summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp1015
1 files changed, 1015 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
new file mode 100644
index 0000000..ccafd10
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -0,0 +1,1015 @@
+//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a simple loop unroller. It works best when loops have
+// been canonicalized by the -indvars pass, allowing it to determine the trip
+// counts of loops easily.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include <climits>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+static cl::opt<unsigned>
+UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
+ cl::desc("The cut-off point for automatic loop unrolling"));
+
+static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
+ "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
+ cl::desc("Don't allow loop unrolling to simulate more than this number of"
+ "iterations when checking full unroll profitability"));
+
+static cl::opt<unsigned> UnrollMinPercentOfOptimized(
+ "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
+ cl::desc("If complete unrolling could trigger further optimizations, and, "
+ "by that, remove the given percent of instructions, perform the "
+ "complete unroll even if it's beyond the threshold"));
+
+static cl::opt<unsigned> UnrollAbsoluteThreshold(
+ "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
+ cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
+ " even if we can remove big portion of instructions later."));
+
+static cl::opt<unsigned>
+UnrollCount("unroll-count", cl::init(0), cl::Hidden,
+ cl::desc("Use this unroll count for all loops including those with "
+ "unroll_count pragma values, for testing purposes"));
+
+static cl::opt<bool>
+UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
+ cl::desc("Allows loops to be partially unrolled until "
+ "-unroll-threshold loop size is reached."));
+
+static cl::opt<bool>
+UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
+ cl::desc("Unroll loops with run-time trip counts"));
+
+static cl::opt<unsigned>
+PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
+ cl::desc("Unrolled size limit for loops with an unroll(full) or "
+ "unroll_count pragma."));
+
+namespace {
+ class LoopUnroll : public LoopPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
+ CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
+ CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
+ CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
+ CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
+ CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
+ CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
+
+ UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
+ UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
+ UserPercentOfOptimized =
+ (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
+ UserAllowPartial = (P != -1) ||
+ (UnrollAllowPartial.getNumOccurrences() > 0);
+ UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
+ UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
+
+ initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// A magic value for use with the Threshold parameter to indicate
+ /// that the loop unroll should be performed regardless of how much
+ /// code expansion would result.
+ static const unsigned NoThreshold = UINT_MAX;
+
+ // Threshold to use when optsize is specified (and there is no
+ // explicit -unroll-threshold).
+ static const unsigned OptSizeUnrollThreshold = 50;
+
+ // Default unroll count for loops with run-time trip count if
+ // -unroll-count is not set
+ static const unsigned UnrollRuntimeCount = 8;
+
+ unsigned CurrentCount;
+ unsigned CurrentThreshold;
+ unsigned CurrentAbsoluteThreshold;
+ unsigned CurrentMinPercentOfOptimized;
+ bool CurrentAllowPartial;
+ bool CurrentRuntime;
+ bool UserCount; // CurrentCount is user-specified.
+ bool UserThreshold; // CurrentThreshold is user-specified.
+ bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is
+ // user-specified.
+ bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is
+ // user-specified.
+ bool UserAllowPartial; // CurrentAllowPartial is user-specified.
+ bool UserRuntime; // CurrentRuntime is user-specified.
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ AU.addRequired<ScalarEvolution>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
+ // If loop unroll does not preserve dom info then LCSSA pass on next
+ // loop will receive invalid dom info.
+ // For now, recreate dom info, if loop is unrolled.
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+ // Fill in the UnrollingPreferences parameter with values from the
+ // TargetTransformationInfo.
+ void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
+ TargetTransformInfo::UnrollingPreferences &UP) {
+ UP.Threshold = CurrentThreshold;
+ UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
+ UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
+ UP.OptSizeThreshold = OptSizeUnrollThreshold;
+ UP.PartialThreshold = CurrentThreshold;
+ UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
+ UP.Count = CurrentCount;
+ UP.MaxCount = UINT_MAX;
+ UP.Partial = CurrentAllowPartial;
+ UP.Runtime = CurrentRuntime;
+ UP.AllowExpensiveTripCount = false;
+ TTI.getUnrollingPreferences(L, UP);
+ }
+
+ // Select and return an unroll count based on parameters from
+ // user, unroll preferences, unroll pragmas, or a heuristic.
