summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp597
1 files changed, 543 insertions, 54 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
index fef5210..ccafd10 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -13,15 +13,18 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/FunctionTargetTransformInfo.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/CommandLine.h"
@@ -38,6 +41,22 @@ static cl::opt<unsigned>
UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
cl::desc("The cut-off point for automatic loop unrolling"));
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+ "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
+ cl::desc("Don't allow loop unrolling to simulate more than this number of"
+ "iterations when checking full unroll profitability"));
+
+static cl::opt<unsigned> UnrollMinPercentOfOptimized(
+ "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
+ cl::desc("If complete unrolling could trigger further optimizations, and, "
+ "by that, remove the given percent of instructions, perform the "
+ "complete unroll even if it's beyond the threshold"));
+
+static cl::opt<unsigned> UnrollAbsoluteThreshold(
+ "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
+ cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
+ " even if we can remove big portion of instructions later."));
+
static cl::opt<unsigned>
UnrollCount("unroll-count", cl::init(0), cl::Hidden,
cl::desc("Use this unroll count for all loops including those with "
@@ -63,11 +82,16 @@ namespace {
static char ID; // Pass ID, replacement for typeid
LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
+ CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
+ CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
+ UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
+ UserPercentOfOptimized =
+ (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
UserAllowPartial = (P != -1) ||
(UnrollAllowPartial.getNumOccurrences() > 0);
UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
@@ -91,10 +115,16 @@ namespace {
unsigned CurrentCount;
unsigned CurrentThreshold;
+ unsigned CurrentAbsoluteThreshold;
+ unsigned CurrentMinPercentOfOptimized;
bool CurrentAllowPartial;
bool CurrentRuntime;
bool UserCount; // CurrentCount is user-specified.
bool UserThreshold; // CurrentThreshold is user-specified.
+ bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is
+ // user-specified.
+ bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is
+ // user-specified.
bool UserAllowPartial; // CurrentAllowPartial is user-specified.
bool UserRuntime; // CurrentRuntime is user-specified.
@@ -105,16 +135,15 @@ namespace {
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<LoopInfo>();
- AU.addPreserved<LoopInfo>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
- AU.addRequired<TargetTransformInfo>();
- AU.addRequired<FunctionTargetTransformInfo>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
// FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
// If loop unroll does not preserve dom info then LCSSA pass on next
// loop will receive invalid dom info.
@@ -124,9 +153,11 @@ namespace {
// Fill in the UnrollingPreferences parameter with values from the
// TargetTransformationInfo.
- void getUnrollingPreferences(Loop *L, const FunctionTargetTransformInfo &FTTI,
+ void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
TargetTransformInfo::UnrollingPreferences &UP) {
UP.Threshold = CurrentThreshold;
+ UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
+ UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
UP.OptSizeThreshold = OptSizeUnrollThreshold;
UP.PartialThreshold = CurrentThreshold;
UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
@@ -134,7 +165,8 @@ namespace {
UP.MaxCount = UINT_MAX;
UP.Partial = CurrentAllowPartial;
UP.Runtime = CurrentRuntime;
- FTTI.getUnrollingPreferences(L, UP);
+ UP.AllowExpensiveTripCount = false;
+ TTI.getUnrollingPreferences(L, UP);
}
// Select and return an unroll count based on parameters from
@@ -153,7 +185,9 @@ namespace {
// unrolled loops respectively.
void selectThresholds(const Loop *L, bool HasPragma,
const TargetTransformInfo::UnrollingPreferences &UP,
- unsigned &Threshold, unsigned &PartialThreshold) {
+ unsigned &Threshold, unsigned &PartialThreshold,
+ unsigned &AbsoluteThreshold,
+ unsigned &PercentOfOptimizedForCompleteUnroll) {
// Determine the current unrolling threshold. While this is
// normally set from UnrollThreshold, it is overridden to a
// smaller value if the current function is marked as
@@ -161,10 +195,15 @@ namespace {
// specified.
Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
+ AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold
+ : UP.AbsoluteThreshold;
+ PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized
+ ? CurrentMinPercentOfOptimized
+ : UP.MinPercentOfOptimized;
+
if (!UserThreshold &&
- L->getHeader()->getParent()->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize)) {
+ L->getHeader()->getParent()->hasFnAttribute(
+ Attribute::OptimizeForSize)) {
Threshold = UP.OptSizeThreshold;
PartialThreshold = UP.PartialOptSizeThreshold;
}
@@ -180,15 +219,18 @@ namespace {
std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
}
}
+ bool canUnrollCompletely(Loop *L, unsigned Threshold,
+ unsigned AbsoluteThreshold, uint64_t UnrolledSize,
+ unsigned NumberOfOptimizedInstructions,
+ unsigned PercentOfOptimizedForCompleteUnroll);
};
}
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
-INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(FunctionTargetTransformInfo)
-INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
@@ -203,6 +245,407 @@ Pass *llvm::createSimpleLoopUnrollPass() {
return llvm::createLoopUnrollPass(-1, -1, 0, 0);
}
+namespace {
+/// \brief SCEV expressions visitor used for finding expressions that would
+/// become constants if the loop L is unrolled.
+struct FindConstantPointers {
+ /// \brief Shows whether the expression is ConstAddress+Constant or not.
+ bool IndexIsConstant;
+
+ /// \brief Used for filtering out SCEV expressions with two or more AddRec
+ /// subexpressions.
+ ///
+ /// Used to filter out complicated SCEV expressions, having several AddRec
+ /// sub-expressions. We don't handle them, because unrolling one loop
+ /// would help to replace only one of these inductions with a constant, and
+ /// consequently, the expression would remain non-constant.
+ bool HaveSeenAR;
+
+ /// \brief If the SCEV expression becomes ConstAddress+Constant, this value
+ /// holds ConstAddress. Otherwise, it's nullptr.
+ Value *BaseAddress;
+
+ /// \brief The loop, which we try to completely unroll.
+ const Loop *L;
+
+ ScalarEvolution &SE;
+
+ FindConstantPointers(const Loop *L, ScalarEvolution &SE)
+ : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr),
+ L(L), SE(SE) {}
+
+ /// Examine the given expression S and figure out, if it can be a part of an
+ /// expression, that could become a constant after the loop is unrolled.
+ /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis
+ /// results.
+ /// \returns true if we need to examine subexpressions, and false otherwise.
+ bool follow(const SCEV *S) {
+ if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
+ // We've reached the leaf node of SCEV, it's most probably just a
+ // variable.
+ // If it's the only one SCEV-subexpression, then it might be a base
+ // address of an index expression.
+ // If we've already recorded base address, then just give up on this SCEV
+ // - it's too complicated.
+ if (BaseAddress) {
+ IndexIsConstant = false;
+ return false;
+ }
+ BaseAddress = SC->getValue();
+ return false;
+ }
+ if (isa<SCEVConstant>(S))
+ return false;
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ // If the current SCEV expression is AddRec, and its loop isn't the loop
+ // we are about to unroll, then we won't get a constant address after
+ // unrolling, and thus, won't be able to eliminate the load.
+ if (AR->getLoop() != L) {
+ IndexIsConstant = false;
+ return false;
+ }
+ // We don't handle multiple AddRecs here, so give up in this case.
+ if (HaveSeenAR) {
+ IndexIsConstant = false;
+ return false;
+ }
+ HaveSeenAR = true;
+ }
+
+ // Continue traversal.
+ return true;
+ }
+ bool isDone() const { return !IndexIsConstant; }
+};
+} // End anonymous namespace.
+
+namespace {
+/// \brief A cache of SCEV results used to optimize repeated queries to SCEV on
+/// the same set of instructions.
+///
+/// The primary cost this saves is the cost of checking the validity of a SCEV
+/// every time it is looked up. However, in some cases we can provide a reduced
+/// and especially useful model for an instruction based upon SCEV that is
+/// non-trivial to compute but more useful to clients.
+class SCEVCache {
+public:
+ /// \brief Struct to represent a GEP whose start and step are known fixed
+ /// offsets from a base address due to SCEV's analysis.
