summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp1030
1 files changed, 1030 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
new file mode 100644
index 0000000..ecef6db
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -0,0 +1,1030 @@
+//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a simple loop unroller. It works best when loops have
+// been canonicalized by the -indvars pass, allowing it to determine the trip
+// counts of loops easily.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include <climits>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+static cl::opt<unsigned>
+ UnrollThreshold("unroll-threshold", cl::Hidden,
+ cl::desc("The baseline cost threshold for loop unrolling"));
+
+static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
+ "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden,
+ cl::desc("The percentage of estimated dynamic cost which must be saved by "
+ "unrolling to allow unrolling up to the max threshold."));
+
+static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
+ "unroll-dynamic-cost-savings-discount", cl::Hidden,
+ cl::desc("This is the amount discounted from the total unroll cost when "
+ "the unrolled form has a high dynamic cost savings (triggered by "
+ "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
+
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+ "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
+ cl::desc("Don't allow loop unrolling to simulate more than this number of"
+ "iterations when checking full unroll profitability"));
+
+static cl::opt<unsigned>
+UnrollCount("unroll-count", cl::Hidden,
+ cl::desc("Use this unroll count for all loops including those with "
+ "unroll_count pragma values, for testing purposes"));
+
+static cl::opt<bool>
+UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
+ cl::desc("Allows loops to be partially unrolled until "
+ "-unroll-threshold loop size is reached."));
+
+static cl::opt<bool>
+UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
+ cl::desc("Unroll loops with run-time trip counts"));
+
+static cl::opt<unsigned>
+PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
+ cl::desc("Unrolled size limit for loops with an unroll(full) or "
+ "unroll_count pragma."));
+
+
+/// A magic value for use with the Threshold parameter to indicate
+/// that the loop unroll should be performed regardless of how much
+/// code expansion would result.
+static const unsigned NoThreshold = UINT_MAX;
+
+/// Default unroll count for loops with run-time trip count if
+/// -unroll-count is not set
+static const unsigned DefaultUnrollRuntimeCount = 8;
+
+/// Gather the various unrolling parameters based on the defaults, compiler
+/// flags, TTI overrides, pragmas, and user specified parameters.
+static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
+ Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
+ Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
+ Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll,
+ bool PragmaEnableUnroll, unsigned TripCount) {
+ TargetTransformInfo::UnrollingPreferences UP;
+
+ // Set up the defaults
+ UP.Threshold = 150;
+ UP.PercentDynamicCostSavedThreshold = 20;
+ UP.DynamicCostSavingsDiscount = 2000;
+ UP.OptSizeThreshold = 50;
+ UP.PartialThreshold = UP.Threshold;
+ UP.PartialOptSizeThreshold = UP.OptSizeThreshold;
+ UP.Count = 0;
+ UP.MaxCount = UINT_MAX;
+ UP.Partial = false;
+ UP.Runtime = false;
+ UP.AllowExpensiveTripCount = false;
+
+ // Override with any target specific settings
+ TTI.getUnrollingPreferences(L, UP);
+
+ // Apply size attributes
+ if (L->getHeader()->getParent()->optForSize()) {
+ UP.Threshold = UP.OptSizeThreshold;
+ UP.PartialThreshold = UP.PartialOptSizeThreshold;
+ }
+
+ // Apply unroll count pragmas
+ if (PragmaCount)
+ UP.Count = PragmaCount;
+ else if (PragmaFullUnroll)
+ UP.Count = TripCount;
+
+ // Apply any user values specified by cl::opt
+ if (UnrollThreshold.getNumOccurrences() > 0) {
+ UP.Threshold = UnrollThreshold;
+ UP.PartialThreshold = UnrollThreshold;
+ }
+ if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
+ UP.PercentDynamicCostSavedThreshold =
+ UnrollPercentDynamicCostSavedThreshold;
+ if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
+ UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
+ if (UnrollCount.getNumOccurrences() > 0)
+ UP.Count = UnrollCount;
+ if (UnrollAllowPartial.getNumOccurrences() > 0)
+ UP.Partial = UnrollAllowPartial;
+ if (UnrollRuntime.getNumOccurrences() > 0)
+ UP.Runtime = UnrollRuntime;
+
+ // Apply user values provided by argument
+ if (UserThreshold.hasValue()) {
+ UP.Threshold = *UserThreshold;
+ UP.PartialThreshold = *UserThreshold;
+ }
+ if (UserCount.hasValue())
+ UP.Count = *UserCount;
+ if (UserAllowPartial.hasValue())
+ UP.Partial = *UserAllowPartial;
+ if (UserRuntime.hasValue())
+ UP.Runtime = *UserRuntime;
+
+ if (PragmaCount > 0 ||
+ ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) {
+ // If the loop has an unrolling pragma, we want to be more aggressive with
+ // unrolling limits. Set thresholds to at least the PragmaTheshold value
+ // which is larger than the default limits.