+ // SetExplicitly is set to true if the unroll count is is set by
+ // the user or a pragma rather than selected heuristically.
+ unsigned
+ selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
+ unsigned PragmaCount,
+ const TargetTransformInfo::UnrollingPreferences &UP,
+ bool &SetExplicitly);
+
+ // Select threshold values used to limit unrolling based on a
+ // total unrolled size. Parameters Threshold and PartialThreshold
+ // are set to the maximum unrolled size for fully and partially
+ // unrolled loops respectively.
+ void selectThresholds(const Loop *L, bool HasPragma,
+ const TargetTransformInfo::UnrollingPreferences &UP,
+ unsigned &Threshold, unsigned &PartialThreshold,
+ unsigned &AbsoluteThreshold,
+ unsigned &PercentOfOptimizedForCompleteUnroll) {
+ // Determine the current unrolling threshold. While this is
+ // normally set from UnrollThreshold, it is overridden to a
+ // smaller value if the current function is marked as
+ // optimize-for-size, and the unroll threshold was not user
+ // specified.
+ Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
+ PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
+ AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold
+ : UP.AbsoluteThreshold;
+ PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized
+ ? CurrentMinPercentOfOptimized
+ : UP.MinPercentOfOptimized;
+
+ if (!UserThreshold &&
+ L->getHeader()->getParent()->hasFnAttribute(
+ Attribute::OptimizeForSize)) {
+ Threshold = UP.OptSizeThreshold;
+ PartialThreshold = UP.PartialOptSizeThreshold;
+ }
+ if (HasPragma) {
+ // If the loop has an unrolling pragma, we want to be more
+ // aggressive with unrolling limits. Set thresholds to at
+ // least the PragmaTheshold value which is larger than the
+ // default limits.
+ if (Threshold != NoThreshold)
+ Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
+ if (PartialThreshold != NoThreshold)
+ PartialThreshold =
+ std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
+ }
+ }
+ bool canUnrollCompletely(Loop *L, unsigned Threshold,
+ unsigned AbsoluteThreshold, uint64_t UnrolledSize,
+ unsigned NumberOfOptimizedInstructions,
+ unsigned PercentOfOptimizedForCompleteUnroll);
+ };
+}
+
+char LoopUnroll::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
+
+Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
+ int Runtime) {
+ return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
+}
+
+Pass *llvm::createSimpleLoopUnrollPass() {
+ return llvm::createLoopUnrollPass(-1, -1, 0, 0);
+}
+
+namespace {
+/// \brief SCEV expressions visitor used for finding expressions that would
+/// become constants if the loop L is unrolled.
+struct FindConstantPointers {
+ /// \brief Shows whether the expression is ConstAddress+Constant or not.
+ bool IndexIsConstant;
+
+ /// \brief Used for filtering out SCEV expressions with two or more AddRec
+ /// subexpressions.
+ ///
+ /// Used to filter out complicated SCEV expressions, having several AddRec
+ /// sub-expressions. We don't handle them, because unrolling one loop
+ /// would help to replace only one of these inductions with a constant, and
+ /// consequently, the expression would remain non-constant.
+ bool HaveSeenAR;
+
+ /// \brief If the SCEV expression becomes ConstAddress+Constant, this value
+ /// holds ConstAddress. Otherwise, it's nullptr.
+ Value *BaseAddress;
+
+ /// \brief The loop, which we try to completely unroll.
+ const Loop *L;
+
+ ScalarEvolution &SE;
+
+ FindConstantPointers(const Loop *L, ScalarEvolution &SE)
+ : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr),
+ L(L), SE(SE) {}
+
+ /// Examine the given expression S and figure out, if it can be a part of an
+ /// expression, that could become a constant after the loop is unrolled.
+ /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis
+ /// results.
