summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp1057
1 files changed, 1057 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
new file mode 100644
index 0000000..ae7bf40
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -0,0 +1,1057 @@
+//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass transforms loops that contain branches on loop-invariant conditions
+// to have multiple loops. For example, it turns the left into the right code:
+//
+// for (...) if (lic)
+// A for (...)
+// if (lic) A; B; C
+// B else
+// C for (...)
+// A; C
+//
+// This can increase the size of the code exponentially (doubling it every time
+// a loop is unswitched) so we only unswitch if the resultant code will be
+// smaller than a threshold.
+//
+// This pass expects LICM to be run before it to hoist invariant conditions out
+// of the loop, to make the unswitching opportunity obvious.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-unswitch"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InlineCost.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumBranches, "Number of branches unswitched");
+STATISTIC(NumSwitches, "Number of switches unswitched");
+STATISTIC(NumSelects , "Number of selects unswitched");
+STATISTIC(NumTrivial , "Number of unswitches that are trivial");
+STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
+
+// The specific value of 50 here was chosen based only on intuition and a
+// few specific examples.
+static cl::opt<unsigned>
+Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
+ cl::init(50), cl::Hidden);
+
+namespace {
+ class LoopUnswitch : public LoopPass {
+ LoopInfo *LI; // Loop information
+ LPPassManager *LPM;
+
+ // LoopProcessWorklist - Used to check if second loop needs processing
+ // after RewriteLoopBodyWithConditionConstant rewrites first loop.
+ std::vector<Loop*> LoopProcessWorklist;
+ SmallPtrSet<Value *,8> UnswitchedVals;
+
+ bool OptimizeForSize;
+ bool redoLoop;
+
+ Loop *currentLoop;
+ DominanceFrontier *DF;
+ DominatorTree *DT;
+ BasicBlock *loopHeader;
+ BasicBlock *loopPreheader;
+
+ // LoopBlocks contains all of the basic blocks of the loop, including the
+ // preheader of the loop, the body of the loop, and the exit blocks of the
+ // loop, in that order.
+ std::vector<BasicBlock*> LoopBlocks;
+ // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
+ std::vector<BasicBlock*> NewBlocks;
+
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ explicit LoopUnswitch(bool Os = false) :
+ LoopPass(&ID), OptimizeForSize(Os), redoLoop(false),
+ currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
+ loopPreheader(NULL) {}
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+ bool processCurrentLoop();
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<DominanceFrontier>();
+ }
+
+ private:
+
+ virtual void releaseMemory() {
+ UnswitchedVals.clear();
+ }
+
+ /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
+ /// remove it.
+ void RemoveLoopFromWorklist(Loop *L) {
+ std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
+ LoopProcessWorklist.end(), L);
+ if (I != LoopProcessWorklist.end())
+ LoopProcessWorklist.erase(I);
+ }
+
+ void initLoopData() {
+ loopHeader = currentLoop->getHeader();
+ loopPreheader = currentLoop->getLoopPreheader();
+ }
+
+ /// Split all of the edges from inside the loop to their exit blocks.
+ /// Update the appropriate Phi nodes as we do so.
+ void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
+
+ bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
+ void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
+ BasicBlock *ExitBlock);
+ void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
+
+ void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
+ Constant *Val, bool isEqual);
+
+ void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
+ BasicBlock *TrueDest,
+ BasicBlock *FalseDest,
+ Instruction *InsertPt);
+
+ void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
+ void RemoveBlockIfDead(BasicBlock *BB,
+ std::vector<Instruction*> &Worklist, Loop *l);
+ void RemoveLoopFromHierarchy(Loop *L);
+ bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
+ BasicBlock **LoopExit = 0);
+
+ };
+}
+char LoopUnswitch::ID = 0;
+static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
+
+Pass *llvm::createLoopUnswitchPass(bool Os) {
+ return new LoopUnswitch(Os);
+}
+
+/// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
+/// invariant in the loop, or has an invariant piece, return the invariant.
+/// Otherwise, return null.
+static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
+ // We can never unswitch on vector conditions.
+ if (Cond->getType()->isVectorTy())
+ return 0;
+
+ // Constants should be folded, not unswitched on!
+ if (isa<Constant>(Cond)) return 0;
+
+ // TODO: Handle: br (VARIANT|INVARIANT).