+ struct GEPDescriptor {
+ Value *BaseAddr = nullptr;
+ unsigned Start = 0;
+ unsigned Step = 0;
+ };
+
+ Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP);
+
+ SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {}
+
+private:
+ const Loop &L;
+ ScalarEvolution &SE;
+
+ SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors;
+};
+} // End anonymous namespace.
+
+/// \brief Get a simplified descriptor for a GEP instruction.
+///
+/// Where possible, this produces a simplified descriptor for a GEP instruction
+/// using SCEV analysis of the containing loop. If this isn't possible, it
+/// returns an empty optional.
+///
+/// The model is a base address, an initial offset, and a per-iteration step.
+/// This fits very common patterns of GEPs inside loops and is something we can
+/// use to simulate the behavior of a particular iteration of a loop.
+///
+/// This is a cached interface. The first call may do non-trivial work to
+/// compute the result, but all subsequent calls will return a fast answer
+/// based on a cached result. This includes caching negative results.
+Optional<SCEVCache::GEPDescriptor>
+SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) {
+ decltype(GEPDescriptors)::iterator It;
+ bool Inserted;
+
+ std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}});
+
+ if (!Inserted) {
+ if (!It->second.BaseAddr)
+ return None;
+
+ return It->second;
+ }
+
+ // We've inserted a new record into the cache, so compute the GEP descriptor
+ // if possible.
+ Value *V = cast<Value>(GEP);
+ if (!SE.isSCEVable(V->getType()))
+ return None;
+ const SCEV *S = SE.getSCEV(V);
+
+ // FIXME: It'd be nice if the worklist and set used by the
+ // SCEVTraversal could be re-used between loop iterations, but the
+ // interface doesn't support that. There is no way to clear the visited
+ // sets between uses.
+ FindConstantPointers Visitor(&L, SE);
+ SCEVTraversal<FindConstantPointers> T(Visitor);
+
+ // Try to find (BaseAddress+Step+Offset) tuple.
+ // If succeeded, save it to the cache - it might help in folding
+ // loads.
+ T.visitAll(S);
+ if (!Visitor.IndexIsConstant || !Visitor.BaseAddress)
+ return None;
+
+ const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress);
+ if (BaseAddrSE->getType() != S->getType())
+ return None;
+ const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
+
+ if (!AR)
+ return None;
+
+ const SCEVConstant *StepSE =
+ dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE));
+ const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart());
+ if (!StepSE || !StartSE)
+ return None;
+
+ // Check and skip caching if doing so would require lots of bits to
+ // avoid overflow.
+ APInt Start = StartSE->getValue()->getValue();
+ APInt Step = StepSE->getValue()->getValue();
+ if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32)
+ return None;
+
+ // We found a cacheable SCEV model for the GEP.
+ It->second.BaseAddr = Visitor.BaseAddress;
+ It->second.Start = Start.getLimitedValue();
+ It->second.Step = Step.getLimitedValue();
+ return It->second;
+}
+
+namespace {
+// This class is used to get an estimate of the optimization effects that we
+// could get from complete loop unrolling. It comes from the fact that some
+// loads might be replaced with concrete constant values and that could trigger
+// a chain of instruction simplifications.
+//
+// E.g. we might have:
+// int a[] = {0, 1, 0};
+// v = 0;
+// for (i = 0; i < 3; i ++)
+// v += b[i]*a[i];
+// If we completely unroll the loop, we would get:
+// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
+// Which then will be simplified to:
+// v = b[0]* 0 + b[1]* 1 + b[2]* 0
+// And finally:
+// v = b[1]
+class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
+ typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
+ friend class InstVisitor<UnrolledInstAnalyzer, bool>;
+
+public:
+ UnrolledInstAnalyzer(unsigned Iteration,
+ DenseMap<Value *, Constant *> &SimplifiedValues,
+ SCEVCache &SC)
+ : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {}
+
+ // Allow access to the initial visit method.
+ using Base::visit;
+
+private:
+ /// \brief Number of currently simulated iteration.
