summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp4818
1 files changed, 4818 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
new file mode 100644
index 0000000..b14a713
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -0,0 +1,4818 @@
+//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation analyzes and transforms the induction variables (and
+// computations derived from them) into forms suitable for efficient execution
+// on the target.
+//
+// This pass performs a strength reduction on array references inside loops that
+// have as one or more of their components the loop induction variable, it
+// rewrites expressions to take advantage of scaled-index addressing modes
+// available on the target, and it performs a variety of other optimizations
+// related to loop induction variables.
+//
+// Terminology note: this code has a lot of handling for "post-increment" or
+// "post-inc" users. This is not talking about post-increment addressing modes;
+// it is instead talking about code like this:
+//
+// %i = phi [ 0, %entry ], [ %i.next, %latch ]
+// ...
+// %i.next = add %i, 1
+// %c = icmp eq %i.next, %n
+//
+// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
+// it's useful to think about these as the same register, with some uses using
+// the value of the register before the add and some using // it after. In this
+// example, the icmp is a post-increment user, since it uses %i.next, which is
+// the value of the induction variable after the increment. The other common
+// case of post-increment users is users outside the loop.
+//
+// TODO: More sophistication in the way Formulae are generated and filtered.
+//
+// TODO: Handle multiple loops at a time.
+//
+// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
+// instead of a GlobalValue?
+//
+// TODO: When truncation is free, truncate ICmp users' operands to make it a
+// smaller encoding (on x86 at least).
+//
+// TODO: When a negated register is used by an add (such as in a list of
+// multiple base registers, or as the increment expression in an addrec),
+// we may not actually need both reg and (-1 * reg) in registers; the
+// negation can be implemented by using a sub instead of an add. The
+// lack of support for taking this into consideration when making
+// register pressure decisions is partly worked around by the "Special"
+// use kind.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-reduce"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Analysis/IVUsers.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
+/// bail out. This threshold is far beyond the number of users that LSR can
+/// conceivably solve, so it should not affect generated code, but catches the
+/// worst cases before LSR burns too much compile time and stack space.
+static const unsigned MaxIVUsers = 200;
+
+// Temporary flag to cleanup congruent phis after LSR phi expansion.
+// It's currently disabled until we can determine whether it's truly useful or
+// not. The flag should be removed after the v3.0 release.
+// This is now needed for ivchains.
+static cl::opt<bool> EnablePhiElim(
+ "enable-lsr-phielim", cl::Hidden, cl::init(true),
+ cl::desc("Enable LSR phi elimination"));
+
+#ifndef NDEBUG
+// Stress test IV chain generation.
+static cl::opt<bool> StressIVChain(
+ "stress-ivchain", cl::Hidden, cl::init(false),
+ cl::desc("Stress test LSR IV chains"));
+#else
+static bool StressIVChain = false;
+#endif
+
+namespace {
+
+/// RegSortData - This class holds data which is used to order reuse candidates.
+class RegSortData {
+public:
+ /// UsedByIndices - This represents the set of LSRUse indices which reference
+ /// a particular register.
+ SmallBitVector UsedByIndices;
+
+ RegSortData() {}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+void RegSortData::print(raw_ostream &OS) const {
+ OS << "[NumUses=" << UsedByIndices.count() << ']';
+}
+
+void RegSortData::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+/// RegUseTracker - Map register candidates to information about how they are
+/// used.
+class RegUseTracker {
+ typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
+
+ RegUsesTy RegUsesMap;
+ SmallVector<const SCEV *, 16> RegSequence;
+
+public:
+ void CountRegister(const SCEV *Reg, size_t LUIdx);
+ void DropRegister(const SCEV *Reg, size_t LUIdx);
+ void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
+
+ bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
+
+ const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
+
+ void clear();
+
+ typedef SmallVectorImpl<const SCEV *>::iterator iterator;
+ typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
+ iterator begin() { return RegSequence.begin(); }
+ iterator end() { return RegSequence.end(); }
+ const_iterator begin() const { return RegSequence.begin(); }
+ const_iterator end() const { return RegSequence.end(); }
+};
+
+}
+
+void
+RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
+ std::pair<RegUsesTy::iterator, bool> Pair =
+ RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
+ RegSortData &RSD = Pair.first->second;
+ if (Pair.second)
+ RegSequence.push_back(Reg);
+ RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
+ RSD.UsedByIndices.set(LUIdx);
+}
+
+void
+RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
+ RegUsesTy::iterator It = RegUsesMap.find(Reg);
+ assert(It != RegUsesMap.end());
+ RegSortData &RSD = It->second;
+ assert(RSD.UsedByIndices.size() > LUIdx);
+ RSD.UsedByIndices.reset(LUIdx);
+}
+
+void
+RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
+ assert(LUIdx <= LastLUIdx);
+
+ // Update RegUses. The data structure is not optimized for this purpose;
+ // we must iterate through it and update each of the bit vectors.
+ for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
+ I != E; ++I) {
+ SmallBitVector &UsedByIndices = I->second.UsedByIndices;
+ if (LUIdx < UsedByIndices.size())
+ UsedByIndices[LUIdx] =
+ LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
+ UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
+ }
+}
+
+bool
+RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
+ RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
+ if (I == RegUsesMap.end())
+ return false;
+ const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
+ int i = UsedByIndices.find_first();
+ if (i == -1) return false;
+ if ((size_t)i != LUIdx) return true;
+ return UsedByIndices.find_next(i) != -1;
+}
+
+const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
+ RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
+ assert(I != RegUsesMap.end() && "Unknown register!");
+ return I->second.UsedByIndices;
+}
+
+void RegUseTracker::clear() {
+ RegUsesMap.clear();
+ RegSequence.clear();
+}
+
+namespace {
+
+/// Formula - This class holds information that describes a formula for
+/// computing satisfying a use. It may include broken-out immediates and scaled
+/// registers.
+struct Formula {
+ /// AM - This is used to represent complex addressing, as well as other kinds
+ /// of interesting uses.
+ TargetLowering::AddrMode AM;
+
+ /// BaseRegs - The list of "base" registers for this use. When this is
+ /// non-empty, AM.HasBaseReg should be set to true.
+ SmallVector<const SCEV *, 2> BaseRegs;
+
+ /// ScaledReg - The 'scaled' register for this use. This should be non-null
+ /// when AM.Scale is not zero.
+ const SCEV *ScaledReg;
+
+ /// UnfoldedOffset - An additional constant offset which added near the
+ /// use. This requires a temporary register, but the offset itself can
+ /// live in an add immediate field rather than a register.
+ int64_t UnfoldedOffset;
+
+ Formula() : ScaledReg(0), UnfoldedOffset(0) {}
+
+ void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
+
+ unsigned getNumRegs() const;
+ Type *getType() const;
+
+ void DeleteBaseReg(const SCEV *&S);
+
+ bool referencesReg(const SCEV *S) const;
+ bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
+ const RegUseTracker &RegUses) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+/// DoInitialMatch - Recursion helper for InitialMatch.
+static void DoInitialMatch(const SCEV *S, Loop *L,
+ SmallVectorImpl<const SCEV *> &Good,
+ SmallVectorImpl<const SCEV *> &Bad,
+ ScalarEvolution &SE) {
+ // Collect expressions which properly dominate the loop header.
+ if (SE.properlyDominates(S, L->getHeader())) {
+ Good.push_back(S);
+ return;
+ }
+
+ // Look at add operands.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I)
+ DoInitialMatch(*I, L, Good, Bad, SE);
+ return;
+ }
+
+ // Look at addrec operands.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
+ if (!AR->getStart()->isZero()) {
+ DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
+ DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
+ AR->getStepRecurrence(SE),
+ // FIXME: AR->getNoWrapFlags()
+ AR->getLoop(), SCEV::FlagAnyWrap),
+ L, Good, Bad, SE);
+ return;
+ }
+
+ // Handle a multiplication by -1 (negation) if it didn't fold.
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
+ if (Mul->getOperand(0)->isAllOnesValue()) {
+ SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
+ const SCEV *NewMul = SE.getMulExpr(Ops);
+
+ SmallVector<const SCEV *, 4> MyGood;
+ SmallVector<const SCEV *, 4> MyBad;
+ DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
+ const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
+ SE.getEffectiveSCEVType(NewMul->getType())));
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
+ E = MyGood.end(); I != E; ++I)
+ Good.push_back(SE.getMulExpr(NegOne, *I));
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
+ E = MyBad.end(); I != E; ++I)
+ Bad.push_back(SE.getMulExpr(NegOne, *I));
+ return;
+ }
+
+ // Ok, we can't do anything interesting. Just stuff the whole thing into a
+ // register and hope for the best.
+ Bad.push_back(S);
+}
+
+/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
+/// attempting to keep all loop-invariant and loop-computable values in a
+/// single base register.
+void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
+ SmallVector<const SCEV *, 4> Good;
+ SmallVector<const SCEV *, 4> Bad;
+ DoInitialMatch(S, L, Good, Bad, SE);
+ if (!Good.empty()) {
+ const SCEV *Sum = SE.getAddExpr(Good);
+ if (!Sum->isZero())
+ BaseRegs.push_back(Sum);
+ AM.HasBaseReg = true;
+ }
+ if (!Bad.empty()) {
+ const SCEV *Sum = SE.getAddExpr(Bad);
+ if (!Sum->isZero())
+ BaseRegs.push_back(Sum);
+ AM.HasBaseReg = true;
+ }
+}
+
+/// getNumRegs - Return the total number of register operands used by this
+/// formula. This does not include register uses implied by non-constant
+/// addrec strides.
+unsigned Formula::getNumRegs() const {
+ return !!ScaledReg + BaseRegs.size();
+}
+
+/// getType - Return the type of this formula, if it has one, or null
+/// otherwise. This type is meaningless except for the bit size.
+Type *Formula::getType() const {
+ return !BaseRegs.empty() ? BaseRegs.front()->getType() :
+ ScaledReg ? ScaledReg->getType() :
+ AM.BaseGV ? AM.BaseGV->getType() :
+ 0;
+}
+
+/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
+void Formula::DeleteBaseReg(const SCEV *&S) {
+ if (&S != &BaseRegs.back())
+ std::swap(S, BaseRegs.back());
+ BaseRegs.pop_back();
+}
+
+/// referencesReg - Test if this formula references the given register.
+bool Formula::referencesReg(const SCEV *S) const {
+ return S == ScaledReg ||
+ std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
+}
+
+/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
+/// which are used by uses other than the use with the given index.
+bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
+ const RegUseTracker &RegUses) const {
+ if (ScaledReg)
+ if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
+ return true;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
+ E = BaseRegs.end(); I != E; ++I)
+ if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
+ return true;
+ return false;
+}
+
+void Formula::print(raw_ostream &OS) const {
+ bool First = true;
+ if (AM.BaseGV) {
+ if (!First) OS << " + "; else First = false;
+ WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ }
+ if (AM.BaseOffs != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << AM.BaseOffs;
+ }
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
+ E = BaseRegs.end(); I != E; ++I) {
+ if (!First) OS << " + "; else First = false;
+ OS << "reg(" << **I << ')';
+ }
+ if (AM.HasBaseReg && BaseRegs.empty()) {
+ if (!First) OS << " + "; else First = false;
+ OS << "**error: HasBaseReg**";
+ } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
+ if (!First) OS << " + "; else First = false;
+ OS << "**error: !HasBaseReg**";
+ }
+ if (AM.Scale != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << AM.Scale << "*reg(";
+ if (ScaledReg)
+ OS << *ScaledReg;
+ else
+ OS << "<unknown>";
+ OS << ')';
+ }
+ if (UnfoldedOffset != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << "imm(" << UnfoldedOffset << ')';
+ }
+}
+
+void Formula::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// isAddRecSExtable - Return true if the given addrec can be sign-extended
+/// without changing its value.
+static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
+ Type *WideTy =
+ IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
+ return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
+}
+
+/// isAddSExtable - Return true if the given add can be sign-extended
+/// without changing its value.
+static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
+ Type *WideTy =
+ IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
+ return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
+}
+
+/// isMulSExtable - Return true if the given mul can be sign-extended
+/// without changing its value.
+static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
+ Type *WideTy =
+ IntegerType::get(SE.getContext(),
+ SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
+ return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
+}
+
+/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
+/// and if the remainder is known to be zero, or null otherwise. If
+/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
+/// to Y, ignoring that the multiplication may overflow, which is useful when
+/// the result will be used in a context where the most significant bits are
+/// ignored.
+static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
+ ScalarEvolution &SE,
+ bool IgnoreSignificantBits = false) {
+ // Handle the trivial case, which works for any SCEV type.
+ if (LHS == RHS)
+ return SE.getConstant(LHS->getType(), 1);
+
+ // Handle a few RHS special cases.
+ const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
+ if (RC) {
+ const APInt &RA = RC->getValue()->getValue();
+ // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
+ // some folding.
+ if (RA.isAllOnesValue())
+ return SE.getMulExpr(LHS, RC);
+ // Handle x /s 1 as x.
+ if (RA == 1)
+ return LHS;
+ }
+
+ // Check for a division of a constant by a constant.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
+ if (!RC)
+ return 0;
+ const APInt &LA = C->getValue()->getValue();
+ const APInt &RA = RC->getValue()->getValue();
+ if (LA.srem(RA) != 0)
+ return 0;
+ return SE.getConstant(LA.sdiv(RA));
+ }
+
+ // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
+ if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
+ const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
+ IgnoreSignificantBits);
+ if (!Step) return 0;
+ const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
+ IgnoreSignificantBits);
+ if (!Start) return 0;
+ // FlagNW is independent of the start value, step direction, and is
+ // preserved with smaller magnitude steps.
+ // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
+ return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
+ }
+ return 0;
+ }
+
+ // Distribute the sdiv over add operands, if the add doesn't overflow.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
+ if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
+ SmallVector<const SCEV *, 8> Ops;
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ const SCEV *Op = getExactSDiv(*I, RHS, SE,
+ IgnoreSignificantBits);
+ if (!Op) return 0;
+ Ops.push_back(Op);
+ }
+ return SE.getAddExpr(Ops);
+ }
+ return 0;
+ }
+
+ // Check for a multiply operand that we can pull RHS out of.
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
+ if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
+ SmallVector<const SCEV *, 4> Ops;
+ bool Found = false;
+ for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
+ I != E; ++I) {
+ const SCEV *S = *I;
+ if (!Found)
+ if (const SCEV *Q = getExactSDiv(S, RHS, SE,
+ IgnoreSignificantBits)) {
+ S = Q;
+ Found = true;
+ }
+ Ops.push_back(S);
+ }
+ return Found ? SE.getMulExpr(Ops) : 0;
+ }
+ return 0;
+ }
+
+ // Otherwise we don't know.
+ return 0;
+}
+
+/// ExtractImmediate - If S involves the addition of a constant integer value,
+/// return that integer value, and mutate S to point to a new SCEV with that
+/// value excluded.
+static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
+ if (C->getValue()->getValue().getMinSignedBits() <= 64) {
+ S = SE.getConstant(C->getType(), 0);
+ return C->getValue()->getSExtValue();
+ }
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
+ int64_t Result = ExtractImmediate(NewOps.front(), SE);
+ if (Result != 0)
+ S = SE.getAddExpr(NewOps);
+ return Result;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
+ int64_t Result = ExtractImmediate(NewOps.front(), SE);
+ if (Result != 0)
+ S = SE.getAddRecExpr(NewOps, AR->getLoop(),
+ // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
+ SCEV::FlagAnyWrap);
+ return Result;
+ }
+ return 0;
+}
+
+/// ExtractSymbol - If S involves the addition of a GlobalValue address,
+/// return that symbol, and mutate S to point to a new SCEV with that
+/// value excluded.
+static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
+ S = SE.getConstant(GV->getType(), 0);
+ return GV;
+ }
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
+ GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
+ if (Result)
+ S = SE.getAddExpr(NewOps);
+ return Result;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
+ GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
+ if (Result)
+ S = SE.getAddRecExpr(NewOps, AR->getLoop(),
+ // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
+ SCEV::FlagAnyWrap);
+ return Result;
+ }
+ return 0;
+}
+
+/// isAddressUse - Returns true if the specified instruction is using the
+/// specified value as an address.
+static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
+ bool isAddress = isa<LoadInst>(Inst);
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ if (SI->getOperand(1) == OperandVal)
+ isAddress = true;
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::prefetch:
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ if (II->getArgOperand(0) == OperandVal)
+ isAddress = true;
+ break;
+ }
+ }
+ return isAddress;
+}
+
+/// getAccessType - Return the type of the memory being accessed.
+static Type *getAccessType(const Instruction *Inst) {
+ Type *AccessTy = Inst->getType();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ AccessTy = SI->getOperand(0)->getType();
+ else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ AccessTy = II->getArgOperand(0)->getType();
+ break;
+ }
+ }
+
+ // All pointers have the same requirements, so canonicalize them to an
+ // arbitrary pointer type to minimize variation.
+ if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
+ AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
+ PTy->getAddressSpace());
+
+ return AccessTy;
+}
+
+/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
+static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
+ for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ if (SE.isSCEVable(PN->getType()) &&
+ (SE.getEffectiveSCEVType(PN->getType()) ==
+ SE.getEffectiveSCEVType(AR->getType())) &&
+ SE.getSCEV(PN) == AR)
+ return true;
+ }
+ return false;
+}
+
+/// Check if expanding this expression is likely to incur significant cost. This
+/// is tricky because SCEV doesn't track which expressions are actually computed
+/// by the current IR.
