diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp | 828 |
1 files changed, 414 insertions, 414 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp index 4b59f3d..2101225 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp @@ -105,10 +105,33 @@ static bool StressIVChain = false; namespace { -/// RegSortData - This class holds data which is used to order reuse candidates. +struct MemAccessTy { + /// Used in situations where the accessed memory type is unknown. + static const unsigned UnknownAddressSpace = ~0u; + + Type *MemTy; + unsigned AddrSpace; + + MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} + + MemAccessTy(Type *Ty, unsigned AS) : + MemTy(Ty), AddrSpace(AS) {} + + bool operator==(MemAccessTy Other) const { + return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; + } + + bool operator!=(MemAccessTy Other) const { return !(*this == Other); } + + static MemAccessTy getUnknown(LLVMContext &Ctx) { + return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); + } +}; + +/// This class holds data which is used to order reuse candidates. class RegSortData { public: - /// UsedByIndices - This represents the set of LSRUse indices which reference + /// This represents the set of LSRUse indices which reference /// a particular register. SmallBitVector UsedByIndices; @@ -122,16 +145,14 @@ void RegSortData::print(raw_ostream &OS) const { OS << "[NumUses=" << UsedByIndices.count() << ']'; } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void RegSortData::dump() const { print(errs()); errs() << '\n'; } -#endif namespace { -/// RegUseTracker - Map register candidates to information about how they are -/// used. +/// Map register candidates to information about how they are used. class RegUseTracker { typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; @@ -139,9 +160,9 @@ class RegUseTracker { SmallVector<const SCEV *, 16> RegSequence; public: - void CountRegister(const SCEV *Reg, size_t LUIdx); - void DropRegister(const SCEV *Reg, size_t LUIdx); - void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); + void countRegister(const SCEV *Reg, size_t LUIdx); + void dropRegister(const SCEV *Reg, size_t LUIdx); + void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; @@ -160,7 +181,7 @@ public: } void -RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { +RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { std::pair<RegUsesTy::iterator, bool> Pair = RegUsesMap.insert(std::make_pair(Reg, RegSortData())); RegSortData &RSD = Pair.first->second; @@ -171,7 +192,7 @@ RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { } void -RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { +RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { RegUsesTy::iterator It = RegUsesMap.find(Reg); assert(It != RegUsesMap.end()); RegSortData &RSD = It->second; @@ -180,7 +201,7 @@ RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { } void -RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { +RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { assert(LUIdx <= LastLUIdx); // Update RegUses. The data structure is not optimized for this purpose; @@ -219,9 +240,8 @@ void RegUseTracker::clear() { namespace { -/// Formula - This class holds information that describes a formula for -/// computing satisfying a use. It may include broken-out immediates and scaled -/// registers. +/// This class holds information that describes a formula for computing +/// satisfying a use. It may include broken-out immediates and scaled registers. struct Formula { /// Global base address used for complex addressing. GlobalValue *BaseGV; @@ -235,8 +255,8 @@ struct Formula { /// The scale of any complex addressing. int64_t Scale; - /// BaseRegs - The list of "base" registers for this use. When this is - /// non-empty. The canonical representation of a formula is + /// The list of "base" registers for this use. When this is non-empty. The + /// canonical representation of a formula is /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). /// #1 enforces that the scaled register is always used when at least two @@ -247,31 +267,31 @@ struct Formula { /// form. SmallVector<const SCEV *, 4> BaseRegs; - /// ScaledReg - The 'scaled' register for this use. This should be non-null - /// when Scale is not zero. + /// The 'scaled' register for this use. This should be non-null when Scale is + /// not zero. const SCEV *ScaledReg; - /// UnfoldedOffset - An additional constant offset which added near the - /// use. This requires a temporary register, but the offset itself can - /// live in an add immediate field rather than a register. + /// An additional constant offset which added near the use. This requires a + /// temporary register, but the offset itself can live in an add immediate + /// field rather than a register. int64_t UnfoldedOffset; Formula() : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(nullptr), UnfoldedOffset(0) {} - void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); + void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); bool isCanonical() const; - void Canonicalize(); + void canonicalize(); - bool Unscale(); + bool unscale(); size_t getNumRegs() const; Type *getType() const; - void DeleteBaseReg(const SCEV *&S); + void deleteBaseReg(const SCEV *&S); bool referencesReg(const SCEV *S) const; bool hasRegsUsedByUsesOtherThan(size_t LUIdx, @@ -283,7 +303,7 @@ struct Formula { } -/// DoInitialMatch - Recursion helper for InitialMatch. +/// Recursion helper for initialMatch. static void DoInitialMatch(const SCEV *S, Loop *L, SmallVectorImpl<const SCEV *> &Good, SmallVectorImpl<const SCEV *> &Bad, @@ -336,10 +356,9 @@ static void DoInitialMatch(const SCEV *S, Loop *L, Bad.push_back(S); } -/// InitialMatch - Incorporate loop-variant parts of S into this Formula, -/// attempting to keep all loop-invariant and loop-computable values in a -/// single base register. -void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { +/// Incorporate loop-variant parts of S into this Formula, attempting to keep +/// all loop-invariant and loop-computable values in a single base register. +void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { SmallVector<const SCEV *, 4> Good; SmallVector<const SCEV *, 4> Bad; DoInitialMatch(S, L, Good, Bad, SE); @@ -355,7 +374,7 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { BaseRegs.push_back(Sum); HasBaseReg = true; } - Canonicalize(); + canonicalize(); } /// \brief Check whether or not this formula statisfies the canonical @@ -373,7 +392,7 @@ bool Formula::isCanonical() const { /// field. Otherwise, we would have to do special cases everywhere in LSR /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... /// On the other hand, 1*reg should be canonicalized into reg. -void Formula::Canonicalize() { +void Formula::canonicalize() { if (isCanonical()) return; // So far we did not need this case. This is easy to implement but it is @@ -394,7 +413,7 @@ void Formula::Canonicalize() { /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. /// \return true if it was possible to get rid of the scale, false otherwise. /// \note After this operation the formula may not be in the canonical form. -bool Formula::Unscale() { +bool Formula::unscale() { if (Scale != 1) return false; Scale = 0; @@ -403,15 +422,14 @@ bool Formula::Unscale() { return true; } -/// getNumRegs - Return the total number of register operands used by this -/// formula. This does not include register uses implied by non-constant -/// addrec strides. +/// Return the total number of register operands used by this formula. This does +/// not include register uses implied by non-constant addrec strides. size_t Formula::getNumRegs() const { return !!ScaledReg + BaseRegs.size(); } -/// getType - Return the type of this formula, if it has one, or null -/// otherwise. This type is meaningless except for the bit size. +/// Return the type of this formula, if it has one, or null otherwise. This type +/// is meaningless except for the bit size. Type *Formula::getType() const { return !BaseRegs.empty() ? BaseRegs.front()->getType() : ScaledReg ? ScaledReg->getType() : @@ -419,21 +437,21 @@ Type *Formula::getType() const { nullptr; } -/// DeleteBaseReg - Delete the given base reg from the BaseRegs list. -void Formula::DeleteBaseReg(const SCEV *&S) { +/// Delete the given base reg from the BaseRegs list. +void Formula::deleteBaseReg(const SCEV *&S) { if (&S != &BaseRegs.back()) std::swap(S, BaseRegs.back()); BaseRegs.pop_back(); } -/// referencesReg - Test if this formula references the given register. +/// Test if this formula references the given register. bool Formula::referencesReg(const SCEV *S) const { return S == ScaledReg || std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); } -/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers -/// which are used by uses other than the use with the given index. +/// Test whether this formula uses registers which are used by uses other than +/// the use with the given index. bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, const RegUseTracker &RegUses) const { if (ScaledReg) @@ -481,30 +499,29 @@ void Formula::print(raw_ostream &OS) const { } } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void Formula::dump() const { print(errs()); errs() << '\n'; } -#endif -/// isAddRecSExtable - Return true if the given addrec can be sign-extended -/// without changing its value. +/// Return true if the given addrec can be sign-extended without changing its +/// value. static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { Type *WideTy = IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); } -/// isAddSExtable - Return true if the given add can be sign-extended -/// without changing its value. +/// Return true if the given add can be sign-extended without changing its +/// value. static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { Type *WideTy = IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); } -/// isMulSExtable - Return true if the given mul can be sign-extended -/// without changing its value. +/// Return true if the given mul can be sign-extended without changing its +/// value. static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { Type *WideTy = IntegerType::get(SE.getContext(), @@ -512,12 +529,11 @@ static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); } -/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined -/// and if the remainder is known to be zero, or null otherwise. If -/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified -/// to Y, ignoring that the multiplication may overflow, which is useful when -/// the result will be used in a context where the most significant bits are -/// ignored. +/// Return an expression for LHS /s RHS, if it can be determined and if the +/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits +/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that +/// the multiplication may overflow, which is useful when the result will be +/// used in a context where the most significant bits are ignored. static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, ScalarEvolution &SE, bool IgnoreSignificantBits = false) { @@ -528,7 +544,7 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, // Handle a few RHS special cases. const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); if (RC) { - const APInt &RA = RC->getValue()->getValue(); + const APInt &RA = RC->getAPInt(); // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do // some folding. if (RA.isAllOnesValue()) @@ -542,8 +558,8 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { if (!RC) return nullptr; - const APInt &LA = C->getValue()->getValue(); - const APInt &RA = RC->getValue()->getValue(); + const APInt &LA = C->getAPInt(); + const APInt &RA = RC->getAPInt(); if (LA.srem(RA) != 0) return nullptr; return SE.getConstant(LA.sdiv(RA)); @@ -603,12 +619,11 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, return nullptr; } -/// ExtractImmediate - If S involves the addition of a constant integer value, -/// return that integer value, and mutate S to point to a new SCEV with that -/// value excluded. +/// If S involves the addition of a constant integer value, return that integer +/// value, and mutate S to point to a new SCEV with that value excluded. static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { - if (C->getValue()->getValue().getMinSignedBits() <= 64) { + if (C->getAPInt().getMinSignedBits() <= 64) { S = SE.getConstant(C->getType(), 0); return C->getValue()->getSExtValue(); } @@ -630,9 +645,8 @@ static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { return 0; } -/// ExtractSymbol - If S involves the addition of a GlobalValue address, -/// return that symbol, and mutate S to point to a new SCEV with that -/// value excluded. +/// If S involves the addition of a GlobalValue address, return that symbol, and +/// mutate S to point to a new SCEV with that value excluded. static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { @@ -657,8 +671,8 @@ static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { return nullptr; } -/// isAddressUse - Returns true if the specified instruction is using the -/// specified value as an address. +/// Returns true if the specified instruction is using the specified value as an +/// address. static bool isAddressUse(Instruction *Inst, Value *OperandVal) { bool isAddress = isa<LoadInst>(Inst); if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { @@ -682,12 +696,15 @@ static bool isAddressUse(Instruction *Inst, Value *OperandVal) { return isAddress; } -/// getAccessType - Return the type of the memory being accessed. -static Type *getAccessType(const Instruction *Inst) { - Type *AccessTy = Inst->getType(); - if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) - AccessTy = SI->getOperand(0)->getType(); - else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { +/// Return the type of the memory being accessed. +static MemAccessTy getAccessType(const Instruction *Inst) { + MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); + if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + AccessTy.MemTy = SI->getOperand(0)->getType(); + AccessTy.AddrSpace = SI->getPointerAddressSpace(); + } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { + AccessTy.AddrSpace = LI->getPointerAddressSpace(); + } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { // Addressing modes can also be folded into prefetches and a variety // of intrinsics. switch (II->getIntrinsicID()) { @@ -696,21 +713,21 @@ static Type *getAccessType(const Instruction *Inst) { case Intrinsic::x86_sse2_storeu_pd: case Intrinsic::x86_sse2_storeu_dq: case Intrinsic::x86_sse2_storel_dq: - AccessTy = II->getArgOperand(0)->getType(); + AccessTy.MemTy = II->getArgOperand(0)->getType(); break; } } // All pointers have the same requirements, so canonicalize them to an // arbitrary pointer type to minimize variation. - if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) - AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), - PTy->getAddressSpace()); + if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) + AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), + PTy->getAddressSpace()); return AccessTy; } -/// isExistingPhi - Return true if this AddRec is already a phi in its loop. +/// Return true if this AddRec is already a phi in its loop. static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) { @@ -793,9 +810,8 @@ static bool isHighCostExpansion(const SCEV *S, return true; } -/// DeleteTriviallyDeadInstructions - If any of the instructions is the -/// specified set are trivially dead, delete them and see if this makes any of -/// their operands subsequently dead. +/// If any of the instructions is the specified set are trivially dead, delete +/// them and see if this makes any of their operands subsequently dead. static bool DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { bool Changed = false; @@ -842,7 +858,7 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, namespace { -/// Cost - This class is used to measure and compare candidate formulae. +/// This class is used to measure and compare candidate formulae. class Cost { /// TODO: Some of these could be merged. Also, a lexical ordering /// isn't always optimal. @@ -905,7 +921,7 @@ private: } -/// RateRegister - Tally up interesting quantities from the given register. +/// Tally up interesting quantities from the given register. void Cost::RateRegister(const SCEV *Reg, SmallPtrSetImpl<const SCEV *> &Regs, const Loop *L, @@ -951,9 +967,9 @@ void Cost::RateRegister(const SCEV *Reg, SE.hasComputableLoopEvolution(Reg, L); } -/// RatePrimaryRegister - Record this register in the set. If we haven't seen it -/// before, rate it. Optional LoserRegs provides a way to declare any formula -/// that refers to one of those regs an instant loser. +/// Record this register in the set. If we haven't seen it before, rate +/// it. Optional LoserRegs provides a way to declare any formula that refers to +/// one of those regs an instant loser. void Cost::RatePrimaryRegister(const SCEV *Reg, SmallPtrSetImpl<const SCEV *> &Regs, const Loop *L, @@ -1024,7 +1040,7 @@ void Cost::RateFormula(const TargetTransformInfo &TTI, assert(isValid() && "invalid cost"); } -/// Lose - Set this cost to a losing value. +/// Set this cost to a losing value. void Cost::Lose() { NumRegs = ~0u; AddRecCost = ~0u; @@ -1035,7 +1051,7 @@ void Cost::Lose() { ScaleCost = ~0u; } -/// operator< - Choose the lower cost. +/// Choose the lower cost. bool Cost::operator<(const Cost &Other) const { return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, ImmCost, SetupCost) < @@ -1061,37 +1077,35 @@ void Cost::print(raw_ostream &OS) const { OS << ", plus " << SetupCost << " setup cost"; } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void Cost::dump() const { print(errs()); errs() << '\n'; } -#endif namespace { -/// LSRFixup - An operand value in an instruction which is to be replaced -/// with some equivalent, possibly strength-reduced, replacement. +/// An operand value in an instruction which is to be replaced with some +/// equivalent, possibly strength-reduced, replacement. struct LSRFixup { - /// UserInst - The instruction which will be updated. + /// The instruction which will be updated. Instruction *UserInst; - /// OperandValToReplace - The operand of the instruction which will - /// be replaced. The operand may be used more than once; every instance - /// will be replaced. + /// The operand of the instruction which will be replaced. The operand may be + /// used more than once; every instance will be replaced. Value *OperandValToReplace; - /// PostIncLoops - If this user is to use the post-incremented value of an - /// induction variable, this variable is non-null and holds the loop - /// associated with the induction variable. + /// If this user is to use the post-incremented value of an induction + /// variable, this variable is non-null and holds the loop associated with the + /// induction variable. PostIncLoopSet PostIncLoops; - /// LUIdx - The index of the LSRUse describing the expression which - /// this fixup needs, minus an offset (below). + /// The index of the LSRUse describing the expression which this fixup needs, + /// minus an offset (below). size_t LUIdx; - /// Offset - A constant offset to be added to the LSRUse expression. - /// This allows multiple