+
+ // Hoist simple values out.
+ if (L->makeLoopInvariant(Cond, Changed))
+ return Cond;
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
+ if (BO->getOpcode() == Instruction::And ||
+ BO->getOpcode() == Instruction::Or) {
+ // If either the left or right side is invariant, we can unswitch on this,
+ // which will cause the branch to go away in one loop and the condition to
+ // simplify in the other one.
+ if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
+ return LHS;
+ if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
+ return RHS;
+ }
+
+ return 0;
+}
+
+bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
+ LI = &getAnalysis<LoopInfo>();
+ LPM = &LPM_Ref;
+ DF = getAnalysisIfAvailable<DominanceFrontier>();
+ DT = getAnalysisIfAvailable<DominatorTree>();
+ currentLoop = L;
+ Function *F = currentLoop->getHeader()->getParent();
+ bool Changed = false;
+ do {
+ assert(currentLoop->isLCSSAForm(*DT));
+ redoLoop = false;
+ Changed |= processCurrentLoop();
+ } while(redoLoop);
+
+ if (Changed) {
+ // FIXME: Reconstruct dom info, because it is not preserved properly.
+ if (DT)
+ DT->runOnFunction(*F);
+ if (DF)
+ DF->runOnFunction(*F);
+ }
+ return Changed;
+}
+
+/// processCurrentLoop - Do actual work and unswitch loop if possible
+/// and profitable.
+bool LoopUnswitch::processCurrentLoop() {
+ bool Changed = false;
+ LLVMContext &Context = currentLoop->getHeader()->getContext();
+
+ // Loop over all of the basic blocks in the loop. If we find an interior
+ // block that is branching on a loop-invariant condition, we can unswitch this
+ // loop.
+ for (Loop::block_iterator I = currentLoop->block_begin(),
+ E = currentLoop->block_end(); I != E; ++I) {
+ TerminatorInst *TI = (*I)->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ // If this isn't branching on an invariant condition, we can't unswitch
+ // it.
+ if (BI->isConditional()) {
+ // See if this, or some part of it, is loop invariant. If so, we can
+ // unswitch on it if we desire.
+ Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
+ currentLoop, Changed);
+ if (LoopCond && UnswitchIfProfitable(LoopCond,
+ ConstantInt::getTrue(Context))) {
+ ++NumBranches;
+ return true;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
+ currentLoop, Changed);
+ if (LoopCond && SI->getNumCases() > 1) {
+ // Find a value to unswitch on:
+ // FIXME: this should chose the most expensive case!
+ Constant *UnswitchVal = SI->getCaseValue(1);
+ // Do not process same value again and again.
+ if (!UnswitchedVals.insert(UnswitchVal))
+ continue;
+
+ if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
+ ++NumSwitches;
+ return true;
+ }
+ }
+ }
+
+ // Scan the instructions to check for unswitchable values.
+ for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
+ BBI != E; ++BBI)
+ if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
+ Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
+ currentLoop, Changed);
+ if (LoopCond && UnswitchIfProfitable(LoopCond,
+ ConstantInt::getTrue(Context))) {
+ ++NumSelects;
+ return true;
+ }
+ }
+ }
+ return Changed;
+}
+
+/// isTrivialLoopExitBlock - Check to see if all paths from BB either:
+/// 1. Exit the loop with no side effects.
+/// 2. Branch to the latch block with no side-effects.
+///
+/// If these conditions are true, we return true and set ExitBB to the block we
+/// exit through.
+///
+static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
+ BasicBlock *&ExitBB,
+ std::set<BasicBlock*> &Visited) {
+ if (!Visited.insert(BB).second) {
+ // Already visited and Ok, end of recursion.
+ return true;
+ } else if (!L->contains(BB)) {
+ // Otherwise, this is a loop exit, this is fine so long as this is the
+ // first exit.
+ if (ExitBB != 0) return false;
+ ExitBB = BB;
+ return true;
+ }
+
+ // Otherwise, this is an unvisited intra-loop node. Check all successors.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
+ // Check to see if the successor is a trivial loop exit.
