summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp828
1 files changed, 414 insertions, 414 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 4b59f3d..2101225 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -105,10 +105,33 @@ static bool StressIVChain = false;
namespace {
-/// RegSortData - This class holds data which is used to order reuse candidates.
+struct MemAccessTy {
+ /// Used in situations where the accessed memory type is unknown.
+ static const unsigned UnknownAddressSpace = ~0u;
+
+ Type *MemTy;
+ unsigned AddrSpace;
+
+ MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
+
+ MemAccessTy(Type *Ty, unsigned AS) :
+ MemTy(Ty), AddrSpace(AS) {}
+
+ bool operator==(MemAccessTy Other) const {
+ return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
+ }
+
+ bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
+
+ static MemAccessTy getUnknown(LLVMContext &Ctx) {
+ return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
+ }
+};
+
+/// This class holds data which is used to order reuse candidates.
class RegSortData {
public:
- /// UsedByIndices - This represents the set of LSRUse indices which reference
+ /// This represents the set of LSRUse indices which reference
/// a particular register.
SmallBitVector UsedByIndices;
@@ -122,16 +145,14 @@ void RegSortData::print(raw_ostream &OS) const {
OS << "[NumUses=" << UsedByIndices.count() << ']';
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void RegSortData::dump() const {
print(errs()); errs() << '\n';
}
-#endif
namespace {
-/// RegUseTracker - Map register candidates to information about how they are
-/// used.
+/// Map register candidates to information about how they are used.
class RegUseTracker {
typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
@@ -139,9 +160,9 @@ class RegUseTracker {
SmallVector<const SCEV *, 16> RegSequence;
public:
- void CountRegister(const SCEV *Reg, size_t LUIdx);
- void DropRegister(const SCEV *Reg, size_t LUIdx);
- void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
+ void countRegister(const SCEV *Reg, size_t LUIdx);
+ void dropRegister(const SCEV *Reg, size_t LUIdx);
+ void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
@@ -160,7 +181,7 @@ public:
}
void
-RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
+RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
std::pair<RegUsesTy::iterator, bool> Pair =
RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
RegSortData &RSD = Pair.first->second;
@@ -171,7 +192,7 @@ RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
}
void
-RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
+RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
RegUsesTy::iterator It = RegUsesMap.find(Reg);
assert(It != RegUsesMap.end());
RegSortData &RSD = It->second;
@@ -180,7 +201,7 @@ RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
}
void
-RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
+RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
assert(LUIdx <= LastLUIdx);
// Update RegUses. The data structure is not optimized for this purpose;
@@ -219,9 +240,8 @@ void RegUseTracker::clear() {
namespace {
-/// Formula - This class holds information that describes a formula for
-/// computing satisfying a use. It may include broken-out immediates and scaled
-/// registers.
+/// This class holds information that describes a formula for computing
+/// satisfying a use. It may include broken-out immediates and scaled registers.
struct Formula {
/// Global base address used for complex addressing.
GlobalValue *BaseGV;
@@ -235,8 +255,8 @@ struct Formula {
/// The scale of any complex addressing.
int64_t Scale;
- /// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty. The canonical representation of a formula is
+ /// The list of "base" registers for this use. When this is non-empty. The
+ /// canonical representation of a formula is
/// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
/// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
/// #1 enforces that the scaled register is always used when at least two
@@ -247,31 +267,31 @@ struct Formula {
/// form.
SmallVector<const SCEV *, 4> BaseRegs;
- /// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when Scale is not zero.
+ /// The 'scaled' register for this use. This should be non-null when Scale is
+ /// not zero.
const SCEV *ScaledReg;
- /// UnfoldedOffset - An additional constant offset which added near the
- /// use. This requires a temporary register, but the offset itself can
- /// live in an add immediate field rather than a register.
+ /// An additional constant offset which added near the use. This requires a
+ /// temporary register, but the offset itself can live in an add immediate
+ /// field rather than a register.
int64_t UnfoldedOffset;
Formula()
: BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
ScaledReg(nullptr), UnfoldedOffset(0) {}
- void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
+ void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
bool isCanonical() const;
- void Canonicalize();
+ void canonicalize();
- bool Unscale();
+ bool unscale();
size_t getNumRegs() const;
Type *getType() const;
- void DeleteBaseReg(const SCEV *&S);
+ void deleteBaseReg(const SCEV *&S);
bool referencesReg(const SCEV *S) const;
bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
@@ -283,7 +303,7 @@ struct Formula {
}
-/// DoInitialMatch - Recursion helper for InitialMatch.
+/// Recursion helper for initialMatch.
static void DoInitialMatch(const SCEV *S, Loop *L,
SmallVectorImpl<const SCEV *> &Good,
SmallVectorImpl<const SCEV *> &Bad,
@@ -336,10 +356,9 @@ static void DoInitialMatch(const SCEV *S, Loop *L,
Bad.push_back(S);
}
-/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
-/// attempting to keep all loop-invariant and loop-computable values in a
-/// single base register.
-void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
+/// Incorporate loop-variant parts of S into this Formula, attempting to keep
+/// all loop-invariant and loop-computable values in a single base register.
+void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
SmallVector<const SCEV *, 4> Good;
SmallVector<const SCEV *, 4> Bad;
DoInitialMatch(S, L, Good, Bad, SE);
@@ -355,7 +374,7 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
BaseRegs.push_back(Sum);
HasBaseReg = true;
}
- Canonicalize();
+ canonicalize();
}
/// \brief Check whether or not this formula statisfies the canonical
@@ -373,7 +392,7 @@ bool Formula::isCanonical() const {
/// field. Otherwise, we would have to do special cases everywhere in LSR
/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
/// On the other hand, 1*reg should be canonicalized into reg.
-void Formula::Canonicalize() {
+void Formula::canonicalize() {
if (isCanonical())
return;
// So far we did not need this case. This is easy to implement but it is
@@ -394,7 +413,7 @@ void Formula::Canonicalize() {
/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
/// \return true if it was possible to get rid of the scale, false otherwise.
/// \note After this operation the formula may not be in the canonical form.
-bool Formula::Unscale() {
+bool Formula::unscale() {
if (Scale != 1)
return false;
Scale = 0;
@@ -403,15 +422,14 @@ bool Formula::Unscale() {
return true;
}
-/// getNumRegs - Return the total number of register operands used by this
-/// formula. This does not include register uses implied by non-constant
-/// addrec strides.
+/// Return the total number of register operands used by this formula. This does
+/// not include register uses implied by non-constant addrec strides.
size_t Formula::getNumRegs() const {
return !!ScaledReg + BaseRegs.size();
}
-/// getType - Return the type of this formula, if it has one, or null
-/// otherwise. This type is meaningless except for the bit size.
+/// Return the type of this formula, if it has one, or null otherwise. This type
+/// is meaningless except for the bit size.
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
@@ -419,21 +437,21 @@ Type *Formula::getType() const {
nullptr;
}
-/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
-void Formula::DeleteBaseReg(const SCEV *&S) {
+/// Delete the given base reg from the BaseRegs list.
+void Formula::deleteBaseReg(const SCEV *&S) {
if (&S != &BaseRegs.back())
std::swap(S, BaseRegs.back());
BaseRegs.pop_back();
}
-/// referencesReg - Test if this formula references the given register.
+/// Test if this formula references the given register.
bool Formula::referencesReg(const SCEV *S) const {
return S == ScaledReg ||
std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
}
-/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
-/// which are used by uses other than the use with the given index.
+/// Test whether this formula uses registers which are used by uses other than
+/// the use with the given index.
bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
const RegUseTracker &RegUses) const {
if (ScaledReg)
@@ -481,30 +499,29 @@ void Formula::print(raw_ostream &OS) const {
}
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void Formula::dump() const {
print(errs()); errs() << '\n';
}
-#endif
-/// isAddRecSExtable - Return true if the given addrec can be sign-extended
-/// without changing its value.
+/// Return true if the given addrec can be sign-extended without changing its
+/// value.