fixups to share the same LSRUse with different - /// offsets, for example in an unrolled loop. + /// A constant offset to be added to the LSRUse expression. This allows + /// multiple fixups to share the same LSRUse with different offsets, for + /// example in an unrolled loop. int64_t Offset; bool isUseFullyOutsideLoop(const Loop *L) const; @@ -1108,8 +1122,7 @@ LSRFixup::LSRFixup() : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), Offset(0) {} -/// isUseFullyOutsideLoop - Test whether this fixup always uses its -/// value outside of the given loop. +/// Test whether this fixup always uses its value outside of the given loop. bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { // PHI nodes use their value in their incoming blocks. if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { @@ -1149,16 +1162,15 @@ void LSRFixup::print(raw_ostream &OS) const { OS << ", Offset=" << Offset; } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LSRFixup::dump() const { print(errs()); errs() << '\n'; } -#endif namespace { -/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding -/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. +/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted +/// SmallVectors of const SCEV*. struct UniquifierDenseMapInfo { static SmallVector<const SCEV *, 4> getEmptyKey() { SmallVector<const SCEV *, 4> V; @@ -1182,17 +1194,17 @@ struct UniquifierDenseMapInfo { } }; -/// LSRUse - This class holds the state that LSR keeps for each use in -/// IVUsers, as well as uses invented by LSR itself. It includes information -/// about what kinds of things can be folded into the user, information about -/// the user itself, and information about how the use may be satisfied. -/// TODO: Represent multiple users of the same expression in common? +/// This class holds the state that LSR keeps for each use in IVUsers, as well +/// as uses invented by LSR itself. It includes information about what kinds of +/// things can be folded into the user, information about the user itself, and +/// information about how the use may be satisfied. TODO: Represent multiple +/// users of the same expression in common? class LSRUse { DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; public: - /// KindType - An enum for a kind of use, indicating what types of - /// scaled and immediate operands it might support. + /// An enum for a kind of use, indicating what types of scaled and immediate + /// operands it might support. enum KindType { Basic, ///< A normal use, with no folding. Special, ///< A special case of basic, allowing -1 scales. @@ -1204,15 +1216,14 @@ public: typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; KindType Kind; - Type *AccessTy; + MemAccessTy AccessTy; SmallVector<int64_t, 8> Offsets; int64_t MinOffset; int64_t MaxOffset; - /// AllFixupsOutsideLoop - This records whether all of the fixups using this - /// LSRUse are outside of the loop, in which case some special-case heuristics - /// may be used. + /// This records whether all of the fixups using this LSRUse are outside of + /// the loop, in which case some special-case heuristics may be used. bool AllFixupsOutsideLoop; /// RigidFormula is set to true to guarantee that this use will be associated @@ -1222,26 +1233,24 @@ public: /// changing the formula. bool RigidFormula; - /// WidestFixupType - This records the widest use type for any fixup using - /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different - /// max fixup widths to be equivalent, because the narrower one may be relying - /// on the implicit truncation to truncate away bogus bits. + /// This records the widest use type for any fixup using this + /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max + /// fixup widths to be equivalent, because the narrower one may be relying on + /// the implicit truncation to truncate away bogus bits. Type *WidestFixupType; - /// Formulae - A list of ways to build a value that can satisfy this user. - /// After the list is populated, one of these is selected heuristically and - /// used to formulate a replacement for OperandValToReplace in UserInst. + /// A list of ways to build a value that can satisfy this user. After the + /// list is populated, one of these is selected heuristically and used to + /// formulate a replacement for OperandValToReplace in UserInst. SmallVector<Formula, 12> Formulae; - /// Regs - The set of register candidates used by all formulae in this LSRUse. + /// The set of register candidates used by all formulae in this LSRUse. SmallPtrSet<const SCEV *, 4> Regs; - LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), - MinOffset(INT64_MAX), - MaxOffset(INT64_MIN), - AllFixupsOutsideLoop(true), - RigidFormula(false), - WidestFixupType(nullptr) {} + LSRUse(KindType K, MemAccessTy AT) + : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), + AllFixupsOutsideLoop(true), RigidFormula(false), + WidestFixupType(nullptr) {} bool HasFormulaWithSameRegs(const Formula &F) const; bool InsertFormula(const Formula &F); @@ -1254,8 +1263,8 @@ public: } -/// HasFormula - Test whether this use as a formula which has the same -/// registers as the given formula. +/// Test whether this use as a formula which has the same registers as the given +/// formula. bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { SmallVector<const SCEV *, 4> Key = F.BaseRegs; if (F.ScaledReg) Key.push_back(F.ScaledReg); @@ -1264,9 +1273,8 @@ bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { return Uniquifier.count(Key); } -/// InsertFormula - If the given formula has not yet been inserted, add it to -/// the list, and return true. Return false otherwise. -/// The formula must be in canonical form. +/// If the given formula has not yet been inserted, add it to the list, and +/// return true. Return false otherwise. The formula must be in canonical form. bool LSRUse::InsertFormula(const Formula &F) { assert(F.isCanonical() && "Invalid canonical representation"); @@ -1300,14 +1308,14 @@ bool LSRUse::InsertFormula(const Formula &F) { return true; } -/// DeleteFormula - Remove the given formula from this use's list. +/// Remove the given formula from this use's list. void LSRUse::DeleteFormula(Formula &F) { if (&F != &Formulae.back()) std::swap(F, Formulae.back()); Formulae.pop_back(); } -/// RecomputeRegs - Recompute the Regs field, and update RegUses. +/// Recompute the Regs field, and update RegUses. void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { // Now that we've filtered out some formulae, recompute the Regs set. SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); @@ -1320,7 +1328,7 @@ void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { // Update the RegTracker. for (const SCEV *S : OldRegs) if (!Regs.count(S)) - RegUses.DropRegister(S, LUIdx); + RegUses.dropRegister(S, LUIdx); } void LSRUse::print(raw_ostream &OS) const { @@ -1331,10 +1339,13 @@ void LSRUse::print(raw_ostream &OS) const { case ICmpZero: OS << "ICmpZero"; break; case Address: OS << "Address of "; - if (AccessTy->isPointerTy()) + if (AccessTy.MemTy->isPointerTy()) OS << "pointer"; // the full pointer type could be really verbose - else - OS << *AccessTy; + else { + OS << *AccessTy.MemTy; + } + + OS << " in addrspace(" << AccessTy.AddrSpace << ')'; } OS << ", Offsets={"; @@ -1353,19 +1364,19 @@ void LSRUse::print(raw_ostream &OS) const { OS << ", widest fixup type: " << *WidestFixupType; } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LSRUse::dump() const { print(errs()); errs() << '\n'; } -#endif static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, - LSRUse::KindType Kind, Type *AccessTy, + LSRUse::KindType Kind, MemAccessTy AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { switch (Kind) { case LSRUse::Address: - return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); + return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, + HasBaseReg, Scale, AccessTy.AddrSpace); case LSRUse::ICmpZero: // There's not even a target hook for querying whether it would be legal to @@ -1412,7 +1423,7 @@ static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, int64_t MinOffset, int64_t MaxOffset, - LSRUse::KindType Kind, Type *AccessTy, + LSRUse::KindType Kind, MemAccessTy AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { // Check for overflow. @@ -1433,7 +1444,7 @@ static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, int64_t MinOffset, int64_t MaxOffset, - LSRUse::KindType Kind, Type *AccessTy, + LSRUse::KindType Kind, MemAccessTy AccessTy, const Formula &F) { // For the purpose of isAMCompletelyFolded either having a canonical formula // or a scale not equal to zero is correct. @@ -1447,11 +1458,11 @@ static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); } -/// isLegalUse - Test whether we know how to expand the current formula. +/// Test whether we know how to expand the current formula. static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, - int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, - GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, - int64_t Scale) { + int64_t MaxOffset, LSRUse::KindType Kind, + MemAccessTy AccessTy, GlobalValue *BaseGV, + int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { // We know how to expand completely foldable formulae. return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale) || @@ -1463,8 +1474,8 @@ static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, } static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, - int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, - const Formula &F) { + int64_t MaxOffset, LSRUse::KindType Kind, + MemAccessTy AccessTy, const Formula &F) { return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); } @@ -1490,14 +1501,12 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, switch (LU.Kind) { case LSRUse::Address: { // Check the scaling factor cost with both the min and max offsets. - int ScaleCostMinOffset = - TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, - F.BaseOffset + LU.MinOffset, - F.HasBaseReg, F.Scale); - int ScaleCostMaxOffset = - TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, - F.BaseOffset + LU.MaxOffset, - F.HasBaseReg, F.Scale); + int ScaleCostMinOffset = TTI.getScalingFactorCost( + LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, + F.Scale, LU.AccessTy.AddrSpace); + int ScaleCostMaxOffset = TTI.getScalingFactorCost( + LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, + F.Scale, LU.AccessTy.AddrSpace); assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && "Legal addressing mode has an illegal cost!"); @@ -1515,7 +1524,7 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, } static bool isAlwaysFoldable(const TargetTransformInfo &TTI, - LSRUse::KindType Kind, Type *AccessTy, + LSRUse::KindType Kind, MemAccessTy AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg) { // Fast-path: zero is always foldable. @@ -1539,7 +1548,8 @@ static bool isAlwaysFoldable(const TargetTransformInfo &TTI, static bool isAlwaysFoldable(const TargetTransformInfo &TTI, ScalarEvolution &SE, int64_t MinOffset, int64_t MaxOffset, LSRUse::KindType Kind, - Type *AccessTy, const SCEV *S, bool HasBaseReg) { + MemAccessTy AccessTy, const SCEV *S, + bool HasBaseReg) { // Fast-path: zero is always foldable. if (S->isZero()) return true; @@ -1564,9 +1574,9 @@ static bool isAlwaysFoldable(const TargetTransformInfo &TTI, namespace { -/// IVInc - An individual increment in a Chain of IV increments. -/// Relate an IV user to an expression that computes the IV it uses from the IV -/// used by the previous link in the Chain. +/// An individual increment in a Chain of IV increments. Relate an IV user to +/// an expression that computes the IV it uses from the IV used by the previous +/// link in the Chain. /// /// For the head of a chain, IncExpr holds the absolute SCEV expression for the /// original IVOperand. The head of the chain's IVOperand is only valid during @@ -1582,8 +1592,8 @@ struct IVInc { UserInst(U), IVOperand(O), IncExpr(E) {} }; -// IVChain - The list of IV increments in program order. -// We typically add the head of a chain without finding subsequent links. +// The list of IV increments in program order. We typically add the head of a +// chain without finding subsequent links. struct IVChain { SmallVector<IVInc,1> Incs; const SCEV *ExprBase; @@ -1595,7 +1605,7 @@ struct IVChain { typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; - // begin - return the first increment in the chain. + // Return the first increment in the chain. const_iterator begin() const { assert(!Incs.empty()); return std::next(Incs.begin()); @@ -1604,32 +1614,30 @@ struct IVChain { return Incs.end(); } - // hasIncs - Returns true if this chain contains any increments. + // Returns true if this chain contains any increments. bool hasIncs() const { return Incs.size() >= 2; } - // add - Add an IVInc to the end of this chain. + // Add an IVInc to the end of this chain. void add(const IVInc &X) { Incs.push_back(X); } - // tailUserInst - Returns the last UserInst in the chain. + // Returns the last UserInst in the chain. Instruction *tailUserInst() const { return Incs.back().UserInst; } - // isProfitableIncrement - Returns true if IncExpr can be profitably added to - // this chain. + // Returns true if IncExpr can be profitably added to this chain. bool isProfitableIncrement(const SCEV *OperExpr, const SCEV *IncExpr, ScalarEvolution&); }; -/// ChainUsers - Helper for CollectChains to track multiple IV increment uses. -/// Distinguish between FarUsers that definitely cross IV increments and -/// NearUsers that may be used between IV increments. +/// Helper for CollectChains to track multiple IV increment uses. Distinguish +/// between FarUsers that definitely cross IV increments and NearUsers that may +/// be used between IV increments. struct ChainUsers { SmallPtrSet<Instruction*, 4> FarUsers; SmallPtrSet<Instruction*, 4> NearUsers; }; -/// LSRInstance - This class holds state for the main loop strength reduction -/// logic. +/// This class holds state for the main loop strength reduction logic. class LSRInstance { IVUsers &IU; ScalarEvolution &SE; @@ -1639,25 +1647,25 @@ class LSRInstance { Loop *const L; bool Changed; - /// IVIncInsertPos - This is the insert position that the current loop's - /// induction variable increment should be placed. In simple loops, this is - /// the latch block's terminator. But in more complicated cases, this is a - /// position which will dominate all the in-loop post-increment users. + /// This is the insert position that the current loop's induction variable + /// increment should be placed. In simple loops, this is the latch block's + /// terminator. But in more complicated cases, this is a position which will + /// dominate all the in-loop post-increment users. Instruction *IVIncInsertPos; - /// Factors - Interesting factors between use strides. + /// Interesting factors between use strides. SmallSetVector<int64_t, 8> Factors; - /// Types - Interesting use types, to facilitate truncation reuse. + /// Interesting use types, to facilitate truncation reuse. SmallSetVector<Type *, 4> Types; - /// Fixups - The list of operands which are to be replaced. + /// The list of operands which are to be replaced. SmallVector<LSRFixup, 16> Fixups; - /// Uses - The list of interesting uses. + /// The list of interesting uses. SmallVector<LSRUse, 16> Uses; - /// RegUses - Track which uses use which register candidates. + /// Track which uses use which register candidates. RegUseTracker RegUses; // Limit the number of chains to avoid quadratic behavior. We don't expect to @@ -1665,10 +1673,10 @@ class LSRInstance { // back to normal LSR behavior for those uses. static const unsigned MaxChains = 8; - /// IVChainVec - IV users can form a chain of IV increments. + /// IV users can form a chain of IV increments. SmallVector<IVChain, MaxChains> IVChainVec; - /// IVIncSet - IV users that belong to profitable IVChains. + /// IV users that belong to profitable IVChains. SmallPtrSet<Use*, MaxChains> IVIncSet; void OptimizeShadowIV(); @@ -1696,11 +1704,10 @@ class LSRInstance { UseMapTy UseMap; bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, - LSRUse::KindType Kind, Type *AccessTy); + LSRUse::KindType Kind, MemAccessTy AccessTy); - std::pair<size_t, int64_t> getUse(const SCEV *&Expr, - LSRUse::KindType Kind, - Type *AccessTy); + std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, + MemAccessTy AccessTy); void DeleteUse(LSRUse &LU, size_t LUIdx); @@ -1769,18 +1776,16 @@ class LSRInstance { void RewriteForPHI(PHINode *PN, const LSRFixup &LF, const Formula &F, SCEVExpander &Rewriter, - SmallVectorImpl<WeakVH> &DeadInsts, - Pass *P) const; + SmallVectorImpl<WeakVH> &DeadInsts) const; void Rewrite(const LSRFixup &LF, const Formula &F, SCEVExpander &Rewriter, - SmallVectorImpl<WeakVH> &DeadInsts, - Pass *P) const; - void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, - Pass *P); + SmallVectorImpl<WeakVH> &DeadInsts) const; + void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); public: - LSRInstance(Loop *L, Pass *P); + LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, + LoopInfo &LI, const TargetTransformInfo &TTI); bool getChanged() const { return Changed; } @@ -1793,8 +1798,8 @@ public: } -/// OptimizeShadowIV - If IV is used in a int-to-float cast -/// inside the loop then try to eliminate the cast operation. +/// If IV is used in a int-to-float cast inside the loop then try to eliminate +/// the cast operation. void LSRInstance::OptimizeShadowIV() { const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) @@ -1902,9 +1907,8 @@ void LSRInstance::OptimizeShadowIV() { } } -/// FindIVUserForCond - If Cond has an operand that is an expression of an IV, -/// set the IV user and stride information and return true, otherwise return -/// false. +/// If Cond has an operand that is an expression of an IV, set the IV user and +/// stride information and return true, otherwise return false. bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { for (IVStrideUse &U : IU) if (U.getUser() == Cond) { @@ -1917,8 +1921,7 @@ bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { return false; } -/// OptimizeMax - Rewrite the loop's terminating condition if it uses -/// a max computation. +/// Rewrite the loop's terminating condition if it uses a max computation. /// /// This is a narrow solution to a specific, but acute, problem. For loops /// like this: @@ -2076,8 +2079,7 @@ ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { return NewCond; } -/// OptimizeLoopTermCond - Change loop terminating condition to use the -/// postinc iv when possible. +/// Change loop terminating condition to use the postinc iv when possible. void LSRInstance::OptimizeLoopTermCond() { SmallPtrSet<Instruction *, 4> PostIncs; @@ -2152,16 +2154,18 @@ LSRInstance::OptimizeLoopTermCond() { C->getValue().isMinSignedValue()) goto decline_post_inc; // Check for possible scaled-address reuse. - Type *AccessTy = getAccessType(UI->getUser()); + MemAccessTy AccessTy = getAccessType(UI->getUser()); int64_t Scale = C->getSExtValue(); - if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, - /*BaseOffset=*/ 0, - /*HasBaseReg=*/ false, Scale)) + if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, + /*BaseOffset=*/0, + /*HasBaseReg=*/false, Scale, + AccessTy.AddrSpace)) goto decline_post_inc; Scale = -Scale; - if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, - /*BaseOffset=*/ 0, - /*HasBaseReg=*/ false, Scale)) + if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, + /*BaseOffset=*/0, + /*HasBaseReg=*/false, Scale, + AccessTy.AddrSpace)) goto decline_post_inc; } } @@ -2180,7 +2184,7 @@ LSRInstance::OptimizeLoopTermCond() { ICmpInst *OldCond = Cond; Cond = cast<ICmpInst>(Cond->clone()); Cond->setName(L->getHeader()->getName() + ".termcond"); - ExitingBlock->getInstList().insert(TermBr, Cond); + ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); // Clone the IVUse, as the old use still exists! CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); @@ -2213,15 +2217,14 @@ LSRInstance::OptimizeLoopTermCond() { } } -/// reconcileNewOffset - Determine if the given use can accommodate a fixup -/// at the given offset and other details. If so, update the use and -/// return true. -bool -LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, - LSRUse::KindType Kind, Type *AccessTy) { +/// Determine if the given use can accommodate a fixup at the given offset and +/// other details. If so, update the use and return true. +bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, + bool HasBaseReg, LSRUse::KindType Kind, + MemAccessTy AccessTy) { int64_t NewMinOffset = LU.MinOffset; int64_t NewMaxOffset = LU.MaxOffset; - Type *NewAccessTy = AccessTy; + MemAccessTy NewAccessTy = AccessTy; // Check for a mismatched kind. It's tempting to collapse mismatched kinds to // something conservative, however this can pessimize in the case that one of @@ -2232,8 +2235,10 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, // Check for a mismatched access type, and fall back conservatively as needed. // TODO: Be less conservative when the type is similar and can use the same // addressing modes. - if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) - NewAccessTy = Type::getVoidTy(AccessTy->getContext()); + if (Kind == LSRUse::Address) { + if (AccessTy != LU.AccessTy) + NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); + } // Conservatively assume HasBaseReg is true for now. if (NewOffset < LU.MinOffset) { @@ -2257,12 +2262,12 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, return true; } -/// getUse - Return an LSRUse index and an offset value for a fixup which -/// needs the given expression, with the given kind and optional access type. -/// Either reuse an existing use or create a new one, as needed. -std::pair<size_t, int64_t> -LSRInstance::getUse(const SCEV *&Expr, - LSRUse::KindType Kind, Type *AccessTy) { +/// Return an LSRUse index and an offset value for a fixup which needs the given +/// expression, with the given kind and optional access type. Either reuse an +/// existing use or create a new one, as needed. +std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, + LSRUse::KindType Kind, + MemAccessTy AccessTy) { const SCEV *Copy = Expr; int64_t Offset = ExtractImmediate(Expr, SE); @@ -2300,18 +2305,18 @@ LSRInstance::getUse(const SCEV *&Expr, return std::make_pair(LUIdx, Offset); } -/// DeleteUse - Delete the given use from the Uses list. +/// Delete the given use from the Uses list. void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { if (&LU != &Uses.back()) std::swap(LU, Uses.back()); Uses.pop_back(); // Update RegUses. - RegUses.SwapAndDropUse(LUIdx, Uses.size()); + RegUses.swapAndDropUse(LUIdx, Uses.size()); } -/// FindUseWithFormula - Look for a use distinct from OrigLU which is has -/// a formula that has the same registers as the given formula. +/// Look for a use distinct from OrigLU which is has a formula that has the same +/// registers as the given formula. LSRUse * LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, const LSRUse &OrigLU) { @@ -2396,14 +2401,14 @@ void LSRInstance::CollectInterestingTypesAndFactors() { if (const SCEVConstant *Factor = dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, SE, true))) { - if (Factor->getValue()->getValue().getMinSignedBits() <= 64) - Factors.insert(Factor->getValue()->getValue().getSExtValue()); + if (Factor->getAPInt().getMinSignedBits() <= 64) + Factors.insert(Factor->getAPInt().getSExtValue()); } else if (const SCEVConstant *Factor = dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, NewStride, SE, true))) { - if (Factor->getValue()->getValue().getMinSignedBits() <= 64) - Factors.insert(Factor->getValue()->getValue().getSExtValue()); + if (Factor->getAPInt().getMinSignedBits() <= 64) + Factors.insert(Factor->getAPInt().getSExtValue()); } } @@ -2415,9 +2420,9 @@ void LSRInstance::CollectInterestingTypesAndFactors() { DEBUG(print_factors_and_types(dbgs())); } -/// findIVOperand - Helper for CollectChains that finds an IV operand (computed -/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped -/// Instructions to IVStrideUses, we could partially skip this. +/// Helper for CollectChains that finds an IV operand (computed by an AddRec in +/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to +/// IVStrideUses, we could partially skip this. static User::op_iterator findIVOperand(User::op_iterator OI, User::op_iterator OE, Loop *L, ScalarEvolution &SE) { @@ -2436,29 +2441,28 @@ findIVOperand(User::op_iterator OI, User::op_iterator OE, return OI; } -/// getWideOperand - IVChain logic must consistenctly peek base TruncInst -/// operands, so wrap it in a convenient helper. +/// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in +/// a convenient helper. static Value *getWideOperand(Value *Oper) { if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) return Trunc->getOperand(0); return Oper; } -/// isCompatibleIVType - Return true if we allow an IV chain to include both -/// types. +/// Return true if we allow an IV chain to include both types. static bool isCompatibleIVType(Value *LVal, Value *RVal) { Type *LType = LVal->getType(); Type *RType = RVal->getType(); return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); } -/// getExprBase - Return an approximation of this SCEV expression's "base", or -/// NULL for any constant. Returning the expression itself is -/// conservative. Returning a deeper subexpression is more precise and valid as -/// long as it isn't less complex than another subexpression. For expressions -/// involving multiple unscaled values, we need to return the pointer-type -/// SCEVUnknown. This avoids forming chains across objects, such as: -/// PrevOper==a[i], IVOper==b[i], IVInc==b-a. +/// Return an approximation of this SCEV expression's "base", or NULL for any +/// constant. Returning the expression itself is conservative. Returning a +/// deeper subexpression is more precise and valid as long as it isn't less +/// complex than another subexpression. For expressions involving multiple +/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids +/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], +/// IVInc==b-a. /// /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost /// SCEVUnknown, we simply return the rightmost SCEV operand. @@ -2601,8 +2605,7 @@ isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, return cost < 0; } -/// ChainInstruction - Add this IV user to an existing chain or make it the head -/// of a new chain. +/// Add this IV user to an existing chain or make it the head of a new chain. void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, SmallVectorImpl<ChainUsers> &ChainUsersVec) { // When IVs are used as types of varying widths, they are generally converted @@ -2714,7 +2717,7 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); } -/// CollectChains - Populate the vector of Chains. +/// Populate the vector of Chains. /// /// This decreases ILP at the architecture level. Targets with ample registers, /// multiple memory ports, and no register renaming probably don't want @@ -2755,19 +2758,19 @@ void LSRInstance::CollectChains() { for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); I != E; ++I) { // Skip instructions that weren't seen by IVUsers analysis. - if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) + if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I)) continue; // Ignore users that are part of a SCEV expression. This way we only // consider leaf IV Users. This effectively rediscovers a portion of // IVUsers analysis but in program order this time. - if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) + if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I))) continue; // Remove this instruction from any NearUsers set it may be in. for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); ChainIdx < NChains; ++ChainIdx) { - ChainUsersVec[ChainIdx].NearUsers.erase(I); + ChainUsersVec[ChainIdx].NearUsers.erase(&*I); } // Search for operands that can be chained. SmallPtrSet<Instruction*, 4> UniqueOperands; @@ -2776,7 +2779,7 @@ void LSRInstance::CollectChains() { while (IVOpIter != IVOpEnd) { Instruction *IVOpInst = cast<Instruction>(*IVOpIter); if (UniqueOperands.insert(IVOpInst).second) - ChainInstruction(I, IVOpInst, ChainUsersVec); + ChainInstruction(&*I, IVOpInst, ChainUsersVec); IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); } } // Continue walking down the instructions. @@ -2828,20 +2831,20 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, if (!IncConst || !isAddressUse(UserInst, Operand)) return false; - if (IncConst->getValue()->getValue().getMinSignedBits() > 64) + if (IncConst->getAPInt().getMinSignedBits() > 64) return false; + MemAccessTy AccessTy = getAccessType(UserInst); int64_t IncOffset = IncConst->getValue()->getSExtValue(); - if (!isAlwaysFoldable(TTI, LSRUse::Address, - getAccessType(UserInst), /*BaseGV=*/ nullptr, - IncOffset, /*HaseBaseReg=*/ false)) + if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, + IncOffset, /*HaseBaseReg=*/false)) return false; return true; } -/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to -/// materialize the IV user's operand from the previous IV user's operand. +/// Generate an add or subtract for each IVInc in a chain to materialize the IV +/// user's operand from the previous IV user's operand. void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, SmallVectorImpl<WeakVH> &DeadInsts) { // Find the new IVOperand for the head of the chain. It may have been replaced @@ -2961,7 +2964,7 @@ void LSRInstance::CollectFixupsAndInitialFormulae() { LF.PostIncLoops = U.getPostIncLoops(); LSRUse::KindType Kind = LSRUse::Basic; - Type *AccessTy = nullptr; + MemAccessTy AccessTy; if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { Kind = LSRUse::Address; AccessTy = getAccessType(LF.UserInst); @@ -3027,9 +3030,8 @@ void LSRInstance::CollectFixupsAndInitialFormulae() { DEBUG(print_fixups(dbgs())); } -/// InsertInitialFormula - Insert a formula for the given expression into -/// the given use, separating out loop-variant portions from loop-invariant -/// and loop-computable portions. +/// Insert a formula for the given expression into the given use, separating out +/// loop-variant portions from loop-invariant and loop-computable portions. void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { // Mark uses whose expressions cannot be expanded. @@ -3037,13 +3039,13 @@ LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { LU.RigidFormula = true; Formula F; - F.InitialMatch(S, L, SE); + F.initialMatch(S, L, SE); bool Inserted = InsertFormula(LU, LUIdx, F); assert(Inserted && "Initial formula already exists!"); (void)Inserted; } -/// InsertSupplementalFormula - Insert a simple single-register formula for -/// the given expression into the given use. +/// Insert a simple single-register formula for the given expression into the +/// given use. void LSRInstance::InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { @@ -3054,17 +3056,16 @@ LSRInstance::InsertSupplementalFormula(const SCEV *S, assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; } -/// CountRegisters - Note which registers are used by the given formula, -/// updating RegUses. +/// Note which registers are used by the given formula, updating RegUses. void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { if (F.ScaledReg) - RegUses.CountRegister(F.ScaledReg, LUIdx); + RegUses.countRegister(F.ScaledReg, LUIdx); for (const SCEV *BaseReg : F.BaseRegs) - RegUses.CountRegister(BaseReg, LUIdx); + RegUses.countRegister(BaseReg, LUIdx); } -/// InsertFormula - If the given formula has not yet been inserted, add it to -/// the list, and return true. Return false otherwise. +/// If the given formula has not yet been inserted, add it to the list, and +/// return true. Return false otherwise. bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { // Do not insert formula that we will not be able to expand. assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && @@ -3076,9 +3077,9 @@ bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { return true; } -/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of -/// loop-invariant values which we're tracking. These other uses will pin these -/// values in registers, making them less profitable for elimination. +/// Check for other uses of loop-invariant values which we're tracking. These +/// other uses will pin these values in registers, making them less profitable +/// for elimination. /// TODO: This currently misses non-constant addrec step registers. /// TODO: Should this give more weight to users inside the loop? void @@ -3124,6 +3125,9 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { PHINode::getIncomingValueNumForOperand(U.getOperandNo())); if (!DT.dominates(L->getHeader(), UseBB)) continue; + // Don't bother if the instruction is in a BB which ends in an EHPad. + if (UseBB->getTerminator()->isEHPad()) + continue; // Ignore uses which are part of other SCEV expressions, to avoid // analyzing them multiple times. if (SE.isSCEVable(UserInst->getType())) { @@ -3148,7 +3152,8 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { LSRFixup &LF = getNewFixup(); LF.UserInst = const_cast<Instruction *>(UserInst); LF.OperandValToReplace = U; - std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); + std::pair<size_t, int64_t> P = getUse( + S, LSRUse::Basic, MemAccessTy()); LF.LUIdx = P.first; LF.Offset = P.second; LSRUse &LU = Uses[LF.LUIdx]; @@ -3165,8 +3170,8 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { } } -/// CollectSubexprs - Split S into subexpressions which can be pulled out into -/// separate registers. If C is non-null, multiply each subexpression by C. +/// Split S into subexpressions which can be pulled out into separate +/// registers. If C is non-null, multiply each subexpression by C. /// /// Return remainder expression after factoring the subexpressions captured by /// Ops. If Ops is complete, return NULL. @@ -3300,7 +3305,7 @@ void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, F.BaseRegs.push_back(*J); // We may have changed the number of register in base regs, adjust the // formula accordingly. - F.Canonicalize(); + F.canonicalize(); if (InsertFormula(LU, LUIdx, F)) // If that formula hadn't been seen before, recurse to find more like @@ -3309,8 +3314,7 @@ void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, } } -/// GenerateReassociations - Split out subexpressions from adds and the bases of -/// addrecs. +/// Split out subexpressions from adds and the bases of addrecs. void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, unsigned Depth) { assert(Base.isCanonical() && "Input must be in the canonical form"); @@ -3326,8 +3330,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, /* Idx */ -1, /* IsScaledReg */ true); } -/// GenerateCombinations - Generate a formula consisting of all of the -/// loop-dominating registers added into a single register. +/// Generate a formula consisting of all of the loop-dominating registers added +/// into a single register. void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base) { // This method is only interesting on a plurality of registers. @@ -3336,7 +3340,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before // processing the formula. - Base.Unscale(); + Base.unscale(); Formula F = Base; F.BaseRegs.clear(); SmallVector<const SCEV *, 4> Ops; @@ -3354,7 +3358,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, // rather than proceed with zero in a register. if (!Sum->isZero()) { F.BaseRegs.push_back(Sum); - F.Canonicalize(); + F.canonicalize(); (void)InsertFormula(LU, LUIdx, F); } } @@ -3379,7 +3383,7 @@ void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, (void)InsertFormula(LU, LUIdx, F); } -/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. +/// Generate reuse formulae using symbolic offsets. void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base) { // We can't add a symbolic offset if the address already contains one. @@ -3410,8 +3414,8 @@ void LSRInstance::GenerateConstantOffsetsImpl( F.Scale = 0; F.ScaledReg = nullptr; } else - F.DeleteBaseReg(F.BaseRegs[Idx]); - F.Canonicalize(); + F.deleteBaseReg(F.BaseRegs[Idx]); + F.canonicalize(); } else if (IsScaledReg) F.ScaledReg = NewG; else @@ -3452,8 +3456,8 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, /* IsScaledReg */ true); } -/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up -/// the comparison. For example, x == y -> x*c == y*c. +/// For ICmpZero, check to see if we can scale up the comparison. For example, x +/// == y -> x*c == y*c. void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base) { if (LU.Kind != LSRUse::ICmpZero) return; @@ -3538,8 +3542,8 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, } } -/// GenerateScales - Generate stride factor reuse formulae by making use of -/// scaled-offset address modes, for example. +/// Generate stride factor reuse formulae by making use of scaled-offset address +/// modes, for example. void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { // Determine the integer type for the base formula. Type *IntTy = Base.getType(); @@ -3547,10 +3551,10 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { // If this Formula already has a scaled register, we can't add another one. // Try to unscale the formula to generate a better scale. - if (Base.Scale != 0 && !Base.Unscale()) + if (Base.Scale != 0 && !Base.unscale()) return; - assert(Base.Scale == 0 && "Unscale did not did its job!"); + assert(Base.Scale == 0 && "unscale did not did its job!"); // Check each interesting stride. for (int64_t Factor : Factors) { @@ -3587,7 +3591,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { // TODO: This could be optimized to avoid all the copying. Formula F = Base; F.ScaledReg = Quotient; - F.DeleteBaseReg(F.BaseRegs[i]); + F.deleteBaseReg(F.BaseRegs[i]); // The canonical representation of 1*reg is reg, which is already in // Base. In that case, do not try to insert the formula, it will be // rejected anyway. @@ -3599,7 +3603,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { } } -/// GenerateTruncates - Generate reuse formulae from different IV types. +/// Generate reuse formulae from different IV types. void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { // Don't bother truncating symbolic values. if (Base.BaseGV) return; @@ -3629,9 +3633,9 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { namespace { -/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to -/// defer modifications so that the search phase doesn't have to worry about -/// the data structures moving underneath