summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp516
1 files changed, 454 insertions, 62 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
index fef5210..4ccbfc9 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -13,15 +13,18 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/FunctionTargetTransformInfo.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/CommandLine.h"
@@ -35,8 +38,24 @@ using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
static cl::opt<unsigned>
-UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
- cl::desc("The cut-off point for automatic loop unrolling"));
+ UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
+ cl::desc("The baseline cost threshold for loop unrolling"));
+
+static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
+ "unroll-percent-dynamic-cost-saved-threshold", cl::init(20), cl::Hidden,
+ cl::desc("The percentage of estimated dynamic cost which must be saved by "
+ "unrolling to allow unrolling up to the max threshold."));
+
+static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
+ "unroll-dynamic-cost-savings-discount", cl::init(2000), cl::Hidden,
+ cl::desc("This is the amount discounted from the total unroll cost when "
+ "the unrolled form has a high dynamic cost savings (triggered by "
+ "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
+
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+ "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
+ cl::desc("Don't allow loop unrolling to simulate more than this number of"
+ "iterations when checking full unroll profitability"));
static cl::opt<unsigned>
UnrollCount("unroll-count", cl::init(0), cl::Hidden,
@@ -63,11 +82,18 @@ namespace {
static char ID; // Pass ID, replacement for typeid
LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
+ CurrentPercentDynamicCostSavedThreshold =
+ UnrollPercentDynamicCostSavedThreshold;
+ CurrentDynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
+ UserPercentDynamicCostSavedThreshold =
+ (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0);
+ UserDynamicCostSavingsDiscount =
+ (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0);
UserAllowPartial = (P != -1) ||
(UnrollAllowPartial.getNumOccurrences() > 0);
UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
@@ -91,12 +117,18 @@ namespace {
unsigned CurrentCount;
unsigned CurrentThreshold;
- bool CurrentAllowPartial;
- bool CurrentRuntime;
- bool UserCount; // CurrentCount is user-specified.
- bool UserThreshold; // CurrentThreshold is user-specified.
- bool UserAllowPartial; // CurrentAllowPartial is user-specified.
- bool UserRuntime; // CurrentRuntime is user-specified.
+ unsigned CurrentPercentDynamicCostSavedThreshold;
+ unsigned CurrentDynamicCostSavingsDiscount;
+ bool CurrentAllowPartial;
+ bool CurrentRuntime;
+
+ // Flags for whether the 'current' settings are user-specified.
+ bool UserCount;
+ bool UserThreshold;
+ bool UserPercentDynamicCostSavedThreshold;
+ bool UserDynamicCostSavingsDiscount;
+ bool UserAllowPartial;
+ bool UserRuntime;
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
@@ -105,16 +137,15 @@ namespace {
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<LoopInfo>();
- AU.addPreserved<LoopInfo>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
- AU.addRequired<TargetTransformInfo>();
- AU.addRequired<FunctionTargetTransformInfo>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
// FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
// If loop unroll does not preserve dom info then LCSSA pass on next
// loop will receive invalid dom info.
@@ -124,9 +155,12 @@ namespace {
// Fill in the UnrollingPreferences parameter with values from the
// TargetTransformationInfo.
- void getUnrollingPreferences(Loop *L, const FunctionTargetTransformInfo &FTTI,
+ void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
TargetTransformInfo::UnrollingPreferences &UP) {
UP.Threshold = CurrentThreshold;
+ UP.PercentDynamicCostSavedThreshold =
+ CurrentPercentDynamicCostSavedThreshold;
+ UP.DynamicCostSavingsDiscount = CurrentDynamicCostSavingsDiscount;
UP.OptSizeThreshold = OptSizeUnrollThreshold;
UP.PartialThreshold = CurrentThreshold;
UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
@@ -134,7 +168,8 @@ namespace {
UP.MaxCount = UINT_MAX;
UP.Partial = CurrentAllowPartial;
UP.Runtime = CurrentRuntime;
- FTTI.getUnrollingPreferences(L, UP);
+ UP.AllowExpensiveTripCount = false;
+ TTI.getUnrollingPreferences(L, UP);
}
// Select and return an unroll count based on parameters from
@@ -153,7 +188,9 @@ namespace {
// unrolled loops respectively.
void selectThresholds(const Loop *L, bool HasPragma,
const TargetTransformInfo::UnrollingPreferences &UP,
- unsigned &Threshold, unsigned &PartialThreshold) {
+ unsigned &Threshold, unsigned &PartialThreshold,
+ unsigned &PercentDynamicCostSavedThreshold,
+ unsigned &DynamicCostSavingsDiscount) {
// Determine the current unrolling threshold. While this is
// normally set from UnrollThreshold, it is overridden to a
// smaller value if the current function is marked as
@@ -161,10 +198,17 @@ namespace {
// specified.
Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
+ PercentDynamicCostSavedThreshold =
+ UserPercentDynamicCostSavedThreshold
+ ? CurrentPercentDynamicCostSavedThreshold
+ : UP.PercentDynamicCostSavedThreshold;
+ DynamicCostSavingsDiscount = UserDynamicCostSavingsDiscount
+ ? CurrentDynamicCostSavingsDiscount
+ : UP.DynamicCostSavingsDiscount;
+
if (!UserThreshold &&
- L->getHeader()->getParent()->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize)) {
+ L->getHeader()->getParent()->hasFnAttribute(
+ Attribute::OptimizeForSize)) {
Threshold = UP.OptSizeThreshold;
PartialThreshold = UP.PartialOptSizeThreshold;
}
@@ -180,15 +224,18 @@ namespace {
std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
}
}
+ bool canUnrollCompletely(Loop *L, unsigned Threshold,
+ unsigned PercentDynamicCostSavedThreshold,
+ unsigned DynamicCostSavingsDiscount,
+ uint64_t UnrolledCost, uint64_t RolledDynamicCost);
};
}
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
-INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(FunctionTargetTransformInfo)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
@@ -203,6 +250,295 @@ Pass *llvm::createSimpleLoopUnrollPass() {
return llvm::createLoopUnrollPass(-1, -1, 0, 0);
}
+namespace {
+// This class is used to get an estimate of the optimization effects that we
+// could get from complete loop unrolling. It comes from the fact that some
+// loads might be replaced with concrete constant values and that could trigger
+// a chain of instruction simplifications.
+//
+// E.g. we might have:
+// int a[] = {0, 1, 0};
+// v = 0;
+// for (i = 0; i < 3; i ++)
+// v += b[i]*a[i];
+// If we completely unroll the loop, we would get:
+// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
+// Which then will be simplified to:
+// v = b[0]* 0 + b[1]* 1 + b[2]* 0
+// And finally:
+// v = b[1]
+class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
+ typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
+ friend class InstVisitor<UnrolledInstAnalyzer, bool>;
+ struct SimplifiedAddress {
+ Value *Base = nullptr;
+ ConstantInt *Offset = nullptr;
+ };
+
+public:
+ UnrolledInstAnalyzer(unsigned Iteration,
+ DenseMap<Value *, Constant *> &SimplifiedValues,
+ const Loop *L, ScalarEvolution &SE)
+ : Iteration(Iteration), SimplifiedValues(SimplifiedValues), L(L), SE(SE) {
+ IterationNumber = SE.getConstant(APInt(64, Iteration));
+ }
+
+ // Allow access to the initial visit method.
+ using Base::visit;
+
+private:
+ /// \brief A cache of pointer bases and constant-folded offsets corresponding
+ /// to GEP (or derived from GEP) instructions.
+ ///
+ /// In order to find the base pointer one needs to perform non-trivial
+ /// traversal of the corresponding SCEV expression, so it's good to have the
+ /// results saved.
+ DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
+
+ /// \brief Number of currently simulated iteration.
+ ///
+ /// If an expression is ConstAddress+Constant, then the Constant is
+ /// Start + Iteration*Step, where Start and Step could be obtained from
+ /// SCEVGEPCache.
+ unsigned Iteration;
+
+ /// \brief SCEV expression corresponding to number of currently simulated
+ /// iteration.
+ const SCEV *IterationNumber;
+
+ /// \brief A Value->Constant map for keeping values that we managed to
+ /// constant-fold on the given iteration.
+ ///
+ /// While we walk the loop instructions, we build up and maintain a mapping
+ /// of simplified values specific to this iteration. The idea is to propagate
+ /// any special information we have about loads that can be replaced with
+ /// constants after complete unrolling, and account for likely simplifications
+ /// post-unrolling.
+ DenseMap<Value *, Constant *> &SimplifiedValues;
+
+ const Loop *L;
+ ScalarEvolution &SE;
+
+ /// \brief Try to simplify instruction \param I using its SCEV expression.