+///
+/// We currently allow expansion of IV increments that involve adds,
+/// multiplication by constants, and AddRecs from existing phis.
+///
+/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
+/// obvious multiple of the UDivExpr.
+static bool isHighCostExpansion(const SCEV *S,
+ SmallPtrSet<const SCEV*, 8> &Processed,
+ ScalarEvolution &SE) {
+ // Zero/One operand expressions
+ switch (S->getSCEVType()) {
+ case scUnknown:
+ case scConstant:
+ return false;
+ case scTruncate:
+ return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
+ Processed, SE);
+ case scZeroExtend:
+ return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
+ Processed, SE);
+ case scSignExtend:
+ return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
+ Processed, SE);
+ }
+
+ if (!Processed.insert(S))
+ return false;
+
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ if (isHighCostExpansion(*I, Processed, SE))
+ return true;
+ }
+ return false;
+ }
+
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ if (Mul->getNumOperands() == 2) {
+ // Multiplication by a constant is ok
+ if (isa<SCEVConstant>(Mul->getOperand(0)))
+ return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
+
+ // If we have the value of one operand, check if an existing
+ // multiplication already generates this expression.
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
+ Value *UVal = U->getValue();
+ for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
+ UI != UE; ++UI) {
+ // If U is a constant, it may be used by a ConstantExpr.
+ Instruction *User = dyn_cast<Instruction>(*UI);
+ if (User && User->getOpcode() == Instruction::Mul
+ && SE.isSCEVable(User->getType())) {
+ return SE.getSCEV(User) == Mul;
+ }
+ }
+ }
+ }
+ }
+
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ if (isExistingPhi(AR, SE))
+ return false;
+ }
+
+ // Fow now, consider any other type of expression (div/mul/min/max) high cost.
+ return true;
+}
+
+/// DeleteTriviallyDeadInstructions - If any of the instructions is the
+/// specified set are trivially dead, delete them and see if this makes any of
+/// their operands subsequently dead.
+static bool
+DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
+ bool Changed = false;
+
+ while (!DeadInsts.empty()) {
+ Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
+
+ if (I == 0 || !isInstructionTriviallyDead(I))
+ continue;
+
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ *OI = 0;
+ if (U->use_empty())
+ DeadInsts.push_back(U);
+ }
+
+ I->eraseFromParent();
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+namespace {
+
+/// Cost - This class is used to measure and compare candidate formulae.
+class Cost {
+ /// TODO: Some of these could be merged. Also, a lexical ordering
+ /// isn't always optimal.
+ unsigned NumRegs;
+ unsigned AddRecCost;
+ unsigned NumIVMuls;
+ unsigned NumBaseAdds;
+ unsigned ImmCost;
+ unsigned SetupCost;
+
+public:
+ Cost()
+ : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
+ SetupCost(0) {}
+
+ bool operator<(const Cost &Other) const;
+
+ void Loose();
+
+#ifndef NDEBUG
+ // Once any of the metrics loses, they must all remain losers.
+ bool isValid() {
+ return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
+ | ImmCost | SetupCost) != ~0u)
+ || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
+ & ImmCost & SetupCost) == ~0u);
+ }
+#endif
+
+ bool isLoser() {
+ assert(isValid() && "invalid cost");
+ return NumRegs == ~0u;
+ }
+
+ void RateFormula(const Formula &F,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const DenseSet<const SCEV *> &VisitedRegs,
+ const Loop *L,
+ const SmallVectorImpl<int64_t> &Offsets,
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+private:
+ void RateRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT);
+ void RatePrimaryRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs);
+};
+
+}
+
+/// RateRegister - Tally up interesting quantities from the given register.
+void Cost::RateRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
+ // If this is an addrec for another loop, don't second-guess its addrec phi
+ // nodes. LSR isn't currently smart enough to reason about more than one
+ // loop at a time. LSR has already run on inner loops, will not run on outer
+ // loops, and cannot be expected to change sibling loops.
+ if (AR->getLoop() != L) {
+ // If the AddRec exists, consider it's register free and leave it alone.
+ if (isExistingPhi(AR, SE))
+ return;
+
+ // Otherwise, do not consider this formula at all.
+ Loose();
+ return;
+ }
+ AddRecCost += 1; /// TODO: This should be a function of the stride.
+
+ // Add the step value register, if it needs one.
+ // TODO: The non-affine case isn't precisely modeled here.
+ if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
+ if (!Regs.count(AR->getOperand(1))) {
+ RateRegister(AR->getOperand(1), Regs, L, SE, DT);
+ if (isLoser())
+ return;
+ }
+ }
+ }
+ ++NumRegs;
+
+ // Rough heuristic; favor registers which don't require extra setup
+ // instructions in the preheader.
+ if (!isa<SCEVUnknown>(Reg) &&
+ !isa<SCEVConstant>(Reg) &&
+ !(isa<SCEVAddRecExpr>(Reg) &&
+ (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
+ isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
+ ++SetupCost;
+
+ NumIVMuls += isa<SCEVMulExpr>(Reg) &&
+ SE.hasComputableLoopEvolution(Reg, L);
+}
+
+/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
+/// before, rate it. Optional LoserRegs provides a way to declare any formula
+/// that refers to one of those regs an instant loser.
+void Cost::RatePrimaryRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs) {
+ if (LoserRegs && LoserRegs->count(Reg)) {
+ Loose();
+ return;
+ }
+ if (Regs.insert(Reg)) {
+ RateRegister(Reg, Regs, L, SE, DT);
+ if (isLoser())
+ LoserRegs->insert(Reg);
+ }
+}
+
+void Cost::RateFormula(const Formula &F,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const DenseSet<const SCEV *> &VisitedRegs,
+ const Loop *L,
+ const SmallVectorImpl<int64_t> &Offsets,
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs) {
+ // Tally up the registers.
+ if (const SCEV *ScaledReg = F.ScaledReg) {
+ if (VisitedRegs.count(ScaledReg)) {
+ Loose();
+ return;
+ }
+ RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
+ if (isLoser())
+ return;
+ }
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I) {
+ const SCEV *BaseReg = *I;
+ if (VisitedRegs.count(BaseReg)) {
+ Loose();
+ return;
+ }
+ RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
+ if (isLoser())
+ return;
+ }
+
+ // Determine how many (unfolded) adds we'll need inside the loop.
+ size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
+ if (NumBaseParts > 1)
+ NumBaseAdds += NumBaseParts - 1;
+
+ // Tally up the non-zero immediates.
+ for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
+ E = Offsets.end(); I != E; ++I) {
+ int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
+ if (F.AM.BaseGV)
+ ImmCost += 64; // Handle symbolic values conservatively.
+ // TODO: This should probably be the pointer size.
+ else if (Offset != 0)
+ ImmCost += APInt(64, Offset, true).getMinSignedBits();
+ }
+ assert(isValid() && "invalid cost");
+}
+
+/// Loose - Set this cost to a losing value.
+void Cost::Loose() {
+ NumRegs = ~0u;
+ AddRecCost = ~0u;
+ NumIVMuls = ~0u;
+ NumBaseAdds = ~0u;
+ ImmCost = ~0u;
+ SetupCost = ~0u;
+}
+
+/// operator< - Choose the lower cost.
+bool Cost::operator<(const Cost &Other) const {
+ if (NumRegs != Other.NumRegs)
+ return NumRegs < Other.NumRegs;
+ if (AddRecCost != Other.AddRecCost)
+ return AddRecCost < Other.AddRecCost;
+ if (NumIVMuls != Other.NumIVMuls)
+ return NumIVMuls < Other.NumIVMuls;
+ if (NumBaseAdds != Other.NumBaseAdds)
+ return NumBaseAdds < Other.NumBaseAdds;
+ if (ImmCost != Other.ImmCost)
+ return ImmCost < Other.ImmCost;
+ if (SetupCost != Other.SetupCost)
+ return SetupCost < Other.SetupCost;
+ return false;
+}
+
+void Cost::print(raw_ostream &OS) const {
+ OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
+ if (AddRecCost != 0)
+ OS << ", with addrec cost " << AddRecCost;
+ if (NumIVMuls != 0)
+ OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
+ if (NumBaseAdds != 0)
+ OS << ", plus " << NumBaseAdds << " base add"
+ << (NumBaseAdds == 1 ? "" : "s");
+ if (ImmCost != 0)
+ OS << ", plus " << ImmCost << " imm cost";
+ if (SetupCost != 0)
+ OS << ", plus " << SetupCost << " setup cost";
+}
+
+void Cost::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+/// LSRFixup - An operand value in an instruction which is to be replaced
+/// with some equivalent, possibly strength-reduced, replacement.
+struct LSRFixup {
+ /// UserInst - The instruction which will be updated.
+ Instruction *UserInst;
+
+ /// OperandValToReplace - The operand of the instruction which will
+ /// be replaced. The operand may be used more than once; every instance
+ /// will be replaced.
+ Value *OperandValToReplace;
+
+ /// PostIncLoops - If this user is to use the post-incremented value of an
+ /// induction variable, this variable is non-null and holds the loop
+ /// associated with the induction variable.
+ PostIncLoopSet PostIncLoops;
+
+ /// LUIdx - The index of the LSRUse describing the expression which
+ /// this fixup needs, minus an offset (below).
+ size_t LUIdx;
+
+ /// Offset - A constant offset to be added to the LSRUse expression.
+ /// This allows multiple fixups to share the same LSRUse with different
+ /// offsets, for example in an unrolled loop.
+ int64_t Offset;
+
+ bool isUseFullyOutsideLoop(const Loop *L) const;
+
+ LSRFixup();
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+LSRFixup::LSRFixup()
+ : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
+
+/// isUseFullyOutsideLoop - Test whether this fixup always uses its
+/// value outside of the given loop.
+bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
+ // PHI nodes use their value in their incoming blocks.
+ if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == OperandValToReplace &&
+ L->contains(PN->getIncomingBlock(i)))
+ return false;
+ return true;
+ }
+
+ return !L->contains(UserInst);
+}
+
+void LSRFixup::print(raw_ostream &OS) const {
+ OS << "UserInst=";
+ // Store is common and interesting enough to be worth special-casing.
+ if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
+ OS << "store ";
+ WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
+ } else if (UserInst->getType()->isVoidTy())
+ OS << UserInst->getOpcodeName();
+ else
+ WriteAsOperand(OS, UserInst, /*PrintType=*/false);
+
+ OS << ", OperandValToReplace=";
+ WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
+
+ for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
+ E = PostIncLoops.end(); I != E; ++I) {
+ OS << ", PostIncLoop=";
+ WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
+ }
+
+ if (LUIdx != ~size_t(0))
+ OS << ", LUIdx=" << LUIdx;
+
+ if (Offset != 0)
+ OS << ", Offset=" << Offset;
+}
+
+void LSRFixup::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
+/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
+struct UniquifierDenseMapInfo {
+ static SmallVector<const SCEV *, 2> getEmptyKey() {
+ SmallVector<const SCEV *, 2> V;
+ V.push_back(reinterpret_cast<const SCEV *>(-1));
+ return V;
+ }
+
+ static SmallVector<const SCEV *, 2> getTombstoneKey() {
+ SmallVector<const SCEV *, 2> V;
+ V.push_back(reinterpret_cast<const SCEV *>(-2));
+ return V;
+ }
+
+ static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
+ unsigned Result = 0;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
+ E = V.end(); I != E; ++I)
+ Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
+ return Result;
+ }
+
+ static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
+ const SmallVector<const SCEV *, 2> &RHS) {
+ return LHS == RHS;
+ }
+};
+
+/// LSRUse - This class holds the state that LSR keeps for each use in
+/// IVUsers, as well as uses invented by LSR itself. It includes information
+/// about what kinds of things can be folded into the user, information about
+/// the user itself, and information about how the use may be satisfied.
+/// TODO: Represent multiple users of the same expression in common?
+class LSRUse {
+ DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
+
+public:
+ /// KindType - An enum for a kind of use, indicating what types of
+ /// scaled and immediate operands it might support.
+ enum KindType {
+ Basic, ///< A normal use, with no folding.
+ Special, ///< A special case of basic, allowing -1 scales.
+ Address, ///< An address use; folding according to TargetLowering
+ ICmpZero ///< An equality icmp with both operands folded into one.
+ // TODO: Add a generic icmp too?
+ };
+
+ KindType Kind;
+ Type *AccessTy;
+
+ SmallVector<int64_t, 8> Offsets;
+ int64_t MinOffset;
+ int64_t MaxOffset;
+
+ /// AllFixupsOutsideLoop - This records whether all of the fixups using this
+ /// LSRUse are outside of the loop, in which case some special-case heuristics
+ /// may be used.
+ bool AllFixupsOutsideLoop;
+
+ /// WidestFixupType - This records the widest use type for any fixup using
+ /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
+ /// max fixup widths to be equivalent, because the narrower one may be relying
+ /// on the implicit truncation to truncate away bogus bits.
+ Type *WidestFixupType;
+
+ /// Formulae - A list of ways to build a value that can satisfy this user.
+ /// After the list is populated, one of these is selected heuristically and
+ /// used to formulate a replacement for OperandValToReplace in UserInst.
+ SmallVector<Formula, 12> Formulae;
+
+ /// Regs - The set of register candidates used by all formulae in this LSRUse.
+ SmallPtrSet<const SCEV *, 4> Regs;
+
+ LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
+ MinOffset(INT64_MAX),
+ MaxOffset(INT64_MIN),
+ AllFixupsOutsideLoop(true),
+ WidestFixupType(0) {}
+
+ bool HasFormulaWithSameRegs(const Formula &F) const;
+ bool InsertFormula(const Formula &F);
+ void DeleteFormula(Formula &F);
+ void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+/// HasFormula - Test whether this use as a formula which has the same
+/// registers as the given formula.
+bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
+ SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ if (F.ScaledReg) Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for uniquifying.
+ std::sort(Key.begin(), Key.end());
+ return Uniquifier.count(Key);
+}
+
+/// InsertFormula - If the given formula has not yet been inserted, add it to
+/// the list, and return true. Return false otherwise.
+bool LSRUse::InsertFormula(const Formula &F) {
+ SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ if (F.ScaledReg) Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for uniquifying.
+ std::sort(Key.begin(), Key.end());
+
+ if (!Uniquifier.insert(Key).second)
+ return false;
+
+ // Using a register to hold the value of 0 is not profitable.
+ assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
+ "Zero allocated in a scaled register!");
+#ifndef NDEBUG
+ for (SmallVectorImpl<const SCEV *>::const_iterator I =
+ F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
+ assert(!(*I)->isZero() && "Zero allocated in a base register!");
+#endif
+
+ // Add the formula to the list.
+ Formulae.push_back(F);
+
+ // Record registers now being used by this use.
+ Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
+
+ return true;
+}
+
+/// DeleteFormula - Remove the given formula from this use's list.
+void LSRUse::DeleteFormula(Formula &F) {
+ if (&F != &Formulae.back())
+ std::swap(F, Formulae.back());
+ Formulae.pop_back();
+}
+
+/// RecomputeRegs - Recompute the Regs field, and update RegUses.
+void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
+ // Now that we've filtered out some formulae, recompute the Regs set.
+ SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
+ Regs.clear();
+ for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
+ E = Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.ScaledReg) Regs.insert(F.ScaledReg);
+ Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
+ }
+
+ // Update the RegTracker.
+ for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
+ E = OldRegs.end(); I != E; ++I)
+ if (!Regs.count(*I))
+ RegUses.DropRegister(*I, LUIdx);
+}
+
+void LSRUse::print(raw_ostream &OS) const {
+ OS << "LSR Use: Kind=";
+ switch (Kind) {
+ case Basic: OS << "Basic"; break;
+ case Special: OS << "Special"; break;
+ case ICmpZero: OS << "ICmpZero"; break;
+ case Address:
+ OS << "Address of ";
+ if (AccessTy->isPointerTy())
+ OS << "pointer"; // the full pointer type could be really verbose
+ else
+ OS << *AccessTy;
+ }
+
+ OS << ", Offsets={";
+ for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
+ E = Offsets.end(); I != E; ++I) {
+ OS << *I;
+ if (llvm::next(I) != E)
+ OS << ',';
+ }
+ OS << '}';
+
+ if (AllFixupsOutsideLoop)
+ OS << ", all-fixups-outside-loop";
+
+ if (WidestFixupType)
+ OS << ", widest fixup type: " << *WidestFixupType;
+}
+
+void LSRUse::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
+/// be completely folded into the user instruction at isel time. This includes
+/// address-mode folding and special icmp tricks.
+static bool isLegalUse(const TargetLowering::AddrMode &AM,
+ LSRUse::KindType Kind, Type *AccessTy,
+ const TargetLowering *TLI) {
+ switch (Kind) {
+ case LSRUse::Address:
+ // If we have low-level target information, ask the target if it can
+ // completely fold this address.
+ if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+
+ // Otherwise, just guess that reg+reg addressing is legal.
+ return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+
+ case LSRUse::ICmpZero:
+ // There's not even a target hook for querying whether it would be legal to
+ // fold a GV into an ICmp.
+ if (AM.BaseGV)
+ return false;
+
+ // ICmp only has two operands; don't allow more than two non-trivial parts.
+ if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ return false;
+
+ // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
+ // putting the scaled register in the other operand of the icmp.
+ if (AM.Scale != 0 && AM.Scale != -1)
+ return false;
+
+ // If we have low-level target information, ask the target if it can fold an
+ // integer immediate on an icmp.