+ if (UP.Threshold != NoThreshold)
+ UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
+ if (UP.PartialThreshold != NoThreshold)
+ UP.PartialThreshold =
+ std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
+ }
+
+ return UP;
+}
+
+namespace {
+// This class is used to get an estimate of the optimization effects that we
+// could get from complete loop unrolling. It comes from the fact that some
+// loads might be replaced with concrete constant values and that could trigger
+// a chain of instruction simplifications.
+//
+// E.g. we might have:
+// int a[] = {0, 1, 0};
+// v = 0;
+// for (i = 0; i < 3; i ++)
+// v += b[i]*a[i];
+// If we completely unroll the loop, we would get:
+// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
+// Which then will be simplified to:
+// v = b[0]* 0 + b[1]* 1 + b[2]* 0
+// And finally:
+// v = b[1]
+class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
+ typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
+ friend class InstVisitor<UnrolledInstAnalyzer, bool>;
+ struct SimplifiedAddress {
+ Value *Base = nullptr;
+ ConstantInt *Offset = nullptr;
+ };
+
+public:
+ UnrolledInstAnalyzer(unsigned Iteration,
+ DenseMap<Value *, Constant *> &SimplifiedValues,
+ ScalarEvolution &SE)
+ : SimplifiedValues(SimplifiedValues), SE(SE) {
+ IterationNumber = SE.getConstant(APInt(64, Iteration));
+ }
+
+ // Allow access to the initial visit method.
+ using Base::visit;
+
+private:
+ /// \brief A cache of pointer bases and constant-folded offsets corresponding
+ /// to GEP (or derived from GEP) instructions.
+ ///
+ /// In order to find the base pointer one needs to perform non-trivial
+ /// traversal of the corresponding SCEV expression, so it's good to have the
+ /// results saved.
+ DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
+
+ /// \brief SCEV expression corresponding to number of currently simulated
+ /// iteration.
+ const SCEV *IterationNumber;
+
+ /// \brief A Value->Constant map for keeping values that we managed to
+ /// constant-fold on the given iteration.
+ ///
+ /// While we walk the loop instructions, we build up and maintain a mapping
+ /// of simplified values specific to this iteration. The idea is to propagate
+ /// any special information we have about loads that can be replaced with
+ /// constants after complete unrolling, and account for likely simplifications
+ /// post-unrolling.
+ DenseMap<Value *, Constant *> &SimplifiedValues;
+
+ ScalarEvolution &SE;
+
+ /// \brief Try to simplify instruction \param I using its SCEV expression.
+ ///
+ /// The idea is that some AddRec expressions become constants, which then
+ /// could trigger folding of other instructions. However, that only happens
+ /// for expressions whose start value is also constant, which isn't always the
+ /// case. In another common and important case the start value is just some
+ /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
+ /// it along with the base address instead.