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
}
-/// isAddSExtable - Return true if the given add can be sign-extended
-/// without changing its value.
+/// Return true if the given add can be sign-extended without changing its
+/// value.
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
}
-/// isMulSExtable - Return true if the given mul can be sign-extended
-/// without changing its value.
+/// Return true if the given mul can be sign-extended without changing its
+/// value.
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(),
@@ -512,12 +529,11 @@ static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
}
-/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
-/// and if the remainder is known to be zero, or null otherwise. If
-/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
-/// to Y, ignoring that the multiplication may overflow, which is useful when
-/// the result will be used in a context where the most significant bits are
-/// ignored.
+/// Return an expression for LHS /s RHS, if it can be determined and if the
+/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
+/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
+/// the multiplication may overflow, which is useful when the result will be
+/// used in a context where the most significant bits are ignored.
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
ScalarEvolution &SE,
bool IgnoreSignificantBits = false) {
@@ -528,7 +544,7 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
// Handle a few RHS special cases.
const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
if (RC) {
- const APInt &RA = RC->getValue()->getValue();
+ const APInt &RA = RC->getAPInt();
// Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
// some folding.
if (RA.isAllOnesValue())
@@ -542,8 +558,8 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
if (!RC)
return nullptr;
- const APInt &LA = C->getValue()->getValue();
- const APInt &RA = RC->getValue()->getValue();
+ const APInt &LA = C->getAPInt();
+ const APInt &RA = RC->getAPInt();
if (LA.srem(RA) != 0)
return nullptr;
return SE.getConstant(LA.sdiv(RA));
@@ -603,12 +619,11 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
return nullptr;
}
-/// ExtractImmediate - If S involves the addition of a constant integer value,
-/// return that integer value, and mutate S to point to a new SCEV with that
-/// value excluded.
+/// If S involves the addition of a constant integer value, return that integer
+/// value, and mutate S to point to a new SCEV with that value excluded.
static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- if (C->getValue()->getValue().getMinSignedBits() <= 64) {
+ if (C->getAPInt().getMinSignedBits() <= 64) {
S = SE.getConstant(C->getType(), 0);
return C->getValue()->getSExtValue();
}
@@ -630,9 +645,8 @@ static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
return 0;
}
-/// ExtractSymbol - If S involves the addition of a GlobalValue address,
-/// return that symbol, and mutate S to point to a new SCEV with that
-/// value excluded.
+/// If S involves the addition of a GlobalValue address, return that symbol, and
+/// mutate S to point to a new SCEV with that value excluded.
static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
@@ -657,8 +671,8 @@ static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
return nullptr;
}
-/// isAddressUse - Returns true if the specified instruction is using the
-/// specified value as an address.
+/// Returns true if the specified instruction is using the specified value as an
+/// address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
bool isAddress = isa<LoadInst>(Inst);
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
@@ -682,12 +696,15 @@ static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
return isAddress;
}
-/// getAccessType - Return the type of the memory being accessed.
-static Type *getAccessType(const Instruction *Inst) {
- Type *AccessTy = Inst->getType();
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
- AccessTy = SI->getOperand(0)->getType();
- else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+/// Return the type of the memory being accessed.
+static MemAccessTy getAccessType(const Instruction *Inst) {
+ MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
+ if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ AccessTy.MemTy = SI->getOperand(0)->getType();
+ AccessTy.AddrSpace = SI->getPointerAddressSpace();
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
+ AccessTy.AddrSpace = LI->getPointerAddressSpace();
+ } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
// Addressing modes can also be folded into prefetches and a variety
// of intrinsics.
switch (II->getIntrinsicID()) {
@@ -696,21 +713,21 @@ static Type *getAccessType(const Instruction *Inst) {
case Intrinsic::x86_sse2_storeu_pd:
case Intrinsic::x86_sse2_storeu_dq:
case Intrinsic::x86_sse2_storel_dq:
- AccessTy = II->getArgOperand(0)->getType();
+ AccessTy.MemTy = II->getArgOperand(0)->getType();
break;
}
}
// All pointers have the same requirements, so canonicalize them to an
// arbitrary pointer type to minimize variation.
- if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
- AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
- PTy->getAddressSpace());
+ if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
+ AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
+ PTy->getAddressSpace());
return AccessTy;
}
-/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
+/// Return true if this AddRec is already a phi in its loop.
static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
@@ -793,9 +810,8 @@ static bool isHighCostExpansion(const SCEV *S,
return true;
}
-/// DeleteTriviallyDeadInstructions - If any of the instructions is the
-/// specified set are trivially dead, delete them and see if this makes any of
-/// their operands subsequently dead.
+/// If any of the instructions is the specified set are trivially dead, delete
+/// them and see if this makes any of their operands subsequently dead.
static bool
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
bool Changed = false;
@@ -842,7 +858,7 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
namespace {
-/// Cost - This class is used to measure and compare candidate formulae.
+/// This class is used to measure and compare candidate formulae.
class Cost {
/// TODO: Some of these could be merged. Also, a lexical ordering
/// isn't always optimal.
@@ -905,7 +921,7 @@ private:
}
-/// RateRegister - Tally up interesting quantities from the given register.
+/// Tally up interesting quantities from the given register.
void Cost::RateRegister(const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
@@ -951,9 +967,9 @@ void Cost::RateRegister(const SCEV *Reg,
SE.hasComputableLoopEvolution(Reg, L);
}
-/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
-/// before, rate it. Optional LoserRegs provides a way to declare any formula
-/// that refers to one of those regs an instant loser.
+/// Record this register in the set. If we haven't seen it before, rate
+/// it. Optional LoserRegs provides a way to declare any formula that refers to
+/// one of those regs an instant loser.
void Cost::RatePrimaryRegister(const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
@@ -1024,7 +1040,7 @@ void Cost::RateFormula(const TargetTransformInfo &TTI,
assert(isValid() && "invalid cost");
}
-/// Lose - Set this cost to a losing value.
+/// Set this cost to a losing value.
void Cost::Lose() {
NumRegs = ~0u;
AddRecCost = ~0u;
@@ -1035,7 +1051,7 @@ void Cost::Lose() {
ScaleCost = ~0u;
}
-/// operator< - Choose the lower cost.
+/// Choose the lower cost.
bool Cost::operator<(const Cost &Other) const {
return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
ImmCost, SetupCost) <
@@ -1061,37 +1077,35 @@ void Cost::print(raw_ostream &OS) const {
OS << ", plus " << SetupCost << " setup cost";
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void Cost::dump() const {
print(errs()); errs() << '\n';
}
-#endif
namespace {
-/// LSRFixup - An operand value in an instruction which is to be replaced
-/// with some equivalent, possibly strength-reduced, replacement.
+/// An operand value in an instruction which is to be replaced with some
+/// equivalent, possibly strength-reduced, replacement.
struct LSRFixup {
- /// UserInst - The instruction which will be updated.
+ /// The instruction which will be updated.
Instruction *UserInst;
- /// OperandValToReplace - The operand of the instruction which will
- /// be replaced. The operand may be used more than once; every instance
- /// will be replaced.
+ /// The operand of the instruction which will be replaced. The operand may be
+ /// used more than once; every instance will be replaced.
Value *OperandValToReplace;
- /// PostIncLoops - If this user is to use the post-incremented value of an
- /// induction variable, this variable is non-null and holds the loop
- /// associated with the induction variable.
+ /// If this user is to use the post-incremented value of an induction
+ /// variable, this variable is non-null and holds the loop associated with the
+ /// induction variable.
PostIncLoopSet PostIncLoops;
- /// LUIdx - The index of the LSRUse describing the expression which
- /// this fixup needs, minus an offset (below).
+ /// The index of the LSRUse describing the expression which this fixup needs,
+ /// minus an offset (below).
size_t LUIdx;
- /// Offset - A constant offset to be added to the LSRUse expression.
- /// This allows multiple fixups to share the same LSRUse with different
- /// offsets, for example in an unrolled loop.