+ if (AM.BaseOffs != 0) {
+ if (!TLI)
+ return false;
+ // We have one of:
+ // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
+ // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
+ // Offs is the ICmp immediate.
+ int64_t Offs = AM.BaseOffs;
+ if (AM.Scale == 0)
+ Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
+ return TLI->isLegalICmpImmediate(Offs);
+ }
+
+ // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
+ return true;
+
+ case LSRUse::Basic:
+ // Only handle single-register values.
+ return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
+
+ case LSRUse::Special:
+ // Special case Basic to handle -1 scales.
+ return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
+ }
+
+ llvm_unreachable("Invalid LSRUse Kind!");
+}
+
+static bool isLegalUse(TargetLowering::AddrMode AM,
+ int64_t MinOffset, int64_t MaxOffset,
+ LSRUse::KindType Kind, Type *AccessTy,
+ const TargetLowering *TLI) {
+ // Check for overflow.
+ if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
+ (MinOffset > 0))
+ return false;
+ AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
+ if (isLegalUse(AM, Kind, AccessTy, TLI)) {
+ AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
+ // Check for overflow.
+ if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
+ (MaxOffset > 0))
+ return false;
+ AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
+ return isLegalUse(AM, Kind, AccessTy, TLI);
+ }
+ return false;
+}
+
+static bool isAlwaysFoldable(int64_t BaseOffs,
+ GlobalValue *BaseGV,
+ bool HasBaseReg,
+ LSRUse::KindType Kind, Type *AccessTy,
+ const TargetLowering *TLI) {
+ // Fast-path: zero is always foldable.
+ if (BaseOffs == 0 && !BaseGV) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ TargetLowering::AddrMode AM;
+ AM.BaseOffs = BaseOffs;
+ AM.BaseGV = BaseGV;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+
+ // Canonicalize a scale of 1 to a base register if the formula doesn't
+ // already have a base register.
+ if (!AM.HasBaseReg && AM.Scale == 1) {
+ AM.Scale = 0;
+ AM.HasBaseReg = true;
+ }
+
+ return isLegalUse(AM, Kind, AccessTy, TLI);
+}
+
+static bool isAlwaysFoldable(const SCEV *S,
+ int64_t MinOffset, int64_t MaxOffset,
+ bool HasBaseReg,
+ LSRUse::KindType Kind, Type *AccessTy,
+ const TargetLowering *TLI,
+ ScalarEvolution &SE) {
+ // Fast-path: zero is always foldable.
+ if (S->isZero()) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ int64_t BaseOffs = ExtractImmediate(S, SE);
+ GlobalValue *BaseGV = ExtractSymbol(S, SE);
+
+ // If there's anything else involved, it's not foldable.
+ if (!S->isZero()) return false;
+
+ // Fast-path: zero is always foldable.
+ if (BaseOffs == 0 && !BaseGV) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ TargetLowering::AddrMode AM;
+ AM.BaseOffs = BaseOffs;
+ AM.BaseGV = BaseGV;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+
+ return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
+}
+
+namespace {
+
+/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
+/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
+struct UseMapDenseMapInfo {
+ static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
+ return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
+ }
+
+ static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
+ return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
+ }
+
+ static unsigned
+ getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
+ unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
+ Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
+ return Result;
+ }
+
+ static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
+ const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
+ return LHS == RHS;
+ }
+};
+
+/// IVInc - An individual increment in a Chain of IV increments.
+/// Relate an IV user to an expression that computes the IV it uses from the IV
+/// used by the previous link in the Chain.
+///
+/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
+/// original IVOperand. The head of the chain's IVOperand is only valid during
+/// chain collection, before LSR replaces IV users. During chain generation,
+/// IncExpr can be used to find the new IVOperand that computes the same
+/// expression.
+struct IVInc {
+ Instruction *UserInst;
+ Value* IVOperand;
+ const SCEV *IncExpr;
+
+ IVInc(Instruction *U, Value *O, const SCEV *E):
+ UserInst(U), IVOperand(O), IncExpr(E) {}
+};
+
+// IVChain - The list of IV increments in program order.
+// We typically add the head of a chain without finding subsequent links.
+struct IVChain {
+ SmallVector<IVInc,1> Incs;
+ const SCEV *ExprBase;
+
+ IVChain() : ExprBase(0) {}
+
+ IVChain(const IVInc &Head, const SCEV *Base)
+ : Incs(1, Head), ExprBase(Base) {}
+
+ typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
+
+ // begin - return the first increment in the chain.
+ const_iterator begin() const {
+ assert(!Incs.empty());
+ return llvm::next(Incs.begin());
+ }
+ const_iterator end() const {
+ return Incs.end();
+ }
+
+ // hasIncs - Returns true if this chain contains any increments.
+ bool hasIncs() const { return Incs.size() >= 2; }
+
+ // add - Add an IVInc to the end of this chain.
+ void add(const IVInc &X) { Incs.push_back(X); }
+
+ // tailUserInst - Returns the last UserInst in the chain.
+ Instruction *tailUserInst() const { return Incs.back().UserInst; }
+
+ // isProfitableIncrement - Returns true if IncExpr can be profitably added to
+ // this chain.
+ bool isProfitableIncrement(const SCEV *OperExpr,
+ const SCEV *IncExpr,
+ ScalarEvolution&);
+};
+
+/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
+/// Distinguish between FarUsers that definitely cross IV increments and
+/// NearUsers that may be used between IV increments.
+struct ChainUsers {
+ SmallPtrSet<Instruction*, 4> FarUsers;
+ SmallPtrSet<Instruction*, 4> NearUsers;
+};
+
+/// LSRInstance - This class holds state for the main loop strength reduction
+/// logic.
+class LSRInstance {
+ IVUsers &IU;
+ ScalarEvolution &SE;
+ DominatorTree &DT;
+ LoopInfo &LI;
+ const TargetLowering *const TLI;
+ Loop *const L;
+ bool Changed;
+
+ /// IVIncInsertPos - This is the insert position that the current loop's
+ /// induction variable increment should be placed. In simple loops, this is
+ /// the latch block's terminator. But in more complicated cases, this is a
+ /// position which will dominate all the in-loop post-increment users.
+ Instruction *IVIncInsertPos;
+
+ /// Factors - Interesting factors between use strides.
+ SmallSetVector<int64_t, 8> Factors;
+
+ /// Types - Interesting use types, to facilitate truncation reuse.
+ SmallSetVector<Type *, 4> Types;
+
+ /// Fixups - The list of operands which are to be replaced.
+ SmallVector<LSRFixup, 16> Fixups;
+
+ /// Uses - The list of interesting uses.
+ SmallVector<LSRUse, 16> Uses;
+
+ /// RegUses - Track which uses use which register candidates.
+ RegUseTracker RegUses;
+
+ // Limit the number of chains to avoid quadratic behavior. We don't expect to
+ // have more than a few IV increment chains in a loop. Missing a Chain falls
+ // back to normal LSR behavior for those uses.
+ static const unsigned MaxChains = 8;
+
+ /// IVChainVec - IV users can form a chain of IV increments.
+ SmallVector<IVChain, MaxChains> IVChainVec;
+
+ /// IVIncSet - IV users that belong to profitable IVChains.
+ SmallPtrSet<Use*, MaxChains> IVIncSet;
+
+ void OptimizeShadowIV();
+ bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
+ ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
+ void OptimizeLoopTermCond();
+
+ void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
+ SmallVectorImpl<ChainUsers> &ChainUsersVec);
+ void FinalizeChain(IVChain &Chain);
+ void CollectChains();
+ void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts);
+
+ void CollectInterestingTypesAndFactors();
+ void CollectFixupsAndInitialFormulae();
+
+ LSRFixup &getNewFixup() {
+ Fixups.push_back(LSRFixup());
+ return Fixups.back();
+ }
+
+ // Support for sharing of LSRUses between LSRFixups.
+ typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
+ size_t,
+ UseMapDenseMapInfo> UseMapTy;
+ UseMapTy UseMap;
+
+ bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
+ LSRUse::KindType Kind, Type *AccessTy);
+
+ std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
+ LSRUse::KindType Kind,
+ Type *AccessTy);
+
+ void DeleteUse(LSRUse &LU, size_t LUIdx);
+
+ LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
+
+ void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
+ void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
+ void CountRegisters(const Formula &F, size_t LUIdx);
+ bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
+
+ void CollectLoopInvariantFixupsAndFormulae();
+
+ void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
+ unsigned Depth = 0);
+ void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateCrossUseConstantOffsets();
+ void GenerateAllReuseFormulae();
+
+ void FilterOutUndesirableDedicatedRegisters();
+
+ size_t EstimateSearchSpaceComplexity() const;
+ void NarrowSearchSpaceByDetectingSupersets();
+ void NarrowSearchSpaceByCollapsingUnrolledCode();
+ void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
+ void NarrowSearchSpaceByPickingWinnerRegs();
+ void NarrowSearchSpaceUsingHeuristics();
+
+ void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
+ Cost &SolutionCost,
+ SmallVectorImpl<const Formula *> &Workspace,
+ const Cost &CurCost,
+ const SmallPtrSet<const SCEV *, 16> &CurRegs,
+ DenseSet<const SCEV *> &VisitedRegs) const;
+ void Solve(SmallVectorImpl<const Formula *> &Solution) const;
+
+ BasicBlock::iterator
+ HoistInsertPosition(BasicBlock::iterator IP,
+ const SmallVectorImpl<Instruction *> &Inputs) const;
+ BasicBlock::iterator
+ AdjustInsertPositionForExpand(BasicBlock::iterator IP,
+ const LSRFixup &LF,
+ const LSRUse &LU,
+ SCEVExpander &Rewriter) const;
+
+ Value *Expand(const LSRFixup &LF,
+ const Formula &F,
+ BasicBlock::iterator IP,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
+ void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const;
+ void Rewrite(const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const;
+ void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
+ Pass *P);
+
+public:
+ LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
+
+ bool getChanged() const { return Changed; }
+
+ void print_factors_and_types(raw_ostream &OS) const;
+ void print_fixups(raw_ostream &OS) const;
+ void print_uses(raw_ostream &OS) const;
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+/// OptimizeShadowIV - If IV is used in a int-to-float cast
+/// inside the loop then try to eliminate the cast operation.
+void LSRInstance::OptimizeShadowIV() {
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return;
+
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
+ UI != E; /* empty */) {
+ IVUsers::const_iterator CandidateUI = UI;
+ ++UI;
+ Instruction *ShadowUse = CandidateUI->getUser();
+ Type *DestTy = NULL;
+ bool IsSigned = false;
+
+ /* If shadow use is a int->float cast then insert a second IV
+ to eliminate this cast.
+
+ for (unsigned i = 0; i < n; ++i)
+ foo((double)i);
+
+ is transformed into
+
+ double d = 0.0;
+ for (unsigned i = 0; i < n; ++i, ++d)
+ foo(d);
+ */
+ if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
+ IsSigned = false;
+ DestTy = UCast->getDestTy();
+ }
+ else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
+ IsSigned = true;
+ DestTy = SCast->getDestTy();
+ }
+ if (!DestTy) continue;
+
+ if (TLI) {
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ EVT DVT = TLI->getValueType(DestTy);
+ if (!TLI->isTypeLegal(DVT)) continue;
+ }
+
+ PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
+ if (!PH) continue;
+ if (PH->getNumIncomingValues() != 2) continue;
+
+ Type *SrcTy = PH->getType();
+ int Mantissa = DestTy->getFPMantissaWidth();
+ if (Mantissa == -1) continue;
+ if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
+ continue;
+
+ unsigned Entry, Latch;
+ if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
+ Entry = 0;
+ Latch = 1;
+ } else {
+ Entry = 1;
+ Latch = 0;
+ }
+
+ ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
+ if (!Init) continue;
+ Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
+ (double)Init->getSExtValue() :
+ (double)Init->getZExtValue());
+
+ BinaryOperator *Incr =
+ dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
+ if (!Incr) continue;
+ if (Incr->getOpcode() != Instruction::Add
+ && Incr->getOpcode() != Instruction::Sub)
+ continue;
+
+ /* Initialize new IV, double d = 0.0 in above example. */
+ ConstantInt *C = NULL;
+ if (Incr->getOperand(0) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(1));
+ else if (Incr->getOperand(1) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(0));
+ else
+ continue;
+
+ if (!C) continue;
+
+ // Ignore negative constants, as the code below doesn't handle them
+ // correctly. TODO: Remove this restriction.
+ if (!C->getValue().isStrictlyPositive()) continue;
+
+ /* Add new PHINode. */
+ PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
+
+ /* create new increment. '++d' in above example. */
+ Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
+ BinaryOperator *NewIncr =
+ BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
+ Instruction::FAdd : Instruction::FSub,
+ NewPH, CFP, "IV.S.next.", Incr);
+
+ NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
+ NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
+
+ /* Remove cast operation */
+ ShadowUse->replaceAllUsesWith(NewPH);
+ ShadowUse->eraseFromParent();
+ Changed = true;
+ break;
+ }
+}
+
+/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
+/// set the IV user and stride information and return true, otherwise return
+/// false.
+bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
+ for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
+ if (UI->getUser() == Cond) {
+ // NOTE: we could handle setcc instructions with multiple uses here, but
+ // InstCombine does it as well for simple uses, it's not clear that it
+ // occurs enough in real life to handle.
+ CondUse = UI;
+ return true;
+ }
+ return false;
+}
+
+/// OptimizeMax - Rewrite the loop's terminating condition if it uses
+/// a max computation.
+///
+/// This is a narrow solution to a specific, but acute, problem. For loops
+/// like this:
+///
+/// i = 0;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i < n);
+///
+/// the trip count isn't just 'n', because 'n' might not be positive. And
+/// unfortunately this can come up even for loops where the user didn't use
+/// a C do-while loop. For example, seemingly well-behaved top-test loops
+/// will commonly be lowered like this:
+//
+/// if (n > 0) {
+/// i = 0;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i < n);
+/// }
+///
+/// and then it's possible for subsequent optimization to obscure the if
+/// test in such a way that indvars can't find it.
+///
+/// When indvars can't find the if test in loops like this, it creates a
+/// max expression, which allows it to give the loop a canonical
+/// induction variable:
+///
+/// i = 0;
+/// max = n < 1 ? 1 : n;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i != max);
+///
+/// Canonical induction variables are necessary because the loop passes
+/// are designed around them. The most obvious example of this is the
+/// LoopInfo analysis, which doesn't remember trip count values. It
+/// expects to be able to rediscover the trip count each time it is
+/// needed, and it does this using a simple analysis that only succeeds if
+/// the loop has a canonical induction variable.
+///
+/// However, when it comes time to generate code, the maximum operation
+/// can be quite costly, especially if it's inside of an outer loop.
+///
+/// This function solves this problem by detecting this type of loop and
+/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
+/// the instructions for the maximum computation.
+///
+ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
+ // Check that the loop matches the pattern we're looking for.
+ if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
+ Cond->getPredicate() != CmpInst::ICMP_NE)
+ return Cond;
+
+ SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
+ if (!Sel || !Sel->hasOneUse()) return Cond;
+
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return Cond;
+ const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
+
+ // Add one to the backedge-taken count to get the trip count.
+ const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
+ if (IterationCount != SE.getSCEV(Sel)) return Cond;
+
+ // Check for a max calculation that matches the pattern. There's no check
+ // for ICMP_ULE here because the comparison would be with zero, which
+ // isn't interesting.
+ CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+ const SCEVNAryExpr *Max = 0;
+ if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
+ Pred = ICmpInst::ICMP_SLE;
+ Max = S;
+ } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
+ Pred = ICmpInst::ICMP_SLT;
+ Max = S;
+ } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
+ Pred = ICmpInst::ICMP_ULT;
+ Max = U;
+ } else {
+ // No match; bail.
+ return Cond;
+ }
+
+ // To handle a max with more than two operands, this optimization would
+ // require additional checking and setup.
+ if (Max->getNumOperands() != 2)
+ return Cond;
+
+ const SCEV *MaxLHS = Max->getOperand(0);
+ const SCEV *MaxRHS = Max->getOperand(1);
+
+ // ScalarEvolution canonicalizes constants to the left. For < and >, look
+ // for a comparison with 1. For <= and >=, a comparison with zero.
+ if (!MaxLHS ||
+ (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
+ return Cond;
+
+ // Check the relevant induction variable for conformance to
+ // the pattern.
+ const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
+ if (!AR || !AR->isAffine() ||
+ AR->getStart() != One ||
+ AR->getStepRecurrence(SE) != One)
+ return Cond;
+
+ assert(AR->getLoop() == L &&
+ "Loop condition operand is an addrec in a different loop!");
+
+ // Check the right operand of the select, and remember it, as it will
+ // be used in the new comparison instruction.
+ Value *NewRHS = 0;
+ if (ICmpInst::isTrueWhenEqual(Pred)) {
+ // Look for n+1, and grab n.
+ if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
+ if (isa<ConstantInt>(BO->getOperand(1)) &&
+ cast<ConstantInt>(BO->getOperand(1))->isOne() &&
+ SE.getSCEV(BO->getOperand(0)) == MaxRHS)
+ NewRHS = BO->getOperand(0);
+ if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
+ if (isa<ConstantInt>(BO->getOperand(1)) &&
+ cast<ConstantInt>(BO->getOperand(1))->isOne() &&
+ SE.getSCEV(BO->getOperand(0)) == MaxRHS)
+ NewRHS = BO->getOperand(0);
+ if (!NewRHS)
+ return Cond;
+ } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
+ NewRHS = Sel->getOperand(1);
+ else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
+ NewRHS = Sel->getOperand(2);
+ else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
+ NewRHS = SU->getValue();
+ else
+ // Max doesn't match expected pattern.