+ bool simplifyInstWithSCEV(Instruction *I) {
+ if (!SE.isSCEVable(I->getType()))
+ return false;
+
+ const SCEV *S = SE.getSCEV(I);
+ if (auto *SC = dyn_cast<SCEVConstant>(S)) {
+ SimplifiedValues[I] = SC->getValue();
+ return true;
+ }
+
+ auto *AR = dyn_cast<SCEVAddRecExpr>(S);
+ if (!AR)
+ return false;
+
+ const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
+ // Check if the AddRec expression becomes a constant.
+ if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
+ SimplifiedValues[I] = SC->getValue();
+ return true;
+ }
+
+ // Check if the offset from the base address becomes a constant.
+ auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
+ if (!Base)
+ return false;
+ auto *Offset =
+ dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
+ if (!Offset)
+ return false;
+ SimplifiedAddress Address;
+ Address.Base = Base->getValue();
+ Address.Offset = Offset->getValue();
+ SimplifiedAddresses[I] = Address;
+ return true;
+ }
+
+ /// Base case for the instruction visitor.
+ bool visitInstruction(Instruction &I) {
+ return simplifyInstWithSCEV(&I);
+ }
+
+ /// Try to simplify binary operator I.
+ ///
+ /// TODO: Probably it's worth to hoist the code for estimating the
+ /// simplifications effects to a separate class, since we have a very similar
+ /// code in InlineCost already.
+ bool visitBinaryOperator(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+
+ Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV =
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
+ else
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ if (SimpleV)
+ return true;
+ return Base::visitBinaryOperator(I);
+ }
+
+ /// Try to fold load I.
+ bool visitLoad(LoadInst &I) {
+ Value *AddrOp = I.getPointerOperand();
+
+ auto AddressIt = SimplifiedAddresses.find(AddrOp);
+ if (AddressIt == SimplifiedAddresses.end())
+ return false;
+ ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
+
+ auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
+ // We're only interested in loads that can be completely folded to a
+ // constant.
+ if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
+ return false;
+
+ ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(GV->getInitializer());
+ if (!CDS)
+ return false;
+
+ // We might have a vector load from an array. FIXME: for now we just bail
+ // out in this case, but we should be able to resolve and simplify such
+ // loads.
+ if(!CDS->isElementTypeCompatible(I.getType()))
+ return false;
+
+ int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+ assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
+ "Unexpectedly large index value.");
+ int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
+ if (Index >= CDS->getNumElements()) {
+ // FIXME: For now we conservatively ignore out of bound accesses, but
+ // we're allowed to perform the optimization in this case.
+ return false;
+ }
+
+ Constant *CV = CDS->getElementAsConstant(Index);
+ assert(CV && "Constant expected.");
+ SimplifiedValues[&I] = CV;
+
+ return true;
+ }
+
+ bool visitCastInst(CastInst &I) {
+ // Propagate constants through casts.
+ Constant *COp = dyn_cast<Constant>(I.getOperand(0));
+ if (!COp)
+ COp = SimplifiedValues.lookup(I.getOperand(0));
+ if (COp)
+ if (Constant *C =
+ ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
+ SimplifiedValues[&I] = C;
+ return true;
+ }
+
+ return Base::visitCastInst(I);
+ }
+
+ bool visitCmpInst(CmpInst &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+ // First try to handle simplified comparisons.
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+
+ if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
+ auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
+ if (SimplifiedLHS != SimplifiedAddresses.end()) {
+ auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
+ if (SimplifiedRHS != SimplifiedAddresses.end()) {
+ SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
+ SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
+ if (LHSAddr.Base == RHSAddr.Base) {
+ LHS = LHSAddr.Offset;
+ RHS = RHSAddr.Offset;
+ }
+ }
+ }
+ }
+
+ if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+ if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
+ if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
+ SimplifiedValues[&I] = C;
+ return true;
+ }
+ }
+ }
+
+ return Base::visitCmpInst(I);
+ }
+};
+} // namespace
+
+
+namespace {
+struct EstimatedUnrollCost {
+ /// \brief The estimated cost after unrolling.