+ /// A constant offset to be added to the LSRUse expression. This allows
+ /// multiple fixups to share the same LSRUse with different offsets, for
+ /// example in an unrolled loop.
int64_t Offset;
bool isUseFullyOutsideLoop(const Loop *L) const;
@@ -1108,8 +1122,7 @@ LSRFixup::LSRFixup()
: UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
Offset(0) {}
-/// isUseFullyOutsideLoop - Test whether this fixup always uses its
-/// value outside of the given loop.
+/// Test whether this fixup always uses its value outside of the given loop.
bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
// PHI nodes use their value in their incoming blocks.
if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
@@ -1149,16 +1162,15 @@ void LSRFixup::print(raw_ostream &OS) const {
OS << ", Offset=" << Offset;
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void LSRFixup::dump() const {
print(errs()); errs() << '\n';
}
-#endif
namespace {
-/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
-/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
+/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
+/// SmallVectors of const SCEV*.
struct UniquifierDenseMapInfo {
static SmallVector<const SCEV *, 4> getEmptyKey() {
SmallVector<const SCEV *, 4> V;
@@ -1182,17 +1194,17 @@ struct UniquifierDenseMapInfo {
}
};
-/// LSRUse - This class holds the state that LSR keeps for each use in
-/// IVUsers, as well as uses invented by LSR itself. It includes information
-/// about what kinds of things can be folded into the user, information about
-/// the user itself, and information about how the use may be satisfied.
-/// TODO: Represent multiple users of the same expression in common?
+/// This class holds the state that LSR keeps for each use in IVUsers, as well
+/// as uses invented by LSR itself. It includes information about what kinds of
+/// things can be folded into the user, information about the user itself, and
+/// information about how the use may be satisfied. TODO: Represent multiple
+/// users of the same expression in common?
class LSRUse {
DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
public:
- /// KindType - An enum for a kind of use, indicating what types of
- /// scaled and immediate operands it might support.
+ /// An enum for a kind of use, indicating what types of scaled and immediate
+ /// operands it might support.
enum KindType {
Basic, ///< A normal use, with no folding.
Special, ///< A special case of basic, allowing -1 scales.
@@ -1204,15 +1216,14 @@ public:
typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
KindType Kind;
- Type *AccessTy;
+ MemAccessTy AccessTy;
SmallVector<int64_t, 8> Offsets;
int64_t MinOffset;
int64_t MaxOffset;
- /// AllFixupsOutsideLoop - This records whether all of the fixups using this
- /// LSRUse are outside of the loop, in which case some special-case heuristics
- /// may be used.
+ /// This records whether all of the fixups using this LSRUse are outside of
+ /// the loop, in which case some special-case heuristics may be used.
bool AllFixupsOutsideLoop;
/// RigidFormula is set to true to guarantee that this use will be associated
@@ -1222,26 +1233,24 @@ public:
/// changing the formula.
bool RigidFormula;
- /// WidestFixupType - This records the widest use type for any fixup using
- /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
- /// max fixup widths to be equivalent, because the narrower one may be relying
- /// on the implicit truncation to truncate away bogus bits.
+ /// This records the widest use type for any fixup using this
+ /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
+ /// fixup widths to be equivalent, because the narrower one may be relying on
+ /// the implicit truncation to truncate away bogus bits.
Type *WidestFixupType;
- /// Formulae - A list of ways to build a value that can satisfy this user.
- /// After the list is populated, one of these is selected heuristically and
- /// used to formulate a replacement for OperandValToReplace in UserInst.
+ /// A list of ways to build a value that can satisfy this user. After the
+ /// list is populated, one of these is selected heuristically and used to
+ /// formulate a replacement for OperandValToReplace in UserInst.
SmallVector<Formula, 12> Formulae;
- /// Regs - The set of register candidates used by all formulae in this LSRUse.
+ /// The set of register candidates used by all formulae in this LSRUse.
SmallPtrSet<const SCEV *, 4> Regs;
- LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
- MinOffset(INT64_MAX),
- MaxOffset(INT64_MIN),
- AllFixupsOutsideLoop(true),
- RigidFormula(false),
- WidestFixupType(nullptr) {}
+ LSRUse(KindType K, MemAccessTy AT)
+ : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
+ AllFixupsOutsideLoop(true), RigidFormula(false),
+ WidestFixupType(nullptr) {}
bool HasFormulaWithSameRegs(const Formula &F) const;
bool InsertFormula(const Formula &F);
@@ -1254,8 +1263,8 @@ public:
}
-/// HasFormula - Test whether this use as a formula which has the same
-/// registers as the given formula.
+/// Test whether this use as a formula which has the same registers as the given
+/// formula.
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
@@ -1264,9 +1273,8 @@ bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
return Uniquifier.count(Key);
}
-/// InsertFormula - If the given formula has not yet been inserted, add it to
-/// the list, and return true. Return false otherwise.
-/// The formula must be in canonical form.
+/// If the given formula has not yet been inserted, add it to the list, and
+/// return true. Return false otherwise. The formula must be in canonical form.
bool LSRUse::InsertFormula(const Formula &F) {
assert(F.isCanonical() && "Invalid canonical representation");
@@ -1300,14 +1308,14 @@ bool LSRUse::InsertFormula(const Formula &F) {
return true;
}
-/// DeleteFormula - Remove the given formula from this use's list.
+/// Remove the given formula from this use's list.
void LSRUse::DeleteFormula(Formula &F) {
if (&F != &Formulae.back())
std::swap(F, Formulae.back());
Formulae.pop_back();
}
-/// RecomputeRegs - Recompute the Regs field, and update RegUses.
+/// Recompute the Regs field, and update RegUses.
void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
// Now that we've filtered out some formulae, recompute the Regs set.
SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
@@ -1320,7 +1328,7 @@ void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
// Update the RegTracker.
for (const SCEV *S : OldRegs)
if (!Regs.count(S))
- RegUses.DropRegister(S, LUIdx);
+ RegUses.dropRegister(S, LUIdx);
}
void LSRUse::print(raw_ostream &OS) const {
@@ -1331,10 +1339,13 @@ void LSRUse::print(raw_ostream &OS) const {
case ICmpZero: OS << "ICmpZero"; break;
case Address:
OS << "Address of ";
- if (AccessTy->isPointerTy())
+ if (AccessTy.MemTy->isPointerTy())
OS << "pointer"; // the full pointer type could be really verbose
- else
- OS << *AccessTy;
+ else {
+ OS << *AccessTy.MemTy;
+ }
+
+ OS << " in addrspace(" << AccessTy.AddrSpace << ')';
}
OS << ", Offsets={";
@@ -1353,19 +1364,19 @@ void LSRUse::print(raw_ostream &OS) const {
OS << ", widest fixup type: " << *WidestFixupType;
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void LSRUse::dump() const {
print(errs()); errs() << '\n';
}
-#endif
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, Type *AccessTy,
+ LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale) {
switch (Kind) {
case LSRUse::Address:
- return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
+ return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
+ HasBaseReg, Scale, AccessTy.AddrSpace);
case LSRUse::ICmpZero:
// There's not even a target hook for querying whether it would be legal to
@@ -1412,7 +1423,7 @@ static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
+ LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale) {
// Check for overflow.
@@ -1433,7 +1444,7 @@ static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, Type *AccessTy,
+ LSRUse::KindType Kind, MemAccessTy AccessTy,
const Formula &F) {
// For the purpose of isAMCompletelyFolded either having a canonical formula
// or a scale not equal to zero is correct.
@@ -1447,11 +1458,11 @@ static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
}
-/// isLegalUse - Test whether we know how to expand the current formula.
+/// Test whether we know how to expand the current formula.
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale) {
+ int64_t MaxOffset, LSRUse::KindType Kind,
+ MemAccessTy AccessTy, GlobalValue *BaseGV,
+ int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
// We know how to expand completely foldable formulae.