+ if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
+ return false;
+ }
+
+ // Okay, everything after this looks good, check to make sure that this block
+ // doesn't include any side effects.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (I->mayHaveSideEffects())
+ return false;
+
+ return true;
+}
+
+/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
+/// leads to an exit from the specified loop, and has no side-effects in the
+/// process. If so, return the block that is exited to, otherwise return null.
+static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
+ std::set<BasicBlock*> Visited;
+ Visited.insert(L->getHeader()); // Branches to header are ok.
+ BasicBlock *ExitBB = 0;
+ if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
+ return ExitBB;
+ return 0;
+}
+
+/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
+/// trivial: that is, that the condition controls whether or not the loop does
+/// anything at all. If this is a trivial condition, unswitching produces no
+/// code duplications (equivalently, it produces a simpler loop and a new empty
+/// loop, which gets deleted).
+///
+/// If this is a trivial condition, return true, otherwise return false. When
+/// returning true, this sets Cond and Val to the condition that controls the
+/// trivial condition: when Cond dynamically equals Val, the loop is known to
+/// exit. Finally, this sets LoopExit to the BB that the loop exits to when
+/// Cond == Val.
+///
+bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
+ BasicBlock **LoopExit) {
+ BasicBlock *Header = currentLoop->getHeader();
+ TerminatorInst *HeaderTerm = Header->getTerminator();
+ LLVMContext &Context = Header->getContext();
+
+ BasicBlock *LoopExitBB = 0;
+ if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
+ // If the header block doesn't end with a conditional branch on Cond, we
+ // can't handle it.
+ if (!BI->isConditional() || BI->getCondition() != Cond)
+ return false;
+
+ // Check to see if a successor of the branch is guaranteed to go to the
+ // latch block or exit through a one exit block without having any
+ // side-effects. If so, determine the value of Cond that causes it to do
+ // this.
+ if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
+ BI->getSuccessor(0)))) {
+ if (Val) *Val = ConstantInt::getTrue(Context);
+ } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
+ BI->getSuccessor(1)))) {
+ if (Val) *Val = ConstantInt::getFalse(Context);
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
+ // If this isn't a switch on Cond, we can't handle it.
+ if (SI->getCondition() != Cond) return false;
+
+ // Check to see if a successor of the switch is guaranteed to go to the
+ // latch block or exit through a one exit block without having any
+ // side-effects. If so, determine the value of Cond that causes it to do
+ // this. Note that we can't trivially unswitch on the default case.
+ for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
+ if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
+ SI->getSuccessor(i)))) {
+ // Okay, we found a trivial case, remember the value that is trivial.
+ if (Val) *Val = SI->getCaseValue(i);
+ break;
+ }
+ }
+
+ // If we didn't find a single unique LoopExit block, or if the loop exit block
+ // contains phi nodes, this isn't trivial.
+ if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
+ return false; // Can't handle this.
+
+ if (LoopExit) *LoopExit = LoopExitBB;
+
+ // We already know that nothing uses any scalar values defined inside of this
+ // loop. As such, we just have to check to see if this loop will execute any
+ // side-effecting instructions (e.g. stores, calls, volatile loads) in the
+ // part of the loop that the code *would* execute. We already checked the
+ // tail, check the header now.
+ for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
+ if (I->mayHaveSideEffects())
+ return false;
+ return true;
+}
+
+/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
+/// LoopCond == Val to simplify the loop. If we decide that this is profitable,
+/// unswitch the loop, reprocess the pieces, then return true.
+bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
+
+ initLoopData();
+
+ // If LoopSimplify was unable to form a preheader, don't do any unswitching.
+ if (!loopPreheader)
+ return false;
+
+ Function *F = loopHeader->getParent();
+
+ Constant *CondVal = 0;
+ BasicBlock *ExitBlock = 0;
+ if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
+ // If the condition is trivial, always unswitch. There is no code growth
+ // for this case.
+ UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
+ return true;
+ }
+
+ // Check to see if it would be profitable to unswitch current loop.
+
+ // Do not do non-trivial unswitch while optimizing for size.
+ if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
+ return false;
+
+ // FIXME: This is overly conservative because it does not take into
+ // consideration code simplification opportunities and code that can
+ // be shared by the resultant unswitched loops.
