diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp | 854 |
1 files changed, 507 insertions, 347 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp index 6133962..914b56a 100644 --- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp @@ -53,31 +53,32 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "loop-reduce" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/IVUsers.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Assembly/Writer.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/ValueHandle.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" -#include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include <algorithm> using namespace llvm; +#define DEBUG_TYPE "loop-reduce" + /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for /// bail out. This threshold is far beyond the number of users that LSR can /// conceivably solve, so it should not affect generated code, but catches the @@ -237,7 +238,15 @@ struct Formula { int64_t Scale; /// BaseRegs - The list of "base" registers for this use. When this is - /// non-empty, + /// non-empty. The canonical representation of a formula is + /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and + /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). + /// #1 enforces that the scaled register is always used when at least two + /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. + /// #2 enforces that 1 * reg is reg. + /// This invariant can be temporarly broken while building a formula. + /// However, every formula inserted into the LSRInstance must be in canonical + /// form. SmallVector<const SCEV *, 4> BaseRegs; /// ScaledReg - The 'scaled' register for this use. This should be non-null @@ -250,12 +259,18 @@ struct Formula { int64_t UnfoldedOffset; Formula() - : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0), - UnfoldedOffset(0) {} + : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), + ScaledReg(nullptr), UnfoldedOffset(0) {} void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); - unsigned getNumRegs() const; + bool isCanonical() const; + + void Canonicalize(); + + bool Unscale(); + + size_t getNumRegs() const; Type *getType() const; void DeleteBaseReg(const SCEV *&S); @@ -345,12 +360,58 @@ void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { BaseRegs.push_back(Sum); HasBaseReg = true; } + Canonicalize(); +} + +/// \brief Check whether or not this formula statisfies the canonical +/// representation. +/// \see Formula::BaseRegs. +bool Formula::isCanonical() const { + if (ScaledReg) + return Scale != 1 || !BaseRegs.empty(); + return BaseRegs.size() <= 1; +} + +/// \brief Helper method to morph a formula into its canonical representation. +/// \see Formula::BaseRegs. +/// Every formula having more than one base register, must use the ScaledReg +/// field. Otherwise, we would have to do special cases everywhere in LSR +/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... +/// On the other hand, 1*reg should be canonicalized into reg. +void Formula::Canonicalize() { + if (isCanonical()) + return; + // So far we did not need this case. This is easy to implement but it is + // useless to maintain dead code. Beside it could hurt compile time. + assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); + // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. + ScaledReg = BaseRegs.back(); + BaseRegs.pop_back(); + Scale = 1; + size_t BaseRegsSize = BaseRegs.size(); + size_t Try = 0; + // If ScaledReg is an invariant, try to find a variant expression. + while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) + std::swap(ScaledReg, BaseRegs[Try++]); +} + +/// \brief Get rid of the scale in the formula. +/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. +/// \return true if it was possible to get rid of the scale, false otherwise. +/// \note After this operation the formula may not be in the canonical form. +bool Formula::Unscale() { + if (Scale != 1) + return false; + Scale = 0; + BaseRegs.push_back(ScaledReg); + ScaledReg = nullptr; + return true; } /// getNumRegs - Return the total number of register operands used by this /// formula. This does not include register uses implied by non-constant /// addrec strides. -unsigned Formula::getNumRegs() const { +size_t Formula::getNumRegs() const { return !!ScaledReg + BaseRegs.size(); } @@ -360,7 +421,7 @@ Type *Formula::getType() const { return !BaseRegs.empty() ? BaseRegs.front()->getType() : ScaledReg ? ScaledReg->getType() : BaseGV ? BaseGV->getType() : - 0; + nullptr; } /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. @@ -394,7 +455,7 @@ void Formula::print(raw_ostream &OS) const { bool First = true; if (BaseGV) { if (!First) OS << " + "; else First = false; - WriteAsOperand(OS, BaseGV, /*PrintType=*/false); + BaseGV->printAsOperand(OS, /*PrintType=*/false); } if (BaseOffset != 0) { if (!First) OS << " + "; else First = false; @@ -422,7 +483,7 @@ void Formula::print(raw_ostream &OS) const { OS << ')'; } if (UnfoldedOffset != 0) { - if (!First) OS << " + "; else First = false; + if (!First) OS << " + "; OS << "imm(" << UnfoldedOffset << ')'; } } @@ -487,11 +548,11 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, // Check for a division of a constant by a constant. if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { if (!RC) - return 0; + return nullptr; const APInt &LA = C->getValue()->getValue(); const APInt &RA = RC->getValue()->getValue(); if (LA.srem(RA) != 0) - return 0; + return nullptr; return SE.getConstant(LA.sdiv(RA)); } @@ -500,16 +561,16 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, IgnoreSignificantBits); - if (!Step) return 0; + if (!Step) return nullptr; const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, IgnoreSignificantBits); - if (!Start) return 0; + if (!Start) return nullptr; // FlagNW is independent of the start value, step direction, and is // preserved with smaller magnitude steps. // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); } - return 0; + return nullptr; } // Distribute the sdiv over add operands, if the add doesn't overflow. @@ -520,12 +581,12 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, I != E; ++I) { const SCEV *Op = getExactSDiv(*I, RHS, SE, IgnoreSignificantBits); - if (!Op) return 0; + if (!Op) return nullptr; Ops.push_back(Op); } return SE.getAddExpr(Ops); } - return 0; + return nullptr; } // Check for a multiply operand that we can pull RHS out of. @@ -544,13 +605,13 @@ static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, } Ops.push_back(S); } - return Found ? SE.getMulExpr(Ops) : 0; + return Found ? SE.getMulExpr(Ops) : nullptr; } - return 0; + return nullptr; } // Otherwise we don't know. - return 0; + return nullptr; } /// ExtractImmediate - If S involves the addition of a constant integer value, @@ -604,7 +665,7 @@ static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { SCEV::FlagAnyWrap); return Result; } - return 0; + return nullptr; } /// isAddressUse - Returns true if the specified instruction is using the @@ -723,13 +784,12 @@ static bool isHighCostExpansion(const SCEV *S, // multiplication already generates this expression. if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { Value *UVal = U->getValue(); - for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end(); - UI != UE; ++UI) { + for (User *UR : UVal->users()) { // If U is a constant, it may be used by a ConstantExpr. - Instruction *User = dyn_cast<Instruction>(*UI); - if (User && User->getOpcode() == Instruction::Mul - && SE.isSCEVable(User->getType())) { - return SE.getSCEV(User) == Mul; + Instruction *UI = dyn_cast<Instruction>(UR); + if (UI && UI->getOpcode() == Instruction::Mul && + SE.isSCEVable(UI->getType())) { + return SE.getSCEV(UI) == Mul; } } } @@ -756,12 +816,12 @@ DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { Value *V = DeadInsts.pop_back_val(); Instruction *I = dyn_cast_or_null<Instruction>(V); - if (I == 0 || !isInstructionTriviallyDead(I)) + if (!I || !isInstructionTriviallyDead(I)) continue; for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) if (Instruction *U = dyn_cast<Instruction>(*OI)) { - *OI = 0; + *OI = nullptr; if (U->use_empty()) DeadInsts.push_back(U); } @@ -776,9 +836,18 @@ DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { namespace { class LSRUse; } -// Check if it is legal to fold 2 base registers. -static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, - const Formula &F); + +/// \brief Check if the addressing mode defined by \p F is completely +/// folded in \p LU at isel time. +/// This includes address-mode folding and special icmp tricks. +/// This function returns true if \p LU can accommodate what \p F +/// defines and up to 1 base + 1 scaled + offset. +/// In other words, if \p F has several base registers, this function may +/// still return true. Therefore, users still need to account for +/// additional base registers and/or unfolded offsets to derive an +/// accurate cost model. +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, + const LSRUse &LU, const Formula &F); // Get the cost of the scaling factor used in F for LU. static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, const LSRUse &LU, const Formula &F); @@ -804,7 +873,7 @@ public: bool operator<(const Cost &Other) const; - void Loose(); + void Lose(); #ifndef NDEBUG // Once any of the metrics loses, they must all remain losers. @@ -829,7 +898,7 @@ public: const SmallVectorImpl<int64_t> &Offsets, ScalarEvolution &SE, DominatorTree &DT, const LSRUse &LU, - SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); + SmallPtrSet<const SCEV *, 16> *LoserRegs = nullptr); void print(raw_ostream &OS) const; void dump() const; @@ -864,7 +933,7 @@ void Cost::RateRegister(const SCEV *Reg, return; // Otherwise, do not consider this formula at all. - Loose(); + Lose(); return; } AddRecCost += 1; /// TODO: This should be a function of the stride. @@ -903,7 +972,7 @@ void Cost::RatePrimaryRegister(const SCEV *Reg, ScalarEvolution &SE, DominatorTree &DT, SmallPtrSet<const SCEV *, 16> *LoserRegs) { if (LoserRegs && LoserRegs->count(Reg)) { - Loose(); + Lose(); return; } if (Regs.insert(Reg)) { @@ -922,10 +991,11 @@ void Cost::RateFormula(const TargetTransformInfo &TTI, ScalarEvolution &SE, DominatorTree &DT, const LSRUse &LU, SmallPtrSet<const SCEV *, 16> *LoserRegs) { + assert(F.isCanonical() && "Cost is accurate only for canonical formula"); // Tally up the registers. if (const SCEV *ScaledReg = F.ScaledReg) { if (VisitedRegs.count(ScaledReg)) { - Loose(); + Lose(); return; } RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); @@ -936,7 +1006,7 @@ void Cost::RateFormula(const TargetTransformInfo &TTI, E = F.BaseRegs.end(); I != E; ++I) { const SCEV *BaseReg = *I; if (VisitedRegs.count(BaseReg)) { - Loose(); + Lose(); return; } RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); @@ -945,11 +1015,13 @@ void Cost::RateFormula(const TargetTransformInfo &TTI, } // Determine how many (unfolded) adds we'll need inside the loop. - size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); + size_t NumBaseParts = F.getNumRegs(); if (NumBaseParts > 1) // Do not count the base and a possible second register if the target // allows to fold 2 registers. - NumBaseAdds += NumBaseParts - (1 + isLegal2RegAMUse(TTI, LU, F)); + NumBaseAdds += + NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); + NumBaseAdds += (F.UnfoldedOffset != 0); // Accumulate non-free scaling amounts. ScaleCost += getScalingFactorCost(TTI, LU, F); @@ -967,8 +1039,8 @@ void Cost::RateFormula(const TargetTransformInfo &TTI, assert(isValid() && "invalid cost"); } -/// Loose - Set this cost to a losing value. -void Cost::Loose() { +/// Lose - Set this cost to a losing value. +void Cost::Lose() { NumRegs = ~0u; AddRecCost = ~0u; NumIVMuls = ~0u; @@ -980,21 +1052,11 @@ void Cost::Loose() { /// operator< - Choose the lower cost. bool Cost::operator<(const Cost &Other) const { - if (NumRegs != Other.NumRegs) - return NumRegs < Other.NumRegs; - if (AddRecCost != Other.AddRecCost) - return AddRecCost < Other.AddRecCost; - if (NumIVMuls != Other.NumIVMuls) - return NumIVMuls < Other.NumIVMuls; - if (NumBaseAdds != Other.NumBaseAdds) - return NumBaseAdds < Other.NumBaseAdds; - if (ScaleCost != Other.ScaleCost) - return ScaleCost < Other.ScaleCost; - if (ImmCost != Other.ImmCost) - return ImmCost < Other.ImmCost; - if (SetupCost != Other.SetupCost) - return SetupCost < Other.SetupCost; - return false; + return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, + ImmCost, SetupCost) < + std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, + Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, + Other.SetupCost); } void Cost::print(raw_ostream &OS) const { @@ -1058,7 +1120,8 @@ struct LSRFixup { } LSRFixup::LSRFixup() - : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} + : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), + Offset(0) {} /// isUseFullyOutsideLoop - Test whether this fixup always uses its /// value outside of the given loop. @@ -1080,19 +1143,19 @@ void LSRFixup::print(raw_ostream &OS) const { // Store is common and interesting enough to be worth special-casing. if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { OS << "store "; - WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); + Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); } else if (UserInst->getType()->isVoidTy()) OS << UserInst->getOpcodeName(); else - WriteAsOperand(OS, UserInst, /*PrintType=*/false); + UserInst->printAsOperand(OS, /*PrintType=*/false); OS << ", OperandValToReplace="; - WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); + OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), E = PostIncLoops.end(); I != E; ++I) { OS << ", PostIncLoop="; - WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); + (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); } if (LUIdx != ~size_t(0)) @@ -1126,11 +1189,7 @@ struct UniquifierDenseMapInfo { } static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { - unsigned Result = 0; - for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), - E = V.end(); I != E; ++I) - Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); - return Result; + return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); } static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, @@ -1158,6 +1217,8 @@ public: // TODO: Add a generic icmp too? }; + typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; + KindType Kind; Type *AccessTy; @@ -1196,7 +1257,7 @@ public: MaxOffset(INT64_MIN), AllFixupsOutsideLoop(true), RigidFormula(false), - WidestFixupType(0) {} + WidestFixupType(nullptr) {} bool HasFormulaWithSameRegs(const Formula &F) const; bool InsertFormula(const Formula &F); @@ -1221,7 +1282,10 @@ bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { /// InsertFormula - If the given formula has not yet been inserted, add it to /// the list, and return true. Return false otherwise. +/// The formula must be in canonical form. bool LSRUse::InsertFormula(const Formula &F) { + assert(F.isCanonical() && "Invalid canonical representation"); + if (!Formulae.empty() && RigidFormula) return false; @@ -1247,6 +1311,8 @@ bool LSRUse::InsertFormula(const Formula &F) { // Record registers now being used by this use. Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); + if (F.ScaledReg) + Regs.insert(F.ScaledReg); return true; } @@ -1295,7 +1361,7 @@ void LSRUse::print(raw_ostream &OS) const { for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), E = Offsets.end(); I != E; ++I) { OS << *I; - if (llvm::next(I) != E) + if (std::next(I) != E) OS << ','; } OS << '}'; @@ -1313,12 +1379,10 @@ void LSRUse::dump() const { } #endif -/// isLegalUse - Test whether the use described by AM is "legal", meaning it can -/// be completely folded into the user instruction at isel time. This includes -/// address-mode folding and special icmp tricks. -static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, - Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, - bool HasBaseReg, int64_t Scale) { +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, + LSRUse::KindType Kind, Type *AccessTy, + GlobalValue *BaseGV, int64_t BaseOffset, + bool HasBaseReg, int64_t Scale) { switch (Kind) { case LSRUse::Address: return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); @@ -1369,10 +1433,11 @@ static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, llvm_unreachable("Invalid LSRUse Kind!"); } -static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, - int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, - GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, - int64_t Scale) { +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, + int64_t MinOffset, int64_t MaxOffset, + LSRUse::KindType Kind, Type *AccessTy, + GlobalValue *BaseGV, int64_t BaseOffset, + bool HasBaseReg, int64_t Scale) { // Check for overflow. if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != (MinOffset > 0)) @@ -1383,9 +1448,41 @@ static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, return false; MaxOffset = (uint64_t)BaseOffset + MaxOffset; - return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg, - Scale) && - isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale); + return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, + HasBaseReg, Scale) && + isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, + HasBaseReg, Scale); +} + +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, + int64_t MinOffset, int64_t MaxOffset, + LSRUse::KindType Kind, Type *AccessTy, + const Formula &F) { + // For the purpose of isAMCompletelyFolded either having a canonical formula + // or a scale not equal to zero is correct. + // Problems may arise from non canonical formulae having a scale == 0. + // Strictly speaking it would best to just rely on canonical formulae. + // However, when we generate the scaled formulae, we first check that the + // scaling factor is profitable before computing the actual ScaledReg for + // compile time sake. + assert((F.isCanonical() || F.Scale != 0)); + return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, + F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); +} + +/// isLegalUse - Test whether we know how to expand the current formula. +static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, + int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, + GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, + int64_t Scale) { + // We know how to expand completely foldable formulae. + return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, + BaseOffset, HasBaseReg, Scale) || + // Or formulae that use a base register produced by a sum of base + // registers. + (Scale == 1 && + isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, + BaseGV, BaseOffset, true, 0)); } static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, @@ -1395,36 +1492,23 @@ static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, F.BaseOffset, F.HasBaseReg, F.Scale); } -static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, - const Formula &F) { - // If F is used as an Addressing Mode, it may fold one Base plus one - // scaled register. If the scaled register is nil, do as if another - // element of the base regs is a 1-scaled register. - // This is possible if BaseRegs has at least 2 registers. - - // If this is not an address calculation, this is not an addressing mode - // use. - if (LU.Kind != LSRUse::Address) - return false; - - // F is already scaled. - if (F.Scale != 0) - return false; - - // We need to keep one register for the base and one to scale. - if (F.BaseRegs.size() < 2) - return false; - - return isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, - F.BaseGV, F.BaseOffset, F.HasBaseReg, 1); - } +static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, + const LSRUse &LU, const Formula &F) { + return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, + LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, + F.Scale); +} static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, const LSRUse &LU, const Formula &F) { if (!F.Scale) return 0; - assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, - LU.AccessTy, F) && "Illegal formula in use."); + + // If the use is not completely folded in that instruction, we will have to + // pay an extra cost only for scale != 1. + if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, + LU.AccessTy, F)) + return F.Scale != 1; switch (LU.Kind) { case LSRUse::Address: { @@ -1443,12 +1527,10 @@ static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); } case LSRUse::ICmpZero: - // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg. - // Therefore, return 0 in case F.Scale == -1. - return F.Scale != -1; - case LSRUse::Basic: case LSRUse::Special: + // The use is completely folded, i.e., everything is folded into the + // instruction. return 0; } @@ -1473,7 +1555,8 @@ static bool isAlwaysFoldable(const TargetTransformInfo &TTI, HasBaseReg = true; } - return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); + return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, + HasBaseReg, Scale); } static bool isAlwaysFoldable(const TargetTransformInfo &TTI, @@ -1498,36 +1581,12 @@ static bool isAlwaysFoldable(const TargetTransformInfo &TTI, // base and a scale. int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; - return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, - BaseOffset, HasBaseReg, Scale); + return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, + BaseOffset, HasBaseReg, Scale); } namespace { -/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding -/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. -struct UseMapDenseMapInfo { - static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { - return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); - } - - static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { - return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); - } - - static unsigned - getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { - unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); - Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); - return Result; - } - - static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, - const std::pair<const SCEV *, LSRUse::KindType> &RHS) { - return LHS == RHS; - } -}; - /// IVInc - An individual increment in a Chain of IV increments. /// Relate an IV user to an expression that computes the IV it uses from the IV /// used by the previous link in the Chain. @@ -1552,7 +1611,7 @@ struct IVChain { SmallVector<IVInc,1> Incs; const SCEV *ExprBase; - IVChain() : ExprBase(0) {} + IVChain() : ExprBase(nullptr) {} IVChain(const IVInc &Head, const SCEV *Base) : Incs(1, Head), ExprBase(Base) {} @@ -1562,7 +1621,7 @@ struct IVChain { // begin - return the first increment in the chain. const_iterator begin() const { assert(!Incs.empty()); - return llvm::next(Incs.begin()); + return std::next(Incs.begin()); } const_iterator end() const { return Incs.end(); @@ -1656,9 +1715,7 @@ class LSRInstance { } // Support for sharing of LSRUses between LSRFixups. - typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, - size_t, - UseMapDenseMapInfo> UseMapTy; + typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; UseMapTy UseMap; bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, @@ -1681,8 +1738,19 @@ class LSRInstance { void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, unsigned Depth = 0); + + void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, + const Formula &Base, unsigned Depth, + size_t Idx, bool IsScaledReg = false); void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); + void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, + const Formula &Base, size_t Idx, + bool IsScaledReg = false); void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); + void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, + const Formula &Base, + const SmallVectorImpl<int64_t> &Worklist, + size_t Idx, bool IsScaledReg = false); void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); @@ -1760,7 +1828,7 @@ void LSRInstance::OptimizeShadowIV() { IVUsers::const_iterator CandidateUI = UI; ++UI; Instruction *ShadowUse = CandidateUI->getUser(); - Type *DestTy = 0; + Type *DestTy = nullptr; bool IsSigned = false; /* If shadow use is a int->float cast then insert a second IV @@ -1822,7 +1890,7 @@ void LSRInstance::OptimizeShadowIV() { continue; /* Initialize new IV, double d = 0.0 in above example. */ - ConstantInt *C = 0; + ConstantInt *C = nullptr; if (Incr->getOperand(0) == PH) C = dyn_cast<ConstantInt>(Incr->getOperand(1)); else if (Incr->getOperand(1) == PH) @@ -1944,7 +2012,7 @@ ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { // for ICMP_ULE here because the comparison would be with zero, which // isn't interesting. CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; - const SCEVNAryExpr *Max = 0; + const SCEVNAryExpr *Max = nullptr; if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { Pred = ICmpInst::ICMP_SLE; Max = S; @@ -1987,7 +2055,7 @@ ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { // Check the right operand of the select, and remember it, as it will // be used in the new comparison instruction. - Value *NewRHS = 0; + Value *NewRHS = nullptr; if (ICmpInst::isTrueWhenEqual(Pred)) { // Look for n+1, and grab n. if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) @@ -2057,7 +2125,7 @@ LSRInstance::OptimizeLoopTermCond() { continue; // Search IVUsesByStride to find Cond's IVUse if there is one. - IVStrideUse *CondUse = 0; + IVStrideUse *CondUse = nullptr; ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); if (!FindIVUserForCond(Cond, CondUse)) continue; @@ -2110,12 +2178,12 @@ LSRInstance::OptimizeLoopTermCond() { // Check for possible scaled-address reuse. Type *AccessTy = getAccessType(UI->getUser()); int64_t Scale = C->getSExtValue(); - if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, + if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, /*BaseOffset=*/ 0, /*HasBaseReg=*/ false, Scale)) goto decline_post_inc; Scale = -Scale; - if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0, + if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, /*BaseOffset=*/ 0, /*HasBaseReg=*/ false, Scale)) goto decline_post_inc; @@ -2185,23 +2253,25 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, // the uses will have all its uses outside the loop, for example. if (LU.Kind != Kind) return false; + + // Check for a mismatched access type, and fall back conservatively as needed. + // TODO: Be less conservative when the type is similar and can use the same + // addressing modes. + if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) + NewAccessTy = Type::getVoidTy(AccessTy->getContext()); + // Conservatively assume HasBaseReg is true for now. if (NewOffset < LU.MinOffset) { - if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, + if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, LU.MaxOffset - NewOffset, HasBaseReg)) return false; NewMinOffset = NewOffset; } else if (NewOffset > LU.MaxOffset) { - if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, + if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, NewOffset - LU.MinOffset, HasBaseReg)) return false; NewMaxOffset = NewOffset; } - // Check for a mismatched access type, and fall back conservatively as