+ int UnrolledCost;
+
+ /// \brief The estimated dynamic cost of executing the instructions in the
+ /// rolled form.
+ int RolledDynamicCost;
+};
+}
+
+/// \brief Figure out if the loop is worth full unrolling.
+///
+/// Complete loop unrolling can make some loads constant, and we need to know
+/// if that would expose any further optimization opportunities. This routine
+/// estimates this optimization. It computes cost of unrolled loop
+/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
+/// dynamic cost we mean that we won't count costs of blocks that are known not
+/// to be executed (i.e. if we have a branch in the loop and we know that at the
+/// given iteration its condition would be resolved to true, we won't add up the
+/// cost of the 'false'-block).
+/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
+/// the analysis failed (no benefits expected from the unrolling, or the loop is
+/// too big to analyze), the returned value is None.
+static Optional<EstimatedUnrollCost>
+analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
+ ScalarEvolution &SE, const TargetTransformInfo &TTI,
+ int MaxUnrolledLoopSize) {
+ // We want to be able to scale offsets by the trip count and add more offsets
+ // to them without checking for overflows, and we already don't want to
+ // analyze *massive* trip counts, so we force the max to be reasonably small.
+ assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
+ "The unroll iterations max is too large!");
+
+ // Don't simulate loops with a big or unknown tripcount
+ if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
+ TripCount > UnrollMaxIterationsCountToAnalyze)
+ return None;
+
+ SmallSetVector<BasicBlock *, 16> BBWorklist;
+ DenseMap<Value *, Constant *> SimplifiedValues;
+ SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
+
+ // The estimated cost of the unrolled form of the loop. We try to estimate
+ // this by simplifying as much as we can while computing the estimate.
+ int UnrolledCost = 0;
+ // We also track the estimated dynamic (that is, actually executed) cost in
+ // the rolled form. This helps identify cases when the savings from unrolling
+ // aren't just exposing dead control flows, but actual reduced dynamic
+ // instructions due to the simplifications which we expect to occur after
+ // unrolling.
+ int RolledDynamicCost = 0;
+
+ // Ensure that we don't violate the loop structure invariants relied on by
+ // this analysis.
+ assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
+ assert(L->isLCSSAForm(DT) &&
+ "Must have loops in LCSSA form to track live-out values.");
+
+ DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
+
+ // Simulate execution of each iteration of the loop counting instructions,
+ // which would be simplified.
+ // Since the same load will take different values on different iterations,
+ // we literally have to go through all loop's iterations.
+ for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+ DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
+
+ // Prepare for the iteration by collecting any simplified entry or backedge
+ // inputs.
+ for (Instruction &I : *L->getHeader()) {
+ auto *PHI = dyn_cast<PHINode>(&I);
+ if (!PHI)
+ break;
+
+ // The loop header PHI nodes must have exactly two input: one from the
+ // loop preheader and one from the loop latch.
+ assert(
+ PHI->getNumIncomingValues() == 2 &&
+ "Must have an incoming value only for the preheader and the latch.");
+
+ Value *V = PHI->getIncomingValueForBlock(
+ Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
+ Constant *C = dyn_cast<Constant>(V);
+ if (Iteration != 0 && !C)
+ C = SimplifiedValues.lookup(V);
+ if (C)
+ SimplifiedInputValues.push_back({PHI, C});
+ }
+
+ // Now clear and re-populate the map for the next iteration.
+ SimplifiedValues.clear();
+ while (!SimplifiedInputValues.empty())
+ SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
+
+ UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE);
+
+ BBWorklist.clear();
+ BBWorklist.insert(L->getHeader());
+ // Note that we *must not* cache the size, this loop grows the worklist.