+ return Cond;
+
+ // Determine the new comparison opcode. It may be signed or unsigned,
+ // and the original comparison may be either equality or inequality.
+ if (Cond->getPredicate() == CmpInst::ICMP_EQ)
+ Pred = CmpInst::getInversePredicate(Pred);
+
+ // Ok, everything looks ok to change the condition into an SLT or SGE and
+ // delete the max calculation.
+ ICmpInst *NewCond =
+ new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
+
+ // Delete the max calculation instructions.
+ Cond->replaceAllUsesWith(NewCond);
+ CondUse->setUser(NewCond);
+ Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
+ Cond->eraseFromParent();
+ Sel->eraseFromParent();
+ if (Cmp->use_empty())
+ Cmp->eraseFromParent();
+ return NewCond;
+}
+
+/// OptimizeLoopTermCond - Change loop terminating condition to use the
+/// postinc iv when possible.
+void
+LSRInstance::OptimizeLoopTermCond() {
+ SmallPtrSet<Instruction *, 4> PostIncs;
+
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ SmallVector<BasicBlock*, 8> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitingBlock = ExitingBlocks[i];
+
+ // Get the terminating condition for the loop if possible. If we
+ // can, we want to change it to use a post-incremented version of its
+ // induction variable, to allow coalescing the live ranges for the IV into
+ // one register value.
+
+ BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+ if (!TermBr)
+ continue;
+ // FIXME: Overly conservative, termination condition could be an 'or' etc..
+ if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
+ continue;
+
+ // Search IVUsesByStride to find Cond's IVUse if there is one.
+ IVStrideUse *CondUse = 0;
+ ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
+ if (!FindIVUserForCond(Cond, CondUse))
+ continue;
+
+ // If the trip count is computed in terms of a max (due to ScalarEvolution
+ // being unable to find a sufficient guard, for example), change the loop
+ // comparison to use SLT or ULT instead of NE.
+ // One consequence of doing this now is that it disrupts the count-down
+ // optimization. That's not always a bad thing though, because in such
+ // cases it may still be worthwhile to avoid a max.
+ Cond = OptimizeMax(Cond, CondUse);
+
+ // If this exiting block dominates the latch block, it may also use
+ // the post-inc value if it won't be shared with other uses.
+ // Check for dominance.
+ if (!DT.dominates(ExitingBlock, LatchBlock))
+ continue;
+
+ // Conservatively avoid trying to use the post-inc value in non-latch
+ // exits if there may be pre-inc users in intervening blocks.
+ if (LatchBlock != ExitingBlock)
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
+ // Test if the use is reachable from the exiting block. This dominator
+ // query is a conservative approximation of reachability.
+ if (&*UI != CondUse &&
+ !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
+ // Conservatively assume there may be reuse if the quotient of their
+ // strides could be a legal scale.
+ const SCEV *A = IU.getStride(*CondUse, L);
+ const SCEV *B = IU.getStride(*UI, L);
+ if (!A || !B) continue;
+ if (SE.getTypeSizeInBits(A->getType()) !=
+ SE.getTypeSizeInBits(B->getType())) {
+ if (SE.getTypeSizeInBits(A->getType()) >
+ SE.getTypeSizeInBits(B->getType()))
+ B = SE.getSignExtendExpr(B, A->getType());
+ else
+ A = SE.getSignExtendExpr(A, B->getType());
+ }
+ if (const SCEVConstant *D =
+ dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
+ const ConstantInt *C = D->getValue();
+ // Stride of one or negative one can have reuse with non-addresses.
+ if (C->isOne() || C->isAllOnesValue())
+ goto decline_post_inc;
+ // Avoid weird situations.
+ if (C->getValue().getMinSignedBits() >= 64 ||
+ C->getValue().isMinSignedValue())
+ goto decline_post_inc;
+ // Without TLI, assume that any stride might be valid, and so any
+ // use might be shared.
+ if (!TLI)
+ goto decline_post_inc;
+ // Check for possible scaled-address reuse.
+ Type *AccessTy = getAccessType(UI->getUser());
+ TargetLowering::AddrMode AM;
+ AM.Scale = C->getSExtValue();
+ if (TLI->isLegalAddressingMode(AM, AccessTy))
+ goto decline_post_inc;
+ AM.Scale = -AM.Scale;
+ if (TLI->isLegalAddressingMode(AM, AccessTy))
+ goto decline_post_inc;
+ }
+ }
+
+ DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
+ << *Cond << '\n');
+
+ // It's possible for the setcc instruction to be anywhere in the loop, and
+ // possible for it to have multiple users. If it is not immediately before
+ // the exiting block branch, move it.
+ if (&*++BasicBlock::iterator(Cond) != TermBr) {
+ if (Cond->hasOneUse()) {
+ Cond->moveBefore(TermBr);
+ } else {
+ // Clone the terminating condition and insert into the loopend.
+ ICmpInst *OldCond = Cond;
+ Cond = cast<ICmpInst>(Cond->clone());
+ Cond->setName(L->getHeader()->getName() + ".termcond");
+ ExitingBlock->getInstList().insert(TermBr, Cond);
+
+ // Clone the IVUse, as the old use still exists!
+ CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
+ TermBr->replaceUsesOfWith(OldCond, Cond);
+ }
+ }
+
+ // If we get to here, we know that we can transform the setcc instruction to
+ // use the post-incremented version of the IV, allowing us to coalesce the
+ // live ranges for the IV correctly.
+ CondUse->transformToPostInc(L);
+ Changed = true;
+
+ PostIncs.insert(Cond);
+ decline_post_inc:;
+ }
+
+ // Determine an insertion point for the loop induction variable increment. It
+ // must dominate all the post-inc comparisons we just set up, and it must
+ // dominate the loop latch edge.
+ IVIncInsertPos = L->getLoopLatch()->getTerminator();
+ for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
+ E = PostIncs.end(); I != E; ++I) {
+ BasicBlock *BB =
+ DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
+ (*I)->getParent());
+ if (BB == (*I)->getParent())
+ IVIncInsertPos = *I;
+ else if (BB != IVIncInsertPos->getParent())
+ IVIncInsertPos = BB->getTerminator();
+ }
+}
+
+/// reconcileNewOffset - Determine if the given use can accommodate a fixup
+/// at the given offset and other details. If so, update the use and
+/// return true.
+bool
+LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
+ LSRUse::KindType Kind, Type *AccessTy) {
+ int64_t NewMinOffset = LU.MinOffset;
+ int64_t NewMaxOffset = LU.MaxOffset;
+ Type *NewAccessTy = AccessTy;
+
+ // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
+ // something conservative, however this can pessimize in the case that one of
+ // the uses will have all its uses outside the loop, for example.
+ if (LU.Kind != Kind)
+ return false;
+ // Conservatively assume HasBaseReg is true for now.
+ if (NewOffset < LU.MinOffset) {
+ if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
+ Kind, AccessTy, TLI))
+ return false;
+ NewMinOffset = NewOffset;
+ } else if (NewOffset > LU.MaxOffset) {
+ if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
+ Kind, AccessTy, TLI))
+ return false;
+ NewMaxOffset = NewOffset;
+ }
+ // Check for a mismatched access type, and fall back conservatively as needed.
+ // TODO: Be less conservative when the type is similar and can use the same
+ // addressing modes.
+ if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
+ NewAccessTy = Type::getVoidTy(AccessTy->getContext());
+
+ // Update the use.
+ LU.MinOffset = NewMinOffset;
+ LU.MaxOffset = NewMaxOffset;
+ LU.AccessTy = NewAccessTy;
+ if (NewOffset != LU.Offsets.back())
+ LU.Offsets.push_back(NewOffset);
+ return true;
+}
+
+/// getUse - Return an LSRUse index and an offset value for a fixup which
+/// needs the given expression, with the given kind and optional access type.
+/// Either reuse an existing use or create a new one, as needed.
+std::pair<size_t, int64_t>
+LSRInstance::getUse(const SCEV *&Expr,
+ LSRUse::KindType Kind, Type *AccessTy) {
+ const SCEV *Copy = Expr;
+ int64_t Offset = ExtractImmediate(Expr, SE);
+
+ // Basic uses can't accept any offset, for example.
+ if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
+ Expr = Copy;
+ Offset = 0;
+ }
+
+ std::pair<UseMapTy::iterator, bool> P =
+ UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
+ if (!P.second) {
+ // A use already existed with this base.
+ size_t LUIdx = P.first->second;
+ LSRUse &LU = Uses[LUIdx];
+ if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
+ // Reuse this use.
+ return std::make_pair(LUIdx, Offset);
+ }
+
+ // Create a new use.
+ size_t LUIdx = Uses.size();
+ P.first->second = LUIdx;
+ Uses.push_back(LSRUse(Kind, AccessTy));
+ LSRUse &LU = Uses[LUIdx];
+
+ // We don't need to track redundant offsets, but we don't need to go out
+ // of our way here to avoid them.
+ if (LU.Offsets.empty() || Offset != LU.Offsets.back())
+ LU.Offsets.push_back(Offset);
+
+ LU.MinOffset = Offset;
+ LU.MaxOffset = Offset;
+ return std::make_pair(LUIdx, Offset);
+}
+
+/// DeleteUse - Delete the given use from the Uses list.
+void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
+ if (&LU != &Uses.back())
+ std::swap(LU, Uses.back());
+ Uses.pop_back();
+
+ // Update RegUses.
+ RegUses.SwapAndDropUse(LUIdx, Uses.size());
+}
+
+/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
+/// a formula that has the same registers as the given formula.
+LSRUse *
+LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
+ const LSRUse &OrigLU) {
+ // Search all uses for the formula. This could be more clever.
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ // Check whether this use is close enough to OrigLU, to see whether it's
+ // worthwhile looking through its formulae.
+ // Ignore ICmpZero uses because they may contain formulae generated by
+ // GenerateICmpZeroScales, in which case adding fixup offsets may
+ // be invalid.
+ if (&LU != &OrigLU &&
+ LU.Kind != LSRUse::ICmpZero &&
+ LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
+ LU.WidestFixupType == OrigLU.WidestFixupType &&
+ LU.HasFormulaWithSameRegs(OrigF)) {
+ // Scan through this use's formulae.
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ // Check to see if this formula has the same registers and symbols
+ // as OrigF.
+ if (F.BaseRegs == OrigF.BaseRegs &&
+ F.ScaledReg == OrigF.ScaledReg &&
+ F.AM.BaseGV == OrigF.AM.BaseGV &&
+ F.AM.Scale == OrigF.AM.Scale &&
+ F.UnfoldedOffset == OrigF.UnfoldedOffset) {
+ if (F.AM.BaseOffs == 0)
+ return &LU;
+ // This is the formula where all the registers and symbols matched;
+ // there aren't going to be any others. Since we declined it, we
+ // can skip the rest of the formulae and proceed to the next LSRUse.
+ break;
+ }
+ }
+ }
+ }
+
+ // Nothing looked good.
+ return 0;
+}
+
+void LSRInstance::CollectInterestingTypesAndFactors() {
+ SmallSetVector<const SCEV *, 4> Strides;
+
+ // Collect interesting types and strides.
+ SmallVector<const SCEV *, 4> Worklist;
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
+ const SCEV *Expr = IU.getExpr(*UI);
+
+ // Collect interesting types.
+ Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
+
+ // Add strides for mentioned loops.
+ Worklist.push_back(Expr);
+ do {
+ const SCEV *S = Worklist.pop_back_val();
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ if (AR->getLoop() == L)
+ Strides.insert(AR->getStepRecurrence(SE));
+ Worklist.push_back(AR->getStart());
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ Worklist.append(Add->op_begin(), Add->op_end());
+ }
+ } while (!Worklist.empty());
+ }
+
+ // Compute interesting factors from the set of interesting strides.
+ for (SmallSetVector<const SCEV *, 4>::const_iterator
+ I = Strides.begin(), E = Strides.end(); I != E; ++I)
+ for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
+ llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
+ const SCEV *OldStride = *I;
+ const SCEV *NewStride = *NewStrideIter;
+
+ if (SE.getTypeSizeInBits(OldStride->getType()) !=
+ SE.getTypeSizeInBits(NewStride->getType())) {
+ if (SE.getTypeSizeInBits(OldStride->getType()) >
+ SE.getTypeSizeInBits(NewStride->getType()))
+ NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
+ else
+ OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
+ }
+ if (const SCEVConstant *Factor =
+ dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
+ SE, true))) {
+ if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ } else if (const SCEVConstant *Factor =
+ dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
+ NewStride,
+ SE, true))) {
+ if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ }
+ }
+
+ // If all uses use the same type, don't bother looking for truncation-based
+ // reuse.
+ if (Types.size() == 1)
+ Types.clear();
+
+ DEBUG(print_factors_and_types(dbgs()));
+}
+
+/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
+/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
+/// Instructions to IVStrideUses, we could partially skip this.
+static User::op_iterator
+findIVOperand(User::op_iterator OI, User::op_iterator OE,
+ Loop *L, ScalarEvolution &SE) {
+ for(; OI != OE; ++OI) {
+ if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
+ if (!SE.isSCEVable(Oper->getType()))
+ continue;
+
+ if (const SCEVAddRecExpr *AR =
+ dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
+ if (AR->getLoop() == L)
+ break;
+ }
+ }
+ }
+ return OI;
+}
+
+/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
+/// operands, so wrap it in a convenient helper.
+static Value *getWideOperand(Value *Oper) {
+ if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
+ return Trunc->getOperand(0);
+ return Oper;
+}
+
+/// isCompatibleIVType - Return true if we allow an IV chain to include both
+/// types.
+static bool isCompatibleIVType(Value *LVal, Value *RVal) {
+ Type *LType = LVal->getType();
+ Type *RType = RVal->getType();
+ return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
+}
+
+/// getExprBase - Return an approximation of this SCEV expression's "base", or
+/// NULL for any constant. Returning the expression itself is
+/// conservative. Returning a deeper subexpression is more precise and valid as
+/// long as it isn't less complex than another subexpression. For expressions
+/// involving multiple unscaled values, we need to return the pointer-type
+/// SCEVUnknown. This avoids forming chains across objects, such as:
+/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
+///
+/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
+/// SCEVUnknown, we simply return the rightmost SCEV operand.
+static const SCEV *getExprBase(const SCEV *S) {
+ switch (S->getSCEVType()) {
+ default: // uncluding scUnknown.
+ return S;
+ case scConstant:
+ return 0;
+ case scTruncate:
+ return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
+ case scZeroExtend:
+ return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
+ case scSignExtend:
+ return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
+ case scAddExpr: {
+ // Skip over scaled operands (scMulExpr) to follow add operands as long as
+ // there's nothing more complex.
+ // FIXME: not sure if we want to recognize negation.
+ const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
+ for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
+ E(Add->op_begin()); I != E; ++I) {
+ const SCEV *SubExpr = *I;
+ if (SubExpr->getSCEVType() == scAddExpr)
+ return getExprBase(SubExpr);
+
+ if (SubExpr->getSCEVType() != scMulExpr)
+ return SubExpr;
+ }
+ return S; // all operands are scaled, be conservative.
+ }
+ case scAddRecExpr:
+ return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
+ }
+}
+
+/// Return true if the chain increment is profitable to expand into a loop
+/// invariant value, which may require its own register. A profitable chain
+/// increment will be an offset relative to the same base. We allow such offsets
+/// to potentially be used as chain increment as long as it's not obviously
+/// expensive to expand using real instructions.
+bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
+ const SCEV *IncExpr,
+ ScalarEvolution &SE) {
+ // Aggressively form chains when -stress-ivchain.
+ if (StressIVChain)
+ return true;
+
+ // Do not replace a constant offset from IV head with a nonconstant IV
+ // increment.
+ if (!isa<SCEVConstant>(IncExpr)) {
+ const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
+ if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
+ return 0;
+ }
+
+ SmallPtrSet<const SCEV*, 8> Processed;
+ return !isHighCostExpansion(IncExpr, Processed, SE);
+}
+
+/// Return true if the number of registers needed for the chain is estimated to
+/// be less than the number required for the individual IV users. First prohibit
+/// any IV users that keep the IV live across increments (the Users set should
+/// be empty). Next count the number and type of increments in the chain.
+///
+/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
+/// effectively use postinc addressing modes. Only consider it profitable it the
+/// increments can be computed in fewer registers when chained.
+///
+/// TODO: Consider IVInc free if it's already used in another chains.
+static bool
+isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
+ ScalarEvolution &SE, const TargetLowering *TLI) {
+ if (StressIVChain)
+ return true;
+
+ if (!Chain.hasIncs())
+ return false;
+
+ if (!Users.empty()) {
+ DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
+ for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
+ E = Users.end(); I != E; ++I) {
+ dbgs() << " " << **I << "\n";
+ });
+ return false;
+ }
+ assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
+
+ // The chain itself may require a register, so intialize cost to 1.
+ int cost = 1;
+
+ // A complete chain likely eliminates the need for keeping the original IV in
+ // a register. LSR does not currently know how to form a complete chain unless
+ // the header phi already exists.
+ if (isa<PHINode>(Chain.tailUserInst())
+ && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
+ --cost;
+ }
+ const SCEV *LastIncExpr = 0;
+ unsigned NumConstIncrements = 0;
+ unsigned NumVarIncrements = 0;
+ unsigned NumReusedIncrements = 0;
+ for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
+ I != E; ++I) {
+
+ if (I->IncExpr->isZero())
+ continue;
+
+ // Incrementing by zero or some constant is neutral. We assume constants can
+ // be folded into an addressing mode or an add's immediate operand.