needed. - // TODO: Be less conservative when the type is similar and can use the same - // addressing modes. - if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) - NewAccessTy = Type::getVoidTy(AccessTy->getContext()); // Update the use. LU.MinOffset = NewMinOffset; @@ -2222,14 +2292,14 @@ LSRInstance::getUse(const SCEV *&Expr, int64_t Offset = ExtractImmediate(Expr, SE); // Basic uses can't accept any offset, for example. - if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0, + if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, Offset, /*HasBaseReg=*/ true)) { Expr = Copy; Offset = 0; } std::pair<UseMapTy::iterator, bool> P = - UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); + UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); if (!P.second) { // A use already existed with this base. size_t LUIdx = P.first->second; @@ -2306,7 +2376,7 @@ LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, } // Nothing looked good. - return 0; + return nullptr; } void LSRInstance::CollectInterestingTypesAndFactors() { @@ -2338,7 +2408,7 @@ void LSRInstance::CollectInterestingTypesAndFactors() { for (SmallSetVector<const SCEV *, 4>::const_iterator I = Strides.begin(), E = Strides.end(); I != E; ++I) for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = - llvm::next(I); NewStrideIter != E; ++NewStrideIter) { + std::next(I); NewStrideIter != E; ++NewStrideIter) { const SCEV *OldStride = *I; const SCEV *NewStride = *NewStrideIter; @@ -2424,7 +2494,7 @@ static const SCEV *getExprBase(const SCEV *S) { default: // uncluding scUnknown. return S; case scConstant: - return 0; + return nullptr; case scTruncate: return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); case scZeroExtend: @@ -2515,7 +2585,7 @@ isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { --cost; } - const SCEV *LastIncExpr = 0; + const SCEV *LastIncExpr = nullptr; unsigned NumConstIncrements = 0; unsigned NumVarIncrements = 0; unsigned NumReusedIncrements = 0; @@ -2574,7 +2644,7 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, // Visit all existing chains. Check if its IVOper can be computed as a // profitable loop invariant increment from the last link in the Chain. unsigned ChainIdx = 0, NChains = IVChainVec.size(); - const SCEV *LastIncExpr = 0; + const SCEV *LastIncExpr = nullptr; for (; ChainIdx < NChains; ++ChainIdx) { IVChain &Chain = IVChainVec[ChainIdx]; @@ -2646,9 +2716,8 @@ void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, // they will eventually be used be the current chain, or can be computed // from one of the chain increments. To be more precise we could // transitively follow its user and only add leaf IV users to the set. - for (Value::use_iterator UseIter = IVOper->use_begin(), - UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) { - Instruction *OtherUse = dyn_cast<Instruction>(*UseIter); + for (User *U : IVOper->users()) { + Instruction *OtherUse = dyn_cast<Instruction>(U); if (!OtherUse) continue; // Uses in the chain will no longer be uses if the chain is formed. @@ -2738,7 +2807,7 @@ void LSRInstance::CollectChains() { Instruction *IVOpInst = cast<Instruction>(*IVOpIter); if (UniqueOperands.insert(IVOpInst)) ChainInstruction(I, IVOpInst, ChainUsersVec); - IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); + IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); } } // Continue walking down the instructions. } // Continue walking down the domtree. @@ -2795,7 +2864,7 @@ static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, int64_t IncOffset = IncConst->getValue()->getSExtValue(); if (!isAlwaysFoldable(TTI, LSRUse::Address, - getAccessType(UserInst), /*BaseGV=*/ 0, + getAccessType(UserInst), /*BaseGV=*/ nullptr, IncOffset, /*HaseBaseReg=*/ false)) return false; @@ -2813,7 +2882,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), IVOpEnd, L, SE); - Value *IVSrc = 0; + Value *IVSrc = nullptr; while (IVOpIter != IVOpEnd) { IVSrc = getWideOperand(*IVOpIter); @@ -2829,7 +2898,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, || SE.getSCEV(IVSrc) == Head.IncExpr) { break; } - IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE); + IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); } if (IVOpIter == IVOpEnd) { // Gracefully give up on this chain. @@ -2840,7 +2909,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); Type *IVTy = IVSrc->getType(); Type *IntTy = SE.getEffectiveSCEVType(IVTy); - const SCEV *LeftOverExpr = 0; + const SCEV *LeftOverExpr = nullptr; for (IVChain::const_iterator IncI = Chain.begin(), IncE = Chain.end(); IncI != IncE; ++IncI) { @@ -2871,7 +2940,7 @@ void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, TTI)) { assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); IVSrc = IVOper; - LeftOverExpr = 0; + LeftOverExpr = nullptr; } } Type *OperTy = IncI->IVOperand->getType(); @@ -2926,7 +2995,7 @@ void LSRInstance::CollectFixupsAndInitialFormulae() { LF.PostIncLoops = UI->getPostIncLoops(); LSRUse::KindType Kind = LSRUse::Basic; - Type *AccessTy = 0; + Type *AccessTy = nullptr; if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { Kind = LSRUse::Address; AccessTy = getAccessType(LF.UserInst); @@ -2957,7 +3026,7 @@ void LSRInstance::CollectFixupsAndInitialFormulae() { if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { // S is normalized, so normalize N before folding it into S // to keep the result normalized. - N = TransformForPostIncUse(Normalize, N, CI, 0, + N = TransformForPostIncUse(Normalize, N, CI, nullptr, LF.PostIncLoops, SE, DT); Kind = LSRUse::ICmpZero; S = SE.getMinusSCEV(N, S); @@ -3032,6 +3101,9 @@ void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { /// InsertFormula - If the given formula has not yet been inserted, add it to /// the list, and return true. Return false otherwise. bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { + // Do not insert formula that we will not be able to expand. + assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && + "Formula is illegal"); if (!LU.InsertFormula(F)) return false; @@ -3059,18 +3131,17 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { Worklist.push_back(D->getLHS()); Worklist.push_back(D->getRHS()); - } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { - if (!Inserted.insert(U)) continue; - const Value *V = U->getValue(); + } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { + if (!Inserted.insert(US)) continue; + const Value *V = US->getValue(); if (const Instruction *Inst = dyn_cast<Instruction>(V)) { // Look for instructions defined outside the loop. if (L->contains(Inst)) continue; } else if (isa<UndefValue>(V)) // Undef doesn't have a live range, so it doesn't matter. continue; - for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); - UI != UE; ++UI) { - const Instruction *UserInst = dyn_cast<Instruction>(*UI); + for (const Use &U : V->uses()) { + const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); // Ignore non-instructions. if (!UserInst) continue; @@ -3082,7 +3153,7 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? UserInst->getParent() : cast<PHINode>(UserInst)->getIncomingBlock( - PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); + PHINode::getIncomingValueNumForOperand(U.getOperandNo())); if (!DT.dominates(L->getHeader(), UseBB)) continue; // Ignore uses which are part of other SCEV expressions, to avoid @@ -3092,7 +3163,7 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { // If the user is a no-op, look through to its uses. if (!isa<SCEVUnknown>(UserS)) continue; - if (UserS == U) { + if (UserS == US) { Worklist.push_back( SE.getUnknown(const_cast<Instruction *>(UserInst))); continue; @@ -3100,7 +3171,7 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { } // Ignore icmp instructions which are already being analyzed. if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { - unsigned OtherIdx = !UI.getOperandNo(); + unsigned OtherIdx = !U.getOperandNo(); Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) continue; @@ -3108,8 +3179,8 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { LSRFixup &LF = getNewFixup(); LF.UserInst = const_cast<Instruction *>(UserInst); - LF.OperandValToReplace = UI.getUse(); - std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); + LF.OperandValToReplace = U; + std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); LF.LUIdx = P.first; LF.Offset = P.second; LSRUse &LU = Uses[LF.LUIdx]; @@ -3118,7 +3189,7 @@ LSRInstance::CollectLoopInvariantFixupsAndFormulae() { SE.getTypeSizeInBits(LU.WidestFixupType) < SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) LU.WidestFixupType = LF.OperandValToReplace->getType(); - InsertSupplementalFormula(U, LU, LF.LUIdx); + InsertSupplementalFormula(US, LU, LF.LUIdx); CountRegisters(LU.Formulae.back(), Uses.size() - 1); break; } @@ -3148,7 +3219,7 @@ static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, if (Remainder) Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); } - return 0; + return nullptr; } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { // Split a non-zero base out of an addrec. if (AR->getStart()->isZero()) @@ -3160,7 +3231,7 @@ static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, // does not pertain to this loop. if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); - Remainder = 0; + Remainder = nullptr; } if (Remainder != AR->getStart()) { if (!Remainder) @@ -3182,90 +3253,110 @@ static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); if (Remainder) Ops.push_back(SE.getMulExpr(C, Remainder)); - return 0; + return nullptr; } } return S; } -/// GenerateReassociations - Split out subexpressions from adds and the bases of -/// addrecs. -void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, - Formula Base, - unsigned Depth) { - // Arbitrarily cap recursion to protect compile time. - if (Depth >= 3) return; +/// \brief Helper function for LSRInstance::GenerateReassociations. +void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, + const Formula &Base, + unsigned Depth, size_t Idx, + bool IsScaledReg) { + const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; + SmallVector<const SCEV *, 8> AddOps; + const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); + if (Remainder) + AddOps.push_back(Remainder); + + if (AddOps.size() == 1) + return; - for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { - const SCEV *BaseReg = Base.BaseRegs[i]; + for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), + JE = AddOps.end(); + J != JE; ++J) { - SmallVector<const SCEV *, 8> AddOps; - const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE); - if (Remainder) - AddOps.push_back(Remainder); + // Loop-variant "unknown" values are uninteresting; we won't be able to + // do anything meaningful with them. + if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) + continue; - if (AddOps.size() == 1) continue; + // Don't pull a constant into a register if the constant could be folded + // into an immediate field. + if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, + LU.AccessTy, *J, Base.getNumRegs() > 1)) + continue; - for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), - JE = AddOps.end(); J != JE; ++J) { + // Collect all operands except *J. + SmallVector<const SCEV *, 8> InnerAddOps( + ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); + InnerAddOps.append(std::next(J), + ((const SmallVector<const SCEV *, 8> &)AddOps).end()); + + // Don't leave just a constant behind in a register if the constant could + // be folded into an immediate field. + if (InnerAddOps.size() == 1 && + isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, + LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) + continue; - // Loop-variant "unknown" values are uninteresting; we won't be able to - // do anything meaningful with them. - if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) - continue; + const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); + if (InnerSum->isZero()) + continue; + Formula F = Base; - // Don't pull a constant into a register if the constant could be folded - // into an immediate field. - if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, - LU.AccessTy, *J, Base.getNumRegs() > 1)) - continue; + // Add the remaining pieces of the add back into the new formula. + const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); + if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && + TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + + InnerSumSC->getValue()->getZExtValue())) { + F.UnfoldedOffset = + (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); + if (IsScaledReg) + F.ScaledReg = nullptr; + else + F.BaseRegs.erase(F.BaseRegs.begin() + Idx); + } else if (IsScaledReg) + F.ScaledReg = InnerSum; + else + F.BaseRegs[Idx] = InnerSum; + + // Add J as its own register, or an unfolded immediate. + const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); + if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && + TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + + SC->getValue()->getZExtValue())) + F.UnfoldedOffset = + (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); + else + F.BaseRegs.push_back(*J); + // We may have changed the number of register in base regs, adjust the + // formula accordingly. + F.Canonicalize(); - // Collect all operands except *J. - SmallVector<const SCEV *, 8> InnerAddOps - (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); - InnerAddOps.append - (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); - - // Don't leave just a constant behind in a register if the constant could - // be folded into an immediate field. - if (InnerAddOps.size() == 1 && - isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, - LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) - continue; + if (InsertFormula(LU, LUIdx, F)) + // If that formula hadn't been seen before, recurse to find more like + // it. + GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); + } +} - const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); - if (InnerSum->isZero()) - continue; - Formula F = Base; +/// GenerateReassociations - Split out subexpressions from adds and the bases of +/// addrecs. +void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, + Formula Base, unsigned Depth) { + assert(Base.isCanonical() && "Input must be in the canonical form"); + // Arbitrarily cap recursion to protect compile time. + if (Depth >= 3) + return; - // Add the remaining pieces of the add back into the new formula. - const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); - if (InnerSumSC && - SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && - TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + - InnerSumSC->getValue()->getZExtValue())) { - F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + - InnerSumSC->getValue()->getZExtValue(); - F.BaseRegs.erase(F.BaseRegs.begin() + i); - } else - F.BaseRegs[i] = InnerSum; - - // Add J as its own register, or an unfolded immediate. - const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); - if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && - TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + - SC->getValue()->getZExtValue())) - F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + - SC->getValue()->getZExtValue(); - else - F.BaseRegs.push_back(*J); + for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) + GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); - if (InsertFormula(LU, LUIdx, F)) - // If that formula hadn't been seen before, recurse to find more like - // it. - GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); - } - } + if (Base.Scale == 1) + GenerateReassociationsImpl(LU, LUIdx, Base, Depth, + /* Idx */ -1, /* IsScaledReg */ true); } /// GenerateCombinations - Generate a formula consisting of all of the @@ -3273,8 +3364,12 @@ void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base) { // This method is only interesting on a plurality of registers. - if (Base.BaseRegs.size() <= 1) return; + if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) + return; + // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before + // processing the formula. + Base.Unscale(); Formula F = Base; F.BaseRegs.clear(); SmallVector<const SCEV *, 4> Ops; @@ -3294,29 +3389,87 @@ void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, // rather than proceed with zero in a register. if (!Sum->isZero()) { F.BaseRegs.push_back(Sum); + F.Canonicalize(); (void)InsertFormula(LU, LUIdx, F); } } } +/// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. +void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, + const Formula &Base, size_t Idx, + bool IsScaledReg) { + const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; + GlobalValue *GV = ExtractSymbol(G, SE); + if (G->isZero() || !GV) + return; + Formula F = Base; + F.BaseGV = GV; + if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) + return; + if (IsScaledReg) + F.ScaledReg = G; + else + F.BaseRegs[Idx] = G; + (void)InsertFormula(LU, LUIdx, F); +} + /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base) { // We can't add a symbolic offset if the address already contains one. if (Base.BaseGV) return; - for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { - const SCEV *G = Base.BaseRegs[i]; - GlobalValue *GV = ExtractSymbol(G, SE); - if (G->isZero() || !GV) - continue; + for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) + GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); + if (Base.Scale == 1) + GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, + /* IsScaledReg */ true); +} + +/// \brief Helper function for LSRInstance::GenerateConstantOffsets. +void LSRInstance::GenerateConstantOffsetsImpl( + LSRUse &LU, unsigned LUIdx, const Formula &Base, + const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { + const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; + for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), + E = Worklist.end(); + I != E; ++I) { Formula F = Base; - F.BaseGV = GV; - if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) - continue; - F.BaseRegs[i] = G; - (void)InsertFormula(LU, LUIdx, F); + F.BaseOffset = (uint64_t)Base.BaseOffset - *I; + if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, + LU.AccessTy, F)) { + // Add the offset to the base register. + const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); + // If it cancelled out, drop the base register, otherwise update it. + if (NewG->isZero()) { + if (IsScaledReg) { + F.Scale = 0; + F.ScaledReg = nullptr; + } else + F.DeleteBaseReg(F.BaseRegs[Idx]); + F.Canonicalize(); + } else if (IsScaledReg) + F.ScaledReg = NewG; + else + F.BaseRegs[Idx] = NewG; + + (void)InsertFormula(LU, LUIdx, F); + } } + + int64_t Imm = ExtractImmediate(G, SE); + if (G->isZero() || Imm == 0) + return; + Formula F = Base; + F.BaseOffset = (uint64_t)F.BaseOffset + Imm; + if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) + return; + if (IsScaledReg) + F.ScaledReg = G; + else + F.BaseRegs[Idx] = G; + (void)InsertFormula(LU, LUIdx, F); } /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. @@ -3329,38 +3482,11 @@ void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, if (LU.MaxOffset != LU.MinOffset) Worklist.push_back(LU.MaxOffset); - for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { - const SCEV *G = Base.BaseRegs[i]; - - for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), - E = Worklist.end(); I != E; ++I) { - Formula F = Base; - F.BaseOffset = (uint64_t)Base.BaseOffset - *I; - if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, - LU.AccessTy, F)) { - // Add the offset to the base register. - const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); - // If it cancelled out, drop the base register, otherwise update it. - if (NewG->isZero()) { - std::swap(F.BaseRegs[i], F.BaseRegs.back()); - F.BaseRegs.pop_back(); - } else - F.BaseRegs[i] = NewG; - - (void)InsertFormula(LU, LUIdx, F); - } - } - - int64_t Imm = ExtractImmediate(G, SE); - if (G->isZero() || Imm == 0) - continue; - Formula F = Base; - F.BaseOffset = (uint64_t)F.BaseOffset + Imm; - if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) - continue; - F.BaseRegs[i] = G; - (void)InsertFormula(LU, LUIdx, F); - } + for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) + GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); + if (Base.Scale == 1) + GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, + /* IsScaledReg */ true); } /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up @@ -3460,7 +3586,11 