diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp | 1015 |
1 files changed, 1015 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp new file mode 100644 index 0000000..ccafd10 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp @@ -0,0 +1,1015 @@ +//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass implements a simple loop unroller. It works best when loops have +// been canonicalized by the -indvars pass, allowing it to determine the trip +// counts of loops easily. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +#include <climits> + +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" + +static cl::opt<unsigned> +UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden, + cl::desc("The cut-off point for automatic loop unrolling")); + +static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( + "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, + cl::desc("Don't allow loop unrolling to simulate more than this number of" + "iterations when checking full unroll profitability")); + +static cl::opt<unsigned> UnrollMinPercentOfOptimized( + "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden, + cl::desc("If complete unrolling could trigger further optimizations, and, " + "by that, remove the given percent of instructions, perform the " + "complete unroll even if it's beyond the threshold")); + +static cl::opt<unsigned> UnrollAbsoluteThreshold( + "unroll-absolute-threshold", cl::init(2000), cl::Hidden, + cl::desc("Don't unroll if the unrolled size is bigger than this threshold," + " even if we can remove big portion of instructions later.")); + +static cl::opt<unsigned> +UnrollCount("unroll-count", cl::init(0), cl::Hidden, + cl::desc("Use this unroll count for all loops including those with " + "unroll_count pragma values, for testing purposes")); + +static cl::opt<bool> +UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden, + cl::desc("Allows loops to be partially unrolled until " + "-unroll-threshold loop size is reached.")); + +static cl::opt<bool> +UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden, + cl::desc("Unroll loops with run-time trip counts")); + +static cl::opt<unsigned> +PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, + cl::desc("Unrolled size limit for loops with an unroll(full) or " + "unroll_count pragma.")); + +namespace { + class LoopUnroll : public LoopPass { + public: + static char ID; // Pass ID, replacement for typeid + LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) { + CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T); + CurrentAbsoluteThreshold = UnrollAbsoluteThreshold; + CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized; + CurrentCount = (C == -1) ? UnrollCount : unsigned(C); + CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P; + CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R; + + UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0); + UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0); + UserPercentOfOptimized = + (UnrollMinPercentOfOptimized.getNumOccurrences() > 0); + UserAllowPartial = (P != -1) || + (UnrollAllowPartial.getNumOccurrences() > 0); + UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0); + UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0); + + initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); + } + + /// A magic value for use with the Threshold parameter to indicate + /// that the loop unroll should be performed regardless of how much + /// code expansion would result. + static const unsigned NoThreshold = UINT_MAX; + + // Threshold to use when optsize is specified (and there is no + // explicit -unroll-threshold). + static const unsigned OptSizeUnrollThreshold = 50; + + // Default unroll count for loops with run-time trip count if + // -unroll-count is not set + static const unsigned UnrollRuntimeCount = 8; + + unsigned CurrentCount; + unsigned CurrentThreshold; + unsigned CurrentAbsoluteThreshold; + unsigned CurrentMinPercentOfOptimized; + bool CurrentAllowPartial; + bool CurrentRuntime; + bool UserCount; // CurrentCount is user-specified. + bool UserThreshold; // CurrentThreshold is user-specified. + bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is + // user-specified. + bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is + // user-specified. + bool UserAllowPartial; // CurrentAllowPartial is user-specified. + bool UserRuntime; // CurrentRuntime is