diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp | 1030 |
1 files changed, 1030 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp new file mode 100644 index 0000000..ecef6db --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp @@ -0,0 +1,1030 @@ +//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass implements a simple loop unroller. It works best when loops have +// been canonicalized by the -indvars pass, allowing it to determine the trip +// counts of loops easily. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +#include <climits> + +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" + +static cl::opt<unsigned> + UnrollThreshold("unroll-threshold", cl::Hidden, + cl::desc("The baseline cost threshold for loop unrolling")); + +static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold( + "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden, + cl::desc("The percentage of estimated dynamic cost which must be saved by " + "unrolling to allow unrolling up to the max threshold.")); + +static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount( + "unroll-dynamic-cost-savings-discount", cl::Hidden, + cl::desc("This is the amount discounted from the total unroll cost when " + "the unrolled form has a high dynamic cost savings (triggered by " + "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); + +static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( + "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, + cl::desc("Don't allow loop unrolling to simulate more than this number of" + "iterations when checking full unroll profitability")); + +static cl::opt<unsigned> +UnrollCount("unroll-count", cl::Hidden, + cl::desc("Use this unroll count for all loops including those with " + "unroll_count pragma values, for testing purposes")); + +static cl::opt<bool> +UnrollAllowPartial("unroll-allow-partial", cl::Hidden, + cl::desc("Allows loops to be partially unrolled until " + "-unroll-threshold loop size is reached.")); + +static cl::opt<bool> +UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, + cl::desc("Unroll loops with run-time trip counts")); + +static cl::opt<unsigned> +PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, + cl::desc("Unrolled size limit for loops with an unroll(full) or " + "unroll_count pragma.")); + + +/// A magic value for use with the Threshold parameter to indicate +/// that the loop unroll should be performed regardless of how much +/// code expansion would result. +static const unsigned NoThreshold = UINT_MAX; + +/// Default unroll count for loops with run-time trip count if +/// -unroll-count is not set +static const unsigned DefaultUnrollRuntimeCount = 8; + +/// Gather the various unrolling parameters based on the defaults, compiler +/// flags, TTI overrides, pragmas, and user specified parameters. +static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( + Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold, + Optional<unsigned> UserCount, Optional<bool> UserAllowPartial, + Optional<bool> UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll, + bool PragmaEnableUnroll, unsigned TripCount) { + TargetTransformInfo::UnrollingPreferences UP; + + // Set up the defaults + UP.Threshold = 150; + UP.PercentDynamicCostSavedThreshold = 20; + UP.DynamicCostSavingsDiscount = 2000; + UP.OptSizeThreshold = 50; + UP.PartialThreshold = UP.Threshold; + UP.PartialOptSizeThreshold = UP.OptSizeThreshold; + UP.Count = 0; + UP.MaxCount = UINT_MAX; + UP.Partial = false; + UP.Runtime = false; + UP.AllowExpensiveTripCount = false; + + // Override with any target specific settings + TTI.getUnrollingPreferences(L, UP); + + // Apply size attributes + if (L->getHeader()->getParent()->optForSize()) { + UP.Threshold = UP.OptSizeThreshold; + UP.PartialThreshold = UP.PartialOptSizeThreshold; + } + + // Apply unroll count pragmas + if (PragmaCount) + UP.Count = PragmaCount; + else if (PragmaFullUnroll) + UP.Count = TripCount; + + // Apply any user values specified by cl::opt + if (UnrollThreshold.getNumOccurrences() > 0) { + UP.Threshold = UnrollThreshold; + UP.PartialThreshold = UnrollThreshold; + } + if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) + UP.PercentDynamicCostSavedThreshold = + UnrollPercentDynamicCostSavedThreshold; + if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) + UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; + if (UnrollCount.getNumOccurrences() > 0) + UP.Count = UnrollCount; + if (UnrollAllowPartial.getNumOccurrences() > 0) + UP.Partial = UnrollAllowPartial; + if (UnrollRuntime.getNumOccurrences() > 0) + UP.Runtime = UnrollRuntime; + + // Apply user values provided by argument + if (UserThreshold.hasValue()) { + UP.Threshold = *UserThreshold; + UP.PartialThreshold = *UserThreshold; + } + if (UserCount.hasValue()) + UP.Count = *UserCount; + if (UserAllowPartial.hasValue()) + UP.Partial = *UserAllowPartial; + if (UserRuntime.hasValue()) + UP.Runtime = *UserRuntime; + + if (PragmaCount > 0 || + ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) { + // If the loop has an unrolling pragma, we want to be more aggressive with + // unrolling limits. Set thresholds to at least the PragmaTheshold value + // which is larger than the default limits. + if (UP.Threshold != NoThreshold) + UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); + if (UP.PartialThreshold != NoThreshold) + UP.PartialThreshold = + std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); + } + + return UP; +} + +namespace { +// This class is used to get an estimate of the optimization effects that we +// could get from complete loop unrolling. It comes from the fact that some +// loads might be replaced with concrete constant values and that could trigger +// a chain of instruction simplifications. +// +// E.g. we might have: +// int a[] = {0, 1, 0}; +// v = 0; +// for (i = 0; i < 3; i ++) +// v += b[i]*a[i]; +// If we completely unroll the loop, we would get: +// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] +// Which then will be simplified to: +// v = b[0]* 0 + b[1]* 1 + b[2]* 0 +// And finally: +// v = b[1] +class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> { + typedef InstVisitor<UnrolledInstAnalyzer, bool> Base; + friend class InstVisitor<UnrolledInstAnalyzer, bool>; + struct SimplifiedAddress { + Value *Base = nullptr; + ConstantInt *Offset = nullptr; + }; + +public: + UnrolledInstAnalyzer(unsigned Iteration, + DenseMap<Value *, Constant *> &SimplifiedValues, + ScalarEvolution &SE) + : SimplifiedValues(SimplifiedValues), SE(SE) { + IterationNumber = SE.getConstant(APInt(64, Iteration)); + } + + // Allow access to the initial visit method. + using Base::visit; + +private: + /// \brief A cache of pointer bases and constant-folded offsets corresponding + /// to GEP (or derived from GEP) instructions. + /// + /// In order to find the base pointer one needs to perform non-trivial + /// traversal of the corresponding SCEV expression, so it's good to have the + /// results saved. + DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses; + + /// \brief SCEV expression corresponding to number of currently simulated + /// iteration. + const SCEV *IterationNumber; + + /// \brief A Value->Constant map for keeping values that we managed to + /// constant-fold on the given iteration. + /// + /// While we walk the loop instructions, we build up and maintain a mapping + /// of simplified values specific to this iteration. The idea is to propagate + /// any special information we have about loads that can be replaced with + /// constants after complete unrolling, and account for likely simplifications + /// post-unrolling. + DenseMap<Value *, Constant *> &SimplifiedValues; + + ScalarEvolution &SE; + + /// \brief Try to simplify instruction \param I using its SCEV expression. + /// + /// The idea is that some AddRec expressions become constants, which then + /// could trigger folding of other instructions. However, that only happens + /// for expressions whose start value is also constant, which isn't always the + /// case. In another common and important case the start value is just some + /// address (i.e. SCEVUnknown) - in this case we compute the offset and save + /// it along with the base address instead. + bool simplifyInstWithSCEV(Instruction *I) { + if (!SE.isSCEVable(I->getType())) + return false; + + const SCEV *S = SE.getSCEV(I); + if (auto *SC = dyn_cast<SCEVConstant>(S)) { + SimplifiedValues[I] = SC->getValue(); + return true; + } + + auto *AR = dyn_cast<SCEVAddRecExpr>(S); + if (!AR) + return false; + + const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); + // Check if the AddRec expression becomes a constant. + if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) { + SimplifiedValues[I] = SC->getValue(); + return true; + } + + // Check if the offset from the base address becomes a constant. + auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S)); + if (!Base) + return false; + auto *Offset = + dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base)); + if (!Offset) + return false; + SimplifiedAddress Address; + Address.Base = Base->getValue(); + Address.Offset = Offset->getValue(); + SimplifiedAddresses[I] = Address; + return true; + } + + /// Base case for the instruction visitor. + bool visitInstruction(Instruction &I) { + return simplifyInstWithSCEV(&I); + } + + /// Try to simplify binary operator I. + /// + /// TODO: Probably it's worth to hoist the code for estimating the + /// simplifications effects to a separate class, since we have a very similar + /// code in InlineCost already. + bool visitBinaryOperator(BinaryOperator &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + if (!isa<Constant>(LHS)) + if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) + LHS = SimpleLHS; + if (!isa<Constant>(RHS)) + if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) + RHS = SimpleRHS; + + Value *SimpleV = nullptr; + const DataLayout &DL = I.getModule()->getDataLayout(); + if (auto FI = dyn_cast<FPMathOperator>(&I)) + SimpleV = + SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); + else + SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); + + if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) + SimplifiedValues[&I] = C; + + if (SimpleV) + return true; + return Base::visitBinaryOperator(I); + } + + /// Try to fold load I. + bool visitLoad(LoadInst &I) { + Value *AddrOp = I.getPointerOperand(); + + auto AddressIt = SimplifiedAddresses.find(AddrOp); + if (AddressIt == SimplifiedAddresses.end()) + return false; + ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset; + + auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base); + // We're only interested in loads that can be completely folded to a + // constant. + if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) + return false; + + ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(GV->getInitializer()); + if (!CDS) + return false; + + // We might have a vector load from an array. FIXME: for now we just bail + // out in this case, but we should be able to resolve and simplify such + // loads. + if(!CDS->isElementTypeCompatible(I.getType())) + return false; + + int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; + assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 && + "Unexpectedly large index value."); + int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize; + if (Index >= CDS->getNumElements()) { + // FIXME: For now we conservatively ignore out of bound accesses, but + // we're allowed to perform the optimization in this case. + return false; + } + + Constant *CV = CDS->getElementAsConstant(Index); + assert(CV && "Constant expected."); + SimplifiedValues[&I] = CV; + + return true; + } + + bool visitCastInst(CastInst &I) { + // Propagate constants through casts. + Constant *COp = dyn_cast<Constant>(I.getOperand(0)); + if (!COp) + COp = SimplifiedValues.lookup(I.getOperand(0)); + if (COp) + if (Constant *C = + ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { + SimplifiedValues[&I] = C; + return true; + } + + return Base::visitCastInst(I); + } + + bool visitCmpInst(CmpInst &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + + // First try to handle simplified comparisons. + if (!isa<Constant>(LHS)) + if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) + LHS = SimpleLHS; + if (!isa<Constant>(RHS)) + if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) + RHS = SimpleRHS; + + if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) { + auto SimplifiedLHS = SimplifiedAddresses.find(LHS); + if (SimplifiedLHS != SimplifiedAddresses.end()) { + auto SimplifiedRHS = SimplifiedAddresses.find(RHS); + if (SimplifiedRHS != SimplifiedAddresses.end()) { + SimplifiedAddress &LHSAddr = SimplifiedLHS->second; + SimplifiedAddress &RHSAddr = SimplifiedRHS->second; + if (LHSAddr.Base == RHSAddr.Base) { + LHS = LHSAddr.Offset; + RHS = RHSAddr.Offset; + } + } + } + } + + if (Constant *CLHS = dyn_cast<Constant>(LHS)) { + if (Constant *CRHS = dyn_cast<Constant>(RHS)) { + if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { + SimplifiedValues[&I] = C; + return true; + } + } + } + + return Base::visitCmpInst(I); + } +}; +} // namespace + + +namespace { +struct EstimatedUnrollCost { + /// \brief The estimated cost after unrolling. + int UnrolledCost; + + /// \brief The estimated dynamic cost of executing the instructions in the + /// rolled form. + int RolledDynamicCost; +}; +} + +/// \brief Figure out if the loop is worth full unrolling. +/// +/// Complete loop unrolling can make some loads constant, and we need to know +/// if that would expose any further optimization opportunities. This routine +/// estimates this optimization. It computes cost of unrolled loop +/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By +/// dynamic cost we mean that we won't count costs of blocks that are known not +/// to be executed (i.e. if we have a branch in the loop and we know that at the +/// given iteration its condition would be resolved to true, we won't add up the +/// cost of the 'false'-block). +/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If +/// the analysis failed (no benefits expected from the unrolling, or the loop is +/// too big to analyze), the returned value is None. +static Optional<EstimatedUnrollCost> +analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, + ScalarEvolution &SE, const TargetTransformInfo &TTI, + int MaxUnrolledLoopSize) { + // We want to be able to scale offsets by the trip count and add more offsets + // to them without checking for overflows, and we already don't want to + // analyze *massive* trip counts, so we force the max to be reasonably small. + assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && + "The unroll iterations max is too large!"); + + // Don't simulate loops with a big or unknown tripcount + if (!UnrollMaxIterationsCountToAnalyze || !TripCount || + TripCount > UnrollMaxIterationsCountToAnalyze) + return None; + + SmallSetVector<BasicBlock *, 16> BBWorklist; + DenseMap<Value *, Constant *> SimplifiedValues; + SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; + + // The estimated cost of the unrolled form of the loop. We try to estimate + // this by simplifying as much as we can while computing the estimate. + int UnrolledCost = 0; + // We also track the estimated dynamic (that is, actually executed) cost in + // the rolled form. This helps identify cases when the savings from unrolling + // aren't just exposing dead control flows, but actual reduced dynamic + // instructions due to the simplifications which we expect to occur after + // unrolling. + int RolledDynamicCost = 0; + + // Ensure that we don't violate the loop structure invariants relied on by + // this analysis. + assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); + assert(L->isLCSSAForm(DT) && + "Must have loops in LCSSA form to track live-out values."); + + DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); + + // Simulate execution of each iteration of the loop counting instructions, + // which would be simplified. + // Since the same load will take different values on different iterations, + // we literally have to go through all loop's iterations. + for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { + DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); + + // Prepare for the iteration by collecting any simplified entry or backedge + // inputs. + for (Instruction &I : *L->getHeader()) { + auto *PHI = dyn_cast<PHINode>(&I); + if (!PHI) + break; + + // The loop header PHI nodes must have exactly two input: one from the + // loop preheader and one from the loop latch. + assert( + PHI->getNumIncomingValues() == 2 && + "Must have an incoming value only for the preheader and the latch."); + + Value *V = PHI->getIncomingValueForBlock( + Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); + Constant *C = dyn_cast<Constant>(V); + if (Iteration != 0 && !C) + C = SimplifiedValues.lookup(V); + if (C) + SimplifiedInputValues.push_back({PHI, C}); + } + + // Now clear and re-populate the map for the next iteration. + SimplifiedValues.clear(); + while (!SimplifiedInputValues.empty()) + SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); + + UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE); + + BBWorklist.clear(); + BBWorklist.insert(L->getHeader()); + // Note that we *must not* cache the size, this loop grows the worklist. + for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { + BasicBlock *BB = BBWorklist[Idx]; + + // Visit all instructions in the given basic block and try to simplify + // it. We don't change the actual IR, just count optimization + // opportunities. + for (Instruction &I : *BB) { + int InstCost = TTI.getUserCost(&I); + + // Visit the instruction to analyze its loop cost after unrolling, + // and if the visitor returns false, include this instruction in the + // unrolled cost. + if (!Analyzer.visit(I)) + UnrolledCost += InstCost; + else { + DEBUG(dbgs() << " " << I + << " would be simplified if loop is unrolled.\n"); + (void)0; + } + + // Also track this instructions expected cost when executing the rolled + // loop form. + RolledDynamicCost += InstCost; + + // If unrolled body turns out to be too big, bail out. + if (UnrolledCost > MaxUnrolledLoopSize) { + DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" + << " UnrolledCost: " << UnrolledCost + << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize + << "\n"); + return None; + } + } + + TerminatorInst *TI = BB->getTerminator(); + + // Add in the live successors by first checking whether we have terminator + // that may be simplified based on the values simplified by this call. + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isConditional()) { + if (Constant *SimpleCond = + SimplifiedValues.lookup(BI->getCondition())) { + BasicBlock *Succ = nullptr; + // Just take the first successor if condition is undef + if (isa<UndefValue>(SimpleCond)) + Succ = BI->getSuccessor(0); + else + Succ = BI->getSuccessor( + cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0); + if (L->contains(Succ)) + BBWorklist.insert(Succ); + continue; + } + } + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + if (Constant *SimpleCond = + SimplifiedValues.lookup(SI->getCondition())) { + BasicBlock *Succ = nullptr; + // Just take the first successor if condition is undef + if (isa<UndefValue>(SimpleCond)) + Succ = SI->getSuccessor(0); + else + Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond)) + .getCaseSuccessor(); + if (L->contains(Succ)) + BBWorklist.insert(Succ); + continue; + } + } + + // Add BB's successors to the worklist. + for (BasicBlock *Succ : successors(BB)) + if (L->contains(Succ)) + BBWorklist.insert(Succ); + } + + // If we found no optimization opportunities on the first iteration, we + // won't find them on later ones too. + if (UnrolledCost == RolledDynamicCost) { + DEBUG(dbgs() << " No opportunities found.. exiting.