+ /// \returns true if we need to examine subexpressions, and false otherwise.
+ bool follow(const SCEV *S) {
+ if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
+ // We've reached the leaf node of SCEV, it's most probably just a
+ // variable.
+ // If it's the only one SCEV-subexpression, then it might be a base
+ // address of an index expression.
+ // If we've already recorded base address, then just give up on this SCEV
+ // - it's too complicated.
+ if (BaseAddress) {
+ IndexIsConstant = false;
+ return false;
+ }
+ BaseAddress = SC->getValue();
+ return false;
+ }
+ if (isa<SCEVConstant>(S))
+ return false;
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ // If the current SCEV expression is AddRec, and its loop isn't the loop
+ // we are about to unroll, then we won't get a constant address after
+ // unrolling, and thus, won't be able to eliminate the load.
+ if (AR->getLoop() != L) {
+ IndexIsConstant = false;
+ return false;
+ }
+ // We don't handle multiple AddRecs here, so give up in this case.
+ if (HaveSeenAR) {
+ IndexIsConstant = false;
+ return false;
+ }
+ HaveSeenAR = true;
+ }
+
+ // Continue traversal.
+ return true;
+ }
+ bool isDone() const { return !IndexIsConstant; }
+};
+} // End anonymous namespace.
+
+namespace {
+/// \brief A cache of SCEV results used to optimize repeated queries to SCEV on
+/// the same set of instructions.
+///
+/// The primary cost this saves is the cost of checking the validity of a SCEV
+/// every time it is looked up. However, in some cases we can provide a reduced
+/// and especially useful model for an instruction based upon SCEV that is
+/// non-trivial to compute but more useful to clients.
+class SCEVCache {
+public:
+ /// \brief Struct to represent a GEP whose start and step are known fixed
+ /// offsets from a base address due to SCEV's analysis.
+ struct GEPDescriptor {
+ Value *BaseAddr = nullptr;
+ unsigned Start = 0;
+ unsigned Step = 0;
+ };
+
+ Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP);
+
+ SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {}
+
+private:
+ const Loop &L;
+ ScalarEvolution &SE;
+
+ SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors;
+};
+} // End anonymous namespace.
+
+/// \brief Get a simplified descriptor for a GEP instruction.
+///
+/// Where possible, this produces a simplified descriptor for a GEP instruction
+/// using SCEV analysis of the containing loop. If this isn't possible, it
+/// returns an empty optional.
+///
+/// The model is a base address, an initial offset, and a per-iteration step.
+/// This fits very common patterns of GEPs inside loops and is something we can
+/// use to simulate the behavior of a particular iteration of a loop.
+///
+/// This is a cached interface. The first call may do non-trivial work to
+/// compute the result, but all subsequent calls will return a fast answer
+/// based on a cached result. This includes caching negative results.
+Optional<SCEVCache::GEPDescriptor>
+SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) {
+ decltype(GEPDescriptors)::iterator It;
+ bool Inserted;
+
+ std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}});
+
+ if (!Inserted) {
+ if (!It->second.BaseAddr)
+ return None;
+
+ return It->second;
+ }
+
+ // We've inserted a new record into the cache, so compute the GEP descriptor
+ // if possible.
+ Value *V = cast<Value>(GEP);
+ if (!SE.isSCEVable(V->getType()))
+ return None;
+ const SCEV *S = SE.getSCEV(V);
+
+ // FIXME: It'd be nice if the worklist and set used by the
+ // SCEVTraversal could be re-used between loop iterations, but the
+ // interface doesn't support that. There is no way to clear the visited
+ // sets between uses.
+ FindConstantPointers Visitor(&L, SE);
+ SCEVTraversal<FindConstantPointers> T(Visitor);
+
+ // Try to find (BaseAddress+Step+Offset) tuple.
+ // If succeeded, save it to the cache - it might help in folding
+ // loads.