it. +/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer +/// modifications so that the search phase doesn't have to worry about the data +/// structures moving underneath it. struct WorkItem { size_t LUIdx; int64_t Imm; @@ -3651,14 +3655,13 @@ void WorkItem::print(raw_ostream &OS) const { << " , add offset " << Imm; } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void WorkItem::dump() const { print(errs()); errs() << '\n'; } -#endif -/// GenerateCrossUseConstantOffsets - Look for registers which are a constant -/// distance apart and try to form reuse opportunities between them. +/// Look for registers which are a constant distance apart and try to form reuse +/// opportunities between them. void LSRInstance::GenerateCrossUseConstantOffsets() { // Group the registers by their value without any added constant offset. typedef std::map<int64_t, const SCEV *> ImmMapTy; @@ -3751,7 +3754,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { // very similar but slightly different. Investigate if they // could be merged. That way, we would not have to unscale the // Formula. - F.Unscale(); + F.unscale(); // Use the immediate in the scaled register. if (F.ScaledReg == OrigReg) { int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; @@ -3770,14 +3773,13 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { // value to the immediate would produce a value closer to zero than the // immediate itself, then the formula isn't worthwhile. if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) - if (C->getValue()->isNegative() != - (NewF.BaseOffset < 0) && - (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) - .ule(std::abs(NewF.BaseOffset))) + if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && + (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) + .ule(std::abs(NewF.BaseOffset))) continue; // OK, looks good. - NewF.Canonicalize(); + NewF.canonicalize(); (void)InsertFormula(LU, LUIdx, NewF); } else { // Use the immediate in a base register. @@ -3801,15 +3803,15 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { // zero than the immediate itself, then the formula isn't worthwhile. for (const SCEV *NewReg : NewF.BaseRegs) if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) - if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( - std::abs(NewF.BaseOffset)) && - (C->getValue()->getValue() + - NewF.BaseOffset).countTrailingZeros() >= - countTrailingZeros<uint64_t>(NewF.BaseOffset)) + if ((C->getAPInt() + NewF.BaseOffset) + .abs() + .slt(std::abs(NewF.BaseOffset)) && + (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= + countTrailingZeros<uint64_t>(NewF.BaseOffset)) goto skip_formula; // Ok, looks good. - NewF.Canonicalize(); + NewF.canonicalize(); (void)InsertFormula(LU, LUIdx, NewF); break; skip_formula:; @@ -3819,7 +3821,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { } } -/// GenerateAllReuseFormulae - Generate formulae for each use. +/// Generate formulae for each use. void LSRInstance::GenerateAllReuseFormulae() { // This is split into multiple loops so that hasRegsUsedByUsesOtherThan @@ -3959,10 +3961,9 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() { // This is a rough guess that seems to work fairly well. static const size_t ComplexityLimit = UINT16_MAX; -/// EstimateSearchSpaceComplexity - Estimate the worst-case number of -/// solutions the solver might have to consider. It almost never considers -/// this many solutions because it prune the search space, but the pruning -/// isn't always sufficient. +/// Estimate the worst-case number of solutions the solver might have to +/// consider. It almost never considers this many solutions because it prune the +/// search space, but the pruning isn't always sufficient. size_t LSRInstance::EstimateSearchSpaceComplexity() const { size_t Power = 1; for (const LSRUse &LU : Uses) { @@ -3978,10 +3979,9 @@ size_t LSRInstance::EstimateSearchSpaceComplexity() const { return Power; } -/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset -/// of the registers of another formula, it won't help reduce register -/// pressure (though it may not necessarily hurt register pressure); remove -/// it to simplify the system. +/// When one formula uses a superset of the registers of another formula, it +/// won't help reduce register pressure (though it may not necessarily hurt +/// register pressure); remove it to simplify the system. void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { DEBUG(dbgs() << "The search space is too complex.\n"); @@ -4042,9 +4042,8 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { } } -/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers -/// for expressions like A, A+1, A+2, etc., allocate a single register for -/// them. +/// When there are many registers for expressions like A, A+1, A+2, etc., +/// allocate a single register for them. void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { if (EstimateSearchSpaceComplexity() < ComplexityLimit) return; @@ -4121,8 +4120,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); } -/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call -/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that +/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that /// we've done more filtering, as it may be able to find more formulae to /// eliminate. void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ @@ -4139,9 +4137,9 @@ void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ } } -/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely -/// to be profitable, and then in any use which has any reference to that -/// register, delete all formulae which do not reference that register. +/// Pick a register which seems likely to be profitable, and then in any use +/// which has any reference to that register, delete all formulae which do not +/// reference that register. void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { // With all other options exhausted, loop until the system is simple // enough to handle. @@ -4202,10 +4200,10 @@ void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { } } -/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of -/// formulae to choose from, use some rough heuristics to prune down the number -/// of formulae. This keeps the main solver from taking an extraordinary amount -/// of time in some worst-case scenarios. +/// If there are an extraordinary number of formulae to choose from, use some +/// rough heuristics to prune down the number of formulae. This keeps the main +/// solver from taking an extraordinary amount of time in some worst-case +/// scenarios. void LSRInstance::NarrowSearchSpaceUsingHeuristics() { NarrowSearchSpaceByDetectingSupersets(); NarrowSearchSpaceByCollapsingUnrolledCode(); @@ -4213,7 +4211,7 @@ void LSRInstance::NarrowSearchSpaceUsingHeuristics() { NarrowSearchSpaceByPickingWinnerRegs(); } -/// SolveRecurse - This is the recursive solver. +/// This is the recursive solver. void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, Cost &SolutionCost, SmallVectorImpl<const Formula *> &Workspace, @@ -4291,8 +4289,8 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, } } -/// Solve - Choose one formula from each use. Return the results in the given -/// Solution vector. +/// Choose one formula from each use. Return the results in the given Solution +/// vector. void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { SmallVector<const Formula *, 8> Workspace; Cost SolutionCost; @@ -4326,10 +4324,9 @@ void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { assert(Solution.size() == Uses.size() && "Malformed solution!"); } -/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up -/// the dominator tree far as we can go while still being dominated by the -/// input positions. This helps canonicalize the insert position, which -/// encourages sharing. +/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as +/// we can go while still being dominated by the input positions. This helps +/// canonicalize the insert position, which encourages sharing. BasicBlock::iterator LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, const SmallVectorImpl<Instruction *> &Inputs) @@ -4365,21 +4362,21 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, // instead of at the end, so that it can be used for other expansions. if (IDom == Inst->getParent() && (!BetterPos || !DT.dominates(Inst, BetterPos))) - BetterPos = std::next(BasicBlock::iterator(Inst)); + BetterPos = &*std::next(BasicBlock::iterator(Inst)); } if (!AllDominate) break; if (BetterPos) - IP = BetterPos; + IP = BetterPos->getIterator(); else - IP = Tentative; + IP = Tentative->getIterator(); } return IP; } -/// AdjustInsertPositionForExpand - Determine an input position which will be -/// dominated by the operands and which will dominate the result. +/// Determine an input position which will be dominated by the operands and +/// which will dominate the result. BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, const LSRFixup &LF, @@ -4417,7 +4414,7 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, } } - assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) + assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>(LowestIP) && "Insertion point must be a normal instruction"); @@ -4429,7 +4426,7 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, while (isa<PHINode>(IP)) ++IP; // Ignore landingpad instructions. - while (isa<LandingPadInst>(IP)) ++IP; + while (!isa<TerminatorInst>(IP) && IP->isEHPad()) ++IP; // Ignore debug intrinsics. while (isa<DbgInfoIntrinsic>(IP)) ++IP; @@ -4437,13 +4434,14 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, // Set IP below instructions recently inserted by SCEVExpander. This keeps the // IP consistent