\n" + << " UnrolledCost: " << UnrolledCost << "\n"); + return None; + } + } + DEBUG(dbgs() << "Analysis finished:\n" + << "UnrolledCost: " << UnrolledCost << ", " + << "RolledDynamicCost: " << RolledDynamicCost << "\n"); + return {{UnrolledCost, RolledDynamicCost}}; +} + +/// ApproximateLoopSize - Approximate the size of the loop. +static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, + bool &NotDuplicatable, + const TargetTransformInfo &TTI, + AssumptionCache *AC) { + SmallPtrSet<const Value *, 32> EphValues; + CodeMetrics::collectEphemeralValues(L, AC, EphValues); + + CodeMetrics Metrics; + for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); + I != E; ++I) + Metrics.analyzeBasicBlock(*I, TTI, EphValues); + NumCalls = Metrics.NumInlineCandidates; + NotDuplicatable = Metrics.notDuplicatable; + + unsigned LoopSize = Metrics.NumInsts; + + // Don't allow an estimate of size zero. This would allows unrolling of loops + // with huge iteration counts, which is a compile time problem even if it's + // not a problem for code quality. Also, the code using this size may assume + // that each loop has at least three instructions (likely a conditional + // branch, a comparison feeding that branch, and some kind of loop increment + // feeding that comparison instruction). + LoopSize = std::max(LoopSize, 3u); + + return LoopSize; +} + +// Returns the loop hint metadata node with the given name (for example, +// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is +// returned. +static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { + if (MDNode *LoopID = L->getLoopID()) + return GetUnrollMetadata(LoopID, Name); + return nullptr; +} + +// Returns true if the loop has an unroll(full) pragma. +static bool HasUnrollFullPragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); +} + +// Returns true if the loop has an unroll(enable) pragma. This metadata is used +// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. +static bool HasUnrollEnablePragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); +} + +// Returns true if the loop has an unroll(disable) pragma. +static bool HasUnrollDisablePragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); +} + +// Returns true if the loop has an runtime unroll(disable) pragma. +static bool HasRuntimeUnrollDisablePragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); +} + +// If loop has an unroll_count pragma return the (necessarily +// positive) value from the pragma. Otherwise return 0. +static unsigned UnrollCountPragmaValue(const Loop *L) { + MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); + if (MD) { + assert(MD->getNumOperands() == 2 && + "Unroll count hint metadata should have two operands."); + unsigned Count = + mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); + assert(Count >= 1 && "Unroll count must be positive."); + return Count; + } + return 0; +} + +// Remove existing unroll metadata and add unroll disable metadata to +// indicate the loop has already been unrolled. This prevents a loop +// from being unrolled more than is directed by a pragma if the loop +// unrolling pass is run more than once (which it generally is). +static void SetLoopAlreadyUnrolled(Loop *L) { + MDNode *LoopID = L->getLoopID(); + if (!LoopID) return; + + // First remove any existing loop unrolling metadata. + SmallVector<Metadata *, 4> MDs; + // Reserve first location for self reference to the LoopID metadata node. + MDs.push_back(nullptr); + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + bool IsUnrollMetadata = false; + MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + if (MD) { + const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); + } + if (!IsUnrollMetadata) + MDs.push_back(LoopID->getOperand(i)); + } + + // Add unroll(disable) metadata to disable future unrolling. + LLVMContext &Context = L->getHeader()->getContext(); + SmallVector<Metadata *, 1> DisableOperands; + DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); + MDNode *DisableNode = MDNode::get(Context, DisableOperands); + MDs.push_back(DisableNode); + + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + L->setLoopID(NewLoopID); +} + +static bool canUnrollCompletely(Loop *L, unsigned Threshold, + unsigned PercentDynamicCostSavedThreshold, + unsigned DynamicCostSavingsDiscount, + uint64_t UnrolledCost, + uint64_t RolledDynamicCost) { + if (Threshold == NoThreshold) { + DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); + return true; + } + + if (UnrolledCost <= Threshold) { + DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " + << UnrolledCost << "<" << Threshold << "\n"); + return true; + } + + assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); + assert(RolledDynamicCost >= UnrolledCost && + "Cannot have a higher unrolled cost than a rolled cost!"); + + // Compute the percentage of the dynamic cost in the rolled form that is + // saved when unrolled. If unrolling dramatically reduces the estimated + // dynamic cost of the loop, we use a higher threshold to allow more + // unrolling. + unsigned PercentDynamicCostSaved = + (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; + + if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && + (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= + (int64_t)Threshold) { + DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " + "expected dynamic cost by " << PercentDynamicCostSaved + << "% (threshold: " << PercentDynamicCostSavedThreshold + << "%)\n" + << " and the unrolled cost (" << UnrolledCost + << ") is less than the max threshold (" + << DynamicCostSavingsDiscount << ").