+ T.visitAll(S);
+ if (!Visitor.IndexIsConstant || !Visitor.BaseAddress)
+ return None;
+
+ const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress);
+ if (BaseAddrSE->getType() != S->getType())
+ return None;
+ const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
+
+ if (!AR)
+ return None;
+
+ const SCEVConstant *StepSE =
+ dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE));
+ const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart());
+ if (!StepSE || !StartSE)
+ return None;
+
+ // Check and skip caching if doing so would require lots of bits to
+ // avoid overflow.
+ APInt Start = StartSE->getValue()->getValue();
+ APInt Step = StepSE->getValue()->getValue();
+ if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32)
+ return None;
+
+ // We found a cacheable SCEV model for the GEP.
+ It->second.BaseAddr = Visitor.BaseAddress;
+ It->second.Start = Start.getLimitedValue();
+ It->second.Step = Step.getLimitedValue();
+ return It->second;
+}
+
+namespace {
+// This class is used to get an estimate of the optimization effects that we
+// could get from complete loop unrolling. It comes from the fact that some
+// loads might be replaced with concrete constant values and that could trigger
+// a chain of instruction simplifications.
+//
+// E.g. we might have:
+// int a[] = {0, 1, 0};
+// v = 0;
+// for (i = 0; i < 3; i ++)
+// v += b[i]*a[i];
+// If we completely unroll the loop, we would get:
+// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
+// Which then will be simplified to:
+// v = b[0]* 0 + b[1]* 1 + b[2]* 0
+// And finally:
+// v = b[1]
+class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
+ typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
+ friend class InstVisitor<UnrolledInstAnalyzer, bool>;
+
+public:
+ UnrolledInstAnalyzer(unsigned Iteration,
+ DenseMap<Value *, Constant *> &SimplifiedValues,
+ SCEVCache &SC)
+ : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {}
+
+ // Allow access to the initial visit method.
+ using Base::visit;
+
+private:
+ /// \brief Number of currently simulated iteration.
+ ///
+ /// If an expression is ConstAddress+Constant, then the Constant is
+ /// Start + Iteration*Step, where Start and Step could be obtained from
+ /// SCEVGEPCache.
+ unsigned Iteration;
+
+ // While we walk the loop instructions, we we build up and maintain a mapping
+ // of simplified values specific to this iteration. The idea is to propagate
+ // any special information we have about loads that can be replaced with
+ // constants after complete unrolling, and account for likely simplifications
+ // post-unrolling.
+ DenseMap<Value *, Constant *> &SimplifiedValues;
+
+ // We use a cache to wrap all our SCEV queries.
+ SCEVCache &SC;
+
+ /// Base case for the instruction visitor.
+ bool visitInstruction(Instruction &I) { return false; };
+
+ /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
+
+ /// Try to simplify binary operator I.
+ ///
+ /// TODO: Probaly it's worth to hoist the code for estimating the
+ /// simplifications effects to a separate class, since we have a very similar
+ /// code in InlineCost already.
+ bool visitBinaryOperator(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+ Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV =
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
+ else
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ return SimpleV;
+ }
+
+ /// Try to fold load I.
+ bool visitLoad(LoadInst &I) {
+ Value *AddrOp = I.getPointerOperand();
+ if (!isa<Constant>(AddrOp))
+ if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp))
+ AddrOp = SimplifiedAddrOp;
+
+ auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp);
+ if (!GEP)
+ return false;
+ auto OptionalGEPDesc = SC.getGEPDescriptor(GEP);
+ if (!OptionalGEPDesc)
+ return false;
+
+ auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr);
+ // We're only interested in loads that can be completely folded to a
+ // constant.
+ if (!GV || !GV->hasInitializer())
+ return false;
+
+ ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(GV->getInitializer());
+ if (!CDS)
+ return false;
+
+ // This calculation should never overflow because we bound Iteration quite
+ // low and both the start and step are 32-bit integers. We use signed
+ // integers so that UBSan will catch if a bug sneaks into the code.
+ int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+ int64_t Index = ((int64_t)OptionalGEPDesc->Start +
+ (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) /
+ ElemSize;
+ if (Index >= CDS->getNumElements()) {
+ // FIXME: For now we conservatively ignore out of bound accesses, but
+ // we're allowed to perform the optimization in this case.