+ ///
+ /// If an expression is ConstAddress+Constant, then the Constant is
+ /// Start + Iteration*Step, where Start and Step could be obtained from
+ /// SCEVGEPCache.
+ unsigned Iteration;
+
+ // While we walk the loop instructions, we we build up and maintain a mapping
+ // of simplified values specific to this iteration. The idea is to propagate
+ // any special information we have about loads that can be replaced with
+ // constants after complete unrolling, and account for likely simplifications
+ // post-unrolling.
+ DenseMap<Value *, Constant *> &SimplifiedValues;
+
+ // We use a cache to wrap all our SCEV queries.
+ SCEVCache &SC;
+
+ /// Base case for the instruction visitor.
+ bool visitInstruction(Instruction &I) { return false; };
+
+ /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
+
+ /// Try to simplify binary operator I.
+ ///
+ /// TODO: Probaly it's worth to hoist the code for estimating the
+ /// simplifications effects to a separate class, since we have a very similar
+ /// code in InlineCost already.
+ bool visitBinaryOperator(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+ Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV =
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
+ else
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ return SimpleV;
+ }
+
+ /// Try to fold load I.
+ bool visitLoad(LoadInst &I) {
+ Value *AddrOp = I.getPointerOperand();
+ if (!isa<Constant>(AddrOp))
+ if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp))
+ AddrOp = SimplifiedAddrOp;
+
+ auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp);
+ if (!GEP)
+ return false;
+ auto OptionalGEPDesc = SC.getGEPDescriptor(GEP);
+ if (!OptionalGEPDesc)
+ return false;
+
+ auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr);
+ // We're only interested in loads that can be completely folded to a
+ // constant.
+ if (!GV || !GV->hasInitializer())
+ return false;
+
+ ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(GV->getInitializer());
+ if (!CDS)
+ return false;
+
+ // This calculation should never overflow because we bound Iteration quite
+ // low and both the start and step are 32-bit integers. We use signed
+ // integers so that UBSan will catch if a bug sneaks into the code.
+ int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+ int64_t Index = ((int64_t)OptionalGEPDesc->Start +
+ (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) /
+ ElemSize;
+ if (Index >= CDS->getNumElements()) {
+ // FIXME: For now we conservatively ignore out of bound accesses, but
+ // we're allowed to perform the optimization in this case.
+ return false;
+ }
+
+ Constant *CV = CDS->getElementAsConstant(Index);
+ assert(CV && "Constant expected.");
+ SimplifiedValues[&I] = CV;
+
+ return true;
+ }
+};
+} // namespace
+
+
+namespace {
+struct EstimatedUnrollCost {
+ /// \brief Count the number of optimized instructions.
+ unsigned NumberOfOptimizedInstructions;
+
+ /// \brief Count the total number of instructions.
+ unsigned UnrolledLoopSize;
+};
+}
+
+/// \brief Figure out if the loop is worth full unrolling.
+///
+/// Complete loop unrolling can make some loads constant, and we need to know
+/// if that would expose any further optimization opportunities. This routine
+/// estimates this optimization. It assigns computed number of instructions,
+/// that potentially might be optimized away, to
+/// NumberOfOptimizedInstructions, and total number of instructions to
+/// UnrolledLoopSize (not counting blocks that won't be reached, if we were
+/// able to compute the condition).
+/// \returns false if we can't analyze the loop, or if we discovered that
+/// unrolling won't give anything. Otherwise, returns true.
+Optional<EstimatedUnrollCost>
+analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
+ const TargetTransformInfo &TTI,
+ unsigned MaxUnrolledLoopSize) {
+ // We want to be able to scale offsets by the trip count and add more offsets
+ // to them without checking for overflows, and we already don't want to
+ // analyze *massive* trip counts, so we force the max to be reasonably small.
+ assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
+ "The unroll iterations max is too large!");
+
+ // Don't simulate loops with a big or unknown tripcount
+ if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
+ TripCount > UnrollMaxIterationsCountToAnalyze)
+ return None;
+
+ SmallSetVector<BasicBlock *, 16> BBWorklist;
+ DenseMap<Value *, Constant *> SimplifiedValues;
+
+ // Use a cache to access SCEV expressions so that we don't pay the cost on
+ // each iteration. This cache is lazily self-populating.