+ CodeMetrics Metrics;
+ for (Loop::block_iterator I = currentLoop->block_begin(),
+ E = currentLoop->block_end();
+ I != E; ++I)
+ Metrics.analyzeBasicBlock(*I);
+
+ // Limit the number of instructions to avoid causing significant code
+ // expansion, and the number of basic blocks, to avoid loops with
+ // large numbers of branches which cause loop unswitching to go crazy.
+ // This is a very ad-hoc heuristic.
+ if (Metrics.NumInsts > Threshold ||
+ Metrics.NumBlocks * 5 > Threshold ||
+ Metrics.NeverInline) {
+ DEBUG(dbgs() << "NOT unswitching loop %"
+ << currentLoop->getHeader()->getName() << ", cost too high: "
+ << currentLoop->getBlocks().size() << "\n");
+ return false;
+ }
+
+ UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
+ return true;
+}
+
+// RemapInstruction - Convert the instruction operands from referencing the
+// current values into those specified by ValueMap.
+//
+static inline void RemapInstruction(Instruction *I,
+ DenseMap<const Value *, Value*> &ValueMap) {
+ for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
+ Value *Op = I->getOperand(op);
+ DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
+ if (It != ValueMap.end()) Op = It->second;
+ I->setOperand(op, Op);
+ }
+}
+
+/// CloneLoop - Recursively clone the specified loop and all of its children,
+/// mapping the blocks with the specified map.
+static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
+ LoopInfo *LI, LPPassManager *LPM) {
+ Loop *New = new Loop();
+ LPM->insertLoop(New, PL);
+
+ // Add all of the blocks in L to the new loop.
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ if (LI->getLoopFor(*I) == L)
+ New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
+
+ // Add all of the subloops to the new loop.
+ for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+ CloneLoop(*I, New, VM, LI, LPM);
+
+ return New;
+}
+
+/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
+/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
+/// code immediately before InsertPt.
+void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
+ BasicBlock *TrueDest,
+ BasicBlock *FalseDest,
+ Instruction *InsertPt) {
+ // Insert a conditional branch on LIC to the two preheaders. The original
+ // code is the true version and the new code is the false version.
+ Value *BranchVal = LIC;
+ if (!isa<ConstantInt>(Val) ||
+ Val->getType() != Type::getInt1Ty(LIC->getContext()))
+ BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
+ else if (Val != ConstantInt::getTrue(Val->getContext()))
+ // We want to enter the new loop when the condition is true.
+ std::swap(TrueDest, FalseDest);
+
+ // Insert the new branch.
+ BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
+
+ // If either edge is critical, split it. This helps preserve LoopSimplify
+ // form for enclosing loops.
+ SplitCriticalEdge(BI, 0, this);
+ SplitCriticalEdge(BI, 1, this);
+}
+
+/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
+/// condition in it (a cond branch from its header block to its latch block,
+/// where the path through the loop that doesn't execute its body has no
+/// side-effects), unswitch it. This doesn't involve any code duplication, just
+/// moving the conditional branch outside of the loop and updating loop info.
+void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
+ Constant *Val,
+ BasicBlock *ExitBlock) {
+ DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
+ << loopHeader->getName() << " [" << L->getBlocks().size()
+ << " blocks] in Function " << L->getHeader()->getParent()->getName()
+ << " on cond: " << *Val << " == " << *Cond << "\n");
+
+ // First step, split the preheader, so that we know that there is a safe place
+ // to insert the conditional branch. We will change loopPreheader to have a
+ // conditional branch on Cond.
+ BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
+
+ // Now that we have a place to insert the conditional branch, create a place
+ // to branch to: this is the exit block out of the loop that we should
+ // short-circuit to.
+
+ // Split this block now, so that the loop maintains its exit block, and so
+ // that the jump from the preheader can execute the contents of the exit block
+ // without actually branching to it (the exit block should be dominated by the
+ // loop header, not the preheader).
+ assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
+ BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
+
+ // Okay, now we have a position to branch from and a position to branch to,
+ // insert the new conditional branch.
+ EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
+ loopPreheader->getTerminator());
+ LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
+ loopPreheader->getTerminator()->eraseFromParent();
+
+ // We need to reprocess this loop, it could be unswitched again.
+ redoLoop = true;
+
+ // Now that we know that the loop is never entered when this condition is a
+ // particular value, rewrite the loop with this info. We know that this will
+ // at least eliminate the old branch.
+ RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
+ ++NumTrivial;
+}
+
+/// SplitExitEdges - Split all of the edges from inside the loop to their exit
+/// blocks. Update the appropriate Phi nodes as we do so.
+void LoopUnswitch::SplitExitEdges(Loop *L,
+ const SmallVector<BasicBlock *, 8> &ExitBlocks){
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = ExitBlocks[i];
+ SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
+ pred_end(ExitBlock));
+ SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
+ ".us-lcssa", this);
+ }
+}
+
+/// UnswitchNontrivialCondition - We determined that the loop is profitable
+/// to unswitch when LIC equal Val. Split it into loop versions and test the
+/// condition outside of either loop. Return the loops created as Out1/Out2.
+void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
+ Loop *L) {
+ Function *F = loopHeader->getParent();
+ DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
+ << loopHeader->getName() << " [" << L->getBlocks().size()
+ << " blocks] in Function " << F->getName()
+ << " when '" << *Val << "' == " << *LIC << "\n");
+
+ LoopBlocks.clear();
+ NewBlocks.clear();
+
+ // First step, split the preheader and exit blocks, and add these blocks to
+ // the LoopBlocks list.
+ BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
+ LoopBlocks.push_back(NewPreheader);
+
+ // We want the loop to come after the preheader, but before the exit blocks.
+ LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ // Split all of the edges from inside the loop to their exit blocks. Update
+ // the appropriate Phi nodes as we do so.
+ SplitExitEdges(L, ExitBlocks);
+
+ // The exit blocks may have been changed due to edge splitting, recompute.
+ ExitBlocks.clear();
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ // Add exit blocks to the loop blocks.
+ LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
+
+ // Next step, clone all of the basic blocks that make up the loop (including
+ // the loop preheader and exit blocks), keeping track of the mapping between
+ // the instructions and blocks.
+ NewBlocks.reserve(LoopBlocks.size());
+ DenseMap<const Value*, Value*> ValueMap;
+ for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
+ BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
+ NewBlocks.push_back(NewBB);
+ ValueMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
+ LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
+ }
+
+ // Splice the newly inserted blocks into the function right before the
+ // original preheader.
+ F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
+ NewBlocks[0], F->end());
+
+ // Now we create the new Loop object for the versioned loop.
+ Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
+ Loop *ParentLoop = L->getParentLoop();
+ if (ParentLoop) {
+ // Make sure to add the cloned preheader and exit blocks to the parent loop
+ // as well.
+ ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
+ }
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
+ // The new exit block should be in the same loop as the old one.
+ if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
+ ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
+
+ assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
+ "Exit block should have been split to have one successor!");
+ BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
+
+ // If the successor of the exit block had PHI nodes, add an entry for
+ // NewExit.
+ PHINode *PN;
+ for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
+ PN = cast<PHINode>(I);
+ Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
+ DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
+ if (It != ValueMap.end()) V = It->second;
+ PN->addIncoming(V, NewExit);
+ }
+ }
+
+ // Rewrite the code to refer to itself.
+ for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
+ for (BasicBlock::iterator I = NewBlocks[i]->begin(),
+ E = NewBlocks[i]->end(); I != E; ++I)
+ RemapInstruction(I, ValueMap);
+
+ // Rewrite the original preheader to select between versions of the loop.
+ BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
+ assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
+ "Preheader splitting did not work correctly!");
+
+ // Emit the new branch that selects between the two versions of this loop.
+ EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
+ LPM->deleteSimpleAnalysisValue(OldBR, L);
+ OldBR->eraseFromParent();
+
+ LoopProcessWorklist.push_back(NewLoop);
+ redoLoop = true;
+
+ // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
+ // deletes the instruction (for example by simplifying a PHI that feeds into
+ // the condition that we're unswitching on), we don't rewrite the second
+ // iteration.
+ WeakVH LICHandle(LIC);
+
+ // Now we rewrite the original code to know that the condition is true and the
+ // new code to know that the condition is false.
+ RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
+
+ // It's possible that simplifying one loop could cause the other to be
+ // changed to another value or a constant. If its a constant, don't simplify
+ // it.
+ if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
+ LICHandle && !isa<Constant>(LICHandle))
+ RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
+}
+
+/// RemoveFromWorklist - Remove all instances of I from the worklist vector
+/// specified.