+ ///
+ /// The idea is that some AddRec expressions become constants, which then
+ /// could trigger folding of other instructions. However, that only happens
+ /// for expressions whose start value is also constant, which isn't always the
+ /// case. In another common and important case the start value is just some
+ /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
+ /// it along with the base address instead.
+ bool simplifyInstWithSCEV(Instruction *I) {
+ if (!SE.isSCEVable(I->getType()))
+ return false;
+
+ const SCEV *S = SE.getSCEV(I);
+ if (auto *SC = dyn_cast<SCEVConstant>(S)) {
+ SimplifiedValues[I] = SC->getValue();
+ return true;
+ }
+
+ auto *AR = dyn_cast<SCEVAddRecExpr>(S);
+ if (!AR)
+ return false;
+
+ const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
+ // Check if the AddRec expression becomes a constant.
+ if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
+ SimplifiedValues[I] = SC->getValue();
+ return true;
+ }
+
+ // Check if the offset from the base address becomes a constant.
+ auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
+ if (!Base)
+ return false;
+ auto *Offset =
+ dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
+ if (!Offset)
+ return false;
+ SimplifiedAddress Address;
+ Address.Base = Base->getValue();
+ Address.Offset = Offset->getValue();
+ SimplifiedAddresses[I] = Address;
+ return true;
+ }
+
+ /// Base case for the instruction visitor.
+ bool visitInstruction(Instruction &I) {
+ return simplifyInstWithSCEV(&I);
+ }
+
+ /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
+
+ /// Try to simplify binary operator I.
+ ///
+ /// TODO: Probaly it's worth to hoist the code for estimating the
+ /// simplifications effects to a separate class, since we have a very similar
+ /// code in InlineCost already.
+ bool visitBinaryOperator(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+
+ Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV =
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
+ else
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ if (SimpleV)
+ return true;
+ return Base::visitBinaryOperator(I);
+ }
+
+ /// Try to fold load I.
+ bool visitLoad(LoadInst &I) {
+ Value *AddrOp = I.getPointerOperand();
+
+ auto AddressIt = SimplifiedAddresses.find(AddrOp);
+ if (AddressIt == SimplifiedAddresses.end())
+ return false;
+ ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
+
+ auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
+ // We're only interested in loads that can be completely folded to a
+ // constant.
+ if (!GV || !GV->hasInitializer())
+ return false;
+
+ ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(GV->getInitializer());
+ if (!CDS)
+ return false;
+
+ int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+ assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
+ "Unexpectedly large index value.");
+ int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
+ if (Index >= CDS->getNumElements()) {
+ // FIXME: For now we conservatively ignore out of bound accesses, but
+ // we're allowed to perform the optimization in this case.
+ return false;
+ }
+
+ Constant *CV = CDS->getElementAsConstant(Index);
+ assert(CV && "Constant expected.");
+ SimplifiedValues[&I] = CV;
+
+ return true;
+ }
+};
+} // namespace
+
+
+namespace {
+struct EstimatedUnrollCost {
+ /// \brief The estimated cost after unrolling.
+ unsigned UnrolledCost;
+
+ /// \brief The estimated dynamic cost of executing the instructions in the
+ /// rolled form.
+ unsigned RolledDynamicCost;
+};
+}
+
+/// \brief Figure out if the loop is worth full unrolling.
+///
+/// Complete loop unrolling can make some loads constant, and we need to know
+/// if that would expose any further optimization opportunities. This routine
+/// estimates this optimization. It assigns computed number of instructions,
+/// that potentially might be optimized away, to
+/// NumberOfOptimizedInstructions, and total number of instructions to
+/// UnrolledLoopSize (not counting blocks that won't be reached, if we were
+/// able to compute the condition).
+/// \returns false if we can't analyze the loop, or if we discovered that
+/// unrolling won't give anything. Otherwise, returns true.
+Optional<EstimatedUnrollCost>
+analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
+ const TargetTransformInfo &TTI,
+ unsigned MaxUnrolledLoopSize) {
+ // We want to be able to scale offsets by the trip count and add more offsets
+ // to them without checking for overflows, and we already don't want to
+ // analyze *massive* trip counts, so we force the max to be reasonably small.
+ assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
+ "The unroll iterations max is too large!");
+
+ // Don't simulate loops with a big or unknown tripcount
+ if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
+ TripCount > UnrollMaxIterationsCountToAnalyze)
+ return None;
+
+ SmallSetVector<BasicBlock *, 16> BBWorklist;
+ DenseMap<Value *, Constant *> SimplifiedValues;
+
+ // The estimated cost of the unrolled form of the loop. We try to estimate
+ // this by simplifying as much as we can while computing the estimate.
+ unsigned UnrolledCost = 0;
+ // We also track the estimated dynamic (that is, actually executed) cost in
+ // the rolled form. This helps identify cases when the savings from unrolling
+ // aren't just exposing dead control flows, but actual reduced dynamic
+ // instructions due to the simplifications which we expect to occur after
+ // unrolling.
+ unsigned RolledDynamicCost = 0;
+
+ // Simulate execution of each iteration of the loop counting instructions,
+ // which would be simplified.
+ // Since the same load will take different values on different iterations,
+ // we literally have to go through all loop's iterations.
+ for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+ SimplifiedValues.clear();
+ UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, L, SE);
+
+ BBWorklist.clear();
+ BBWorklist.insert(L->getHeader());
+ // Note that we *must not* cache the size, this loop grows the worklist.
+ for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+ BasicBlock *BB = BBWorklist[Idx];
+
+ // Visit all instructions in the given basic block and try to simplify
+ // it. We don't change the actual IR, just count optimization
+ // opportunities.
+ for (Instruction &I : *BB) {
+ unsigned InstCost = TTI.getUserCost(&I);
+
+ // Visit the instruction to analyze its loop cost after unrolling,
+ // and if the visitor returns false, include this instruction in the
+ // unrolled cost.
+ if (!Analyzer.visit(I))
+ UnrolledCost += InstCost;
+
+ // Also track this instructions expected cost when executing the rolled
+ // loop form.
+ RolledDynamicCost += InstCost;
+
+ // If unrolled body turns out to be too big, bail out.
+ if (UnrolledCost > MaxUnrolledLoopSize)
+ return None;
+ }
+
+ // Add BB's successors to the worklist.
+ for (BasicBlock *Succ : successors(BB))
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ }
+
+ // If we found no optimization opportunities on the first iteration, we
+ // won't find them on later ones too.
+ if (UnrolledCost == RolledDynamicCost)
+ return None;
+ }
+ return {{UnrolledCost, RolledDynamicCost}};
+}
+
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
bool &NotDuplicatable,
@@ -234,44 +570,31 @@ static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
// returned.
-static const MDNode *GetUnrollMetadata(const Loop *L, StringRef Name) {
- MDNode *LoopID = L->getLoopID();
- if (!LoopID)
- return nullptr;
-
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
-
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD)
- continue;
-
- const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S)
- continue;
-
- if (Name.equals(S->getString()))
- return MD;
- }
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+ if (MDNode *LoopID = L->getLoopID())
+ return GetUnrollMetadata(LoopID, Name);
return nullptr;
}
// Returns true if the loop has an unroll(full) pragma.
static bool HasUnrollFullPragma(const Loop *L) {
- return GetUnrollMetadata(L, "llvm.loop.unroll.full");
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}
// Returns true if the loop has an unroll(disable) pragma.
static bool HasUnrollDisablePragma(const Loop *L) {
- return GetUnrollMetadata(L, "llvm.loop.unroll.disable");
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
+}
+
+// Returns true if the loop has an runtime unroll(disable) pragma.
+static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}
// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma. Otherwise return 0.
static unsigned UnrollCountPragmaValue(const Loop *L) {
- const MDNode *MD = GetUnrollMetadata(L, "llvm.loop.unroll.count");
+ MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
if (MD) {
assert(MD->getNumOperands() == 2 &&
"Unroll count hint metadata should have two operands.");
@@ -319,6 +642,59 @@ static void SetLoopAlreadyUnrolled(Loop *L) {
L->setLoopID(NewLoopID);
}
+bool LoopUnroll::canUnrollCompletely(Loop *L, unsigned Threshold,
+ unsigned PercentDynamicCostSavedThreshold,
+ unsigned DynamicCostSavingsDiscount,
+ uint64_t UnrolledCost,
+ uint64_t RolledDynamicCost) {
+
+ if (Threshold == NoThreshold) {
+ DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
+ return true;
+ }
+
+ if (UnrolledCost <= Threshold) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolled cost: "
+ << UnrolledCost << "<" << Threshold << "\n");
+ return true;
+ }
+
+ assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
+ assert(RolledDynamicCost >= UnrolledCost &&
+ "Cannot have a higher unrolled cost than a rolled cost!");
+
+ // Compute the percentage of the dynamic cost in the rolled form that is
+ // saved when unrolled. If unrolling dramatically reduces the estimated
+ // dynamic cost of the loop, we use a higher threshold to allow more
+ // unrolling.