+ for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+ BasicBlock *BB = BBWorklist[Idx];
+
+ // Visit all instructions in the given basic block and try to simplify
+ // it. We don't change the actual IR, just count optimization
+ // opportunities.
+ for (Instruction &I : *BB) {
+ int InstCost = TTI.getUserCost(&I);
+
+ // Visit the instruction to analyze its loop cost after unrolling,
+ // and if the visitor returns false, include this instruction in the
+ // unrolled cost.
+ if (!Analyzer.visit(I))
+ UnrolledCost += InstCost;
+ else {
+ DEBUG(dbgs() << " " << I
+ << " would be simplified if loop is unrolled.\n");
+ (void)0;
+ }
+
+ // Also track this instructions expected cost when executing the rolled
+ // loop form.
+ RolledDynamicCost += InstCost;
+
+ // If unrolled body turns out to be too big, bail out.
+ if (UnrolledCost > MaxUnrolledLoopSize) {
+ DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
+ << " UnrolledCost: " << UnrolledCost
+ << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
+ << "\n");
+ return None;
+ }
+ }
+
+ TerminatorInst *TI = BB->getTerminator();
+
+ // Add in the live successors by first checking whether we have terminator
+ // that may be simplified based on the values simplified by this call.
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional()) {
+ if (Constant *SimpleCond =
+ SimplifiedValues.lookup(BI->getCondition())) {
+ BasicBlock *Succ = nullptr;
+ // Just take the first successor if condition is undef
+ if (isa<UndefValue>(SimpleCond))
+ Succ = BI->getSuccessor(0);
+ else
+ Succ = BI->getSuccessor(
+ cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ continue;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (Constant *SimpleCond =
+ SimplifiedValues.lookup(SI->getCondition())) {
+ BasicBlock *Succ = nullptr;
+ // Just take the first successor if condition is undef
+ if (isa<UndefValue>(SimpleCond))
+ Succ = SI->getSuccessor(0);
+ else
+ Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
+ .getCaseSuccessor();
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ continue;
+ }
+ }
+
+ // Add BB's successors to the worklist.
+ for (BasicBlock *Succ : successors(BB))
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ }
+
+ // If we found no optimization opportunities on the first iteration, we
+ // won't find them on later ones too.
+ if (UnrolledCost == RolledDynamicCost) {
+ DEBUG(dbgs() << " No opportunities found.. exiting.\n"
+ << " UnrolledCost: " << UnrolledCost << "\n");
+ return None;
+ }
+ }
+ DEBUG(dbgs() << "Analysis finished:\n"
+ << "UnrolledCost: " << UnrolledCost << ", "
+ << "RolledDynamicCost: " << RolledDynamicCost << "\n");
+ return {{UnrolledCost, RolledDynamicCost}};
+}
+
+/// ApproximateLoopSize - Approximate the size of the loop.
+static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
+ bool &NotDuplicatable,
+ const TargetTransformInfo &TTI,
+ AssumptionCache *AC) {
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
+ CodeMetrics Metrics;
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ Metrics.analyzeBasicBlock(*I, TTI, EphValues);
+ NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
+
+ unsigned LoopSize = Metrics.NumInsts;
+
+ // Don't allow an estimate of size zero. This would allows unrolling of loops
+ // with huge iteration counts, which is a compile time problem even if it's
+ // not a problem for code quality. Also, the code using this size may assume
+ // that each loop has at least three instructions (likely a conditional
+ // branch, a comparison feeding that branch, and some kind of loop increment
+ // feeding that comparison instruction).
+ LoopSize = std::max(LoopSize, 3u);
+
+ return LoopSize;
+}
+
+// Returns the loop hint metadata node with the given name (for example,
+// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
+// returned.
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+ if (MDNode *LoopID = L->getLoopID())
+ return GetUnrollMetadata(LoopID, Name);
+ return nullptr;
+}
+
+// Returns true if the loop has an unroll(full) pragma.