+ if (isa<SCEVConstant>(I->IncExpr)) {
+ ++NumConstIncrements;
+ continue;
+ }
+
+ if (I->IncExpr == LastIncExpr)
+ ++NumReusedIncrements;
+ else
+ ++NumVarIncrements;
+
+ LastIncExpr = I->IncExpr;
+ }
+ // An IV chain with a single increment is handled by LSR's postinc
+ // uses. However, a chain with multiple increments requires keeping the IV's
+ // value live longer than it needs to be if chained.
+ if (NumConstIncrements > 1)
+ --cost;
+
+ // Materializing increment expressions in the preheader that didn't exist in
+ // the original code may cost a register. For example, sign-extended array
+ // indices can produce ridiculous increments like this:
+ // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
+ cost += NumVarIncrements;
+
+ // Reusing variable increments likely saves a register to hold the multiple of
+ // the stride.
+ cost -= NumReusedIncrements;
+
+ DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
+ << "\n");
+
+ return cost < 0;
+}
+
+/// ChainInstruction - Add this IV user to an existing chain or make it the head
+/// of a new chain.
+void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
+ SmallVectorImpl<ChainUsers> &ChainUsersVec) {
+ // When IVs are used as types of varying widths, they are generally converted
+ // to a wider type with some uses remaining narrow under a (free) trunc.
+ Value *const NextIV = getWideOperand(IVOper);
+ const SCEV *const OperExpr = SE.getSCEV(NextIV);
+ const SCEV *const OperExprBase = getExprBase(OperExpr);
+
+ // Visit all existing chains. Check if its IVOper can be computed as a
+ // profitable loop invariant increment from the last link in the Chain.
+ unsigned ChainIdx = 0, NChains = IVChainVec.size();
+ const SCEV *LastIncExpr = 0;
+ for (; ChainIdx < NChains; ++ChainIdx) {
+ IVChain &Chain = IVChainVec[ChainIdx];
+
+ // Prune the solution space aggressively by checking that both IV operands
+ // are expressions that operate on the same unscaled SCEVUnknown. This
+ // "base" will be canceled by the subsequent getMinusSCEV call. Checking
+ // first avoids creating extra SCEV expressions.
+ if (!StressIVChain && Chain.ExprBase != OperExprBase)
+ continue;
+
+ Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
+ if (!isCompatibleIVType(PrevIV, NextIV))
+ continue;
+
+ // A phi node terminates a chain.
+ if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
+ continue;
+
+ // The increment must be loop-invariant so it can be kept in a register.
+ const SCEV *PrevExpr = SE.getSCEV(PrevIV);
+ const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
+ if (!SE.isLoopInvariant(IncExpr, L))
+ continue;
+
+ if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
+ LastIncExpr = IncExpr;
+ break;
+ }
+ }
+ // If we haven't found a chain, create a new one, unless we hit the max. Don't
+ // bother for phi nodes, because they must be last in the chain.
+ if (ChainIdx == NChains) {
+ if (isa<PHINode>(UserInst))
+ return;
+ if (NChains >= MaxChains && !StressIVChain) {
+ DEBUG(dbgs() << "IV Chain Limit\n");
+ return;
+ }
+ LastIncExpr = OperExpr;
+ // IVUsers may have skipped over sign/zero extensions. We don't currently
+ // attempt to form chains involving extensions unless they can be hoisted
+ // into this loop's AddRec.
+ if (!isa<SCEVAddRecExpr>(LastIncExpr))
+ return;
+ ++NChains;
+ IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
+ OperExprBase));
+ ChainUsersVec.resize(NChains);
+ DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
+ << ") IV=" << *LastIncExpr << "\n");
+ } else {
+ DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
+ << ") IV+" << *LastIncExpr << "\n");
+ // Add this IV user to the end of the chain.
+ IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
+ }
+
+ SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
+ // This chain's NearUsers become FarUsers.
+ if (!LastIncExpr->isZero()) {
+ ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
+ NearUsers.end());
+ NearUsers.clear();
+ }
+
+ // All other uses of IVOperand become near uses of the chain.
+ // We currently ignore intermediate values within SCEV expressions, assuming
+ // they will eventually be used be the current chain, or can be computed
+ // from one of the chain increments. To be more precise we could
+ // transitively follow its user and only add leaf IV users to the set.
+ for (Value::use_iterator UseIter = IVOper->use_begin(),
+ UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
+ Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
+ if (!OtherUse || OtherUse == UserInst)
+ continue;
+ if (SE.isSCEVable(OtherUse->getType())
+ && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
+ && IU.isIVUserOrOperand(OtherUse)) {
+ continue;
+ }
+ NearUsers.insert(OtherUse);
+ }
+
+ // Since this user is part of the chain, it's no longer considered a use
+ // of the chain.
+ ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
+}
+
+/// CollectChains - Populate the vector of Chains.
+///
+/// This decreases ILP at the architecture level. Targets with ample registers,
+/// multiple memory ports, and no register renaming probably don't want
+/// this. However, such targets should probably disable LSR altogether.
+///
+/// The job of LSR is to make a reasonable choice of induction variables across
+/// the loop. Subsequent passes can easily "unchain" computation exposing more
+/// ILP *within the loop* if the target wants it.
+///
+/// Finding the best IV chain is potentially a scheduling problem. Since LSR
+/// will not reorder memory operations, it will recognize this as a chain, but
+/// will generate redundant IV increments. Ideally this would be corrected later
+/// by a smart scheduler:
+/// = A[i]
+/// = A[i+x]
+/// A[i] =
+/// A[i+x] =
+///
+/// TODO: Walk the entire domtree within this loop, not just the path to the
+/// loop latch. This will discover chains on side paths, but requires
+/// maintaining multiple copies of the Chains state.
+void LSRInstance::CollectChains() {
+ DEBUG(dbgs() << "Collecting IV Chains.\n");
+ SmallVector<ChainUsers, 8> ChainUsersVec;
+
+ SmallVector<BasicBlock *,8> LatchPath;
+ BasicBlock *LoopHeader = L->getHeader();
+ for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
+ Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
+ LatchPath.push_back(Rung->getBlock());
+ }
+ LatchPath.push_back(LoopHeader);
+
+ // Walk the instruction stream from the loop header to the loop latch.
+ for (SmallVectorImpl<BasicBlock *>::reverse_iterator
+ BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
+ BBIter != BBEnd; ++BBIter) {
+ for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
+ I != E; ++I) {
+ // Skip instructions that weren't seen by IVUsers analysis.
+ if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
+ continue;
+
+ // Ignore users that are part of a SCEV expression. This way we only
+ // consider leaf IV Users. This effectively rediscovers a portion of
+ // IVUsers analysis but in program order this time.
+ if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
+ continue;
+
+ // Remove this instruction from any NearUsers set it may be in.
+ for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
+ ChainIdx < NChains; ++ChainIdx) {
+ ChainUsersVec[ChainIdx].NearUsers.erase(I);
+ }
+ // Search for operands that can be chained.
+ SmallPtrSet<Instruction*, 4> UniqueOperands;
+ User::op_iterator IVOpEnd = I->op_end();
+ User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
+ while (IVOpIter != IVOpEnd) {
+ Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
+ if (UniqueOperands.insert(IVOpInst))
+ ChainInstruction(I, IVOpInst, ChainUsersVec);
+ IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
+ }
+ } // Continue walking down the instructions.
+ } // Continue walking down the domtree.
+ // Visit phi backedges to determine if the chain can generate the IV postinc.
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ if (!SE.isSCEVable(PN->getType()))
+ continue;
+
+ Instruction *IncV =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
+ if (IncV)
+ ChainInstruction(PN, IncV, ChainUsersVec);
+ }
+ // Remove any unprofitable chains.
+ unsigned ChainIdx = 0;
+ for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
+ UsersIdx < NChains; ++UsersIdx) {
+ if (!isProfitableChain(IVChainVec[UsersIdx],
+ ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
+ continue;
+ // Preserve the chain at UsesIdx.
+ if (ChainIdx != UsersIdx)
+ IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
+ FinalizeChain(IVChainVec[ChainIdx]);
+ ++ChainIdx;
+ }
+ IVChainVec.resize(ChainIdx);
+}
+
+void LSRInstance::FinalizeChain(IVChain &Chain) {
+ assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
+ DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
+
+ for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
+ I != E; ++I) {
+ DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n");
+ User::op_iterator UseI =
+ std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
+ assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
+ IVIncSet.insert(UseI);
+ }
+}
+
+/// Return true if the IVInc can be folded into an addressing mode.
+static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
+ Value *Operand, const TargetLowering *TLI) {
+ const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
+ if (!IncConst || !isAddressUse(UserInst, Operand))
+ return false;
+
+ if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
+ return false;
+
+ int64_t IncOffset = IncConst->getValue()->getSExtValue();
+ if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
+ LSRUse::Address, getAccessType(UserInst), TLI))
+ return false;
+
+ return true;
+}
+
+/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
+/// materialize the IV user's operand from the previous IV user's operand.
+void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) {
+ // Find the new IVOperand for the head of the chain. It may have been replaced
+ // by LSR.
+ const IVInc &Head = Chain.Incs[0];
+ User::op_iterator IVOpEnd = Head.UserInst->op_end();
+ User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
+ IVOpEnd, L, SE);
+ Value *IVSrc = 0;
+ while (IVOpIter != IVOpEnd) {
+ IVSrc = getWideOperand(*IVOpIter);
+
+ // If this operand computes the expression that the chain needs, we may use
+ // it. (Check this after setting IVSrc which is used below.)
+ //
+ // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
+ // narrow for the chain, so we can no longer use it. We do allow using a
+ // wider phi, assuming the LSR checked for free truncation. In that case we
+ // should already have a truncate on this operand such that
+ // getSCEV(IVSrc) == IncExpr.
+ if (SE.getSCEV(*IVOpIter) == Head.IncExpr
+ || SE.getSCEV(IVSrc) == Head.IncExpr) {
+ break;
+ }
+ IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
+ }
+ if (IVOpIter == IVOpEnd) {
+ // Gracefully give up on this chain.
+ DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
+ return;
+ }
+
+ DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
+ Type *IVTy = IVSrc->getType();
+ Type *IntTy = SE.getEffectiveSCEVType(IVTy);
+ const SCEV *LeftOverExpr = 0;
+ for (IVChain::const_iterator IncI = Chain.begin(),
+ IncE = Chain.end(); IncI != IncE; ++IncI) {
+
+ Instruction *InsertPt = IncI->UserInst;
+ if (isa<PHINode>(InsertPt))
+ InsertPt = L->getLoopLatch()->getTerminator();
+
+ // IVOper will replace the current IV User's operand. IVSrc is the IV
+ // value currently held in a register.
+ Value *IVOper = IVSrc;
+ if (!IncI->IncExpr->isZero()) {
+ // IncExpr was the result of subtraction of two narrow values, so must
+ // be signed.
+ const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
+ LeftOverExpr = LeftOverExpr ?
+ SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
+ }
+ if (LeftOverExpr && !LeftOverExpr->isZero()) {
+ // Expand the IV increment.
+ Rewriter.clearPostInc();
+ Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
+ const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
+ SE.getUnknown(IncV));
+ IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
+
+ // If an IV increment can't be folded, use it as the next IV value.
+ if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
+ TLI)) {
+ assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
+ IVSrc = IVOper;
+ LeftOverExpr = 0;
+ }
+ }
+ Type *OperTy = IncI->IVOperand->getType();
+ if (IVTy != OperTy) {
+ assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
+ "cannot extend a chained IV");
+ IRBuilder<> Builder(InsertPt);
+ IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
+ }
+ IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
+ DeadInsts.push_back(IncI->IVOperand);
+ }
+ // If LSR created a new, wider phi, we may also replace its postinc. We only
+ // do this if we also found a wide value for the head of the chain.
+ if (isa<PHINode>(Chain.tailUserInst())) {
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
+ if (!isCompatibleIVType(Phi, IVSrc))
+ continue;
+ Instruction *PostIncV = dyn_cast<Instruction>(
+ Phi->getIncomingValueForBlock(L->getLoopLatch()));
+ if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
+ continue;
+ Value *IVOper = IVSrc;
+ Type *PostIncTy = PostIncV->getType();
+ if (IVTy != PostIncTy) {
+ assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
+ IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
+ Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
+ IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
+ }
+ Phi->replaceUsesOfWith(PostIncV, IVOper);
+ DeadInsts.push_back(PostIncV);
+ }
+ }
+}
+
+void LSRInstance::CollectFixupsAndInitialFormulae() {
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
+ Instruction *UserInst = UI->getUser();
+ // Skip IV users that are part of profitable IV Chains.
+ User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
+ UI->getOperandValToReplace());
+ assert(UseI != UserInst->op_end() && "cannot find IV operand");
+ if (IVIncSet.count(UseI))
+ continue;
+
+ // Record the uses.
+ LSRFixup &LF = getNewFixup();
+ LF.UserInst = UserInst;
+ LF.OperandValToReplace = UI->getOperandValToReplace();
+ LF.PostIncLoops = UI->getPostIncLoops();
+
+ LSRUse::KindType Kind = LSRUse::Basic;
+ Type *AccessTy = 0;
+ if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
+ Kind = LSRUse::Address;
+ AccessTy = getAccessType(LF.UserInst);
+ }
+
+ const SCEV *S = IU.getExpr(*UI);
+
+ // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
+ // (N - i == 0), and this allows (N - i) to be the expression that we work
+ // with rather than just N or i, so we can consider the register
+ // requirements for both N and i at the same time. Limiting this code to
+ // equality icmps is not a problem because all interesting loops use
+ // equality icmps, thanks to IndVarSimplify.
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
+ if (CI->isEquality()) {
+ // Swap the operands if needed to put the OperandValToReplace on the
+ // left, for consistency.
+ Value *NV = CI->getOperand(1);
+ if (NV == LF.OperandValToReplace) {
+ CI->setOperand(1, CI->getOperand(0));
+ CI->setOperand(0, NV);
+ NV = CI->getOperand(1);
+ Changed = true;
+ }
+
+ // x == y --> x - y == 0
+ const SCEV *N = SE.getSCEV(NV);
+ if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) {
+ // S is normalized, so normalize N before folding it into S
+ // to keep the result normalized.
+ N = TransformForPostIncUse(Normalize, N, CI, 0,
+ LF.PostIncLoops, SE, DT);
+ Kind = LSRUse::ICmpZero;
+ S = SE.getMinusSCEV(N, S);
+ }
+
+ // -1 and the negations of all interesting strides (except the negation
+ // of -1) are now also interesting.
+ for (size_t i = 0, e = Factors.size(); i != e; ++i)
+ if (Factors[i] != -1)
+ Factors.insert(-(uint64_t)Factors[i]);
+ Factors.insert(-1);
+ }
+
+ // Set up the initial formula for this use.
+ std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
+ LF.LUIdx = P.first;
+ LF.Offset = P.second;
+ LSRUse &LU = Uses[LF.LUIdx];
+ LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
+ if (!LU.WidestFixupType ||
+ SE.getTypeSizeInBits(LU.WidestFixupType) <
+ SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
+ LU.WidestFixupType = LF.OperandValToReplace->getType();
+
+ // If this is the first use of this LSRUse, give it a formula.
+ if (LU.Formulae.empty()) {
+ InsertInitialFormula(S, LU, LF.LUIdx);
+ CountRegisters(LU.Formulae.back(), LF.LUIdx);
+ }
+ }
+
+ DEBUG(print_fixups(dbgs()));
+}
+
+/// InsertInitialFormula - Insert a formula for the given expression into
+/// the given use, separating out loop-variant portions from loop-invariant
+/// and loop-computable portions.
+void
+LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
+ Formula F;
+ F.InitialMatch(S, L, SE);
+ bool Inserted = InsertFormula(LU, LUIdx, F);
+ assert(Inserted && "Initial formula already exists!"); (void)Inserted;
+}
+
+/// InsertSupplementalFormula - Insert a simple single-register formula for
+/// the given expression into the given use.
+void
+LSRInstance::InsertSupplementalFormula(const SCEV *S,
+ LSRUse &LU, size_t LUIdx) {
+ Formula F;
+ F.BaseRegs.push_back(S);
+ F.AM.HasBaseReg = true;
+ bool Inserted = InsertFormula(LU, LUIdx, F);
+ assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
+}
+
+/// CountRegisters - Note which registers are used by the given formula,
+/// updating RegUses.
+void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
+ if (F.ScaledReg)
+ RegUses.CountRegister(F.ScaledReg, LUIdx);
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I)
+ RegUses.CountRegister(*I, LUIdx);
+}
+
+/// InsertFormula - If the given formula has not yet been inserted, add it to
+/// the list, and return true. Return false otherwise.
+bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
+ if (!LU.InsertFormula(F))
+ return false;
+
+ CountRegisters(F, LUIdx);
+ return true;
+}
+
+/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
+/// loop-invariant values which we're tracking. These other uses will pin these
+/// values in registers, making them less profitable for elimination.
+/// TODO: This currently misses non-constant addrec step registers.
+/// TODO: Should this give more weight to users inside the loop?