+ return false;
+ }
+
+ Constant *CV = CDS->getElementAsConstant(Index);
+ assert(CV && "Constant expected.");
+ SimplifiedValues[&I] = CV;
+
+ return true;
+ }
+};
+} // namespace
+
+
+namespace {
+struct EstimatedUnrollCost {
+ /// \brief Count the number of optimized instructions.
+ unsigned NumberOfOptimizedInstructions;
+
+ /// \brief Count the total number of instructions.
+ unsigned UnrolledLoopSize;
+};
+}
+
+/// \brief Figure out if the loop is worth full unrolling.
+///
+/// Complete loop unrolling can make some loads constant, and we need to know
+/// if that would expose any further optimization opportunities. This routine
+/// estimates this optimization. It assigns computed number of instructions,
+/// that potentially might be optimized away, to
+/// NumberOfOptimizedInstructions, and total number of instructions to
+/// UnrolledLoopSize (not counting blocks that won't be reached, if we were
+/// able to compute the condition).
+/// \returns false if we can't analyze the loop, or if we discovered that
+/// unrolling won't give anything. Otherwise, returns true.
+Optional<EstimatedUnrollCost>
+analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
+ const TargetTransformInfo &TTI,
+ unsigned MaxUnrolledLoopSize) {
+ // We want to be able to scale offsets by the trip count and add more offsets
+ // to them without checking for overflows, and we already don't want to
+ // analyze *massive* trip counts, so we force the max to be reasonably small.
+ assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
+ "The unroll iterations max is too large!");
+
+ // Don't simulate loops with a big or unknown tripcount
+ if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
+ TripCount > UnrollMaxIterationsCountToAnalyze)
+ return None;
+
+ SmallSetVector<BasicBlock *, 16> BBWorklist;
+ DenseMap<Value *, Constant *> SimplifiedValues;
+
+ // Use a cache to access SCEV expressions so that we don't pay the cost on
+ // each iteration. This cache is lazily self-populating.
+ SCEVCache SC(*L, SE);
+
+ unsigned NumberOfOptimizedInstructions = 0;
+ unsigned UnrolledLoopSize = 0;
+
+ // Simulate execution of each iteration of the loop counting instructions,
+ // which would be simplified.
+ // Since the same load will take different values on different iterations,
+ // we literally have to go through all loop's iterations.
+ for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
+ SimplifiedValues.clear();
+ UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC);
+
+ BBWorklist.clear();
+ BBWorklist.insert(L->getHeader());
+ // Note that we *must not* cache the size, this loop grows the worklist.
+ for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
+ BasicBlock *BB = BBWorklist[Idx];
+
+ // Visit all instructions in the given basic block and try to simplify
+ // it. We don't change the actual IR, just count optimization
+ // opportunities.
+ for (Instruction &I : *BB) {
+ UnrolledLoopSize += TTI.getUserCost(&I);
+
+ // Visit the instruction to analyze its loop cost after unrolling,
+ // and if the visitor returns true, then we can optimize this
+ // instruction away.
+ if (Analyzer.visit(I))
+ NumberOfOptimizedInstructions += TTI.getUserCost(&I);
+
+ // If unrolled body turns out to be too big, bail out.
+ if (UnrolledLoopSize - NumberOfOptimizedInstructions >
+ MaxUnrolledLoopSize)
+ return None;
+ }
+
+ // Add BB's successors to the worklist.
+ for (BasicBlock *Succ : successors(BB))
+ if (L->contains(Succ))
+ BBWorklist.insert(Succ);
+ }
+
+ // If we found no optimization opportunities on the first iteration, we
+ // won't find them on later ones too.
+ if (!NumberOfOptimizedInstructions)
+ return None;
+ }
+ return {{NumberOfOptimizedInstructions, UnrolledLoopSize}};
+}
+
+/// ApproximateLoopSize - Approximate the size of the loop.