+static bool HasUnrollFullPragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
+}
+
+// Returns true if the loop has an unroll(enable) pragma. This metadata is used
+// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
+static bool HasUnrollEnablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
+}
+
+// Returns true if the loop has an unroll(disable) pragma.
+static bool HasUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
+}
+
+// Returns true if the loop has an runtime unroll(disable) pragma.
+static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
+}
+
+// If loop has an unroll_count pragma return the (necessarily
+// positive) value from the pragma. Otherwise return 0.
+static unsigned UnrollCountPragmaValue(const Loop *L) {
+ MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
+ if (MD) {
+ assert(MD->getNumOperands() == 2 &&
+ "Unroll count hint metadata should have two operands.");
+ unsigned Count =
+ mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
+ assert(Count >= 1 && "Unroll count must be positive.");
+ return Count;
+ }
+ return 0;
+}
+
+// Remove existing unroll metadata and add unroll disable metadata to
+// indicate the loop has already been unrolled. This prevents a loop
+// from being unrolled more than is directed by a pragma if the loop
+// unrolling pass is run more than once (which it generally is).
+static void SetLoopAlreadyUnrolled(Loop *L) {
+ MDNode *LoopID = L->getLoopID();
+ if (!LoopID) return;
+
+ // First remove any existing loop unrolling metadata.
+ SmallVector<Metadata *, 4> MDs;
+ // Reserve first location for self reference to the LoopID metadata node.
+ MDs.push_back(nullptr);
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ bool IsUnrollMetadata = false;
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (MD) {
+ const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
+ }
+ if (!IsUnrollMetadata)
+ MDs.push_back(LoopID->getOperand(i));
+ }
+
+ // Add unroll(disable) metadata to disable future unrolling.
+ LLVMContext &Context = L->getHeader()->getContext();
+ SmallVector<Metadata *, 1> DisableOperands;
+ DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
+ MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+ MDs.push_back(DisableNode);
+
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ L->setLoopID(NewLoopID);
+}
+
+static bool canUnrollCompletely(Loop *L, unsigned Threshold,
+ unsigned PercentDynamicCostSavedThreshold,
+ unsigned DynamicCostSavingsDiscount,
+ uint64_t UnrolledCost,
+ uint64_t RolledDynamicCost) {
+ if (Threshold == NoThreshold) {
+ DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
+ return true;
+ }
+
+ if (UnrolledCost <= Threshold) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolled cost: "
+ << UnrolledCost << "<" << Threshold << "\n");
+ return true;
+ }
+
+ assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
+ assert(RolledDynamicCost >= UnrolledCost &&
+ "Cannot have a higher unrolled cost than a rolled cost!");
+
+ // Compute the percentage of the dynamic cost in the rolled form that is
+ // saved when unrolled. If unrolling dramatically reduces the estimated
+ // dynamic cost of the loop, we use a higher threshold to allow more
+ // unrolling.
+ unsigned PercentDynamicCostSaved =
+ (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
+
+ if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
+ (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
+ (int64_t)Threshold) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the "
+ "expected dynamic cost by " << PercentDynamicCostSaved
+ << "% (threshold: " << PercentDynamicCostSavedThreshold
+ << "%)\n"
+ << " and the unrolled cost (" << UnrolledCost
+ << ") is less than the max threshold ("
+ << DynamicCostSavingsDiscount << ").\n");
+ return true;
+ }
+
+ DEBUG(dbgs() << " Too large to fully unroll:\n");
+ DEBUG(dbgs() << " Threshold: " << Threshold << "\n");
+ DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n");
+ DEBUG(dbgs() << " Percent cost saved threshold: "
+ << PercentDynamicCostSavedThreshold << "%\n");
+ DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n");
+ DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n");
+ DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved
+ << "\n");
+ return false;
+}
+
+static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
+ ScalarEvolution *SE, const TargetTransformInfo &TTI,
+ AssumptionCache &AC, bool PreserveLCSSA,
+ Optional<unsigned> ProvidedCount,
+ Optional<unsigned> ProvidedThreshold,
+ Optional<bool> ProvidedAllowPartial,
+ Optional<bool> ProvidedRuntime) {
+ BasicBlock *Header = L->getHeader();
+ DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
+ << "] Loop %" << Header->getName() << "\n");
+
+ if (HasUnrollDisablePragma(L)) {
+ return false;
+ }
+ bool PragmaFullUnroll = HasUnrollFullPragma(L);
+ bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
+ unsigned PragmaCount = UnrollCountPragmaValue(L);
+ bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0;
+
+ // Find trip count and trip multiple if count is not available
+ unsigned TripCount = 0;
+ unsigned TripMultiple = 1;
+ // If there are multiple exiting blocks but one of them is the latch, use the
+ // latch for the trip count estimation. Otherwise insist on a single exiting
+ // block for the trip count estimation.