\n"); + return true; + } + + DEBUG(dbgs() << " Too large to fully unroll:\n"); + DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); + DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); + DEBUG(dbgs() << " Percent cost saved threshold: " + << PercentDynamicCostSavedThreshold << "%\n"); + DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); + DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); + DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved + << "\n"); + return false; +} + +static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, + ScalarEvolution *SE, const TargetTransformInfo &TTI, + AssumptionCache &AC, bool PreserveLCSSA, + Optional<unsigned> ProvidedCount, + Optional<unsigned> ProvidedThreshold, + Optional<bool> ProvidedAllowPartial, + Optional<bool> ProvidedRuntime) { + BasicBlock *Header = L->getHeader(); + DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() + << "] Loop %" << Header->getName() << "\n"); + + if (HasUnrollDisablePragma(L)) { + return false; + } + bool PragmaFullUnroll = HasUnrollFullPragma(L); + bool PragmaEnableUnroll = HasUnrollEnablePragma(L); + unsigned PragmaCount = UnrollCountPragmaValue(L); + bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0; + + // Find trip count and trip multiple if count is not available + unsigned TripCount = 0; + unsigned TripMultiple = 1; + // If there are multiple exiting blocks but one of them is the latch, use the + // latch for the trip count estimation. Otherwise insist on a single exiting + // block for the trip count estimation. + BasicBlock *ExitingBlock = L->getLoopLatch(); + if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) + ExitingBlock = L->getExitingBlock(); + if (ExitingBlock) { + TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); + TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); + } + + TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( + L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, + ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll, + TripCount); + + unsigned Count = UP.Count; + bool CountSetExplicitly = Count != 0; + // Use a heuristic count if we didn't set anything explicitly. + if (!CountSetExplicitly) + Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount; + if (TripCount && Count > TripCount) + Count = TripCount; + + unsigned NumInlineCandidates; + bool notDuplicatable; + unsigned LoopSize = + ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); + DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); + + // When computing the unrolled size, note that the conditional branch on the + // backedge and the comparison feeding it are not replicated like the rest of + // the loop body (which is why 2 is subtracted). + uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; + if (notDuplicatable) { + DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" + << " instructions.\n"); + return false; + } + if (NumInlineCandidates != 0) { + DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); + return false; + } + + // Given Count, TripCount and thresholds determine the type of + // unrolling which is to be performed. + enum { Full = 0, Partial = 1, Runtime = 2 }; + int Unrolling; + if (TripCount && Count == TripCount) { + Unrolling = Partial; + // If the loop is really small, we don't need to run an expensive analysis. + if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, + UnrolledSize, UnrolledSize)) { + Unrolling = Full; + } else { + // The loop isn't that small, but we still can fully unroll it if that + // helps to remove a significant number of instructions. + // To check that, run additional analysis on the loop. + if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( + L, TripCount, DT, *SE, TTI, + UP.Threshold + UP.DynamicCostSavingsDiscount)) + if (canUnrollCompletely(L, UP.Threshold, + UP.PercentDynamicCostSavedThreshold, + UP.DynamicCostSavingsDiscount, + Cost->UnrolledCost, Cost->RolledDynamicCost)) { + Unrolling = Full; + } + } + } else if (TripCount && Count < TripCount) { + Unrolling = Partial; + } else { + Unrolling = Runtime; + } + + // Reduce count based on the type of unrolling and the threshold values. + unsigned OriginalCount = Count; + bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime; + // Don't unroll a runtime trip count loop with unroll full pragma. + if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) { + AllowRuntime = false; + } + if (Unrolling == Partial) { + bool AllowPartial = PragmaEnableUnroll || UP.Partial; + if (!AllowPartial && !CountSetExplicitly) { + DEBUG(dbgs() << " will not try to unroll partially because " + << "-unroll-allow-partial not given\n"); + return false; + } + if (UP.PartialThreshold != NoThreshold && + UnrolledSize > UP.PartialThreshold) { + // Reduce unroll count to be modulo of TripCount for partial unrolling. + Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2); + while (Count != 0 && TripCount % Count != 0) + Count--; + } + } else if (Unrolling == Runtime) { + if (!AllowRuntime && !CountSetExplicitly) { + DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " + << "-unroll-runtime not given\n"); + return false; + } + // Reduce unroll count to be the largest power-of-two factor of + // the original count which satisfies the threshold limit. + while (Count != 0 && UnrolledSize > UP.PartialThreshold) { + Count >>= 1; + UnrolledSize = (LoopSize-2) * Count + 2; + } + if (Count > UP.MaxCount) + Count = UP.MaxCount; + DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); + } + + if (HasPragma) { + if (PragmaCount != 0) + // If loop has an unroll count pragma mark loop as unrolled to prevent + // unrolling beyond that requested by the pragma. + SetLoopAlreadyUnrolled(L); + + // Emit optimization remarks if we are unable to unroll the loop + // as directed by a pragma. + DebugLoc LoopLoc = L->getStartLoc(); + Function *F = Header->getParent(); + LLVMContext &Ctx = F->getContext(); + if ((PragmaCount > 0) && Count != OriginalCount) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to unroll loop the number of times directed by " + "unroll_count pragma because unrolled size is too large."); + } else if (PragmaFullUnroll && !TripCount) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to fully unroll loop as directed by unroll(full) pragma " + "because loop has a runtime trip count."); + } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to unroll loop as directed by unroll(enable) pragma because " + "unrolled size is too large."); + } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && + Count != TripCount) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to fully unroll loop as directed by unroll pragma because " + "unrolled size is too large."); + } + } + + if (Unrolling != Full && Count < 2) { + // Partial unrolling by 1 is a nop. For full unrolling, a factor + // of 1 makes sense because loop control can be eliminated. + return false; + } + + // Unroll the loop. + if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, + TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA)) + return false; + + return true; +} + +namespace { +class LoopUnroll : public LoopPass { +public: + static char ID; // Pass ID, replacement for typeid + LoopUnroll(Optional<unsigned> Threshold = None, + Optional<unsigned> Count = None, + Optional<bool> AllowPartial = None, Optional<bool> Runtime = None) + : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold), + ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) { + initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); + } + + Optional<unsigned> ProvidedCount; + Optional<unsigned> ProvidedThreshold; + Optional<bool> ProvidedAllowPartial; + Optional<bool> ProvidedRuntime; + + bool runOnLoop(Loop *L, LPPassManager &) override { + if (skipOptnoneFunction(L)) + return false; + + Function &F = *L->getHeader()->getParent(); + + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + const TargetTransformInfo &TTI = + getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); + + return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount, + ProvidedThreshold, ProvidedAllowPartial, + ProvidedRuntime); + } + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG... + /// + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addRequiredID(LoopSimplifyID); + AU.addPreservedID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addPreservedID(LCSSAID); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addPreserved<ScalarEvolutionWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. + // If loop unroll does not preserve dom info then LCSSA pass on next + // loop will receive invalid dom info. + // For now, recreate dom info, if loop is unrolled. + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + } +}; +} + +char LoopUnroll::ID = 0; +INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) + +Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, + int Runtime) { + // TODO: It would make more sense for this function to take the optionals + // directly, but that's dangerous since it would silently break out of tree + // callers. + return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold), + Count == -1 ? None : Optional<unsigned>(Count), + AllowPartial == -1 ? None + : Optional<bool>(AllowPartial), + Runtime == -1 ? None : Optional<bool>(Runtime)); +} + +Pass *llvm::createSimpleLoopUnrollPass() { + return llvm::createLoopUnrollPass(-1, -1, 0, 0); +} |