+void
+LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
+ SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
+ SmallPtrSet<const SCEV *, 8> Inserted;
+
+ while (!Worklist.empty()) {
+ const SCEV *S = Worklist.pop_back_val();
+
+ if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
+ Worklist.append(N->op_begin(), N->op_end());
+ else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
+ Worklist.push_back(C->getOperand());
+ else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
+ Worklist.push_back(D->getLHS());
+ Worklist.push_back(D->getRHS());
+ } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ if (!Inserted.insert(U)) continue;
+ const Value *V = U->getValue();
+ if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
+ // Look for instructions defined outside the loop.
+ if (L->contains(Inst)) continue;
+ } else if (isa<UndefValue>(V))
+ // Undef doesn't have a live range, so it doesn't matter.
+ continue;
+ for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ const Instruction *UserInst = dyn_cast<Instruction>(*UI);
+ // Ignore non-instructions.
+ if (!UserInst)
+ continue;
+ // Ignore instructions in other functions (as can happen with
+ // Constants).
+ if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
+ continue;
+ // Ignore instructions not dominated by the loop.
+ const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
+ UserInst->getParent() :
+ cast<PHINode>(UserInst)->getIncomingBlock(
+ PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
+ if (!DT.dominates(L->getHeader(), UseBB))
+ continue;
+ // Ignore uses which are part of other SCEV expressions, to avoid
+ // analyzing them multiple times.
+ if (SE.isSCEVable(UserInst->getType())) {
+ const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
+ // If the user is a no-op, look through to its uses.
+ if (!isa<SCEVUnknown>(UserS))
+ continue;
+ if (UserS == U) {
+ Worklist.push_back(
+ SE.getUnknown(const_cast<Instruction *>(UserInst)));
+ continue;
+ }
+ }
+ // Ignore icmp instructions which are already being analyzed.
+ if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
+ unsigned OtherIdx = !UI.getOperandNo();
+ Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
+ if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
+ continue;
+ }
+
+ LSRFixup &LF = getNewFixup();
+ LF.UserInst = const_cast<Instruction *>(UserInst);
+ LF.OperandValToReplace = UI.getUse();
+ std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
+ LF.LUIdx = P.first;
+ LF.Offset = P.second;
+ LSRUse &LU = Uses[LF.LUIdx];
+ LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
+ if (!LU.WidestFixupType ||
+ SE.getTypeSizeInBits(LU.WidestFixupType) <
+ SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
+ LU.WidestFixupType = LF.OperandValToReplace->getType();
+ InsertSupplementalFormula(U, LU, LF.LUIdx);
+ CountRegisters(LU.Formulae.back(), Uses.size() - 1);
+ break;
+ }
+ }
+ }
+}
+
+/// CollectSubexprs - Split S into subexpressions which can be pulled out into
+/// separate registers. If C is non-null, multiply each subexpression by C.
+///
+/// Return remainder expression after factoring the subexpressions captured by
+/// Ops. If Ops is complete, return NULL.
+static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
+ SmallVectorImpl<const SCEV *> &Ops,
+ const Loop *L,
+ ScalarEvolution &SE,
+ unsigned Depth = 0) {
+ // Arbitrarily cap recursion to protect compile time.
+ if (Depth >= 3)
+ return S;
+
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ // Break out add operands.
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
+ if (Remainder)
+ Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
+ }
+ return NULL;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ // Split a non-zero base out of an addrec.
+ if (AR->getStart()->isZero())
+ return S;
+
+ const SCEV *Remainder = CollectSubexprs(AR->getStart(),
+ C, Ops, L, SE, Depth+1);
+ // Split the non-zero AddRec unless it is part of a nested recurrence that
+ // does not pertain to this loop.
+ if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
+ Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
+ Remainder = NULL;
+ }
+ if (Remainder != AR->getStart()) {
+ if (!Remainder)
+ Remainder = SE.getConstant(AR->getType(), 0);
+ return SE.getAddRecExpr(Remainder,
+ AR->getStepRecurrence(SE),
+ AR->getLoop(),
+ //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
+ SCEV::FlagAnyWrap);
+ }
+ } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ // Break (C * (a + b + c)) into C*a + C*b + C*c.
+ if (Mul->getNumOperands() != 2)
+ return S;
+ if (const SCEVConstant *Op0 =
+ dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
+ C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
+ const SCEV *Remainder =
+ CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
+ if (Remainder)
+ Ops.push_back(SE.getMulExpr(C, Remainder));
+ return NULL;
+ }
+ }
+ return S;
+}
+
+/// GenerateReassociations - Split out subexpressions from adds and the bases of
+/// addrecs.
+void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
+ Formula Base,
+ unsigned Depth) {
+ // Arbitrarily cap recursion to protect compile time.
+ if (Depth >= 3) return;
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *BaseReg = Base.BaseRegs[i];
+
+ SmallVector<const SCEV *, 8> AddOps;
+ const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
+ if (Remainder)
+ AddOps.push_back(Remainder);
+
+ if (AddOps.size() == 1) continue;
+
+ for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
+ JE = AddOps.end(); J != JE; ++J) {
+
+ // Loop-variant "unknown" values are uninteresting; we won't be able to
+ // do anything meaningful with them.
+ if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
+ continue;
+
+ // Don't pull a constant into a register if the constant could be folded
+ // into an immediate field.
+ if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
+ Base.getNumRegs() > 1,
+ LU.Kind, LU.AccessTy, TLI, SE))
+ continue;
+
+ // Collect all operands except *J.
+ SmallVector<const SCEV *, 8> InnerAddOps
+ (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
+ InnerAddOps.append
+ (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
+
+ // Don't leave just a constant behind in a register if the constant could
+ // be folded into an immediate field.
+ if (InnerAddOps.size() == 1 &&
+ isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
+ Base.getNumRegs() > 1,
+ LU.Kind, LU.AccessTy, TLI, SE))
+ continue;
+
+ const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
+ if (InnerSum->isZero())
+ continue;
+ Formula F = Base;
+
+ // Add the remaining pieces of the add back into the new formula.
+ const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
+ if (TLI && InnerSumSC &&
+ SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
+ TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ InnerSumSC->getValue()->getZExtValue())) {
+ F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
+ InnerSumSC->getValue()->getZExtValue();
+ F.BaseRegs.erase(F.BaseRegs.begin() + i);
+ } else
+ F.BaseRegs[i] = InnerSum;
+
+ // Add J as its own register, or an unfolded immediate.
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
+ if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
+ TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
+ SC->getValue()->getZExtValue()))
+ F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
+ SC->getValue()->getZExtValue();
+ else
+ F.BaseRegs.push_back(*J);
+
+ if (InsertFormula(LU, LUIdx, F))
+ // If that formula hadn't been seen before, recurse to find more like
+ // it.
+ GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
+ }
+ }
+}
+
+/// GenerateCombinations - Generate a formula consisting of all of the
+/// loop-dominating registers added into a single register.
+void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // This method is only interesting on a plurality of registers.
+ if (Base.BaseRegs.size() <= 1) return;
+
+ Formula F = Base;
+ F.BaseRegs.clear();
+ SmallVector<const SCEV *, 4> Ops;
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
+ const SCEV *BaseReg = *I;
+ if (SE.properlyDominates(BaseReg, L->getHeader()) &&
+ !SE.hasComputableLoopEvolution(BaseReg, L))
+ Ops.push_back(BaseReg);
+ else
+ F.BaseRegs.push_back(BaseReg);
+ }
+ if (Ops.size() > 1) {
+ const SCEV *Sum = SE.getAddExpr(Ops);
+ // TODO: If Sum is zero, it probably means ScalarEvolution missed an
+ // opportunity to fold something. For now, just ignore such cases
+ // rather than proceed with zero in a register.
+ if (!Sum->isZero()) {
+ F.BaseRegs.push_back(Sum);
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+}
+
+/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
+void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // We can't add a symbolic offset if the address already contains one.
+ if (Base.AM.BaseGV) return;
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *G = Base.BaseRegs[i];
+ GlobalValue *GV = ExtractSymbol(G, SE);
+ if (G->isZero() || !GV)
+ continue;
+ Formula F = Base;
+ F.AM.BaseGV = GV;
+ if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ F.BaseRegs[i] = G;
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+}
+
+/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
+void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // TODO: For now, just add the min and max offset, because it usually isn't
+ // worthwhile looking at everything inbetween.
+ SmallVector<int64_t, 2> Worklist;
+ Worklist.push_back(LU.MinOffset);
+ if (LU.MaxOffset != LU.MinOffset)
+ Worklist.push_back(LU.MaxOffset);
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *G = Base.BaseRegs[i];
+
+ for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
+ E = Worklist.end(); I != E; ++I) {
+ Formula F = Base;
+ F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
+ if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
+ LU.Kind, LU.AccessTy, TLI)) {
+ // Add the offset to the base register.
+ const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
+ // If it cancelled out, drop the base register, otherwise update it.
+ if (NewG->isZero()) {
+ std::swap(F.BaseRegs[i], F.BaseRegs.back());
+ F.BaseRegs.pop_back();
+ } else
+ F.BaseRegs[i] = NewG;
+
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+
+ int64_t Imm = ExtractImmediate(G, SE);
+ if (G->isZero() || Imm == 0)
+ continue;
+ Formula F = Base;
+ F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
+ if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ F.BaseRegs[i] = G;
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+}
+
+/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
+/// the comparison. For example, x == y -> x*c == y*c.
+void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ if (LU.Kind != LSRUse::ICmpZero) return;
+
+ // Determine the integer type for the base formula.
+ Type *IntTy = Base.getType();
+ if (!IntTy) return;
+ if (SE.getTypeSizeInBits(IntTy) > 64) return;
+
+ // Don't do this if there is more than one offset.
+ if (LU.MinOffset != LU.MaxOffset) return;
+
+ assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+
+ // Check each interesting stride.
+ for (SmallSetVector<int64_t, 8>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ int64_t Factor = *I;
+
+ // Check that the multiplication doesn't overflow.
+ if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
+ continue;
+ int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
+ if (NewBaseOffs / Factor != Base.AM.BaseOffs)
+ continue;
+
+ // Check that multiplying with the use offset doesn't overflow.
+ int64_t Offset = LU.MinOffset;
+ if (Offset == INT64_MIN && Factor == -1)
+ continue;
+ Offset = (uint64_t)Offset * Factor;
+ if (Offset / Factor != LU.MinOffset)
+ continue;
+
+ Formula F = Base;
+ F.AM.BaseOffs = NewBaseOffs;
+
+ // Check that this scale is legal.
+ if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
+ continue;
+
+ // Compensate for the use having MinOffset built into it.
+ F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
+
+ const SCEV *FactorS = SE.getConstant(IntTy, Factor);
+
+ // Check that multiplying with each base register doesn't overflow.
+ for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
+ F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
+ if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
+ goto next;
+ }
+
+ // Check that multiplying with the scaled register doesn't overflow.
+ if (F.ScaledReg) {
+ F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
+ if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
+ continue;
+ }
+
+ // Check that multiplying with the unfolded offset doesn't overflow.
+ if (F.UnfoldedOffset != 0) {
+ if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
+ continue;
+ F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
+ if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
+ continue;
+ }
+
+ // If we make it here and it's legal, add it.
+ (void)InsertFormula(LU, LUIdx, F);
+ next:;
+ }
+}
+
+/// GenerateScales - Generate stride factor reuse formulae by making use of
+/// scaled-offset address modes, for example.
+void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
+ // Determine the integer type for the base formula.
+ Type *IntTy = Base.getType();
+ if (!IntTy) return;
+
+ // If this Formula already has a scaled register, we can't add another one.
+ if (Base.AM.Scale != 0) return;
+
+ // Check each interesting stride.
+ for (SmallSetVector<int64_t, 8>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ int64_t Factor = *I;
+
+ Base.AM.Scale = Factor;
+ Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
+ // Check whether this scale is going to be legal.
+ if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI)) {
+ // As a special-case, handle special out-of-loop Basic users specially.
+ // TODO: Reconsider this special case.
+ if (LU.Kind == LSRUse::Basic &&
+ isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
+ LSRUse::Special, LU.AccessTy, TLI) &&
+ LU.AllFixupsOutsideLoop)
+ LU.Kind = LSRUse::Special;
+ else
+ continue;
+ }
+ // For an ICmpZero, negating a solitary base register won't lead to
+ // new solutions.
+ if (LU.Kind == LSRUse::ICmpZero &&
+ !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
+ continue;
+ // For each addrec base reg, apply the scale, if possible.
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
+ if (const SCEVAddRecExpr *AR =
+ dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
+ const SCEV *FactorS = SE.getConstant(IntTy, Factor);
+ if (FactorS->isZero())
+ continue;
+ // Divide out the factor, ignoring high bits, since we'll be
+ // scaling the value back up in the end.
+ if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
+ // TODO: This could be optimized to avoid all the copying.
+ Formula F = Base;
+ F.ScaledReg = Quotient;
+ F.DeleteBaseReg(F.BaseRegs[i]);
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+ }
+}
+
+/// GenerateTruncates - Generate reuse formulae from different IV types.
+void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
+ // This requires TargetLowering to tell us which truncates are free.
+ if (!TLI) return;
+
+ // Don't bother truncating symbolic values.
+ if (Base.AM.BaseGV) return;
+
+ // Determine the integer type for the base formula.
+ Type *DstTy = Base.getType();
+ if (!DstTy) return;
+ DstTy = SE.getEffectiveSCEVType(DstTy);
+
+ for (SmallSetVector<Type *, 4>::const_iterator
+ I = Types.begin(), E = Types.end(); I != E; ++I) {
+ Type *SrcTy = *I;
+ if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ Formula F = Base;
+
+ if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
+ for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
+ JE = F.BaseRegs.end(); J != JE; ++J)
+ *J = SE.getAnyExtendExpr(*J, SrcTy);
+
+ // TODO: This assumes we've done basic processing on all uses and
+ // have an idea what the register usage is.
+ if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
+ continue;
+
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+}
+
+namespace {
+
+/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
+/// defer modifications so that the search phase doesn't have to worry about
+/// the data structures moving underneath it.
+struct WorkItem {
+ size_t LUIdx;
+ int64_t Imm;
+ const SCEV *OrigReg;
+
+ WorkItem(size_t LI, int64_t I, const SCEV *R)
+ : LUIdx(LI), Imm(I), OrigReg(R) {}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+void WorkItem::print(raw_ostream &OS) const {
+ OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
+ << " , add offset " << Imm;
+}
+
+void WorkItem::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
+/// distance apart and try to form reuse opportunities between them.
+void LSRInstance::GenerateCrossUseConstantOffsets() {
+ // Group the registers by their value without any added constant offset.
+ typedef std::map<int64_t, const SCEV *> ImmMapTy;
+ typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
+ RegMapTy Map;
+ DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
+ SmallVector<const SCEV *, 8> Sequence;
+ for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
+ I != E; ++I) {
+ const SCEV *Reg = *I;
+ int64_t Imm = ExtractImmediate(Reg, SE);
+ std::pair<RegMapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(Reg, ImmMapTy()));
+ if (Pair.second)
+ Sequence.push_back(Reg);
+ Pair.first->second.insert(std::make_pair(Imm, *I));
+ UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
+ }
+
+ // Now examine each set of registers with the same base value. Build up
+ // a list of work to do and do the work in a separate step so that we're
+ // not adding formulae and register counts while we're searching.
+ SmallVector<WorkItem, 32> WorkItems;
+ SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
+ E = Sequence.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ const ImmMapTy &Imms = Map.find(Reg)->second;
+
+ // It's not worthwhile looking for reuse if there's only one offset.
+ if (Imms.size() == 1)
+ continue;
+
+ DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
+ for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
+ J != JE; ++J)
+ dbgs() << ' ' << J->first;
+ dbgs() << '\n');
+
+ // Examine each offset.
+ for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
+ J != JE; ++J) {
+ const SCEV *OrigReg = J->second;
+
+ int64_t JImm = J->first;
+ const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
+
+ if (!isa<SCEVConstant>(OrigReg) &&
+ UsedByIndicesMap[Reg].count() == 1) {
+ DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
+ continue;
+ }
+
+ // Conservatively examine offsets between this orig reg a few selected
+ // other orig regs.
+ ImmMapTy::const_iterator OtherImms[] = {
+ Imms.begin(), prior(Imms.end()),
+ Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
+ };
+ for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
+ ImmMapTy::const_iterator M = OtherImms[i];
+ if (M == J || M == JE) continue;
+
+ // Compute the difference between the two.
+ int64_t Imm = (uint64_t)JImm - M->first;
+ for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
+ LUIdx = UsedByIndices.find_next(LUIdx))
+ // Make a memo of this use, offset, and register tuple.
+ if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
+ WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
+ }
+ }
+ }
+
+ Map.clear();
+ Sequence.clear();
+ UsedByIndicesMap.clear();
+ UniqueItems.clear();
+
+ // Now iterate through the worklist and add new formulae.
+ for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
+ E = WorkItems.end(); I != E; ++I) {
+ const WorkItem &WI = *I;
+ size_t LUIdx = WI.LUIdx;
+ LSRUse &LU = Uses[LUIdx];
+ int64_t Imm = WI.Imm;
+ const SCEV *OrigReg = WI.OrigReg;
+
+ Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
+ const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
+ unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
+
+ // TODO: Use a more targeted data structure.
+ for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
+ const Formula &F = LU.Formulae[L];
+ // Use the immediate in the scaled register.
+ if (F.ScaledReg == OrigReg) {
+ int64_t Offs = (uint64_t)F.AM.BaseOffs +
+ Imm * (uint64_t)F.AM.Scale;
+ // Don't create 50 + reg(-50).