+ SCEVCache SC(*L, SE);
+
+ unsigned NumberOfOptimizedInstructions = 0;
+ unsigned UnrolledLoopSize = 0;
+
+ // Simulate execution of each iteration of the loop counting instructions,
+ // which would be simplified.
+ // Since the same load will take different values on different iterations,
+ // we literally have to go through all loop's iterations.
+ for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+ SimplifiedValues.clear();
+ UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC);
+
+ BBWorklist.clear();
+ BBWorklist.insert(L->getHeader());
+ // Note that we *must not* cache the size, this loop grows the worklist.
+ for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+ BasicBlock *BB = BBWorklist[Idx];
+
+ // Visit all instructions in the given basic block and try to simplify
+ // it. We don't change the actual IR, just count optimization
+ // opportunities.
+ for (Instruction &I : *BB) {
+ UnrolledLoopSize += TTI.getUserCost(&I);
+
+ // Visit the instruction to analyze its loop cost after unrolling,
+ // and if the visitor returns true, then we can optimize this
+ // instruction away.
+ if (Analyzer.visit(I))
+ NumberOfOptimizedInstructions += TTI.getUserCost(&I);
+
+ // If unrolled body turns out to be too big, bail out.
+ if (UnrolledLoopSize - NumberOfOptimizedInstructions >
+ MaxUnrolledLoopSize)
+ return None;
+ }
+
+ // Add BB's successors to the worklist.
+ for (BasicBlock *Succ : successors(BB))
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ }
+
+ // If we found no optimization opportunities on the first iteration, we
+ // won't find them on later ones too.
+ if (!NumberOfOptimizedInstructions)
+ return None;
+ }
+ return {{NumberOfOptimizedInstructions, UnrolledLoopSize}};
+}
+
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
bool &NotDuplicatable,
@@ -234,44 +677,31 @@ static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
// returned.
-static const MDNode *GetUnrollMetadata(const Loop *L, StringRef Name) {
- MDNode *LoopID = L->getLoopID();
- if (!LoopID)
- return nullptr;
-
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
-
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD)
- continue;
-
- const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S)
- continue;
-
- if (Name.equals(S->getString()))
- return MD;
- }
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+ if (MDNode *LoopID = L->getLoopID())
+ return GetUnrollMetadata(LoopID, Name);
return nullptr;
}
// Returns true if the loop has an unroll(full) pragma.
static bool HasUnrollFullPragma(const Loop *L) {
- return GetUnrollMetadata(L, "llvm.loop.unroll.full");
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}
// Returns true if the loop has an unroll(disable) pragma.
static bool HasUnrollDisablePragma(const Loop *L) {
- return GetUnrollMetadata(L, "llvm.loop.unroll.disable");
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
+}
+
+// Returns true if the loop has an runtime unroll(disable) pragma.
+static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}
// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma. Otherwise return 0.