+static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
+ bool &NotDuplicatable,
+ const TargetTransformInfo &TTI,
+ AssumptionCache *AC) {
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
+ CodeMetrics Metrics;
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ Metrics.analyzeBasicBlock(*I, TTI, EphValues);
+ NumCalls = Metrics.NumInlineCandidates;
+ NotDuplicatable = Metrics.notDuplicatable;
+
+ unsigned LoopSize = Metrics.NumInsts;
+
+ // Don't allow an estimate of size zero. This would allows unrolling of loops
+ // with huge iteration counts, which is a compile time problem even if it's
+ // not a problem for code quality. Also, the code using this size may assume
+ // that each loop has at least three instructions (likely a conditional
+ // branch, a comparison feeding that branch, and some kind of loop increment
+ // feeding that comparison instruction).
+ LoopSize = std::max(LoopSize, 3u);
+
+ return LoopSize;
+}
+
+// Returns the loop hint metadata node with the given name (for example,
+// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
+// returned.
+static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
+ if (MDNode *LoopID = L->getLoopID())
+ return GetUnrollMetadata(LoopID, Name);
+ return nullptr;
+}
+
+// Returns true if the loop has an unroll(full) pragma.
+static bool HasUnrollFullPragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
+}
+
+// Returns true if the loop has an unroll(disable) pragma.
+static bool HasUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
+}
+
+// Returns true if the loop has an runtime unroll(disable) pragma.
+static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
+ return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
+}
+
+// If loop has an unroll_count pragma return the (necessarily
+// positive) value from the pragma. Otherwise return 0.
+static unsigned UnrollCountPragmaValue(const Loop *L) {
+ MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
+ if (MD) {
+ assert(MD->getNumOperands() == 2 &&
+ "Unroll count hint metadata should have two operands.");
+ unsigned Count =
+ mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
+ assert(Count >= 1 && "Unroll count must be positive.");
+ return Count;
+ }
+ return 0;
+}
+
+// Remove existing unroll metadata and add unroll disable metadata to
+// indicate the loop has already been unrolled. This prevents a loop
+// from being unrolled more than is directed by a pragma if the loop
+// unrolling pass is run more than once (which it generally is).
+static void SetLoopAlreadyUnrolled(Loop *L) {
+ MDNode *LoopID = L->getLoopID();
+ if (!LoopID) return;
+
+ // First remove any existing loop unrolling metadata.
+ SmallVector<Metadata *, 4> MDs;
+ // Reserve first location for self reference to the LoopID metadata node.
+ MDs.push_back(nullptr);
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ bool IsUnrollMetadata = false;
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (MD) {
+ const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
+ }
+ if (!IsUnrollMetadata)
+ MDs.push_back(LoopID->getOperand(i));
+ }
+
+ // Add unroll(disable) metadata to disable future unrolling.
+ LLVMContext &Context = L->getHeader()->getContext();
+ SmallVector<Metadata *, 1> DisableOperands;
+ DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
+ MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+ MDs.push_back(DisableNode);
+
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ L->setLoopID(NewLoopID);
+}
+
+bool LoopUnroll::canUnrollCompletely(
+ Loop *L, unsigned Threshold, unsigned AbsoluteThreshold,
+ uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions,
+ unsigned PercentOfOptimizedForCompleteUnroll) {
+
+ if (Threshold == NoThreshold) {
+ DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
+ return true;
+ }
+
+ if (UnrolledSize <= Threshold) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolled size: "
+ << UnrolledSize << "<" << Threshold << "\n");
+ return true;
+ }
+
+ assert(UnrolledSize && "UnrolledSize can't be 0 at this point.");
+ unsigned PercentOfOptimizedInstructions =
+ (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize;
+
+ if (UnrolledSize <= AbsoluteThreshold &&
+ PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) {
+ DEBUG(dbgs() << " Can fully unroll, because unrolling will help removing "
+ << PercentOfOptimizedInstructions
+ << "% instructions (threshold: "
+ << PercentOfOptimizedForCompleteUnroll << "%)\n");
+ DEBUG(dbgs() << " Unrolled size (" << UnrolledSize
+ << ") is less than the threshold (" << AbsoluteThreshold
+ << ").\n");
+ return true;
+ }
+
+ DEBUG(dbgs() << " Too large to fully unroll:\n");
+ DEBUG(dbgs() << " Unrolled size: " << UnrolledSize << "\n");
+ DEBUG(dbgs() << " Estimated number of optimized instructions: "
+ << NumberOfOptimizedInstructions << "\n");
+ DEBUG(dbgs() << " Absolute threshold: " << AbsoluteThreshold << "\n");
+ DEBUG(dbgs() << " Minimum percent of removed instructions: "
+ << PercentOfOptimizedForCompleteUnroll << "\n");
+ DEBUG(dbgs() << " Threshold for small loops: " << Threshold << "\n");
+ return false;
+}
+
+unsigned LoopUnroll::selectUnrollCount(
+ const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
+ unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
+ bool &SetExplicitly) {
+ SetExplicitly = true;
+
+ // User-specified count (either as a command-line option or
+ // constructor parameter) has highest precedence.