+static void RemoveFromWorklist(Instruction *I,
+ std::vector<Instruction*> &Worklist) {
+ std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
+ Worklist.end(), I);
+ while (WI != Worklist.end()) {
+ unsigned Offset = WI-Worklist.begin();
+ Worklist.erase(WI);
+ WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
+ }
+}
+
+/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
+/// program, replacing all uses with V and update the worklist.
+static void ReplaceUsesOfWith(Instruction *I, Value *V,
+ std::vector<Instruction*> &Worklist,
+ Loop *L, LPPassManager *LPM) {
+ DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
+
+ // Add uses to the worklist, which may be dead now.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
+ Worklist.push_back(Use);
+
+ // Add users to the worklist which may be simplified now.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI)
+ Worklist.push_back(cast<Instruction>(*UI));
+ LPM->deleteSimpleAnalysisValue(I, L);
+ RemoveFromWorklist(I, Worklist);
+ I->replaceAllUsesWith(V);
+ I->eraseFromParent();
+ ++NumSimplify;
+}
+
+/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
+/// information, and remove any dead successors it has.
+///
+void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
+ std::vector<Instruction*> &Worklist,
+ Loop *L) {
+ if (pred_begin(BB) != pred_end(BB)) {
+ // This block isn't dead, since an edge to BB was just removed, see if there
+ // are any easy simplifications we can do now.
+ if (BasicBlock *Pred = BB->getSinglePredecessor()) {
+ // If it has one pred, fold phi nodes in BB.
+ while (isa<PHINode>(BB->begin()))
+ ReplaceUsesOfWith(BB->begin(),
+ cast<PHINode>(BB->begin())->getIncomingValue(0),
+ Worklist, L, LPM);
+
+ // If this is the header of a loop and the only pred is the latch, we now
+ // have an unreachable loop.
+ if (Loop *L = LI->getLoopFor(BB))
+ if (loopHeader == BB && L->contains(Pred)) {
+ // Remove the branch from the latch to the header block, this makes
+ // the header dead, which will make the latch dead (because the header
+ // dominates the latch).
+ LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
+ Pred->getTerminator()->eraseFromParent();
+ new UnreachableInst(BB->getContext(), Pred);
+
+ // The loop is now broken, remove it from LI.
+ RemoveLoopFromHierarchy(L);
+
+ // Reprocess the header, which now IS dead.
+ RemoveBlockIfDead(BB, Worklist, L);
+ return;
+ }
+
+ // If pred ends in a uncond branch, add uncond branch to worklist so that
+ // the two blocks will get merged.
+ if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
+ if (BI->isUnconditional())
+ Worklist.push_back(BI);
+ }
+ return;
+ }
+
+ DEBUG(dbgs() << "Nuking dead block: " << *BB);
+
+ // Remove the instructions in the basic block from the worklist.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ RemoveFromWorklist(I, Worklist);
+
+ // Anything that uses the instructions in this basic block should have their
+ // uses replaced with undefs.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I->getType()->isVoidTy())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ }
+
+ // If this is the edge to the header block for a loop, remove the loop and
+ // promote all subloops.
+ if (Loop *BBLoop = LI->getLoopFor(BB)) {
+ if (BBLoop->getLoopLatch() == BB)
+ RemoveLoopFromHierarchy(BBLoop);
+ }
+
+ // Remove the block from the loop info, which removes it from any loops it
+ // was in.
+ LI->removeBlock(BB);
+
+
+ // Remove phi node entries in successors for this block.
+ TerminatorInst *TI = BB->getTerminator();
+ SmallVector<BasicBlock*, 4> Succs;
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
+ Succs.push_back(TI->getSuccessor(i));
+ TI->getSuccessor(i)->removePredecessor(BB);
+ }
+
+ // Unique the successors, remove anything with multiple uses.
+ array_pod_sort(Succs.begin(), Succs.end());
+ Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
+
+ // Remove the basic block, including all of the instructions contained in it.
+ LPM->deleteSimpleAnalysisValue(BB, L);
+ BB->eraseFromParent();
+ // Remove successor blocks here that are not dead, so that we know we only
+ // have dead blocks in this list. Nondead blocks have a way of becoming dead,
+ // then getting removed before we revisit them, which is badness.