user-specified. + + bool runOnLoop(Loop *L, LPPassManager &LPM) override; + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG... + /// + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addRequiredID(LoopSimplifyID); + AU.addPreservedID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addPreservedID(LCSSAID); + AU.addRequired<ScalarEvolution>(); + AU.addPreserved<ScalarEvolution>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. + // If loop unroll does not preserve dom info then LCSSA pass on next + // loop will receive invalid dom info. + // For now, recreate dom info, if loop is unrolled. + AU.addPreserved<DominatorTreeWrapperPass>(); + } + + // Fill in the UnrollingPreferences parameter with values from the + // TargetTransformationInfo. + void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI, + TargetTransformInfo::UnrollingPreferences &UP) { + UP.Threshold = CurrentThreshold; + UP.AbsoluteThreshold = CurrentAbsoluteThreshold; + UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized; + UP.OptSizeThreshold = OptSizeUnrollThreshold; + UP.PartialThreshold = CurrentThreshold; + UP.PartialOptSizeThreshold = OptSizeUnrollThreshold; + UP.Count = CurrentCount; + UP.MaxCount = UINT_MAX; + UP.Partial = CurrentAllowPartial; + UP.Runtime = CurrentRuntime; + UP.AllowExpensiveTripCount = false; + TTI.getUnrollingPreferences(L, UP); + } + + // Select and return an unroll count based on parameters from + // user, unroll preferences, unroll pragmas, or a heuristic. + // SetExplicitly is set to true if the unroll count is is set by + // the user or a pragma rather than selected heuristically. + unsigned + selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll, + unsigned PragmaCount, + const TargetTransformInfo::UnrollingPreferences &UP, + bool &SetExplicitly); + + // Select threshold values used to limit unrolling based on a + // total unrolled size. Parameters Threshold and PartialThreshold + // are set to the maximum unrolled size for fully and partially + // unrolled loops respectively. + void selectThresholds(const Loop *L, bool HasPragma, + const TargetTransformInfo::UnrollingPreferences &UP, + unsigned &Threshold, unsigned &PartialThreshold, + unsigned &AbsoluteThreshold, + unsigned &PercentOfOptimizedForCompleteUnroll) { + // Determine the current unrolling threshold. While this is + // normally set from UnrollThreshold, it is overridden to a + // smaller value if the current function is marked as + // optimize-for-size, and the unroll threshold was not user + // specified. + Threshold = UserThreshold ? CurrentThreshold : UP.Threshold; + PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold; + AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold + : UP.AbsoluteThreshold; + PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized + ? CurrentMinPercentOfOptimized + : UP.MinPercentOfOptimized; + + if (!UserThreshold && + L->getHeader()->getParent()->hasFnAttribute( + Attribute::OptimizeForSize)) { + Threshold = UP.OptSizeThreshold; + PartialThreshold = UP.PartialOptSizeThreshold; + } + if (HasPragma) { + // If the loop has an unrolling pragma, we want to be more + // aggressive with unrolling limits. Set thresholds to at + // least the PragmaTheshold value which is larger than the + // default limits. + if (Threshold != NoThreshold) + Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold); + if (PartialThreshold != NoThreshold) + PartialThreshold = + std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold); + } + } + bool canUnrollCompletely(Loop *L, unsigned Threshold, + unsigned AbsoluteThreshold, uint64_t UnrolledSize, + unsigned NumberOfOptimizedInstructions, + unsigned PercentOfOptimizedForCompleteUnroll); + }; +} + +char LoopUnroll::ID = 0; +INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) + +Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, + int Runtime) { + return new LoopUnroll(Threshold, Count, AllowPartial, Runtime); +} + +Pass *llvm::createSimpleLoopUnrollPass() { + return llvm::createLoopUnrollPass(-1, -1, 0, 0); +} + +namespace { +/// \brief SCEV expressions visitor used for finding expressions that would +/// become constants if the loop L is unrolled. +struct FindConstantPointers { + /// \brief Shows whether the expression is ConstAddress+Constant or not. + bool IndexIsConstant; + + /// \brief Used for filtering out SCEV expressions with two or more AddRec + /// subexpressions. + /// + /// Used