+ unsigned Count = UserCount ? CurrentCount : 0;
+
+ // If there is no user-specified count, unroll pragmas have the next
+ // highest precendence.
+ if (Count == 0) {
+ if (PragmaCount) {
+ Count = PragmaCount;
+ } else if (PragmaFullUnroll) {
+ Count = TripCount;
+ }
+ }
+
+ if (Count == 0)
+ Count = UP.Count;
+
+ if (Count == 0) {
+ SetExplicitly = false;
+ if (TripCount == 0)
+ // Runtime trip count.
+ Count = UnrollRuntimeCount;
+ else
+ // Conservative heuristic: if we know the trip count, see if we can
+ // completely unroll (subject to the threshold, checked below); otherwise
+ // try to find greatest modulo of the trip count which is still under
+ // threshold value.
+ Count = TripCount;
+ }
+ if (TripCount && Count > TripCount)
+ return TripCount;
+ return Count;
+}
+
+bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (skipOptnoneFunction(L))
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+
+ BasicBlock *Header = L->getHeader();
+ DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
+ << "] Loop %" << Header->getName() << "\n");
+
+ if (HasUnrollDisablePragma(L)) {
+ return false;
+ }
+ bool PragmaFullUnroll = HasUnrollFullPragma(L);
+ unsigned PragmaCount = UnrollCountPragmaValue(L);
+ bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
+
+ TargetTransformInfo::UnrollingPreferences UP;
+ getUnrollingPreferences(L, TTI, UP);
+
+ // Find trip count and trip multiple if count is not available
+ unsigned TripCount = 0;
+ unsigned TripMultiple = 1;
+ // If there are multiple exiting blocks but one of them is the latch, use the
+ // latch for the trip count estimation. Otherwise insist on a single exiting
+ // block for the trip count estimation.
+ BasicBlock *ExitingBlock = L->getLoopLatch();
+ if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
+ ExitingBlock = L->getExitingBlock();
+ if (ExitingBlock) {
+ TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+ TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
+ }
+
+ // Select an initial unroll count. This may be reduced later based
+ // on size thresholds.
+ bool CountSetExplicitly;
+ unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
+ PragmaCount, UP, CountSetExplicitly);
+
+ unsigned NumInlineCandidates;
+ bool notDuplicatable;
+ unsigned LoopSize =
+ ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
+ DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
+
+ // When computing the unrolled size, note that the conditional branch on the
+ // backedge and the comparison feeding it are not replicated like the rest of
+ // the loop body (which is why 2 is subtracted).
+ uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
+ if (notDuplicatable) {
+ DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
+ << " instructions.\n");
+ return false;
+ }
+ if (NumInlineCandidates != 0) {
+ DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
+ return false;
+ }
+
+ unsigned Threshold, PartialThreshold;
+ unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll;
+ selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
+ AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll);
+
+ // Given Count, TripCount and thresholds determine the type of
+ // unrolling which is to be performed.