+ //
+ for (unsigned i = 0; i != Succs.size(); ++i)
+ if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
+ // One exception is loop headers. If this block was the preheader for a
+ // loop, then we DO want to visit the loop so the loop gets deleted.
+ // We know that if the successor is a loop header, that this loop had to
+ // be the preheader: the case where this was the latch block was handled
+ // above and headers can only have two predecessors.
+ if (!LI->isLoopHeader(Succs[i])) {
+ Succs.erase(Succs.begin()+i);
+ --i;
+ }
+ }
+
+ for (unsigned i = 0, e = Succs.size(); i != e; ++i)
+ RemoveBlockIfDead(Succs[i], Worklist, L);
+}
+
+/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
+/// become unwrapped, either because the backedge was deleted, or because the
+/// edge into the header was removed. If the edge into the header from the
+/// latch block was removed, the loop is unwrapped but subloops are still alive,
+/// so they just reparent loops. If the loops are actually dead, they will be
+/// removed later.
+void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
+ LPM->deleteLoopFromQueue(L);
+ RemoveLoopFromWorklist(L);
+}
+
+// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
+// the value specified by Val in the specified loop, or we know it does NOT have
+// that value. Rewrite any uses of LIC or of properties correlated to it.
+void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
+ Constant *Val,
+ bool IsEqual) {
+ assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
+
+ // FIXME: Support correlated properties, like:
+ // for (...)
+ // if (li1 < li2)
+ // ...
+ // if (li1 > li2)
+ // ...
+
+ // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
+ // selects, switches.
+ std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
+ std::vector<Instruction*> Worklist;
+ LLVMContext &Context = Val->getContext();
+
+
+ // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
+ // in the loop with the appropriate one directly.
+ if (IsEqual || (isa<ConstantInt>(Val) &&
+ Val->getType()->isIntegerTy(1))) {
+ Value *Replacement;
+ if (IsEqual)
+ Replacement = Val;
+ else
+ Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
+ !cast<ConstantInt>(Val)->getZExtValue());
+
+ for (unsigned i = 0, e = Users.size(); i != e; ++i)
+ if (Instruction *U = cast<Instruction>(Users[i])) {
+ if (!L->contains(U))
+ continue;
+ U->replaceUsesOfWith(LIC, Replacement);
+ Worklist.push_back(U);
+ }
+ SimplifyCode(Worklist, L);
+ return;
+ }
+
+ // Otherwise, we don't know the precise value of LIC, but we do know that it
+ // is certainly NOT "Val". As such, simplify any uses in the loop that we
+ // can. This case occurs when we unswitch switch statements.
+ for (unsigned i = 0, e = Users.size(); i != e; ++i) {
+ Instruction *U = cast<Instruction>(Users[i]);
+ if (!L->contains(U))
+ continue;
+
+ Worklist.push_back(U);
+
+ // TODO: We could do other simplifications, for example, turning
+ // 'icmp eq LIC, Val' -> false.
+
+ // If we know that LIC is not Val, use this info to simplify code.
+ SwitchInst *SI = dyn_cast<SwitchInst>(U);
+ if (SI == 0 || !isa<ConstantInt>(Val)) continue;
+
+ unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
+ if (DeadCase == 0) continue; // Default case is live for multiple values.
+
+ // Found a dead case value. Don't remove PHI nodes in the
+ // successor if they become single-entry, those PHI nodes may
+ // be in the Users list.
+
+ // FIXME: This is a hack. We need to keep the successor around
+ // and hooked up so as to preserve the loop structure, because
+ // trying to update it is complicated. So instead we preserve the
+ // loop structure and put the block on a dead code path.
+ BasicBlock *Switch = SI->getParent();
+ SplitEdge(Switch, SI->getSuccessor(DeadCase), this);
+ // Compute the successors instead of relying on the return value
+ // of SplitEdge, since it may have split the switch successor
+ // after PHI nodes.
+ BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
+ BasicBlock *OldSISucc = *succ_begin(NewSISucc);
+ // Create an "unreachable" destination.
+ BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
+ Switch->getParent(),
+ OldSISucc);
+ new UnreachableInst(Context, Abort);
+ // Force the new case destination to branch to the "unreachable"
+ // block while maintaining a (dead) CFG edge to the old block.
