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { + if (isa<SequentialType>(*GTI)) { + int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); + if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) { + BaseOffset += ConstIdx->getSExtValue() * ElementSize; + } else { + // Needs scale register. + if (Scale != 0) { + // No addressing mode takes two scale registers. + return false; + } + Scale = ElementSize; + } + } else { + StructType *STy = cast<StructType>(*GTI); + uint64_t Field = cast<ConstantInt>(*I)->getZExtValue(); + BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); + } + } + + unsigned AddrSpace = GEP->getPointerAddressSpace(); + return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV, + BaseOffset, HasBaseReg, Scale, AddrSpace); +} + +Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) { + // Not worth reassociating GEP if it is foldable. + if (isGEPFoldable(GEP, TTI, DL)) + return nullptr; + + gep_type_iterator GTI = gep_type_begin(*GEP); + for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { + if (isa<SequentialType>(*GTI++)) { + if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) { + return NewGEP; + } + } + } + return nullptr; +} + +bool NaryReassociate::requiresSignExtension(Value *Index, + GetElementPtrInst *GEP) { + unsigned PointerSizeInBits = + DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace()); + return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits; +} + +GetElementPtrInst * +NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, + Type *IndexedType) { + Value *IndexToSplit = GEP->getOperand(I + 1); + if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) + IndexToSplit = SExt->getOperand(0); + + if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) { + // If the I-th index needs sext and the underlying add is not equipped with + // nsw, we cannot split the add because + // sext(LHS + RHS) != sext(LHS) + sext(RHS). + if (requiresSignExtension(IndexToSplit, GEP) && !AO->hasNoSignedWrap()) + return nullptr; + Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); + // IndexToSplit = LHS + RHS. + if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) + return NewGEP; + // Symmetrically, try IndexToSplit = RHS + LHS. + if (LHS != RHS) { + if (auto *NewGEP = + tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) + return NewGEP; + } + } + return nullptr; +} + +GetElementPtrInst * +NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, + Value *LHS, Value *RHS, + Type *IndexedType) { + // Look for GEP's closest dominator that has the same SCEV as GEP except that + // the I-th index is replaced with LHS. + SmallVector<const SCEV *, 4> IndexExprs; + for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) + IndexExprs.push_back(SE->getSCEV(*Index)); + // Replace the I-th index with LHS. + IndexExprs[I] = SE->getSCEV(LHS); + const SCEV *CandidateExpr = SE->getGEPExpr( + GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()), + IndexExprs, GEP->isInBounds()); + + auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); + if (Candidate == nullptr) + return nullptr; + + PointerType *TypeOfCandidate = dyn_cast<PointerType>(Candidate->getType()); + // Pretty rare but theoretically possible when a numeric value happens to + // share CandidateExpr. + if (TypeOfCandidate == nullptr) + return nullptr; + + // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) + uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); + Type *ElementType = TypeOfCandidate->getElementType(); + uint64_t ElementSize = DL->getTypeAllocSize(ElementType); + // Another less rare case: because I is not necessarily the last index of the + // GEP, the size of the type at the I-th index (IndexedSize) is not + // necessarily divisible by ElementSize. For example, + // + // #pragma pack(1) + // struct S { + // int a[3]; + // int64 b[8]; + // }; + // #pragma pack() + // + // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. + // + // TODO: bail out on this case for now. We could emit uglygep. + if (IndexedSize % ElementSize != 0) + return nullptr; + + // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); + IRBuilder<> Builder(GEP); + Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate); + if (RHS->getType() != IntPtrTy) + RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy); + if (IndexedSize != ElementSize) { + RHS = Builder.CreateMul( + RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize)); + } + GetElementPtrInst *NewGEP = + cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS)); + NewGEP->setIsInBounds(GEP->isInBounds()); + NewGEP->takeName(GEP); + return NewGEP; +} + +Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) { + Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); + if (auto *NewI = tryReassociateAdd(LHS, RHS, I)) + return NewI; + if (auto *NewI = tryReassociateAdd(RHS, LHS, I)) + return NewI; + return nullptr; +} + +Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS, + Instruction *I) { + Value *A = nullptr, *B = nullptr; + // To be conservative, we reassociate I only when it is the only user of A+B. + if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) { + // I = (A + B) + RHS + // = (A + RHS) + B or (B + RHS) + A + const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); + const SCEV *RHSExpr = SE->getSCEV(RHS); + if (BExpr != RHSExpr) { + if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I)) + return NewI; + } + if (AExpr != RHSExpr) { + if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I)) + return NewI; + } + } + return nullptr; +} + +Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr, + Value *RHS, Instruction *I) { + auto Pos = SeenExprs.find(LHSExpr); + // Bail out if LHSExpr is not previously seen. + if (Pos == SeenExprs.end()) + return nullptr; + + // Look for the closest dominator LHS of I that computes LHSExpr, and replace + // I with LHS + RHS. + auto *LHS = findClosestMatchingDominator(LHSExpr, I); + if (LHS == nullptr) + return nullptr; + + Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I); + NewI->takeName(I); + return NewI; +} + +Instruction * +NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr, + Instruction *Dominatee) { + auto Pos = SeenExprs.find(CandidateExpr); + if (Pos == SeenExprs.end()) + return nullptr; + + auto &Candidates = Pos->second; + // Because we process the basic blocks in pre-order of the dominator tree, a + // candidate that doesn't dominate the current instruction won't dominate any + // future instruction either. Therefore, we pop it out of the stack. This + // optimization makes the algorithm O(n). + while (!Candidates.empty()) { + Instruction *Candidate = Candidates.back(); + if (DT->dominates(Candidate, Dominatee)) + return Candidate; + Candidates.pop_back(); + } + return nullptr; +} |