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
BaseOffset, HasBaseReg, Scale) ||
@@ -1463,8 +1474,8 @@ static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
}
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
- const Formula &F) {
+ int64_t MaxOffset, LSRUse::KindType Kind,
+ MemAccessTy AccessTy, const Formula &F) {
return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
F.BaseOffset, F.HasBaseReg, F.Scale);
}
@@ -1490,14 +1501,12 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
switch (LU.Kind) {
case LSRUse::Address: {
// Check the scaling factor cost with both the min and max offsets.
- int ScaleCostMinOffset =
- TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
- F.BaseOffset + LU.MinOffset,
- F.HasBaseReg, F.Scale);
- int ScaleCostMaxOffset =
- TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
- F.BaseOffset + LU.MaxOffset,
- F.HasBaseReg, F.Scale);
+ int ScaleCostMinOffset = TTI.getScalingFactorCost(
+ LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
+ F.Scale, LU.AccessTy.AddrSpace);
+ int ScaleCostMaxOffset = TTI.getScalingFactorCost(
+ LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
+ F.Scale, LU.AccessTy.AddrSpace);
assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
"Legal addressing mode has an illegal cost!");
@@ -1515,7 +1524,7 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
}
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, Type *AccessTy,
+ LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg) {
// Fast-path: zero is always foldable.
@@ -1539,7 +1548,8 @@ static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
ScalarEvolution &SE, int64_t MinOffset,
int64_t MaxOffset, LSRUse::KindType Kind,
- Type *AccessTy, const SCEV *S, bool HasBaseReg) {
+ MemAccessTy AccessTy, const SCEV *S,
+ bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (S->isZero()) return true;
@@ -1564,9 +1574,9 @@ static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
namespace {
-/// IVInc - An individual increment in a Chain of IV increments.
-/// Relate an IV user to an expression that computes the IV it uses from the IV
-/// used by the previous link in the Chain.
+/// An individual increment in a Chain of IV increments. Relate an IV user to
+/// an expression that computes the IV it uses from the IV used by the previous
+/// link in the Chain.
///
/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
/// original IVOperand. The head of the chain's IVOperand is only valid during
@@ -1582,8 +1592,8 @@ struct IVInc {
UserInst(U), IVOperand(O), IncExpr(E) {}
};
-// IVChain - The list of IV increments in program order.
-// We typically add the head of a chain without finding subsequent links.
+// The list of IV increments in program order. We typically add the head of a
+// chain without finding subsequent links.
struct IVChain {
SmallVector<IVInc,1> Incs;
const SCEV *ExprBase;
@@ -1595,7 +1605,7 @@ struct IVChain {
typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
- // begin - return the first increment in the chain.
+ // Return the first increment in the chain.
const_iterator begin() const {
assert(!Incs.empty());
return std::next(Incs.begin());
@@ -1604,32 +1614,30 @@ struct IVChain {
return Incs.end();
}
- // hasIncs - Returns true if this chain contains any increments.
+ // Returns true if this chain contains any increments.
bool hasIncs() const { return Incs.size() >= 2; }
- // add - Add an IVInc to the end of this chain.
+ // Add an IVInc to the end of this chain.
void add(const IVInc &X) { Incs.push_back(X); }
- // tailUserInst - Returns the last UserInst in the chain.
+ // Returns the last UserInst in the chain.
Instruction *tailUserInst() const { return Incs.back().UserInst; }
- // isProfitableIncrement - Returns true if IncExpr can be profitably added to
- // this chain.
+ // Returns true if IncExpr can be profitably added to this chain.
bool isProfitableIncrement(const SCEV *OperExpr,
const SCEV *IncExpr,
ScalarEvolution&);
};
-/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
-/// Distinguish between FarUsers that definitely cross IV increments and
-/// NearUsers that may be used between IV increments.
+/// Helper for CollectChains to track multiple IV increment uses. Distinguish
+/// between FarUsers that definitely cross IV increments and NearUsers that may
+/// be used between IV increments.
struct ChainUsers {
SmallPtrSet<Instruction*, 4> FarUsers;
SmallPtrSet<Instruction*, 4> NearUsers;
};
-/// LSRInstance - This class holds state for the main loop strength reduction
-/// logic.
+/// This class holds state for the main loop strength reduction logic.
class LSRInstance {
IVUsers &IU;
ScalarEvolution &SE;
@@ -1639,25 +1647,25 @@ class LSRInstance {
Loop *const L;
bool Changed;
- /// IVIncInsertPos - This is the insert position that the current loop's
- /// induction variable increment should be placed. In simple loops, this is
- /// the latch block's terminator. But in more complicated cases, this is a
- /// position which will dominate all the in-loop post-increment users.
+ /// This is the insert position that the current loop's induction variable
+ /// increment should be placed. In simple loops, this is the latch block's
+ /// terminator. But in more complicated cases, this is a position which will
+ /// dominate all the in-loop post-increment users.
Instruction *IVIncInsertPos;
- /// Factors - Interesting factors between use strides.
+ /// Interesting factors between use strides.
SmallSetVector<int64_t, 8> Factors;
- /// Types - Interesting use types, to facilitate truncation reuse.
+ /// Interesting use types, to facilitate truncation reuse.
SmallSetVector<Type *, 4> Types;
- /// Fixups - The list of operands which are to be replaced.
+ /// The list of operands which are to be replaced.
SmallVector<LSRFixup, 16> Fixups;
- /// Uses - The list of interesting uses.
+ /// The list of interesting uses.
SmallVector<LSRUse, 16> Uses;
- /// RegUses - Track which uses use which register candidates.
+ /// Track which uses use which register candidates.
RegUseTracker RegUses;
// Limit the number of chains to avoid quadratic behavior. We don't expect to
@@ -1665,10 +1673,10 @@ class LSRInstance {
// back to normal LSR behavior for those uses.
static const unsigned MaxChains = 8;
- /// IVChainVec - IV users can form a chain of IV increments.
+ /// IV users can form a chain of IV increments.
SmallVector<IVChain, MaxChains> IVChainVec;
- /// IVIncSet - IV users that belong to profitable IVChains.
+ /// IV users that belong to profitable IVChains.
SmallPtrSet<Use*, MaxChains> IVIncSet;
void OptimizeShadowIV();
@@ -1696,11 +1704,10 @@ class LSRInstance {
UseMapTy UseMap;
bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy);
+ LSRUse::KindType Kind, MemAccessTy AccessTy);
- std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
- LSRUse::KindType Kind,
- Type *AccessTy);
+ std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
+ MemAccessTy AccessTy);
void DeleteUse(LSRUse &LU, size_t LUIdx);
@@ -1769,18 +1776,16 @@ class LSRInstance {
void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const;
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
void Rewrite(const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const;
- void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
- Pass *P);
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
+ void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
public:
- LSRInstance(Loop *L, Pass *P);
+ LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
+ LoopInfo &LI, const TargetTransformInfo &TTI);
bool getChanged() const { return Changed; }
@@ -1793,8 +1798,8 @@ public:
}
-/// OptimizeShadowIV - If IV is used in a int-to-float cast
-/// inside the loop then try to eliminate the cast operation.
+/// If IV is used in a int-to-float cast inside the loop then try to eliminate
+/// the cast operation.
void LSRInstance::OptimizeShadowIV() {
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
@@ -1902,9 +1907,8 @@ void LSRInstance::OptimizeShadowIV() {
}
}
-/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
-/// set the IV user and stride information and return true, otherwise return
-/// false.
+/// If Cond has an operand that is an expression of an IV, set the IV user and
+/// stride information and return true, otherwise return false.
bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
for (IVStrideUse &U : IU)
if (U.getUser() == Cond) {
@@ -1917,8 +1921,7 @@ bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
return false;
}
-/// OptimizeMax - Rewrite the loop's terminating condition if it uses
-/// a max computation.
+/// Rewrite the loop's terminating condition if it uses a max computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
@@ -2076,8 +2079,7 @@ ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
return NewCond;
}
-/// OptimizeLoopTermCond - Change loop terminating condition to use the
-/// postinc iv when possible.