static unsigned UnrollCountPragmaValue(const Loop *L) {
- const MDNode *MD = GetUnrollMetadata(L, "llvm.loop.unroll.count");
+ MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
if (MD) {
assert(MD->getNumOperands() == 2 &&
"Unroll count hint metadata should have two operands.");
@@ -319,6 +749,49 @@ static void SetLoopAlreadyUnrolled(Loop *L) {
L->setLoopID(NewLoopID);
}
+bool LoopUnroll::canUnrollCompletely(
+ Loop *L, unsigned Threshold, unsigned AbsoluteThreshold,
+ uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions,
+ unsigned PercentOfOptimizedForCompleteUnroll) {
+
+ if (Threshold == NoThreshold) {
+ DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
+ return true;
+ }
+
+ if (UnrolledSize <= Threshold) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolled size: "
+ << UnrolledSize << "<" << Threshold << "\n");
+ return true;
+ }
+
+ assert(UnrolledSize && "UnrolledSize can't be 0 at this point.");
+ unsigned PercentOfOptimizedInstructions =
+ (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize;
+
+ if (UnrolledSize <= AbsoluteThreshold &&
+ PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolling will help removing "
+ << PercentOfOptimizedInstructions
+ << "% instructions (threshold: "
+ << PercentOfOptimizedForCompleteUnroll << "%)\n");
+ DEBUG(dbgs() << " Unrolled size (" << UnrolledSize
+ << ") is less than the threshold (" << AbsoluteThreshold
+ << ").\n");
+ return true;
+ }
+
+ DEBUG(dbgs() << " Too large to fully unroll:\n");
+ DEBUG(dbgs() << " Unrolled size: " << UnrolledSize << "\n");
+ DEBUG(dbgs() << " Estimated number of optimized instructions: "
+ << NumberOfOptimizedInstructions << "\n");
+ DEBUG(dbgs() << " Absolute threshold: " << AbsoluteThreshold << "\n");
+ DEBUG(dbgs() << " Minimum percent of removed instructions: "
+ << PercentOfOptimizedForCompleteUnroll << "\n");
+ DEBUG(dbgs() << " Threshold for small loops: " << Threshold << "\n");
+ return false;
+}
+
unsigned LoopUnroll::selectUnrollCount(
const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
@@ -363,13 +836,13 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipOptnoneFunction(L))
return false;
- LoopInfo *LI = &getAnalysis<LoopInfo>();
+ Function &F = *L->getHeader()->getParent();
+
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
- const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
- const FunctionTargetTransformInfo &FTTI =
- getAnalysis<FunctionTargetTransformInfo>();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- *L->getHeader()->getParent());
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
@@ -383,7 +856,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
TargetTransformInfo::UnrollingPreferences UP;
- getUnrollingPreferences(L, FTTI, UP);
+ getUnrollingPreferences(L, TTI, UP);
// Find trip count and trip multiple if count is not available
unsigned TripCount = 0;
@@ -426,20 +899,33 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
unsigned Threshold, PartialThreshold;
- selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold);
+ unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll;
+ selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
+ AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll);
// Given Count, TripCount and thresholds determine the type of
// unrolling which is to be performed.
enum { Full = 0, Partial = 1, Runtime = 2 };
int Unrolling;
if (TripCount && Count == TripCount) {
- if (Threshold != NoThreshold && UnrolledSize > Threshold) {
- DEBUG(dbgs() << " Too large to fully unroll with count: " << Count
- << " because size: " << UnrolledSize << ">" << Threshold
- << "\n");
- Unrolling = Partial;
- } else {
+ Unrolling = Partial;
+ // If the loop is really small, we don't need to run an expensive analysis.
+ if (canUnrollCompletely(
+ L, Threshold, AbsoluteThreshold,
+ UnrolledSize, 0, 100)) {
Unrolling = Full;
+ } else {
+ // The loop isn't that small, but we still can fully unroll it if that
+ // helps to remove a significant number of instructions.
+ // To check that, run additional analysis on the loop.
+ if (Optional<EstimatedUnrollCost> Cost =
+ analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold))
+ if (canUnrollCompletely(L, Threshold, AbsoluteThreshold,
+ Cost->UnrolledLoopSize,
+ Cost->NumberOfOptimizedInstructions,
+ PercentOfOptimizedForCompleteUnroll)) {
+ Unrolling = Full;
+ }
}
} else if (TripCount && Count < TripCount) {
Unrolling = Partial;
@@ -450,6 +936,9 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Reduce count based on the type of unrolling and the threshold values.
unsigned OriginalCount = Count;
bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
+ if (HasRuntimeUnrollDisablePragma(L)) {
+ AllowRuntime = false;
+ }
if (Unrolling == Partial) {
bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
if (!AllowPartial && !CountSetExplicitly) {
@@ -518,8 +1007,8 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
}
// Unroll the loop.
- if (!UnrollLoop(L, Count, TripCount, AllowRuntime, TripMultiple, LI, this,
- &LPM, &AC))
+ if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
+ TripMultiple, LI, this, &LPM, &AC))
return false;
return true;
OpenPOWER on IntegriCloud