+ if (F.referencesReg(SE.getSCEV(
+ ConstantInt::get(IntTy, -(uint64_t)Offs))))
+ continue;
+ Formula NewF = F;
+ NewF.AM.BaseOffs = Offs;
+ if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
+
+ // If the new scale is a constant in a register, and adding the constant
+ // value to the immediate would produce a value closer to zero than the
+ // immediate itself, then the formula isn't worthwhile.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
+ if (C->getValue()->isNegative() !=
+ (NewF.AM.BaseOffs < 0) &&
+ (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
+ .ule(abs64(NewF.AM.BaseOffs)))
+ continue;
+
+ // OK, looks good.
+ (void)InsertFormula(LU, LUIdx, NewF);
+ } else {
+ // Use the immediate in a base register.
+ for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
+ const SCEV *BaseReg = F.BaseRegs[N];
+ if (BaseReg != OrigReg)
+ continue;
+ Formula NewF = F;
+ NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
+ if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI)) {
+ if (!TLI ||
+ !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
+ continue;
+ NewF = F;
+ NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
+ }
+ NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
+
+ // If the new formula has a constant in a register, and adding the
+ // constant value to the immediate would produce a value closer to
+ // zero than the immediate itself, then the formula isn't worthwhile.
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
+ J != JE; ++J)
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
+ if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
+ abs64(NewF.AM.BaseOffs)) &&
+ (C->getValue()->getValue() +
+ NewF.AM.BaseOffs).countTrailingZeros() >=
+ CountTrailingZeros_64(NewF.AM.BaseOffs))
+ goto skip_formula;
+
+ // Ok, looks good.
+ (void)InsertFormula(LU, LUIdx, NewF);
+ break;
+ skip_formula:;
+ }
+ }
+ }
+ }
+}
+
+/// GenerateAllReuseFormulae - Generate formulae for each use.
+void
+LSRInstance::GenerateAllReuseFormulae() {
+ // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
+ // queries are more precise.
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
+ }
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateScales(LU, LUIdx, LU.Formulae[i]);
+ }
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
+ }
+
+ GenerateCrossUseConstantOffsets();
+
+ DEBUG(dbgs() << "\n"
+ "After generating reuse formulae:\n";
+ print_uses(dbgs()));
+}
+
+/// If there are multiple formulae with the same set of registers used
+/// by other uses, pick the best one and delete the others.
+void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
+ DenseSet<const SCEV *> VisitedRegs;
+ SmallPtrSet<const SCEV *, 16> Regs;
+ SmallPtrSet<const SCEV *, 16> LoserRegs;
+#ifndef NDEBUG
+ bool ChangedFormulae = false;
+#endif
+
+ // Collect the best formula for each unique set of shared registers. This
+ // is reset for each use.
+ typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
+ BestFormulaeTy;
+ BestFormulaeTy BestFormulae;
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
+
+ bool Any = false;
+ for (size_t FIdx = 0, NumForms = LU.Formulae.size();
+ FIdx != NumForms; ++FIdx) {
+ Formula &F = LU.Formulae[FIdx];
+
+ // Some formulas are instant losers. For example, they may depend on
+ // nonexistent AddRecs from other loops. These need to be filtered
+ // immediately, otherwise heuristics could choose them over others leading
+ // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
+ // avoids the need to recompute this information across formulae using the
+ // same bad AddRec. Passing LoserRegs is also essential unless we remove
+ // the corresponding bad register from the Regs set.
+ Cost CostF;
+ Regs.clear();
+ CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
+ &LoserRegs);
+ if (CostF.isLoser()) {
+ // During initial formula generation, undesirable formulae are generated
+ // by uses within other loops that have some non-trivial address mode or
+ // use the postinc form of the IV. LSR needs to provide these formulae
+ // as the basis of rediscovering the desired formula that uses an AddRec
+ // corresponding to the existing phi. Once all formulae have been
+ // generated, these initial losers may be pruned.
+ DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
+ dbgs() << "\n");
+ }
+ else {
+ SmallVector<const SCEV *, 2> Key;
+ for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
+ JE = F.BaseRegs.end(); J != JE; ++J) {
+ const SCEV *Reg = *J;
+ if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
+ Key.push_back(Reg);
+ }
+ if (F.ScaledReg &&
+ RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
+ Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for
+ // uniquifying.
+ std::sort(Key.begin(), Key.end());
+
+ std::pair<BestFormulaeTy::const_iterator, bool> P =
+ BestFormulae.insert(std::make_pair(Key, FIdx));
+ if (P.second)
+ continue;
+
+ Formula &Best = LU.Formulae[P.first->second];
+
+ Cost CostBest;
+ Regs.clear();
+ CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
+ if (CostF < CostBest)
+ std::swap(F, Best);
+ DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
+ dbgs() << "\n"
+ " in favor of formula "; Best.print(dbgs());
+ dbgs() << '\n');
+ }
+#ifndef NDEBUG
+ ChangedFormulae = true;
+#endif
+ LU.DeleteFormula(F);
+ --FIdx;
+ --NumForms;
+ Any = true;
+ }
+
+ // Now that we've filtered out some formulae, recompute the Regs set.
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+
+ // Reset this to prepare for the next use.
+ BestFormulae.clear();
+ }
+
+ DEBUG(if (ChangedFormulae) {
+ dbgs() << "\n"
+ "After filtering out undesirable candidates:\n";
+ print_uses(dbgs());
+ });
+}
+
+// This is a rough guess that seems to work fairly well.
+static const size_t ComplexityLimit = UINT16_MAX;
+
+/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
+/// solutions the solver might have to consider. It almost never considers
+/// this many solutions because it prune the search space, but the pruning
+/// isn't always sufficient.
+size_t LSRInstance::EstimateSearchSpaceComplexity() const {
+ size_t Power = 1;
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ size_t FSize = I->Formulae.size();
+ if (FSize >= ComplexityLimit) {
+ Power = ComplexityLimit;
+ break;
+ }
+ Power *= FSize;
+ if (Power >= ComplexityLimit)
+ break;
+ }
+ return Power;
+}
+
+/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
+/// of the registers of another formula, it won't help reduce register
+/// pressure (though it may not necessarily hurt register pressure); remove
+/// it to simplify the system.
+void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
+ if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
+ "which use a superset of registers used by other "
+ "formulae.\n");
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ bool Any = false;
+ for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
+ Formula &F = LU.Formulae[i];
+ // Look for a formula with a constant or GV in a register. If the use
+ // also has a formula with that same value in an immediate field,
+ // delete the one that uses a register.
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
+ Formula NewF = F;
+ NewF.AM.BaseOffs += C->getValue()->getSExtValue();
+ NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
+ (I - F.BaseRegs.begin()));
+ if (LU.HasFormulaWithSameRegs(NewF)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
+ LU.DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ break;
+ }
+ } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
+ if (!F.AM.BaseGV) {
+ Formula NewF = F;
+ NewF.AM.BaseGV = GV;
+ NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
+ (I - F.BaseRegs.begin()));
+ if (LU.HasFormulaWithSameRegs(NewF)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs());
+ dbgs() << '\n');
+ LU.DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+ }
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+}
+
+/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
+/// for expressions like A, A+1, A+2, etc., allocate a single register for
+/// them.
+void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
+ if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
+ "separated by a constant offset will use the same "
+ "registers.\n");
+
+ // This is especially useful for unrolled loops.
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
+ if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
+ if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
+ /*HasBaseReg=*/false,
+ LU.Kind, LU.AccessTy)) {
+ DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
+ dbgs() << '\n');
+
+ LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
+
+ // Update the relocs to reference the new use.
+ for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ LSRFixup &Fixup = *I;
+ if (Fixup.LUIdx == LUIdx) {
+ Fixup.LUIdx = LUThatHas - &Uses.front();
+ Fixup.Offset += F.AM.BaseOffs;
+ // Add the new offset to LUThatHas' offset list.
+ if (LUThatHas->Offsets.back() != Fixup.Offset) {
+ LUThatHas->Offsets.push_back(Fixup.Offset);
+ if (Fixup.Offset > LUThatHas->MaxOffset)
+ LUThatHas->MaxOffset = Fixup.Offset;
+ if (Fixup.Offset < LUThatHas->MinOffset)
+ LUThatHas->MinOffset = Fixup.Offset;
+ }
+ DEBUG(dbgs() << "New fixup has offset "
+ << Fixup.Offset << '\n');
+ }
+ if (Fixup.LUIdx == NumUses-1)
+ Fixup.LUIdx = LUIdx;
+ }
+
+ // Delete formulae from the new use which are no longer legal.
+ bool Any = false;
+ for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
+ Formula &F = LUThatHas->Formulae[i];
+ if (!isLegalUse(F.AM,
+ LUThatHas->MinOffset, LUThatHas->MaxOffset,
+ LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs());
+ dbgs() << '\n');
+ LUThatHas->DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ }
+ }
+ if (Any)
+ LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
+
+ // Delete the old use.
+ DeleteUse(LU, LUIdx);
+ --LUIdx;
+ --NumUses;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+}
+
+/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
+/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
+/// we've done more filtering, as it may be able to find more formulae to
+/// eliminate.
+void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
+ if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
+ "undesirable dedicated registers.\n");
+
+ FilterOutUndesirableDedicatedRegisters();
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+}
+
+/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
+/// to be profitable, and then in any use which has any reference to that
+/// register, delete all formulae which do not reference that register.
+void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
+ // With all other options exhausted, loop until the system is simple
+ // enough to handle.
+ SmallPtrSet<const SCEV *, 4> Taken;
+ while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ // Ok, we have too many of formulae on our hands to conveniently handle.
+ // Use a rough heuristic to thin out the list.
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ // Pick the register which is used by the most LSRUses, which is likely
+ // to be a good reuse register candidate.
+ const SCEV *Best = 0;
+ unsigned BestNum = 0;
+ for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
+ I != E; ++I) {
+ const SCEV *Reg = *I;
+ if (Taken.count(Reg))
+ continue;
+ if (!Best)
+ Best = Reg;
+ else {
+ unsigned Count = RegUses.getUsedByIndices(Reg).count();
+ if (Count > BestNum) {
+ Best = Reg;
+ BestNum = Count;
+ }
+ }
+ }
+
+ DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
+ << " will yield profitable reuse.\n");
+ Taken.insert(Best);
+
+ // In any use with formulae which references this register, delete formulae
+ // which don't reference it.
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ if (!LU.Regs.count(Best)) continue;
+
+ bool Any = false;
+ for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
+ Formula &F = LU.Formulae[i];
+ if (!F.referencesReg(Best)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
+ LU.DeleteFormula(F);
+ --e;
+ --i;
+ Any = true;
+ assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
+ continue;
+ }
+ }
+
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+ }
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+}
+
+/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
+/// formulae to choose from, use some rough heuristics to prune down the number
+/// of formulae. This keeps the main solver from taking an extraordinary amount
+/// of time in some worst-case scenarios.
+void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
+ NarrowSearchSpaceByDetectingSupersets();
+ NarrowSearchSpaceByCollapsingUnrolledCode();
+ NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
+ NarrowSearchSpaceByPickingWinnerRegs();
+}
+
+/// SolveRecurse - This is the recursive solver.
+void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
+ Cost &SolutionCost,
+ SmallVectorImpl<const Formula *> &Workspace,
+ const Cost &CurCost,
+ const SmallPtrSet<const SCEV *, 16> &CurRegs,
+ DenseSet<const SCEV *> &VisitedRegs) const {
+ // Some ideas:
+ // - prune more:
+ // - use more aggressive filtering
+ // - sort the formula so that the most profitable solutions are found first
+ // - sort the uses too
+ // - search faster:
+ // - don't compute a cost, and then compare. compare while computing a cost
+ // and bail early.
+ // - track register sets with SmallBitVector
+
+ const LSRUse &LU = Uses[Workspace.size()];
+
+ // If this use references any register that's already a part of the
+ // in-progress solution, consider it a requirement that a formula must
+ // reference that register in order to be considered. This prunes out
+ // unprofitable searching.
+ SmallSetVector<const SCEV *, 4> ReqRegs;
+ for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
+ E = CurRegs.end(); I != E; ++I)
+ if (LU.Regs.count(*I))
+ ReqRegs.insert(*I);
+
+ SmallPtrSet<const SCEV *, 16> NewRegs;
+ Cost NewCost;
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+
+ // Ignore formulae which do not use any of the required registers.
+ bool SatisfiedReqReg = true;
+ for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
+ JE = ReqRegs.end(); J != JE; ++J) {
+ const SCEV *Reg = *J;
+ if ((!F.ScaledReg || F.ScaledReg != Reg) &&
+ std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
+ F.BaseRegs.end()) {
+ SatisfiedReqReg = false;
+ break;
+ }
+ }
+ if (!SatisfiedReqReg) {
+ // If none of the formulae satisfied the required registers, then we could
+ // clear ReqRegs and try again. Currently, we simply give up in this case.
+ continue;
+ }
+
+ // Evaluate the cost of the current formula. If it's already worse than
+ // the current best, prune the search at that point.
+ NewCost = CurCost;
+ NewRegs = CurRegs;
+ NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
+ if (NewCost < SolutionCost) {
+ Workspace.push_back(&F);
+ if (Workspace.size() != Uses.size()) {
+ SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
+ NewRegs, VisitedRegs);
+ if (F.getNumRegs() == 1 && Workspace.size() == 1)
+ VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
+ } else {
+ DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
+ dbgs() << ".\n Regs:";
+ for (SmallPtrSet<const SCEV *, 16>::const_iterator
+ I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
+ dbgs() << ' ' << **I;
+ dbgs() << '\n');
+
+ SolutionCost = NewCost;
+ Solution = Workspace;
+ }
+ Workspace.pop_back();
+ }
+ }
+}
+
+/// Solve - Choose one formula from each use. Return the results in the given
+/// Solution vector.
+void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
+ SmallVector<const Formula *, 8> Workspace;
+ Cost SolutionCost;
+ SolutionCost.Loose();
+ Cost CurCost;
+ SmallPtrSet<const SCEV *, 16> CurRegs;
+ DenseSet<const SCEV *> VisitedRegs;
+ Workspace.reserve(Uses.size());
+
+ // SolveRecurse does all the work.
+ SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
+ CurRegs, VisitedRegs);
+ if (Solution.empty()) {
+ DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
+ return;
+ }
+
+ // Ok, we've now made all our decisions.
+ DEBUG(dbgs() << "\n"
+ "The chosen solution requires "; SolutionCost.print(dbgs());
+ dbgs() << ":\n";
+ for (size_t i = 0, e = Uses.size(); i != e; ++i) {
+ dbgs() << " ";
+ Uses[i].print(dbgs());
+ dbgs() << "\n"
+ " ";
+ Solution[i]->print(dbgs());
+ dbgs() << '\n';
+ });
+
+ assert(Solution.size() == Uses.size() && "Malformed solution!");
+}
+
+/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
+/// the dominator tree far as we can go while still being dominated by the
+/// input positions. This helps canonicalize the insert position, which
+/// encourages sharing.
+BasicBlock::iterator
+LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
+ const SmallVectorImpl<Instruction *> &Inputs)
+ const {
+ for (;;) {
+ const Loop *IPLoop = LI.getLoopFor(IP->getParent());
+ unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
+
+ BasicBlock *IDom;
+ for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
+ if (!Rung) return IP;
+ Rung = Rung->getIDom();
+ if (!Rung) return IP;
+ IDom = Rung->getBlock();
+
+ // Don't climb into a loop though.
+ const Loop *IDomLoop = LI.getLoopFor(IDom);
+ unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
+ if (IDomDepth <= IPLoopDepth &&
+ (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
+ break;
+ }
+
+ bool AllDominate = true;
+ Instruction *BetterPos = 0;
+ Instruction *Tentative = IDom->getTerminator();
+ for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
+ E = Inputs.end(); I != E; ++I) {
+ Instruction *Inst = *I;
+ if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
+ AllDominate = false;
+ break;
+ }
+ // Attempt to find an insert position in the middle of the block,
+ // instead of at the end, so that it can be used for other expansions.
+ if (IDom == Inst->getParent() &&
+ (!BetterPos || !DT.dominates(Inst, BetterPos)))
+ BetterPos = llvm::next(BasicBlock::iterator(Inst));
+ }
+ if (!AllDominate)
+ break;
+ if (BetterPos)
+ IP = BetterPos;
+ else
+ IP = Tentative;
+ }
+
+ return IP;
+}
+
+/// AdjustInsertPositionForExpand - Determine an input position which will be
+/// dominated by the operands and which will dominate the result.
+BasicBlock::iterator
+LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
+ const LSRFixup &LF,
+ const LSRUse &LU,
+ SCEVExpander &Rewriter) const {
+ // Collect some instructions which must be dominated by the
+ // expanding replacement. These must be dominated by any operands that
+ // will be required in the expansion.
+ SmallVector<Instruction *, 4> Inputs;
+ if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
+ Inputs.push_back(I);
+ if (LU.Kind == LSRUse::ICmpZero)
+ if (Instruction *I =
+ dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
+ Inputs.push_back(I);
+ if (LF.PostIncLoops.count(L)) {
+ if (LF.isUseFullyOutsideLoop(L))
+ Inputs.push_back(L->getLoopLatch()->getTerminator());
+ else
+ Inputs.push_back(IVIncInsertPos);
+ }
+ // The expansion must also be dominated by the increment positions of any
+ // loops it for which it is using post-inc mode.
+ for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
+ E = LF.PostIncLoops.end(); I != E; ++I) {
+ const Loop *PIL = *I;
+ if (PIL == L) continue;
+
+ // Be dominated by the loop exit.