+ unsigned PercentDynamicCostSaved =
+ (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
+
+ if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
+ (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
+ (int64_t)Threshold) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the "
+ "expected dynamic cost by " << PercentDynamicCostSaved
+ << "% (threshold: " << PercentDynamicCostSavedThreshold
+ << "%)\n"
+ << " and the unrolled cost (" << UnrolledCost
+ << ") is less than the max threshold ("
+ << DynamicCostSavingsDiscount << ").\n");
+ return true;
+ }
+
+ DEBUG(dbgs() << " Too large to fully unroll:\n");
+ DEBUG(dbgs() << " Threshold: " << Threshold << "\n");
+ DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n");
+ DEBUG(dbgs() << " Percent cost saved threshold: "
+ << PercentDynamicCostSavedThreshold << "%\n");
+ DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n");
+ DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n");
+ DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved
+ << "\n");
+ return false;
+}
+
unsigned LoopUnroll::selectUnrollCount(
const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
@@ -363,13 +739,13 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipOptnoneFunction(L))
return false;
- LoopInfo *LI = &getAnalysis<LoopInfo>();
+ Function &F = *L->getHeader()->getParent();
+
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
- const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
- const FunctionTargetTransformInfo &FTTI =
- getAnalysis<FunctionTargetTransformInfo>();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- *L->getHeader()->getParent());
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
@@ -383,7 +759,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
TargetTransformInfo::UnrollingPreferences UP;
- getUnrollingPreferences(L, FTTI, UP);
+ getUnrollingPreferences(L, TTI, UP);
// Find trip count and trip multiple if count is not available
unsigned TripCount = 0;
@@ -426,20 +802,33 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
unsigned Threshold, PartialThreshold;
- selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold);
+ unsigned PercentDynamicCostSavedThreshold;
+ unsigned DynamicCostSavingsDiscount;
+ selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
+ PercentDynamicCostSavedThreshold,
+ DynamicCostSavingsDiscount);
// Given Count, TripCount and thresholds determine the type of
// unrolling which is to be performed.
enum { Full = 0, Partial = 1, Runtime = 2 };
int Unrolling;
if (TripCount && Count == TripCount) {
- if (Threshold != NoThreshold && UnrolledSize > Threshold) {
- DEBUG(dbgs() << " Too large to fully unroll with count: " << Count
- << " because size: " << UnrolledSize << ">" << Threshold
- << "\n");
- Unrolling = Partial;
- } else {
+ Unrolling = Partial;
+ // If the loop is really small, we don't need to run an expensive analysis.
+ if (canUnrollCompletely(L, Threshold, 100, DynamicCostSavingsDiscount,
+ UnrolledSize, UnrolledSize)) {
Unrolling = Full;
+ } else {
+ // The loop isn't that small, but we still can fully unroll it if that
+ // helps to remove a significant number of instructions.
+ // To check that, run additional analysis on the loop.
+ if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
+ L, TripCount, *SE, TTI, Threshold + DynamicCostSavingsDiscount))
+ if (canUnrollCompletely(L, Threshold, PercentDynamicCostSavedThreshold,
+ DynamicCostSavingsDiscount, Cost->UnrolledCost,
+ Cost->RolledDynamicCost)) {
+ Unrolling = Full;
+ }
}
} else if (TripCount && Count < TripCount) {
Unrolling = Partial;
@@ -450,6 +839,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Reduce count based on the type of unrolling and the threshold values.
unsigned OriginalCount = Count;
bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
+ if (HasRuntimeUnrollDisablePragma(L)) {
+ AllowRuntime = false;
+ }
if (Unrolling == Partial) {
bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
if (!AllowPartial && !CountSetExplicitly) {
@@ -518,8 +910,8 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
// Unroll the loop.
- if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this,
- &LPM, &AC))
+ if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
+ TripMultiple, LI, this, &LPM, &AC))
return false;
return true;
OpenPOWER on IntegriCloud