to filter out complicated SCEV expressions, having several AddRec + /// sub-expressions. We don't handle them, because unrolling one loop + /// would help to replace only one of these inductions with a constant, and + /// consequently, the expression would remain non-constant. + bool HaveSeenAR; + + /// \brief If the SCEV expression becomes ConstAddress+Constant, this value + /// holds ConstAddress. Otherwise, it's nullptr. + Value *BaseAddress; + + /// \brief The loop, which we try to completely unroll. + const Loop *L; + + ScalarEvolution &SE; + + FindConstantPointers(const Loop *L, ScalarEvolution &SE) + : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr), + L(L), SE(SE) {} + + /// Examine the given expression S and figure out, if it can be a part of an + /// expression, that could become a constant after the loop is unrolled. + /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis + /// results. + /// \returns true if we need to examine subexpressions, and false otherwise. + bool follow(const SCEV *S) { + if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) { + // We've reached the leaf node of SCEV, it's most probably just a + // variable. + // If it's the only one SCEV-subexpression, then it might be a base + // address of an index expression. + // If we've already recorded base address, then just give up on this SCEV + // - it's too complicated. + if (BaseAddress) { + IndexIsConstant = false; + return false; + } + BaseAddress = SC->getValue(); + return false; + } + if (isa<SCEVConstant>(S)) + return false; + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { + // If the current SCEV expression is AddRec, and its loop isn't the loop + // we are about to unroll, then we won't get a constant address after + // unrolling, and thus, won't be able to eliminate the load. + if (AR->getLoop() != L) { + IndexIsConstant = false; + return false; + } + // We don't handle multiple AddRecs here, so give up in this case. + if (HaveSeenAR) { + IndexIsConstant = false; + return false; + } + HaveSeenAR = true; + } + + // Continue traversal. + return true; + } + bool isDone() const { return !IndexIsConstant; } +}; +} // End anonymous namespace. + +namespace { +/// \brief A cache of SCEV results used to optimize repeated queries to SCEV on +/// the same set of instructions. +/// +/// The primary cost this saves is the cost of checking the validity of a SCEV +/// every time it is looked up. However, in some cases we can provide a reduced +/// and especially useful model for an instruction based upon SCEV that is +/// non-trivial to compute but more useful to clients. +class SCEVCache { +public: + /// \brief Struct to represent a GEP whose start and step are known fixed + /// offsets from a base address due to SCEV's analysis. + struct GEPDescriptor { + Value *BaseAddr = nullptr; + unsigned Start = 0; + unsigned Step = 0; + }; + + Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP); + + SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {} + +private: + const Loop &L; + ScalarEvolution &SE; + + SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors; +}; +} // End anonymous namespace. + +/// \brief Get a simplified descriptor for a GEP instruction. +/// +/// Where possible, this produces a simplified descriptor for a GEP instruction +/// using SCEV analysis of the containing loop. If this isn't possible, it +/// returns an empty optional. +/// +/// The model is a base address, an initial offset, and a per-iteration step. +/// This fits very common patterns of GEPs inside loops and is something we can +/// use to simulate the behavior of a particular iteration of a loop. +/// +/// This is a cached interface. The first call may do non-trivial work to +/// compute the result, but all subsequent calls will return a fast answer +/// based on a cached result. This includes caching negative results. +Optional<SCEVCache::GEPDescriptor> +SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) { + decltype(GEPDescriptors)::iterator It; + bool Inserted; + + std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}}); + + if (!Inserted) { + if (!It->second.BaseAddr) + return None; + + return It->second; + } + + // We've inserted a new record into the cache, so compute the GEP descriptor + // if possible. + Value *V = cast<Value>(GEP); + if (!SE.isSCEVable(V->getType())) + return None; + const SCEV *S = SE.getSCEV(V); + + // FIXME: It'd be nice if the worklist and set used by the + // SCEVTraversal could be re-used between loop iterations, but the + // interface doesn't support that. There is no way to clear the visited + // sets between uses. + FindConstantPointers Visitor(&L, SE); + SCEVTraversal<FindConstantPointers> T(Visitor); + + // Try to find (BaseAddress+Step+Offset) tuple. + // If succeeded, save it to the cache - it might help in folding + // loads. + T.visitAll(S); + if (!Visitor.IndexIsConstant || !Visitor.BaseAddress) + return None; + + const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress); + if (BaseAddrSE->getType() != S->getType()) + return None; + const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE); + + if (!AR) + return None; + + const SCEVConstant *StepSE = + dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)); + const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()); + if (!StepSE || !StartSE) + return None; + + // Check and skip caching if doing so would require lots of bits to + // avoid overflow. + APInt Start = StartSE->getValue()->getValue(); + APInt Step = StepSE->getValue()->getValue(); + if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32) + return None; + + // We found a cacheable SCEV model for the GEP. + It->second.BaseAddr = Visitor.BaseAddress; + It->second.Start = Start.getLimitedValue(); + It->second.Step = Step.getLimitedValue(); + return It->second; +} + +namespace { +// This class is used to get an estimate of the optimization effects that we +// could get from complete loop unrolling. It comes from the fact that some +// loads might be replaced with concrete constant values and that could trigger +// a chain of instruction simplifications. +// +// E.g. we might have: +// int a[] = {0, 1, 0}; +// v = 0; +// for (i = 0; i < 3; i ++) +// v += b[i]*a[i]; +// If we completely unroll the loop, we would get: +// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] +// Which then will be simplified to: +// v = b[0]* 0 + b[1]* 1 + b[2]* 0 +// And finally: +// v = b[1] +class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> { + typedef InstVisitor<UnrolledInstAnalyzer, bool> Base; + friend class InstVisitor<UnrolledInstAnalyzer, bool>; + +public: + UnrolledInstAnalyzer(unsigned Iteration, + DenseMap<Value *, Constant *> &SimplifiedValues, + SCEVCache &SC) + : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {} + + // Allow access to the initial visit method. + using Base::visit; + +private: + /// \brief Number of currently simulated iteration. + /// + /// If an expression is ConstAddress+Constant, then the Constant is + /// Start + Iteration*Step, where Start and Step could be obtained from + /// SCEVGEPCache. + unsigned Iteration; + + // While we walk the loop instructions, we we build up and maintain a mapping + // of simplified values specific to this iteration. The idea is to propagate + // any special information we have about loads that can be replaced with + // constants after complete unrolling, and account for likely simplifications + // post-unrolling. + DenseMap<Value *, Constant *> &SimplifiedValues; + + // We use a cache to wrap all our SCEV queries. + SCEVCache &SC; + + /// Base case for the instruction visitor. + bool visitInstruction(Instruction &I) { return false; }; + + /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt. + + /// Try to simplify binary operator I. + /// + /// TODO: Probaly it's worth to hoist the code for estimating the + /// simplifications effects to a separate class, since we have a very similar + /// code in InlineCost already. + bool visitBinaryOperator(BinaryOperator &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + if (!isa<Constant>(LHS)) + if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) + LHS = SimpleLHS; + if (!isa<Constant>(RHS)) + if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) + RHS = SimpleRHS; + Value *SimpleV = nullptr; + const DataLayout &DL = I.getModule()->getDataLayout(); + if (auto FI = dyn_cast<FPMathOperator>(&I)) + SimpleV = + SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); + else + SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); + + if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) + SimplifiedValues[&I] = C; + + return SimpleV; + } + + /// Try to fold load I. + bool visitLoad(LoadInst &I) { + Value *AddrOp = I.getPointerOperand(); + if (!isa<Constant>(AddrOp)) + if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp)) + AddrOp = SimplifiedAddrOp; + + auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp); + if (!GEP) + return false; + auto OptionalGEPDesc = SC.getGEPDescriptor(GEP); + if (!OptionalGEPDesc) + return false; + + auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr); + // We're only interested in loads that can be completely folded to a + // constant. + if (!GV || !GV->hasInitializer()) + return false; + + ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(GV->getInitializer()); + if (!CDS) + return false; + + // This calculation should never overflow because we bound Iteration quite + // low and both the start and step are 32-bit integers. We use signed + // integers so that UBSan will catch if a bug sneaks into the code. + int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; + int64_t Index = ((int64_t)OptionalGEPDesc->Start + + (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) / + ElemSize; + if (Index >= CDS->getNumElements()) { + // FIXME: For now we conservatively ignore out of bound accesses, but + // we're allowed to perform the optimization in this case. + return false; + } + + Constant *CV = CDS->getElementAsConstant(Index); + assert(CV && "Constant expected."); + SimplifiedValues[&I] = CV; + + return true; + } +}; +} // namespace + + +namespace { +struct EstimatedUnrollCost { + /// \brief Count the number of optimized instructions. + unsigned NumberOfOptimizedInstructions; + + /// \brief Count the total number of instructions. + unsigned UnrolledLoopSize; +}; +} + +/// \brief Figure out if the loop is worth full unrolling. +/// +/// Complete loop unrolling can make some loads constant, and we need to know +/// if that would expose any further optimization opportunities. This routine +/// estimates this optimization. It assigns computed number of instructions, +/// that potentially might be optimized away, to +/// NumberOfOptimizedInstructions, and total number of instructions to +/// UnrolledLoopSize (not counting blocks that won't be reached, if we were +/// able to compute the condition). +/// \returns false if we can't analyze the loop, or if we discovered that +/// unrolling won't give anything. Otherwise, returns true. +Optional<EstimatedUnrollCost> +analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE, + const TargetTransformInfo &TTI, + unsigned MaxUnrolledLoopSize) { + // We want to be able to scale offsets by the trip count and add more offsets + // to them without checking for overflows, and we already don't want to + // analyze *massive* trip counts, so we force the max to be reasonably small. + assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && + "The unroll iterations max is too large!"); + + // Don't simulate loops with a big or unknown tripcount + if (!UnrollMaxIterationsCountToAnalyze || !TripCount || + TripCount > UnrollMaxIterationsCountToAnalyze) + return None; + + SmallSetVector<BasicBlock *, 16> BBWorklist; + DenseMap<Value *, Constant *> SimplifiedValues; + + // Use a cache to access SCEV expressions so that we don't pay the cost on + // each iteration. This cache is lazily self-populating. + SCEVCache SC(*L, SE); + + unsigned NumberOfOptimizedInstructions = 0; + unsigned UnrolledLoopSize = 0; + + // Simulate execution of each iteration of the loop counting instructions, + // which would be simplified. + // Since the same load will take different values on different iterations, + // we literally have to go through all loop's iterations. + for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { + SimplifiedValues.clear(); + UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC); + + BBWorklist.clear(); + BBWorklist.insert(L->getHeader()); + // Note that we *must not* cache the size, this loop grows the worklist. + for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { + BasicBlock *BB = BBWorklist[Idx]; + + // Visit all instructions in the given basic block and try to simplify + // it. We don't change the actual IR, just count optimization + // opportunities. + for (Instruction &I : *BB) { + UnrolledLoopSize += TTI.getUserCost(&I); + + // Visit the instruction to analyze its loop cost after unrolling, + // and if the visitor returns true, then we can optimize this + // instruction away. + if (Analyzer.visit(I)) + NumberOfOptimizedInstructions += TTI.getUserCost(&I); + + // If unrolled body turns out to be too big, bail out. + if (UnrolledLoopSize - NumberOfOptimizedInstructions > + MaxUnrolledLoopSize) + return None; + } + + // Add BB's successors to the worklist. + for (BasicBlock *Succ : successors(BB)) + if (L->contains(Succ)) + BBWorklist.insert(Succ); + } + + // If we found no optimization opportunities on the first iteration, we + // won't find them on later ones too. + if (!NumberOfOptimizedInstructions) + return None; + } + return {{NumberOfOptimizedInstructions, UnrolledLoopSize}}; +} + +/// ApproximateLoopSize - Approximate the size of the loop. +static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, + bool &NotDuplicatable, + const TargetTransformInfo &TTI, + AssumptionCache *AC) { + SmallPtrSet<const Value *, 32> EphValues; + CodeMetrics::collectEphemeralValues(L, AC, EphValues); + + CodeMetrics Metrics; + for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); + I != E; ++I) + Metrics.analyzeBasicBlock(*I, TTI, EphValues); + NumCalls = Metrics.NumInlineCandidates; + NotDuplicatable = Metrics.notDuplicatable; + + unsigned LoopSize = Metrics.NumInsts; + + // Don't allow an estimate of size zero. This would allows unrolling of loops + // with huge iteration counts, which is a compile time problem even if it's + // not a problem for code quality. Also, the code using this size may assume + // that each loop has at least three instructions (likely a conditional + // branch, a comparison feeding that branch, and some kind of loop increment + // feeding that comparison instruction). + LoopSize = std::max(LoopSize, 3u); + + return LoopSize; +} + +// Returns the loop hint metadata node with the given name (for example, +// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is +// returned. +static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { + if (MDNode *LoopID = L->getLoopID()) + return GetUnrollMetadata(LoopID, Name); + return nullptr; +} + +// Returns true if the loop has an unroll(full) pragma. +static bool HasUnrollFullPragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); +} + +// Returns true if the loop has an unroll(disable) pragma. +static bool HasUnrollDisablePragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); +} + +// Returns true if the loop has an runtime unroll(disable) pragma. +static bool HasRuntimeUnrollDisablePragma(const Loop *L) { + return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); +} + +// If loop has an unroll_count pragma return the (necessarily +// positive) value from the pragma. Otherwise return 0. +static unsigned UnrollCountPragmaValue(const Loop *L) { + MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); + if (MD) { + assert(MD->getNumOperands() == 2 && + "Unroll count hint metadata should have two operands."); + unsigned Count = + mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); + assert(Count >= 1 && "Unroll count must be positive."); + return Count; + } + return 0; +} + +// Remove existing unroll metadata and add unroll disable metadata to +// indicate the loop has already been unrolled. This prevents a loop +// from being unrolled more than is directed by a pragma if the loop +// unrolling pass is run more than once (which it generally is). +static void SetLoopAlreadyUnrolled(Loop *L) { + MDNode *LoopID = L->getLoopID(); + if (!LoopID) return; + + // First remove any existing loop unrolling metadata. + SmallVector<Metadata *, 4> MDs; + // Reserve first location for self reference to the LoopID metadata node. + MDs.push_back(nullptr); + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + bool IsUnrollMetadata = false; + MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + if (MD) { + const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); + } + if (!IsUnrollMetadata) + MDs.push_back(LoopID->getOperand(i)); + } + + // Add unroll(disable) metadata to disable future unrolling. + LLVMContext &Context = L->getHeader()->getContext(); + SmallVector<Metadata *, 1> DisableOperands; + DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); + MDNode *DisableNode = MDNode::get(Context, DisableOperands); + MDs.push_back(DisableNode); + + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + L->setLoopID(NewLoopID); +} + +bool LoopUnroll::canUnrollCompletely( + Loop *L, unsigned Threshold, unsigned AbsoluteThreshold, + uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions, + unsigned PercentOfOptimizedForCompleteUnroll) { + + if (Threshold == NoThreshold) { + DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); + return true; + } + + if (UnrolledSize <= Threshold) { + DEBUG(dbgs() << " Can fully unroll, because unrolled size: " + << UnrolledSize << "<" << Threshold << "\n"); + return true; + } + + assert(UnrolledSize && "UnrolledSize can't be 0 at this point."); + unsigned PercentOfOptimizedInstructions = + (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize; + + if (UnrolledSize <= AbsoluteThreshold && + PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) { + DEBUG(dbgs() << " Can fully unroll, because unrolling will help removing " + << PercentOfOptimizedInstructions + << "% instructions (threshold: " + << PercentOfOptimizedForCompleteUnroll << "%)\n"); + DEBUG(dbgs() << " Unrolled size (" << UnrolledSize + << ") is less than the threshold (" << AbsoluteThreshold + << ").\n"); + return true; + } + + DEBUG(dbgs() << " Too large to fully unroll:\n"); + DEBUG(dbgs() << " Unrolled size: " << UnrolledSize << "\n"); + DEBUG(dbgs() << " Estimated number of optimized instructions: " + << NumberOfOptimizedInstructions << "\n"); + DEBUG(dbgs() << " Absolute threshold: " << AbsoluteThreshold << "\n"); + DEBUG(dbgs() << " Minimum percent of removed instructions: " + << PercentOfOptimizedForCompleteUnroll << "\n"); + DEBUG(dbgs() << " Threshold for small loops: " << Threshold << "\n"); + return false; +} + +unsigned LoopUnroll::selectUnrollCount( + const Loop *L, unsigned TripCount, bool PragmaFullUnroll, + unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP, + bool &SetExplicitly) { + SetExplicitly = true; + + // User-specified count (either as a command-line option or + // constructor parameter) has highest precedence. + unsigned Count = UserCount ? CurrentCount : 0; + + // If there is no user-specified count, unroll pragmas have the next + // highest precendence. + if (Count == 0) { + if (PragmaCount) { + Count = PragmaCount; + } else if (PragmaFullUnroll) { + Count = TripCount; + } + } + + if (Count == 0) + Count = UP.Count; + + if (Count == 0) { + SetExplicitly = false; + if (TripCount == 0) + // Runtime trip count. + Count = UnrollRuntimeCount; + else + // Conservative heuristic: if we know the trip count, see if we can + // completely unroll (subject to the threshold, checked below); otherwise + // try to find greatest modulo of the trip count which is still under + // threshold value. + Count = TripCount; + } + if (TripCount && Count > TripCount) + return TripCount; + return Count; +} + +bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { + if (skipOptnoneFunction(L)) + return false; + + Function &F = *L->getHeader()->getParent(); + + LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + ScalarEvolution *SE = &getAnalysis<ScalarEvolution>(); + const TargetTransformInfo &TTI = + getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + + BasicBlock *Header = L->getHeader(); + DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() + << "] Loop %" << Header->getName() << "\n"); + + if (HasUnrollDisablePragma(L)) { + return false; + } + bool PragmaFullUnroll = HasUnrollFullPragma(L); + unsigned PragmaCount = UnrollCountPragmaValue(L); + bool HasPragma = PragmaFullUnroll || PragmaCount > 0; + + TargetTransformInfo::UnrollingPreferences UP; + getUnrollingPreferences(L, TTI, UP); + + // Find trip count and trip multiple if count is not available + unsigned TripCount = 0; + unsigned TripMultiple = 1; + // If there are multiple exiting blocks but one of them is the latch, use the + // latch for the trip count estimation. Otherwise insist on a single exiting + // block for the trip count estimation. + BasicBlock *ExitingBlock = L->getLoopLatch(); + if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) + ExitingBlock = L->getExitingBlock(); + if (ExitingBlock) { + TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); + TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); + } + + // Select an initial unroll count. This may be reduced later based + // on size thresholds. + bool CountSetExplicitly; + unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll, + PragmaCount, UP, CountSetExplicitly); + + unsigned NumInlineCandidates; + bool notDuplicatable; + unsigned LoopSize = + ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); + DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); + + // When computing the unrolled size, note that the conditional branch on the + // backedge and the comparison feeding it are not replicated like the rest of + // the loop body (which is why 2 is subtracted). + uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; + if (notDuplicatable) { + DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" + << " instructions.