+/// Change loop terminating condition to use the postinc iv when possible.
void
LSRInstance::OptimizeLoopTermCond() {
SmallPtrSet<Instruction *, 4> PostIncs;
@@ -2152,16 +2154,18 @@ LSRInstance::OptimizeLoopTermCond() {
C->getValue().isMinSignedValue())
goto decline_post_inc;
// Check for possible scaled-address reuse.
- Type *AccessTy = getAccessType(UI->getUser());
+ MemAccessTy AccessTy = getAccessType(UI->getUser());
int64_t Scale = C->getSExtValue();
- if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
- /*BaseOffset=*/ 0,
- /*HasBaseReg=*/ false, Scale))
+ if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
+ /*BaseOffset=*/0,
+ /*HasBaseReg=*/false, Scale,
+ AccessTy.AddrSpace))
goto decline_post_inc;
Scale = -Scale;
- if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
- /*BaseOffset=*/ 0,
- /*HasBaseReg=*/ false, Scale))
+ if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
+ /*BaseOffset=*/0,
+ /*HasBaseReg=*/false, Scale,
+ AccessTy.AddrSpace))
goto decline_post_inc;
}
}
@@ -2180,7 +2184,7 @@ LSRInstance::OptimizeLoopTermCond() {
ICmpInst *OldCond = Cond;
Cond = cast<ICmpInst>(Cond->clone());
Cond->setName(L->getHeader()->getName() + ".termcond");
- ExitingBlock->getInstList().insert(TermBr, Cond);
+ ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
// Clone the IVUse, as the old use still exists!
CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
@@ -2213,15 +2217,14 @@ LSRInstance::OptimizeLoopTermCond() {
}
}
-/// reconcileNewOffset - Determine if the given use can accommodate a fixup
-/// at the given offset and other details. If so, update the use and
-/// return true.
-bool
-LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, Type *AccessTy) {
+/// Determine if the given use can accommodate a fixup at the given offset and
+/// other details. If so, update the use and return true.
+bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
+ bool HasBaseReg, LSRUse::KindType Kind,
+ MemAccessTy AccessTy) {
int64_t NewMinOffset = LU.MinOffset;
int64_t NewMaxOffset = LU.MaxOffset;
- Type *NewAccessTy = AccessTy;
+ MemAccessTy NewAccessTy = AccessTy;
// Check for a mismatched kind. It's tempting to collapse mismatched kinds to
// something conservative, however this can pessimize in the case that one of
@@ -2232,8 +2235,10 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
// Check for a mismatched access type, and fall back conservatively as needed.
// TODO: Be less conservative when the type is similar and can use the same
// addressing modes.
- if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
- NewAccessTy = Type::getVoidTy(AccessTy->getContext());
+ if (Kind == LSRUse::Address) {
+ if (AccessTy != LU.AccessTy)
+ NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
+ }
// Conservatively assume HasBaseReg is true for now.
if (NewOffset < LU.MinOffset) {
@@ -2257,12 +2262,12 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
return true;
}
-/// getUse - Return an LSRUse index and an offset value for a fixup which
-/// needs the given expression, with the given kind and optional access type.
-/// Either reuse an existing use or create a new one, as needed.
-std::pair<size_t, int64_t>
-LSRInstance::getUse(const SCEV *&Expr,
- LSRUse::KindType Kind, Type *AccessTy) {
+/// Return an LSRUse index and an offset value for a fixup which needs the given
+/// expression, with the given kind and optional access type. Either reuse an
+/// existing use or create a new one, as needed.
+std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
+ LSRUse::KindType Kind,
+ MemAccessTy AccessTy) {
const SCEV *Copy = Expr;
int64_t Offset = ExtractImmediate(Expr, SE);
@@ -2300,18 +2305,18 @@ LSRInstance::getUse(const SCEV *&Expr,
return std::make_pair(LUIdx, Offset);
}
-/// DeleteUse - Delete the given use from the Uses list.
+/// Delete the given use from the Uses list.
void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
if (&LU != &Uses.back())
std::swap(LU, Uses.back());
Uses.pop_back();
// Update RegUses.
- RegUses.SwapAndDropUse(LUIdx, Uses.size());
+ RegUses.swapAndDropUse(LUIdx, Uses.size());
}
-/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
-/// a formula that has the same registers as the given formula.
+/// Look for a use distinct from OrigLU which is has a formula that has the same
+/// registers as the given formula.
LSRUse *
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
const LSRUse &OrigLU) {
@@ -2396,14 +2401,14 @@ void LSRInstance::CollectInterestingTypesAndFactors() {
if (const SCEVConstant *Factor =
dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
SE, true))) {
- if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
- Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ if (Factor->getAPInt().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getAPInt().getSExtValue());
} else if (const SCEVConstant *Factor =
dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
NewStride,
SE, true))) {
- if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
- Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ if (Factor->getAPInt().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getAPInt().getSExtValue());
}
}
@@ -2415,9 +2420,9 @@ void LSRInstance::CollectInterestingTypesAndFactors() {
DEBUG(print_factors_and_types(dbgs()));
}
-/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
-/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
-/// Instructions to IVStrideUses, we could partially skip this.
+/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
+/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
+/// IVStrideUses, we could partially skip this.
static User::op_iterator
findIVOperand(User::op_iterator OI, User::op_iterator OE,
Loop *L, ScalarEvolution &SE) {
@@ -2436,29 +2441,28 @@ findIVOperand(User::op_iterator OI, User::op_iterator OE,
return OI;
}
-/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
-/// operands, so wrap it in a convenient helper.
+/// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
+/// a convenient helper.
static Value *getWideOperand(Value *Oper) {
if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
return Trunc->getOperand(0);
return Oper;
}
-/// isCompatibleIVType - Return true if we allow an IV chain to include both
-/// types.
+/// Return true if we allow an IV chain to include both types.
static bool isCompatibleIVType(Value *LVal, Value *RVal) {
Type *LType = LVal->getType();
Type *RType = RVal->getType();
return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
}
-/// getExprBase - Return an approximation of this SCEV expression's "base", or
-/// NULL for any constant. Returning the expression itself is
-/// conservative. Returning a deeper subexpression is more precise and valid as
-/// long as it isn't less complex than another subexpression. For expressions
-/// involving multiple unscaled values, we need to return the pointer-type
-/// SCEVUnknown. This avoids forming chains across objects, such as:
-/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
+/// Return an approximation of this SCEV expression's "base", or NULL for any
+/// constant. Returning the expression itself is conservative. Returning a
+/// deeper subexpression is more precise and valid as long as it isn't less
+/// complex than another subexpression. For expressions involving multiple
+/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
+/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
+/// IVInc==b-a.
///
/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
/// SCEVUnknown, we simply return the rightmost SCEV operand.
@@ -2601,8 +2605,7 @@ isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
return cost < 0;
}
-/// ChainInstruction - Add this IV user to an existing chain or make it the head
-/// of a new chain.
+/// Add this IV user to an existing chain or make it the head of a new chain.
void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
SmallVectorImpl<ChainUsers> &ChainUsersVec) {
// When IVs are used as types of varying widths, they are generally converted
@@ -2714,7 +2717,7 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
}
-/// CollectChains - Populate the vector of Chains.
+/// Populate the vector of Chains.
///
/// This decreases ILP at the architecture level. Targets with ample registers,
/// multiple memory ports, and no register renaming probably don't want
@@ -2755,19 +2758,19 @@ void LSRInstance::CollectChains() {
for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
I != E; ++I) {
// Skip instructions that weren't seen by IVUsers analysis.
- if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
+ if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I))
continue;
// Ignore users that are part of a SCEV expression. This way we only
// consider leaf IV Users. This effectively rediscovers a portion of
// IVUsers analysis but in program order this time.
- if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
+ if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I)))
continue;
// Remove this instruction from any NearUsers set it may be in.
for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
ChainIdx < NChains; ++ChainIdx) {
- ChainUsersVec[ChainIdx].NearUsers.erase(I);
+ ChainUsersVec[ChainIdx].NearUsers.erase(&*I);
}
// Search for operands that can be chained.