+ NewSISucc->getTerminator()->eraseFromParent();
+ BranchInst::Create(Abort, OldSISucc,
+ ConstantInt::getTrue(Context), NewSISucc);
+ // Release the PHI operands for this edge.
+ for (BasicBlock::iterator II = NewSISucc->begin();
+ PHINode *PN = dyn_cast<PHINode>(II); ++II)
+ PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
+ UndefValue::get(PN->getType()));
+ // Tell the domtree about the new block. We don't fully update the
+ // domtree here -- instead we force it to do a full recomputation
+ // after the pass is complete -- but we do need to inform it of
+ // new blocks.
+ if (DT)
+ DT->addNewBlock(Abort, NewSISucc);
+ }
+
+ SimplifyCode(Worklist, L);
+}
+
+/// SimplifyCode - Okay, now that we have simplified some instructions in the
+/// loop, walk over it and constant prop, dce, and fold control flow where
+/// possible. Note that this is effectively a very simple loop-structure-aware
+/// optimizer. During processing of this loop, L could very well be deleted, so
+/// it must not be used.
+///
+/// FIXME: When the loop optimizer is more mature, separate this out to a new
+/// pass.
+///
+void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.back();
+ Worklist.pop_back();
+
+ // Simple constant folding.
+ if (Constant *C = ConstantFoldInstruction(I)) {
+ ReplaceUsesOfWith(I, C, Worklist, L, LPM);
+ continue;
+ }
+
+ // Simple DCE.
+ if (isInstructionTriviallyDead(I)) {
+ DEBUG(dbgs() << "Remove dead instruction '" << *I);
+
+ // Add uses to the worklist, which may be dead now.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
+ Worklist.push_back(Use);
+ LPM->deleteSimpleAnalysisValue(I, L);
+ RemoveFromWorklist(I, Worklist);
+ I->eraseFromParent();
+ ++NumSimplify;
+ continue;
+ }
+
+ // See if instruction simplification can hack this up. This is common for
+ // things like "select false, X, Y" after unswitching made the condition be
+ // 'false'.
+ if (Value *V = SimplifyInstruction(I)) {
+ ReplaceUsesOfWith(I, V, Worklist, L, LPM);
+ continue;
+ }
+
+ // Special case hacks that appear commonly in unswitched code.
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ if (BI->isUnconditional()) {
+ // If BI's parent is the only pred of the successor, fold the two blocks
+ // together.
+ BasicBlock *Pred = BI->getParent();
+ BasicBlock *Succ = BI->getSuccessor(0);
+ BasicBlock *SinglePred = Succ->getSinglePredecessor();
+ if (!SinglePred) continue; // Nothing to do.
+ assert(SinglePred == Pred && "CFG broken");
+
+ DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
+ << Succ->getName() << "\n");
+
+ // Resolve any single entry PHI nodes in Succ.
+ while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
+ ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
+
+ // Move all of the successor contents from Succ to Pred.
+ Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
+ Succ->end());
+ LPM->deleteSimpleAnalysisValue(BI, L);
+ BI->eraseFromParent();
+ RemoveFromWorklist(BI, Worklist);
+
+ // If Succ has any successors with PHI nodes, update them to have
+ // entries coming from Pred instead of Succ.
+ Succ->replaceAllUsesWith(Pred);
+
+ // Remove Succ from the loop tree.
+ LI->removeBlock(Succ);
+ LPM->deleteSimpleAnalysisValue(Succ, L);
+ Succ->eraseFromParent();
+ ++NumSimplify;
+ continue;
+ }
+
+ if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
+ // Conditional branch. Turn it into an unconditional branch, then
+ // remove dead blocks.
+ continue; // FIXME: Enable.
+
+ DEBUG(dbgs() << "Folded branch: " << *BI);
+ BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
+ BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
+ DeadSucc->removePredecessor(BI->getParent(), true);
+ Worklist.push_back(BranchInst::Create(LiveSucc, BI));
+ LPM->deleteSimpleAnalysisValue(BI, L);
+ BI->eraseFromParent();
+ RemoveFromWorklist(BI, Worklist);
+ ++NumSimplify;
+
+ RemoveBlockIfDead(DeadSucc, Worklist, L);
+ }
+ continue;
+ }
+ }
+}
OpenPOWER on IntegriCloud