+ BasicBlock *ExitingBlock = L->getLoopLatch();
+ if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
+ ExitingBlock = L->getExitingBlock();
+ if (ExitingBlock) {
+ TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+ TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
+ }
+
+ TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
+ L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
+ ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll,
+ TripCount);
+
+ unsigned Count = UP.Count;
+ bool CountSetExplicitly = Count != 0;
+ // Use a heuristic count if we didn't set anything explicitly.
+ if (!CountSetExplicitly)
+ Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount;
+ if (TripCount && Count > TripCount)
+ Count = TripCount;
+
+ unsigned NumInlineCandidates;
+ bool notDuplicatable;
+ unsigned LoopSize =
+ ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
+ DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+
+ // When computing the unrolled size, note that the conditional branch on the
+ // backedge and the comparison feeding it are not replicated like the rest of
+ // the loop body (which is why 2 is subtracted).
+ uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
+ if (notDuplicatable) {
+ DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
+ << " instructions.\n");
+ return false;
+ }
+ if (NumInlineCandidates != 0) {
+ DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
+ return false;
+ }
+
+ // Given Count, TripCount and thresholds determine the type of
+ // unrolling which is to be performed.
+ enum { Full = 0, Partial = 1, Runtime = 2 };
+ int Unrolling;
+ if (TripCount && Count == TripCount) {
+ Unrolling = Partial;
+ // If the loop is really small, we don't need to run an expensive analysis.
+ if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
+ UnrolledSize, UnrolledSize)) {
+ Unrolling = Full;
+ } else {
+ // The loop isn't that small, but we still can fully unroll it if that
+ // helps to remove a significant number of instructions.
+ // To check that, run additional analysis on the loop.
+ if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
+ L, TripCount, DT, *SE, TTI,
+ UP.Threshold + UP.DynamicCostSavingsDiscount))
+ if (canUnrollCompletely(L, UP.Threshold,
+ UP.PercentDynamicCostSavedThreshold,
+ UP.DynamicCostSavingsDiscount,
+ Cost->UnrolledCost, Cost->RolledDynamicCost)) {
+ Unrolling = Full;
+ }
+ }
+ } else if (TripCount && Count < TripCount) {
+ Unrolling = Partial;
+ } else {
+ Unrolling = Runtime;
+ }
+
+ // Reduce count based on the type of unrolling and the threshold values.
+ unsigned OriginalCount = Count;
+ bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime;
+ // Don't unroll a runtime trip count loop with unroll full pragma.
+ if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
+ AllowRuntime = false;
+ }
+ if (Unrolling == Partial) {
+ bool AllowPartial = PragmaEnableUnroll || UP.Partial;
+ if (!AllowPartial && !CountSetExplicitly) {
+ DEBUG(dbgs() << " will not try to unroll partially because "
+ << "-unroll-allow-partial not given\n");
+ return false;
+ }
+ if (UP.PartialThreshold != NoThreshold &&
+ UnrolledSize > UP.PartialThreshold) {
+ // Reduce unroll count to be modulo of TripCount for partial unrolling.
+ Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2);
+ while (Count != 0 && TripCount % Count != 0)
+ Count--;
+ }
+ } else if (Unrolling == Runtime) {
+ if (!AllowRuntime && !CountSetExplicitly) {
+ DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
+ << "-unroll-runtime not given\n");
+ return false;
+ }
+ // Reduce unroll count to be the largest power-of-two factor of
+ // the original count which satisfies the threshold limit.
+ while (Count != 0 && UnrolledSize > UP.PartialThreshold) {
+ Count >>= 1;
+ UnrolledSize = (LoopSize-2) * Count + 2;
+ }
+ if (Count > UP.MaxCount)
+ Count = UP.MaxCount;
+ DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
+ }
+
+ if (HasPragma) {
+ if (PragmaCount != 0)
+ // If loop has an unroll count pragma mark loop as unrolled to prevent
+ // unrolling beyond that requested by the pragma.
+ SetLoopAlreadyUnrolled(L);
+
+ // Emit optimization remarks if we are unable to unroll the loop
+ // as directed by a pragma.
+ DebugLoc LoopLoc = L->getStartLoc();
+ Function *F = Header->getParent();
+ LLVMContext &Ctx = F->getContext();
+ if ((PragmaCount > 0) && Count != OriginalCount) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to unroll loop the number of times directed by "
+ "unroll_count pragma because unrolled size is too large.");
+ } else if (PragmaFullUnroll && !TripCount) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to fully unroll loop as directed by unroll(full) pragma "
+ "because loop has a runtime trip count.");
+ } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to unroll loop as directed by unroll(enable) pragma because "
+ "unrolled size is too large.");
+ } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
+ Count != TripCount) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to fully unroll loop as directed by unroll pragma because "
+ "unrolled size is too large.");
+ }
+ }
+
+ if (Unrolling != Full && Count < 2) {
+ // Partial unrolling by 1 is a nop. For full unrolling, a factor
+ // of 1 makes sense because loop control can be eliminated.
+ return false;
+ }
+
+ // Unroll the loop.
+ if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
+ TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA))
+ return false;
+
+ return true;
+}
+
+namespace {
+class LoopUnroll : public LoopPass {
+public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopUnroll(Optional<unsigned> Threshold = None,
+ Optional<unsigned> Count = None,
+ Optional<bool> AllowPartial = None, Optional<bool> Runtime = None)
+ : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold),
+ ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) {
+ initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
+ }
+
+ Optional<unsigned> ProvidedCount;
+ Optional<unsigned> ProvidedThreshold;
+ Optional<bool> ProvidedAllowPartial;
+ Optional<bool> ProvidedRuntime;
+
+ bool runOnLoop(Loop *L, LPPassManager &) override {
+ if (skipOptnoneFunction(L))
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+
+ return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount,
+ ProvidedThreshold, ProvidedAllowPartial,
+ ProvidedRuntime);
+ }
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
+ // If loop unroll does not preserve dom info then LCSSA pass on next
+ // loop will receive invalid dom info.
+ // For now, recreate dom info, if loop is unrolled.
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+};
+}
+
+char LoopUnroll::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+
+Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
+ int Runtime) {
+ // TODO: It would make more sense for this function to take the optionals
+ // directly, but that's dangerous since it would silently break out of tree
+ // callers.
+ return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
+ Count == -1 ? None : Optional<unsigned>(Count),
+ AllowPartial == -1 ? None
+ : Optional<bool>(AllowPartial),
+ Runtime == -1 ? None : Optional<bool>(Runtime));
+}
+
+Pass *llvm::createSimpleLoopUnrollPass() {
+ return llvm::createLoopUnrollPass(-1, -1, 0, 0);
+}
OpenPOWER on IntegriCloud