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ PIL->getExitingBlocks(ExitingBlocks);
+ if (!ExitingBlocks.empty()) {
+ BasicBlock *BB = ExitingBlocks[0];
+ for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
+ BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
+ Inputs.push_back(BB->getTerminator());
+ }
+ }
+
+ assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
+ && !isa<DbgInfoIntrinsic>(LowestIP) &&
+ "Insertion point must be a normal instruction");
+
+ // Then, climb up the immediate dominator tree as far as we can go while
+ // still being dominated by the input positions.
+ BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
+
+ // Don't insert instructions before PHI nodes.
+ while (isa<PHINode>(IP)) ++IP;
+
+ // Ignore landingpad instructions.
+ while (isa<LandingPadInst>(IP)) ++IP;
+
+ // Ignore debug intrinsics.
+ while (isa<DbgInfoIntrinsic>(IP)) ++IP;
+
+ // Set IP below instructions recently inserted by SCEVExpander. This keeps the
+ // IP consistent across expansions and allows the previously inserted
+ // instructions to be reused by subsequent expansion.
+ while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
+
+ return IP;
+}
+
+/// Expand - Emit instructions for the leading candidate expression for this
+/// LSRUse (this is called "expanding").
+Value *LSRInstance::Expand(const LSRFixup &LF,
+ const Formula &F,
+ BasicBlock::iterator IP,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
+ const LSRUse &LU = Uses[LF.LUIdx];
+
+ // Determine an input position which will be dominated by the operands and
+ // which will dominate the result.
+ IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
+
+ // Inform the Rewriter if we have a post-increment use, so that it can
+ // perform an advantageous expansion.
+ Rewriter.setPostInc(LF.PostIncLoops);
+
+ // This is the type that the user actually needs.
+ Type *OpTy = LF.OperandValToReplace->getType();
+ // This will be the type that we'll initially expand to.
+ Type *Ty = F.getType();
+ if (!Ty)
+ // No type known; just expand directly to the ultimate type.
+ Ty = OpTy;
+ else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
+ // Expand directly to the ultimate type if it's the right size.
+ Ty = OpTy;
+ // This is the type to do integer arithmetic in.
+ Type *IntTy = SE.getEffectiveSCEVType(Ty);
+
+ // Build up a list of operands to add together to form the full base.
+ SmallVector<const SCEV *, 8> Ops;
+
+ // Expand the BaseRegs portion.
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ assert(!Reg->isZero() && "Zero allocated in a base register!");
+
+ // If we're expanding for a post-inc user, make the post-inc adjustment.
+ PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
+ Reg = TransformForPostIncUse(Denormalize, Reg,
+ LF.UserInst, LF.OperandValToReplace,
+ Loops, SE, DT);
+
+ Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
+ }
+
+ // Expand the ScaledReg portion.
+ Value *ICmpScaledV = 0;
+ if (F.AM.Scale != 0) {
+ const SCEV *ScaledS = F.ScaledReg;
+
+ // If we're expanding for a post-inc user, make the post-inc adjustment.
+ PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
+ ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
+ LF.UserInst, LF.OperandValToReplace,
+ Loops, SE, DT);
+
+ if (LU.Kind == LSRUse::ICmpZero) {
+ // An interesting way of "folding" with an icmp is to use a negated
+ // scale, which we'll implement by inserting it into the other operand
+ // of the icmp.
+ assert(F.AM.Scale == -1 &&
+ "The only scale supported by ICmpZero uses is -1!");
+ ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
+ } else {
+ // Otherwise just expand the scaled register and an explicit scale,
+ // which is expected to be matched as part of the address.
+
+ // Flush the operand list to suppress SCEVExpander hoisting address modes.
+ if (!Ops.empty() && LU.Kind == LSRUse::Address) {
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Ops.clear();
+ Ops.push_back(SE.getUnknown(FullV));
+ }
+ ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
+ ScaledS = SE.getMulExpr(ScaledS,
+ SE.getConstant(ScaledS->getType(), F.AM.Scale));
+ Ops.push_back(ScaledS);
+ }
+ }
+
+ // Expand the GV portion.
+ if (F.AM.BaseGV) {
+ // Flush the operand list to suppress SCEVExpander hoisting.
+ if (!Ops.empty()) {
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Ops.clear();
+ Ops.push_back(SE.getUnknown(FullV));
+ }
+ Ops.push_back(SE.getUnknown(F.AM.BaseGV));
+ }
+
+ // Flush the operand list to suppress SCEVExpander hoisting of both folded and
+ // unfolded offsets. LSR assumes they both live next to their uses.
+ if (!Ops.empty()) {
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Ops.clear();
+ Ops.push_back(SE.getUnknown(FullV));
+ }
+
+ // Expand the immediate portion.
+ int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
+ if (Offset != 0) {
+ if (LU.Kind == LSRUse::ICmpZero) {
+ // The other interesting way of "folding" with an ICmpZero is to use a
+ // negated immediate.
+ if (!ICmpScaledV)
+ ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
+ else {
+ Ops.push_back(SE.getUnknown(ICmpScaledV));
+ ICmpScaledV = ConstantInt::get(IntTy, Offset);
+ }
+ } else {
+ // Just add the immediate values. These again are expected to be matched
+ // as part of the address.
+ Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
+ }
+ }
+
+ // Expand the unfolded offset portion.
+ int64_t UnfoldedOffset = F.UnfoldedOffset;
+ if (UnfoldedOffset != 0) {
+ // Just add the immediate values.
+ Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
+ UnfoldedOffset)));
+ }
+
+ // Emit instructions summing all the operands.
+ const SCEV *FullS = Ops.empty() ?
+ SE.getConstant(IntTy, 0) :
+ SE.getAddExpr(Ops);
+ Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
+
+ // We're done expanding now, so reset the rewriter.
+ Rewriter.clearPostInc();
+
+ // An ICmpZero Formula represents an ICmp which we're handling as a
+ // comparison against zero. Now that we've expanded an expression for that
+ // form, update the ICmp's other operand.
+ if (LU.Kind == LSRUse::ICmpZero) {
+ ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
+ DeadInsts.push_back(CI->getOperand(1));
+ assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ "a scale at the same time!");
+ if (F.AM.Scale == -1) {
+ if (ICmpScaledV->getType() != OpTy) {
+ Instruction *Cast =
+ CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
+ OpTy, false),
+ ICmpScaledV, OpTy, "tmp", CI);
+ ICmpScaledV = Cast;
+ }
+ CI->setOperand(1, ICmpScaledV);
+ } else {
+ assert(F.AM.Scale == 0 &&
+ "ICmp does not support folding a global value and "
+ "a scale at the same time!");
+ Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
+ -(uint64_t)Offset);
+ if (C->getType() != OpTy)
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ OpTy, false),
+ C, OpTy);
+
+ CI->setOperand(1, C);
+ }
+ }
+
+ return FullV;
+}
+
+/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
+/// of their operands effectively happens in their predecessor blocks, so the
+/// expression may need to be expanded in multiple places.
+void LSRInstance::RewriteForPHI(PHINode *PN,
+ const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const {
+ DenseMap<BasicBlock *, Value *> Inserted;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
+ BasicBlock *BB = PN->getIncomingBlock(i);
+
+ // If this is a critical edge, split the edge so that we do not insert
+ // the code on all predecessor/successor paths. We do this unless this
+ // is the canonical backedge for this loop, which complicates post-inc
+ // users.
+ if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
+ !isa<IndirectBrInst>(BB->getTerminator())) {
+ BasicBlock *Parent = PN->getParent();
+ Loop *PNLoop = LI.getLoopFor(Parent);
+ if (!PNLoop || Parent != PNLoop->getHeader()) {
+ // Split the critical edge.
+ BasicBlock *NewBB = 0;
+ if (!Parent->isLandingPad()) {
+ NewBB = SplitCriticalEdge(BB, Parent, P,
+ /*MergeIdenticalEdges=*/true,
+ /*DontDeleteUselessPhis=*/true);
+ } else {
+ SmallVector<BasicBlock*, 2> NewBBs;
+ SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
+ NewBB = NewBBs[0];
+ }
+
+ // If PN is outside of the loop and BB is in the loop, we want to
+ // move the block to be immediately before the PHI block, not
+ // immediately after BB.
+ if (L->contains(BB) && !L->contains(PN))
+ NewBB->moveBefore(PN->getParent());
+
+ // Splitting the edge can reduce the number of PHI entries we have.
+ e = PN->getNumIncomingValues();
+ BB = NewBB;
+ i = PN->getBasicBlockIndex(BB);
+ }
+ }
+
+ std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
+ Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
+ if (!Pair.second)
+ PN->setIncomingValue(i, Pair.first->second);
+ else {
+ Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
+
+ // If this is reuse-by-noop-cast, insert the noop cast.
+ Type *OpTy = LF.OperandValToReplace->getType();
+ if (FullV->getType() != OpTy)
+ FullV =
+ CastInst::Create(CastInst::getCastOpcode(FullV, false,
+ OpTy, false),
+ FullV, LF.OperandValToReplace->getType(),
+ "tmp", BB->getTerminator());
+
+ PN->setIncomingValue(i, FullV);
+ Pair.first->second = FullV;
+ }
+ }
+}
+
+/// Rewrite - Emit instructions for the leading candidate expression for this
+/// LSRUse (this is called "expanding"), and update the UserInst to reference
+/// the newly expanded value.
+void LSRInstance::Rewrite(const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const {
+ // First, find an insertion point that dominates UserInst. For PHI nodes,
+ // find the nearest block which dominates all the relevant uses.
+ if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
+ RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
+ } else {
+ Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
+
+ // If this is reuse-by-noop-cast, insert the noop cast.
+ Type *OpTy = LF.OperandValToReplace->getType();
+ if (FullV->getType() != OpTy) {
+ Instruction *Cast =
+ CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
+ FullV, OpTy, "tmp", LF.UserInst);
+ FullV = Cast;
+ }
+
+ // Update the user. ICmpZero is handled specially here (for now) because
+ // Expand may have updated one of the operands of the icmp already, and
+ // its new value may happen to be equal to LF.OperandValToReplace, in
+ // which case doing replaceUsesOfWith leads to replacing both operands
+ // with the same value. TODO: Reorganize this.
+ if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
+ LF.UserInst->setOperand(0, FullV);
+ else
+ LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
+ }
+
+ DeadInsts.push_back(LF.OperandValToReplace);
+}
+
+/// ImplementSolution - Rewrite all the fixup locations with new values,
+/// following the chosen solution.
+void
+LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
+ Pass *P) {
+ // Keep track of instructions we may have made dead, so that
+ // we can remove them after we are done working.
+ SmallVector<WeakVH, 16> DeadInsts;
+
+ SCEVExpander Rewriter(SE, "lsr");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
+ Rewriter.disableCanonicalMode();
+ Rewriter.enableLSRMode();
+ Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
+
+ // Mark phi nodes that terminate chains so the expander tries to reuse them.
+ for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
+ ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
+ if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
+ Rewriter.setChainedPhi(PN);
+ }
+
+ // Expand the new value definitions and update the users.
+ for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ const LSRFixup &Fixup = *I;
+
+ Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
+
+ Changed = true;
+ }
+
+ for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
+ ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
+ GenerateIVChain(*ChainI, Rewriter, DeadInsts);
+ Changed = true;
+ }
+ // Clean up after ourselves. This must be done before deleting any
+ // instructions.
+ Rewriter.clear();
+
+ Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
+}
+
+LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()),
+ SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()),
+ LI(P->getAnalysis<LoopInfo>()),
+ TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
+
+ // If LoopSimplify form is not available, stay out of trouble.
+ if (!L->isLoopSimplifyForm())
+ return;
+
+ // If there's no interesting work to be done, bail early.
+ if (IU.empty()) return;
+
+ // If there's too much analysis to be done, bail early. We won't be able to
+ // model the problem anyway.
+ unsigned NumUsers = 0;
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
+ if (++NumUsers > MaxIVUsers) {
+ DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
+ << "\n");
+ return;
+ }
+ }
+
+#ifndef NDEBUG
+ // All dominating loops must have preheaders, or SCEVExpander may not be able
+ // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
+ //
+ // IVUsers analysis should only create users that are dominated by simple loop
+ // headers. Since this loop should dominate all of its users, its user list
+ // should be empty if this loop itself is not within a simple loop nest.
+ for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
+ Rung; Rung = Rung->getIDom()) {
+ BasicBlock *BB = Rung->getBlock();
+ const Loop *DomLoop = LI.getLoopFor(BB);
+ if (DomLoop && DomLoop->getHeader() == BB) {
+ assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
+ }
+ }
+#endif // DEBUG
+
+ DEBUG(dbgs() << "\nLSR on loop ";
+ WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
+ dbgs() << ":\n");
+
+ // First, perform some low-level loop optimizations.
+ OptimizeShadowIV();
+ OptimizeLoopTermCond();
+
+ // If loop preparation eliminates all interesting IV users, bail.
+ if (IU.empty()) return;
+
+ // Skip nested loops until we can model them better with formulae.
+ if (!L->empty()) {
+ DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
+ return;
+ }
+
+ // Start collecting data and preparing for the solver.
+ CollectChains();
+ CollectInterestingTypesAndFactors();
+ CollectFixupsAndInitialFormulae();
+ CollectLoopInvariantFixupsAndFormulae();
+
+ assert(!Uses.empty() && "IVUsers reported at least one use");
+ DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
+ print_uses(dbgs()));
+
+ // Now use the reuse data to generate a bunch of interesting ways
+ // to formulate the values needed for the uses.
+ GenerateAllReuseFormulae();
+
+ FilterOutUndesirableDedicatedRegisters();
+ NarrowSearchSpaceUsingHeuristics();
+
+ SmallVector<const Formula *, 8> Solution;
+ Solve(Solution);
+
+ // Release memory that is no longer needed.
+ Factors.clear();
+ Types.clear();
+ RegUses.clear();
+
+ if (Solution.empty())
+ return;
+
+#ifndef NDEBUG
+ // Formulae should be legal.
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ const LSRUse &LU = *I;
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end(); J != JE; ++J)
+ assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI) &&
+ "Illegal formula generated!");
+ };
+#endif
+
+ // Now that we've decided what we want, make it so.
+ ImplementSolution(Solution, P);
+}
+
+void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
+ if (Factors.empty() && Types.empty()) return;
+
+ OS << "LSR has identified the following interesting factors and types: ";
+ bool First = true;
+
+ for (SmallSetVector<int64_t, 8>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ if (!First) OS << ", ";
+ First = false;
+ OS << '*' << *I;
+ }
+
+ for (SmallSetVector<Type *, 4>::const_iterator
+ I = Types.begin(), E = Types.end(); I != E; ++I) {
+ if (!First) OS << ", ";
+ First = false;
+ OS << '(' << **I << ')';
+ }
+ OS << '\n';
+}
+
+void LSRInstance::print_fixups(raw_ostream &OS) const {
+ OS << "LSR is examining the following fixup sites:\n";
+ for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ dbgs() << " ";
+ I->print(OS);
+ OS << '\n';
+ }
+}
+
+void LSRInstance::print_uses(raw_ostream &OS) const {
+ OS << "LSR is examining the following uses:\n";
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ const LSRUse &LU = *I;
+ dbgs() << " ";
+ LU.print(OS);
+ OS << '\n';
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end(); J != JE; ++J) {
+ OS << " ";
+ J->print(OS);
+ OS << '\n';
+ }
+ }
+}
+
+void LSRInstance::print(raw_ostream &OS) const {
+ print_factors_and_types(OS);
+ print_fixups(OS);
+ print_uses(OS);
+}
+
+void LSRInstance::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+class LoopStrengthReduce : public LoopPass {
+ /// TLI - Keep a pointer of a TargetLowering to consult for determining
+ /// transformation profitability.
+ const TargetLowering *const TLI;
+
+public:
+ static char ID; // Pass ID, replacement for typeid
+ explicit LoopStrengthReduce(const TargetLowering *tli = 0);
+
+private:
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+ void getAnalysisUsage(AnalysisUsage &AU) const;
+};
+
+}
+
+char LoopStrengthReduce::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
+ "Loop Strength Reduction", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(IVUsers)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
+ "Loop Strength Reduction", false, false)
+
+
+Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
+ return new LoopStrengthReduce(TLI);
+}
+
+LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
+ : LoopPass(ID), TLI(tli) {
+ initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
+ }
+
+void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
+ // We split critical edges, so we change the CFG. However, we do update
+ // many analyses if they are around.
+ AU.addPreservedID(LoopSimplifyID);
+
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<DominatorTree>();
+ AU.addPreserved<DominatorTree>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addPreserved<ScalarEvolution>();
+ // Requiring LoopSimplify a second time here prevents IVUsers from running
+ // twice, since LoopSimplify was invalidated by running ScalarEvolution.
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<IVUsers>();
+ AU.addPreserved<IVUsers>();
+}
+
+bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
+ bool Changed = false;
+
+ // Run the main LSR transformation.
+ Changed |= LSRInstance(TLI, L, this).getChanged();
+
+ // Remove any extra phis created by processing inner loops.
+ Changed |= DeleteDeadPHIs(L->getHeader());
+ if (EnablePhiElim) {
+ SmallVector<WeakVH, 16> DeadInsts;
+ SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
+ unsigned numFolded = Rewriter.
+ replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
+ if (numFolded) {
+ Changed = true;
+ DeleteTriviallyDeadInstructions(DeadInsts);
+ DeleteDeadPHIs(L->getHeader());
+ }
+ }
+ return Changed;
+}
OpenPOWER on IntegriCloud