across expansions and allows the previously inserted // instructions to be reused by subsequent expansion. - while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; + while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) + ++IP; return IP; } -/// Expand - Emit instructions for the leading candidate expression for this -/// LSRUse (this is called "expanding"). +/// Emit instructions for the leading candidate expression for this LSRUse (this +/// is called "expanding"). Value *LSRInstance::Expand(const LSRFixup &LF, const Formula &F, BasicBlock::iterator IP, @@ -4487,7 +4485,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF, LF.UserInst, LF.OperandValToReplace, Loops, SE, DT); - Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); + Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP))); } // Expand the ScaledReg portion. @@ -4505,14 +4503,14 @@ Value *LSRInstance::Expand(const LSRFixup &LF, // Expand ScaleReg as if it was part of the base regs. if (F.Scale == 1) Ops.push_back( - SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); + SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP))); else { // An interesting way of "folding" with an icmp is to use a negated // scale, which we'll implement by inserting it into the other operand // of the icmp. assert(F.Scale == -1 && "The only scale supported by ICmpZero uses is -1!"); - ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); + ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP); } } else { // Otherwise just expand the scaled register and an explicit scale, @@ -4522,11 +4520,11 @@ Value *LSRInstance::Expand(const LSRFixup &LF, // Unless the addressing mode will not be folded. if (!Ops.empty() && LU.Kind == LSRUse::Address && isAMCompletelyFolded(TTI, LU, F)) { - Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); + Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); Ops.clear(); Ops.push_back(SE.getUnknown(FullV)); } - ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); + ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)); if (F.Scale != 1) ScaledS = SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); @@ -4538,7 +4536,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF, if (F.BaseGV) { // Flush the operand list to suppress SCEVExpander hoisting. if (!Ops.empty()) { - Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); + Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); Ops.clear(); Ops.push_back(SE.getUnknown(FullV)); } @@ -4548,7 +4546,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF, // Flush the operand list to suppress SCEVExpander hoisting of both folded and // unfolded offsets. LSR assumes they both live next to their uses. if (!Ops.empty()) { - Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); + Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); Ops.clear(); Ops.push_back(SE.getUnknown(FullV)); } @@ -4584,7 +4582,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF, const SCEV *FullS = Ops.empty() ? SE.getConstant(IntTy, 0) : SE.getAddExpr(Ops); - Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); + Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP); // We're done expanding now, so reset the rewriter. Rewriter.clearPostInc(); @@ -4626,15 +4624,14 @@ Value *LSRInstance::Expand(const LSRFixup &LF, return FullV; } -/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use -/// of their operands effectively happens in their predecessor blocks, so the -/// expression may need to be expanded in multiple places. +/// Helper for Rewrite. PHI nodes are special because the use of their operands +/// effectively happens in their predecessor blocks, so the expression may need +/// to be expanded in multiple places. void LSRInstance::RewriteForPHI(PHINode *PN, const LSRFixup &LF, const Formula &F, SCEVExpander &Rewriter, - SmallVectorImpl<WeakVH> &DeadInsts, - Pass *P) const { + SmallVectorImpl<WeakVH> &DeadInsts) const { DenseMap<BasicBlock *, Value *> Inserted; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == LF.OperandValToReplace) { @@ -4658,8 +4655,7 @@ void LSRInstance::RewriteForPHI(PHINode *PN, .setDontDeleteUselessPHIs()); } else { SmallVector<BasicBlock*, 2> NewBBs; - SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, - /*AliasAnalysis*/ nullptr, &DT, &LI); + SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); NewBB = NewBBs[0]; } // If NewBB==NULL, then SplitCriticalEdge refused to split because all @@ -4685,7 +4681,8 @@ void LSRInstance::RewriteForPHI(PHINode *PN, if (!Pair.second) PN->setIncomingValue(i, Pair.first->second); else { - Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); + Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(), + Rewriter, DeadInsts); // If this is reuse-by-noop-cast, insert the noop cast. Type *OpTy = LF.OperandValToReplace->getType(); @@ -4702,20 +4699,20 @@ void LSRInstance::RewriteForPHI(PHINode *PN, } } -/// Rewrite - Emit instructions for the leading candidate expression for this -/// LSRUse (this is called "expanding"), and update the UserInst to reference -/// the newly expanded value. +/// Emit instructions for the leading candidate expression for this LSRUse (this +/// is called "expanding"), and update the UserInst to reference the newly +/// expanded value. void LSRInstance::Rewrite(const LSRFixup &LF, const Formula &F, SCEVExpander &Rewriter, - SmallVectorImpl<WeakVH> &DeadInsts, - Pass *P) const { + SmallVectorImpl<WeakVH> &DeadInsts) const { // First, find an insertion point that dominates UserInst. For PHI nodes, // find the nearest block which dominates all the relevant uses. if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { - RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); + RewriteForPHI(PN, LF, F, Rewriter, DeadInsts); } else { - Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); + Value *FullV = + Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); // If this is reuse-by-noop-cast, insert the noop cast. Type *OpTy = LF.OperandValToReplace->getType(); @@ -4740,11 +4737,10 @@ void LSRInstance::Rewrite(const LSRFixup &LF, DeadInsts.emplace_back(LF.OperandValToReplace); } -/// ImplementSolution - Rewrite all the fixup locations with new values, -/// following the chosen solution. -void -LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, - Pass *P) { +/// Rewrite all the fixup locations with new values, following the chosen +/// solution. +void LSRInstance::ImplementSolution( + const SmallVectorImpl<const Formula *> &Solution) { // Keep track of instructions we may have made dead, so that // we can remove them after we are done working. SmallVector<WeakVH, 16> DeadInsts; @@ -4766,7 +4762,7 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, // Expand the new value definitions and update the users. for (const LSRFixup &Fixup : Fixups) { - Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); + Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts); Changed = true; } @@ -4782,13 +4778,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, Changed |= DeleteTriviallyDeadInstructions(DeadInsts); } -LSRInstance::LSRInstance(Loop *L, Pass *P) - : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), - DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), - LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), - TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( - *L->getHeader()->getParent())), - L(L), Changed(false), IVIncInsertPos(nullptr) { +LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, + DominatorTree &DT, LoopInfo &LI, + const TargetTransformInfo &TTI) + : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), + IVIncInsertPos(nullptr) { // If LoopSimplify form is not available, stay out of trouble. if (!L->isLoopSimplifyForm()) return; @@ -4879,7 +4873,7 @@ LSRInstance::LSRInstance(Loop *L, Pass *P) #endif // Now that we've decided what we want, make it so. - ImplementSolution(Solution, P); + ImplementSolution(Solution); } void LSRInstance::print_factors_and_types(raw_ostream &OS) const { @@ -4931,11 +4925,10 @@ void LSRInstance::print(raw_ostream &OS) const { print_uses(OS); } -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LSRInstance::dump() const { print(errs()); errs() << '\n'; } -#endif namespace { @@ -4956,7 +4949,7 @@ INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", "Loop Strength Reduction", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(IVUsers) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) @@ -4982,8 +4975,8 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addRequired<ScalarEvolution>(); - AU.addPreserved<ScalarEvolution>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addPreserved<ScalarEvolutionWrapperPass>(); // Requiring LoopSimplify a second time here prevents IVUsers from running // twice, since LoopSimplify was invalidated by running ScalarEvolution. AU.addRequiredID(LoopSimplifyID); @@ -4996,17 +4989,24 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { if (skipOptnoneFunction(L)) return false; + auto &IU = getAnalysis<IVUsers>(); + auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( + *L->getHeader()->getParent()); bool Changed = false; // Run the main LSR transformation. - Changed |= LSRInstance(L, this).getChanged(); + Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); // Remove any extra phis created by processing inner loops. Changed |= DeleteDeadPHIs(L->getHeader()); if (EnablePhiElim && L->isLoopSimplifyForm()) { SmallVector<WeakVH, 16> DeadInsts; const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); - SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr"); + SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL, + "lsr"); #ifndef NDEBUG Rewriter.setDebugType(DEBUG_TYPE); #endif |