SmallPtrSet<Instruction*, 4> UniqueOperands;
@@ -2776,7 +2779,7 @@ void LSRInstance::CollectChains() {
while (IVOpIter != IVOpEnd) {
Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
if (UniqueOperands.insert(IVOpInst).second)
- ChainInstruction(I, IVOpInst, ChainUsersVec);
+ ChainInstruction(&*I, IVOpInst, ChainUsersVec);
IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
}
} // Continue walking down the instructions.
@@ -2828,20 +2831,20 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
if (!IncConst || !isAddressUse(UserInst, Operand))
return false;
- if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
+ if (IncConst->getAPInt().getMinSignedBits() > 64)
return false;
+ MemAccessTy AccessTy = getAccessType(UserInst);
int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(TTI, LSRUse::Address,
- getAccessType(UserInst), /*BaseGV=*/ nullptr,
- IncOffset, /*HaseBaseReg=*/ false))
+ if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
+ IncOffset, /*HaseBaseReg=*/false))
return false;
return true;
}
-/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
-/// materialize the IV user's operand from the previous IV user's operand.
+/// Generate an add or subtract for each IVInc in a chain to materialize the IV
+/// user's operand from the previous IV user's operand.
void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
SmallVectorImpl<WeakVH> &DeadInsts) {
// Find the new IVOperand for the head of the chain. It may have been replaced
@@ -2961,7 +2964,7 @@ void LSRInstance::CollectFixupsAndInitialFormulae() {
LF.PostIncLoops = U.getPostIncLoops();
LSRUse::KindType Kind = LSRUse::Basic;
- Type *AccessTy = nullptr;
+ MemAccessTy AccessTy;
if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
Kind = LSRUse::Address;
AccessTy = getAccessType(LF.UserInst);
@@ -3027,9 +3030,8 @@ void LSRInstance::CollectFixupsAndInitialFormulae() {
DEBUG(print_fixups(dbgs()));
}
-/// InsertInitialFormula - Insert a formula for the given expression into
-/// the given use, separating out loop-variant portions from loop-invariant
-/// and loop-computable portions.
+/// Insert a formula for the given expression into the given use, separating out
+/// loop-variant portions from loop-invariant and loop-computable portions.
void
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
// Mark uses whose expressions cannot be expanded.
@@ -3037,13 +3039,13 @@ LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
LU.RigidFormula = true;
Formula F;
- F.InitialMatch(S, L, SE);
+ F.initialMatch(S, L, SE);
bool Inserted = InsertFormula(LU, LUIdx, F);
assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}
-/// InsertSupplementalFormula - Insert a simple single-register formula for
-/// the given expression into the given use.
+/// Insert a simple single-register formula for the given expression into the
+/// given use.
void
LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
@@ -3054,17 +3056,16 @@ LSRInstance::InsertSupplementalFormula(const SCEV *S,
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
-/// CountRegisters - Note which registers are used by the given formula,
-/// updating RegUses.
+/// Note which registers are used by the given formula, updating RegUses.
void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
if (F.ScaledReg)
- RegUses.CountRegister(F.ScaledReg, LUIdx);
+ RegUses.countRegister(F.ScaledReg, LUIdx);
for (const SCEV *BaseReg : F.BaseRegs)
- RegUses.CountRegister(BaseReg, LUIdx);
+ RegUses.countRegister(BaseReg, LUIdx);
}
-/// InsertFormula - If the given formula has not yet been inserted, add it to
-/// the list, and return true. Return false otherwise.
+/// If the given formula has not yet been inserted, add it to the list, and
+/// return true. Return false otherwise.
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
// Do not insert formula that we will not be able to expand.
assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
@@ -3076,9 +3077,9 @@ bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
return true;
}
-/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
-/// loop-invariant values which we're tracking. These other uses will pin these
-/// values in registers, making them less profitable for elimination.
+/// Check for other uses of loop-invariant values which we're tracking. These
+/// other uses will pin these values in registers, making them less profitable
+/// for elimination.
/// TODO: This currently misses non-constant addrec step registers.
/// TODO: Should this give more weight to users inside the loop?
void
@@ -3124,6 +3125,9 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
if (!DT.dominates(L->getHeader(), UseBB))
continue;
+ // Don't bother if the instruction is in a BB which ends in an EHPad.
+ if (UseBB->getTerminator()->isEHPad())
+ continue;
// Ignore uses which are part of other SCEV expressions, to avoid
// analyzing them multiple times.
if (SE.isSCEVable(UserInst->getType())) {
@@ -3148,7 +3152,8 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
LSRFixup &LF = getNewFixup();
LF.UserInst = const_cast<Instruction *>(UserInst);
LF.OperandValToReplace = U;
- std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
+ std::pair<size_t, int64_t> P = getUse(
+ S, LSRUse::Basic, MemAccessTy());
LF.LUIdx = P.first;
LF.Offset = P.second;
LSRUse &LU = Uses[LF.LUIdx];
@@ -3165,8 +3170,8 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
}
}
-/// CollectSubexprs - Split S into subexpressions which can be pulled out into
-/// separate registers. If C is non-null, multiply each subexpression by C.
+/// Split S into subexpressions which can be pulled out into separate
+/// registers. If C is non-null, multiply each subexpression by C.
///
/// Return remainder expression after factoring the subexpressions captured by
/// Ops. If Ops is complete, return NULL.
@@ -3300,7 +3305,7 @@ void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
F.BaseRegs.push_back(*J);
// We may have changed the number of register in base regs, adjust the
// formula accordingly.
- F.Canonicalize();
+ F.canonicalize();
if (InsertFormula(LU, LUIdx, F))
// If that formula hadn't been seen before, recurse to find more like
@@ -3309,8 +3314,7 @@ void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
}
}
-/// GenerateReassociations - Split out subexpressions from adds and the bases of
-/// addrecs.
+/// Split out subexpressions from adds and the bases of addrecs.
void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
Formula Base, unsigned Depth) {
assert(Base.isCanonical() && "Input must be in the canonical form");
@@ -3326,8 +3330,8 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
/* Idx */ -1, /* IsScaledReg */ true);
}
-/// GenerateCombinations - Generate a formula consisting of all of the
-/// loop-dominating registers added into a single register.
+/// Generate a formula consisting of all of the loop-dominating registers added
+/// into a single register.
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// This method is only interesting on a plurality of registers.
@@ -3336,7 +3340,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
// Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
// processing the formula.
- Base.Unscale();
+ Base.unscale();
Formula F = Base;
F.BaseRegs.clear();
SmallVector<const SCEV *, 4> Ops;
@@ -3354,7 +3358,7 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
// rather than proceed with zero in a register.
if (!Sum->isZero()) {
F.BaseRegs.push_back(Sum);
- F.Canonicalize();
+ F.canonicalize();
(void)InsertFormula(LU, LUIdx, F);
}
}
@@ -3379,7 +3383,7 @@ void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
(void)InsertFormula(LU, LUIdx, F);
}
-/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
+/// Generate reuse formulae using symbolic offsets.
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// We can't add a symbolic offset if the address already contains one.
@@ -3410,8 +3414,8 @@ void LSRInstance::GenerateConstantOffsetsImpl(
F.Scale = 0;
F.ScaledReg = nullptr;
} else
- F.DeleteBaseReg(F.BaseRegs[Idx]);
- F.Canonicalize();
+ F.deleteBaseReg(F.BaseRegs[Idx]);
+ F.canonicalize();
} else if (IsScaledReg)
F.ScaledReg = NewG;
else
@@ -3452,8 +3456,8 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
/* IsScaledReg */ true);
}
-/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
-/// the comparison. For example, x == y -> x*c == y*c.
+/// For ICmpZero, check to see if we can scale up the comparison. For example, x
+/// == y -> x*c == y*c.
void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
Formula Base) {
if (LU.Kind != LSRUse::ICmpZero) return;
@@ -3538,8 +3542,8 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
}
}
-/// GenerateScales - Generate stride factor reuse formulae by making use of
-/// scaled-offset address modes, for example.