\n"); + return false; + } + if (NumInlineCandidates != 0) { + DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); + return false; + } + + unsigned Threshold, PartialThreshold; + unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll; + selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold, + AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll); + + // Given Count, TripCount and thresholds determine the type of + // unrolling which is to be performed. + enum { Full = 0, Partial = 1, Runtime = 2 }; + int Unrolling; + if (TripCount && Count == TripCount) { + Unrolling = Partial; + // If the loop is really small, we don't need to run an expensive analysis. + if (canUnrollCompletely( + L, Threshold, AbsoluteThreshold, + UnrolledSize, 0, 100)) { + Unrolling = Full; + } else { + // The loop isn't that small, but we still can fully unroll it if that + // helps to remove a significant number of instructions. + // To check that, run additional analysis on the loop. + if (Optional<EstimatedUnrollCost> Cost = + analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold)) + if (canUnrollCompletely(L, Threshold, AbsoluteThreshold, + Cost->UnrolledLoopSize, + Cost->NumberOfOptimizedInstructions, + PercentOfOptimizedForCompleteUnroll)) { + Unrolling = Full; + } + } + } else if (TripCount && Count < TripCount) { + Unrolling = Partial; + } else { + Unrolling = Runtime; + } + + // Reduce count based on the type of unrolling and the threshold values. + unsigned OriginalCount = Count; + bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime; + if (HasRuntimeUnrollDisablePragma(L)) { + AllowRuntime = false; + } + if (Unrolling == Partial) { + bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial; + if (!AllowPartial && !CountSetExplicitly) { + DEBUG(dbgs() << " will not try to unroll partially because " + << "-unroll-allow-partial not given\n"); + return false; + } + if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) { + // Reduce unroll count to be modulo of TripCount for partial unrolling. + Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2); + while (Count != 0 && TripCount % Count != 0) + Count--; + } + } else if (Unrolling == Runtime) { + if (!AllowRuntime && !CountSetExplicitly) { + DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " + << "-unroll-runtime not given\n"); + return false; + } + // Reduce unroll count to be the largest power-of-two factor of + // the original count which satisfies the threshold limit. + while (Count != 0 && UnrolledSize > PartialThreshold) { + Count >>= 1; + UnrolledSize = (LoopSize-2) * Count + 2; + } + if (Count > UP.MaxCount) + Count = UP.MaxCount; + DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); + } + + if (HasPragma) { + if (PragmaCount != 0) + // If loop has an unroll count pragma mark loop as unrolled to prevent + // unrolling beyond that requested by the pragma. + SetLoopAlreadyUnrolled(L); + + // Emit optimization remarks if we are unable to unroll the loop + // as directed by a pragma. + DebugLoc LoopLoc = L->getStartLoc(); + Function *F = Header->getParent(); + LLVMContext &Ctx = F->getContext(); + if (PragmaFullUnroll && PragmaCount == 0) { + if (TripCount && Count != TripCount) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to fully unroll loop as directed by unroll(full) pragma " + "because unrolled size is too large."); + } else if (!TripCount) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to fully unroll loop as directed by unroll(full) pragma " + "because loop has a runtime trip count."); + } + } else if (PragmaCount > 0 && Count != OriginalCount) { + emitOptimizationRemarkMissed( + Ctx, DEBUG_TYPE, *F, LoopLoc, + "Unable to unroll loop the number of times directed by " + "unroll_count pragma because unrolled size is too large."); + } + } + + if (Unrolling != Full && Count < 2) { + // Partial unrolling by 1 is a nop. For full unrolling, a factor + // of 1 makes sense because loop control can be eliminated. + return false; + } + + // Unroll the loop. + if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, + TripMultiple, LI, this, &LPM, &AC)) + return false; + + return true; +} |