+ enum { Full = 0, Partial = 1, Runtime = 2 };
+ int Unrolling;
+ if (TripCount && Count == TripCount) {
+ Unrolling = Partial;
+ // If the loop is really small, we don't need to run an expensive analysis.
+ if (canUnrollCompletely(
+ L, Threshold, AbsoluteThreshold,
+ UnrolledSize, 0, 100)) {
+ Unrolling = Full;
+ } else {
+ // The loop isn't that small, but we still can fully unroll it if that
+ // helps to remove a significant number of instructions.
+ // To check that, run additional analysis on the loop.
+ if (Optional<EstimatedUnrollCost> Cost =
+ analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold))
+ if (canUnrollCompletely(L, Threshold, AbsoluteThreshold,
+ Cost->UnrolledLoopSize,
+ Cost->NumberOfOptimizedInstructions,
+ PercentOfOptimizedForCompleteUnroll)) {
+ Unrolling = Full;
+ }
+ }
+ } else if (TripCount && Count < TripCount) {
+ Unrolling = Partial;
+ } else {
+ Unrolling = Runtime;
+ }
+
+ // Reduce count based on the type of unrolling and the threshold values.
+ unsigned OriginalCount = Count;
+ bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
+ if (HasRuntimeUnrollDisablePragma(L)) {
+ AllowRuntime = false;
+ }
+ if (Unrolling == Partial) {
+ bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
+ if (!AllowPartial && !CountSetExplicitly) {
+ DEBUG(dbgs() << " will not try to unroll partially because "
+ << "-unroll-allow-partial not given\n");
+ return false;
+ }
+ if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
+ // Reduce unroll count to be modulo of TripCount for partial unrolling.
+ Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
+ while (Count != 0 && TripCount % Count != 0)
+ Count--;
+ }
+ } else if (Unrolling == Runtime) {
+ if (!AllowRuntime && !CountSetExplicitly) {
+ DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
+ << "-unroll-runtime not given\n");
+ return false;
+ }
+ // Reduce unroll count to be the largest power-of-two factor of
+ // the original count which satisfies the threshold limit.
+ while (Count != 0 && UnrolledSize > PartialThreshold) {
+ Count >>= 1;
+ UnrolledSize = (LoopSize-2) * Count + 2;
+ }
+ if (Count > UP.MaxCount)
+ Count = UP.MaxCount;
+ DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
+ }
+
+ if (HasPragma) {
+ if (PragmaCount != 0)
+ // If loop has an unroll count pragma mark loop as unrolled to prevent
+ // unrolling beyond that requested by the pragma.
+ SetLoopAlreadyUnrolled(L);
+
+ // Emit optimization remarks if we are unable to unroll the loop
+ // as directed by a pragma.
+ DebugLoc LoopLoc = L->getStartLoc();
+ Function *F = Header->getParent();
+ LLVMContext &Ctx = F->getContext();
+ if (PragmaFullUnroll && PragmaCount == 0) {
+ if (TripCount && Count != TripCount) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to fully unroll loop as directed by unroll(full) pragma "
+ "because unrolled size is too large.");
+ } else if (!TripCount) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to fully unroll loop as directed by unroll(full) pragma "
+ "because loop has a runtime trip count.");
+ }
+ } else if (PragmaCount > 0 && Count != OriginalCount) {
+ emitOptimizationRemarkMissed(
+ Ctx, DEBUG_TYPE, *F, LoopLoc,
+ "Unable to unroll loop the number of times directed by "
+ "unroll_count pragma because unrolled size is too large.");
+ }
+ }
+
+ if (Unrolling != Full && Count < 2) {
+ // Partial unrolling by 1 is a nop. For full unrolling, a factor
+ // of 1 makes sense because loop control can be eliminated.
+ return false;
+ }
+
+ // Unroll the loop.
+ if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
+ TripMultiple, LI, this, &LPM, &AC))
+ return false;
+
+ return true;
+}
OpenPOWER on IntegriCloud