+/// Generate stride factor reuse formulae by making use of scaled-offset address
+/// modes, for example.
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// Determine the integer type for the base formula.
Type *IntTy = Base.getType();
@@ -3547,10 +3551,10 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// If this Formula already has a scaled register, we can't add another one.
// Try to unscale the formula to generate a better scale.
- if (Base.Scale != 0 && !Base.Unscale())
+ if (Base.Scale != 0 && !Base.unscale())
return;
- assert(Base.Scale == 0 && "Unscale did not did its job!");
+ assert(Base.Scale == 0 && "unscale did not did its job!");
// Check each interesting stride.
for (int64_t Factor : Factors) {
@@ -3587,7 +3591,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// TODO: This could be optimized to avoid all the copying.
Formula F = Base;
F.ScaledReg = Quotient;
- F.DeleteBaseReg(F.BaseRegs[i]);
+ F.deleteBaseReg(F.BaseRegs[i]);
// The canonical representation of 1*reg is reg, which is already in
// Base. In that case, do not try to insert the formula, it will be
// rejected anyway.
@@ -3599,7 +3603,7 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
}
}
-/// GenerateTruncates - Generate reuse formulae from different IV types.
+/// Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
// Don't bother truncating symbolic values.
if (Base.BaseGV) return;
@@ -3629,9 +3633,9 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
namespace {
-/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
-/// defer modifications so that the search phase doesn't have to worry about
-/// the data structures moving underneath it.
+/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
+/// modifications so that the search phase doesn't have to worry about the data
+/// structures moving underneath it.
struct WorkItem {
size_t LUIdx;
int64_t Imm;
@@ -3651,14 +3655,13 @@ void WorkItem::print(raw_ostream &OS) const {
<< " , add offset " << Imm;
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void WorkItem::dump() const {
print(errs()); errs() << '\n';
}
-#endif
-/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
-/// distance apart and try to form reuse opportunities between them.
+/// Look for registers which are a constant distance apart and try to form reuse
+/// opportunities between them.
void LSRInstance::GenerateCrossUseConstantOffsets() {
// Group the registers by their value without any added constant offset.
typedef std::map<int64_t, const SCEV *> ImmMapTy;
@@ -3751,7 +3754,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// very similar but slightly different. Investigate if they
// could be merged. That way, we would not have to unscale the
// Formula.
- F.Unscale();
+ F.unscale();
// Use the immediate in the scaled register.
if (F.ScaledReg == OrigReg) {
int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
@@ -3770,14 +3773,13 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// value to the immediate would produce a value closer to zero than the
// immediate itself, then the formula isn't worthwhile.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
- if (C->getValue()->isNegative() !=
- (NewF.BaseOffset < 0) &&
- (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
- .ule(std::abs(NewF.BaseOffset)))
+ if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
+ (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
+ .ule(std::abs(NewF.BaseOffset)))
continue;
// OK, looks good.
- NewF.Canonicalize();
+ NewF.canonicalize();
(void)InsertFormula(LU, LUIdx, NewF);
} else {
// Use the immediate in a base register.
@@ -3801,15 +3803,15 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
// zero than the immediate itself, then the formula isn't worthwhile.
for (const SCEV *NewReg : NewF.BaseRegs)
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
- if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
- std::abs(NewF.BaseOffset)) &&
- (C->getValue()->getValue() +
- NewF.BaseOffset).countTrailingZeros() >=
- countTrailingZeros<uint64_t>(NewF.BaseOffset))
+ if ((C->getAPInt() + NewF.BaseOffset)
+ .abs()
+ .slt(std::abs(NewF.BaseOffset)) &&
+ (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
+ countTrailingZeros<uint64_t>(NewF.BaseOffset))
goto skip_formula;
// Ok, looks good.
- NewF.Canonicalize();
+ NewF.canonicalize();
(void)InsertFormula(LU, LUIdx, NewF);
break;
skip_formula:;
@@ -3819,7 +3821,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
}
}
-/// GenerateAllReuseFormulae - Generate formulae for each use.
+/// Generate formulae for each use.
void
LSRInstance::GenerateAllReuseFormulae() {
// This is split into multiple loops so that hasRegsUsedByUsesOtherThan
@@ -3959,10 +3961,9 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
// This is a rough guess that seems to work fairly well.
static const size_t ComplexityLimit = UINT16_MAX;
-/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
-/// solutions the solver might have to consider. It almost never considers
-/// this many solutions because it prune the search space, but the pruning
-/// isn't always sufficient.
+/// Estimate the worst-case number of solutions the solver might have to
+/// consider. It almost never considers this many solutions because it prune the
+/// search space, but the pruning isn't always sufficient.
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
size_t Power = 1;
for (const LSRUse &LU : Uses) {
@@ -3978,10 +3979,9 @@ size_t LSRInstance::EstimateSearchSpaceComplexity() const {
return Power;
}
-/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
-/// of the registers of another formula, it won't help reduce register
-/// pressure (though it may not necessarily hurt register pressure); remove
-/// it to simplify the system.
+/// When one formula uses a superset of the registers of another formula, it
+/// won't help reduce register pressure (though it may not necessarily hurt
+/// register pressure); remove it to simplify the system.
void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
DEBUG(dbgs() << "The search space is too complex.\n");
@@ -4042,9 +4042,8 @@ void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
}
}
-/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
-/// for expressions like A, A+1, A+2, etc., allocate a single register for
-/// them.
+/// When there are many registers for expressions like A, A+1, A+2, etc.,
+/// allocate a single register for them.
void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
return;
@@ -4121,8 +4120,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
}
-/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
-/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
+/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
/// we've done more filtering, as it may be able to find more formulae to
/// eliminate.
void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
@@ -4139,9 +4137,9 @@ void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
}
}
-/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
-/// to be profitable, and then in any use which has any reference to that
-/// register, delete all formulae which do not reference that register.
+/// Pick a register which seems likely to be profitable, and then in any use
+/// which has any reference to that register, delete all formulae which do not
+/// reference that register.
void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
// With all other options exhausted, loop until the system is simple
// enough to handle.
@@ -4202,10 +4200,10 @@ void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
}
}
-/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
-/// formulae to choose from, use some rough heuristics to prune down the number
-/// of formulae. This keeps the main solver from taking an extraordinary amount
-/// of time in some worst-case scenarios.
+/// If there are an extraordinary number of formulae to choose from, use some
+/// rough heuristics to prune down the number of formulae. This keeps the main
+/// solver from taking an extraordinary amount of time in some worst-case
+/// scenarios.
void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
NarrowSearchSpaceByDetectingSupersets();
NarrowSearchSpaceByCollapsingUnrolledCode();
@@ -4213,7 +4211,7 @@ void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
NarrowSearchSpaceByPickingWinnerRegs();
}
-/// SolveRecurse - This is the recursive solver.
+/// This is the recursive solver.
void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
Cost &SolutionCost,
SmallVectorImpl<const Formula *> &Workspace,
@@ -4291,8 +4289,8 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
}
}
-/// Solve - Choose one formula from each use. Return the results in the given
-/// Solution vector.
+/// Choose one formula from each use. Return the results in the given Solution
+/// vector.
void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
SmallVector<const Formula *, 8> Workspace;
Cost SolutionCost;
@@ -4326,10 +4324,9 @@ void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
assert(Solution.size() == Uses.size() && "Malformed solution!");
}
-/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
-/// the dominator tree far as we can go while still being dominated by the
-/// input positions. This helps canonicalize the insert position, which
-/// encourages sharing.
+/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
+/// we can go while still being dominated by the input positions. This helps
+/// canonicalize the insert position, which encourages sharing.
BasicBlock::iterator
LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
const SmallVectorImpl<Instruction *> &Inputs)
@@ -4365,21 +4362,21 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
// instead of at the end, so that it can be used for other expansions.
if (IDom == Inst->getParent() &&
(!BetterPos || !DT.dominates(Inst, BetterPos)))
- BetterPos = std::next(BasicBlock::iterator(Inst));
+ BetterPos = &*std::next(BasicBlock::iterator(Inst));
}
if (!AllDominate)
break;
if (BetterPos)
- IP = BetterPos;
+ IP = BetterPos->getIterator();
else
- IP = Tentative;
+ IP = Tentative->getIterator();
}
return IP;
}
-/// AdjustInsertPositionForExpand - Determine an input position which will be
-/// dominated by the operands and which will dominate the result.
+/// Determine an input position which will be dominated by the operands and
+/// which will dominate the result.
BasicBlock::iterator
LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
const LSRFixup &LF,
@@ -4417,7 +4414,7 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
}
}
- assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
+ assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
&& !isa<DbgInfoIntrinsic>(LowestIP) &&
"Insertion point must be a normal instruction");
@@ -4429,7 +4426,7 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
while (isa<PHINode>(IP)) ++IP;
// Ignore landingpad instructions.
- while (isa<LandingPadInst>(IP)) ++IP;
+ while (!isa<TerminatorInst>(IP) && IP->isEHPad()) ++IP;
// Ignore debug intrinsics.
while (isa<DbgInfoIntrinsic>(IP)) ++IP;
@@ -4437,13 +4434,14 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
// Set IP below instructions recently inserted by SCEVExpander. This keeps the
// IP consistent across expansions and allows the previously inserted
// instructions to be reused by subsequent expansion.
- while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
+ while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
+ ++IP;
return IP;
}
-/// Expand - Emit instructions for the leading candidate expression for this
-/// LSRUse (this is called "expanding").
+/// Emit instructions for the leading candidate expression for this LSRUse (this
+/// is called "expanding").
Value *LSRInstance::Expand(const LSRFixup &LF,
const Formula &F,
BasicBlock::iterator IP,
@@ -4487,7 +4485,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
LF.UserInst, LF.OperandValToReplace,
Loops, SE, DT);
- Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
+ Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
}
// Expand the ScaledReg portion.
@@ -4505,14 +4503,14 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Expand ScaleReg as if it was part of the base regs.
if (F.Scale == 1)
Ops.push_back(
- SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
+ SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
else {
// An interesting way of "folding" with an icmp is to use a negated
// scale, which we'll implement by inserting it into the other operand
// of the icmp.
assert(F.Scale == -1 &&
"The only scale supported by ICmpZero uses is -1!");
- ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
+ ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
}
} else {
// Otherwise just expand the scaled register and an explicit scale,
@@ -4522,11 +4520,11 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Unless the addressing mode will not be folded.
if (!Ops.empty() && LU.Kind == LSRUse::Address &&
isAMCompletelyFolded(TTI, LU, F)) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
- ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
+ ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
if (F.Scale != 1)
ScaledS =
SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
@@ -4538,7 +4536,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
if (F.BaseGV) {
// Flush the operand list to suppress SCEVExpander hoisting.
if (!Ops.empty()) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
@@ -4548,7 +4546,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Flush the operand list to suppress SCEVExpander hoisting of both folded and
// unfolded offsets. LSR assumes they both live next to their uses.
if (!Ops.empty()) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
Ops.clear();
Ops.push_back(SE.getUnknown(FullV));
}
@@ -4584,7 +4582,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
const SCEV *FullS = Ops.empty() ?
SE.getConstant(IntTy, 0) :
SE.getAddExpr(Ops);
- Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
+ Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
// We're done expanding now, so reset the rewriter.
Rewriter.clearPostInc();
@@ -4626,15 +4624,14 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
return FullV;
}
-/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
-/// of their operands effectively happens in their predecessor blocks, so the
-/// expression may need to be expanded in multiple places.
+/// Helper for Rewrite. PHI nodes are special because the use of their operands
+/// effectively happens in their predecessor blocks, so the expression may need
+/// to be expanded in multiple places.
void LSRInstance::RewriteForPHI(PHINode *PN,
const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const {
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
DenseMap<BasicBlock *, Value *> Inserted;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
@@ -4658,8 +4655,7 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
.setDontDeleteUselessPHIs());
} else {
SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs,
- /*AliasAnalysis*/ nullptr, &DT, &LI);
+ SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
NewBB = NewBBs[0];
}
// If NewBB==NULL, then SplitCriticalEdge refused to split because all
@@ -4685,7 +4681,8 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
if (!Pair.second)
PN->setIncomingValue(i, Pair.first->second);
else {
- Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
+ Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
+ Rewriter, DeadInsts);
// If this is reuse-by-noop-cast, insert the noop cast.
Type *OpTy = LF.OperandValToReplace->getType();
@@ -4702,20 +4699,20 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
}
}
-/// Rewrite - Emit instructions for the leading candidate expression for this
-/// LSRUse (this is called "expanding"), and update the UserInst to reference
-/// the newly expanded value.
+/// Emit instructions for the leading candidate expression for this LSRUse (this
+/// is called "expanding"), and update the UserInst to reference the newly
+/// expanded value.
void LSRInstance::Rewrite(const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
- SmallVectorImpl<WeakVH> &DeadInsts,
- Pass *P) const {
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
// First, find an insertion point that dominates UserInst. For PHI nodes,
// find the nearest block which dominates all the relevant uses.
if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
- RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
+ RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
} else {
- Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
+ Value *FullV =
+ Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
// If this is reuse-by-noop-cast, insert the noop cast.
Type *OpTy = LF.OperandValToReplace->getType();
@@ -4740,11 +4737,10 @@ void LSRInstance::Rewrite(const LSRFixup &LF,
DeadInsts.emplace_back(LF.OperandValToReplace);
}
-/// ImplementSolution - Rewrite all the fixup locations with new values,
-/// following the chosen solution.
-void
-LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
- Pass *P) {
+/// Rewrite all the fixup locations with new values, following the chosen
+/// solution.
+void LSRInstance::ImplementSolution(
+ const SmallVectorImpl<const Formula *> &Solution) {
// Keep track of instructions we may have made dead, so that
// we can remove them after we are done working.
SmallVector<WeakVH, 16> DeadInsts;
@@ -4766,7 +4762,7 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
// Expand the new value definitions and update the users.
for (const LSRFixup &Fixup : Fixups) {
- Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
+ Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
Changed = true;
}
@@ -4782,13 +4778,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}
-LSRInstance::LSRInstance(Loop *L, Pass *P)
- : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
- DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
- LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
- TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent())),
- L(L), Changed(false), IVIncInsertPos(nullptr) {
+LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
+ DominatorTree &DT, LoopInfo &LI,
+ const TargetTransformInfo &TTI)
+ : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
+ IVIncInsertPos(nullptr) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
return;
@@ -4879,7 +4873,7 @@ LSRInstance::LSRInstance(Loop *L, Pass *P)
#endif
// Now that we've decided what we want, make it so.
- ImplementSolution(Solution, P);
+ ImplementSolution(Solution);
}
void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
@@ -4931,11 +4925,10 @@ void LSRInstance::print(raw_ostream &OS) const {
print_uses(OS);
}
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
void LSRInstance::dump() const {
print(errs()); errs() << '\n';
}
-#endif
namespace {
@@ -4956,7 +4949,7 @@ INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
"Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(IVUsers)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
@@ -4982,8 +4975,8 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
// Requiring LoopSimplify a second time here prevents IVUsers from running
// twice, since LoopSimplify was invalidated by running ScalarEvolution.
AU.addRequiredID(LoopSimplifyID);
@@ -4996,17 +4989,24 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
if (skipOptnoneFunction(L))
return false;
+ auto &IU = getAnalysis<IVUsers>();
+ auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
+ *L->getHeader()->getParent());
bool Changed = false;
// Run the main LSR transformation.
- Changed |= LSRInstance(L, this).getChanged();
+ Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
if (EnablePhiElim && L->isLoopSimplifyForm()) {
SmallVector<WeakVH, 16> DeadInsts;
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
+ SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
+ "lsr");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
OpenPOWER on IntegriCloud