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { if (!IntTy) return; // If this Formula already has a scaled register, we can't add another one. - if (Base.Scale != 0) return; + // Try to unscale the formula to generate a better scale. + if (Base.Scale != 0 && !Base.Unscale()) + return; + + assert(Base.Scale == 0 && "Unscale did not did its job!"); // Check each interesting stride. for (SmallSetVector<int64_t, 8>::const_iterator @@ -3501,6 +3631,11 @@ void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { Formula F = Base; F.ScaledReg = Quotient; F.DeleteBaseReg(F.BaseRegs[i]); + // The canonical representation of 1*reg is reg, which is already in + // Base. In that case, do not try to insert the formula, it will be + // rejected anyway. + if (F.Scale == 1 && F.BaseRegs.empty()) + continue; (void)InsertFormula(LU, LUIdx, F); } } @@ -3626,8 +3761,9 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { // Conservatively examine offsets between this orig reg a few selected // other orig regs. ImmMapTy::const_iterator OtherImms[] = { - Imms.begin(), prior(Imms.end()), - Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) + Imms.begin(), std::prev(Imms.end()), + Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / + 2) }; for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { ImmMapTy::const_iterator M = OtherImms[i]; @@ -3664,7 +3800,12 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { // TODO: Use a more targeted data structure. for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { - const Formula &F = LU.Formulae[L]; + Formula F = LU.Formulae[L]; + // FIXME: The code for the scaled and unscaled registers looks + // very similar but slightly different. Investigate if they + // could be merged. That way, we would not have to unscale the + // Formula. + F.Unscale(); // Use the immediate in the scaled register. if (F.ScaledReg == OrigReg) { int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; @@ -3690,6 +3831,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { continue; // OK, looks good. + NewF.Canonicalize(); (void)InsertFormula(LU, LUIdx, NewF); } else { // Use the immediate in a base register. @@ -3723,6 +3865,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() { goto skip_formula; // Ok, looks good. + NewF.Canonicalize(); (void)InsertFormula(LU, LUIdx, NewF); break; skip_formula:; @@ -3976,7 +4119,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), E = LU.Formulae.end(); I != E; ++I) { const Formula &F = *I; - if (F.BaseOffset == 0 || F.Scale != 0) + if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) continue; LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); @@ -4073,7 +4216,7 @@ void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { // Pick the register which is used by the most LSRUses, which is likely // to be a good reuse register candidate. - const SCEV *Best = 0; + const SCEV *Best = nullptr; unsigned BestNum = 0; for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); I != E; ++I) { @@ -4170,19 +4313,22 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, E = LU.Formulae.end(); I != E; ++I) { const Formula &F = *I; - // Ignore formulae which do not use any of the required registers. - bool SatisfiedReqReg = true; + // Ignore formulae which may not be ideal in terms of register reuse of + // ReqRegs. The formula should use all required registers before + // introducing new ones. + int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), JE = ReqRegs.end(); J != JE; ++J) { const SCEV *Reg = *J; - if ((!F.ScaledReg || F.ScaledReg != Reg) && - std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == + if ((F.ScaledReg && F.ScaledReg == Reg) || + std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != F.BaseRegs.end()) { - SatisfiedReqReg = false; - break; + --NumReqRegsToFind; + if (NumReqRegsToFind == 0) + break; } } - if (!SatisfiedReqReg) { + if (NumReqRegsToFind != 0) { // If none of the formulae satisfied the required registers, then we could // clear ReqRegs and try again. Currently, we simply give up in this case. continue; @@ -4222,7 +4368,7 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { SmallVector<const Formula *, 8> Workspace; Cost SolutionCost; - SolutionCost.Loose(); + SolutionCost.Lose(); Cost CurCost; SmallPtrSet<const SCEV *, 16> CurRegs; DenseSet<const SCEV *> VisitedRegs; @@ -4280,7 +4426,7 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, } bool AllDominate = true; - Instruction *BetterPos = 0; + Instruction *BetterPos = nullptr; Instruction *Tentative = IDom->getTerminator(); for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), E = Inputs.end(); I != E; ++I) { @@ -4293,7 +4439,7 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, // instead of at the end, so that it can be used for other expansions. if (IDom == Inst->getParent() && (!BetterPos || !DT.dominates(Inst, BetterPos))) - BetterPos = llvm::next(BasicBlock::iterator(Inst)); + BetterPos = std::next(BasicBlock::iterator(Inst)); } if (!AllDominate) break; @@ -4419,11 +4565,11 @@ Value *LSRInstance::Expand(const LSRFixup &LF, LF.UserInst, LF.OperandValToReplace, Loops, SE, DT); - Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); + Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); } // Expand the ScaledReg portion. - Value *ICmpScaledV = 0; + Value *ICmpScaledV = nullptr; if (F.Scale != 0) { const SCEV *ScaledS = F.ScaledReg; @@ -4434,25 +4580,34 @@ Value *LSRInstance::Expand(const LSRFixup &LF, Loops, SE, DT); if (LU.Kind == LSRUse::ICmpZero) { - // An interesting way of "folding" with an icmp is to use a negated - // scale, which we'll implement by inserting it into the other operand - // of the icmp. - assert(F.Scale == -1 && - "The only scale supported by ICmpZero uses is -1!"); - ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); + // Expand ScaleReg as if it was part of the base regs. + if (F.Scale == 1) + Ops.push_back( + SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); + else { + // An interesting way of "folding" with an icmp is to use a negated + // scale, which we'll implement by inserting it into the other operand + // of the icmp. + assert(F.Scale == -1 && + "The only scale supported by ICmpZero uses is -1!"); + ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); + } } else { // Otherwise just expand the scaled register and an explicit scale, // which is expected to be matched as part of the address. // Flush the operand list to suppress SCEVExpander hoisting address modes. - if (!Ops.empty() && LU.Kind == LSRUse::Address) { + // Unless the addressing mode will not be folded. + if (!Ops.empty() && LU.Kind == LSRUse::Address && + isAMCompletelyFolded(TTI, LU, F)) { Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); Ops.clear(); Ops.push_back(SE.getUnknown(FullV)); } - ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); - ScaledS = SE.getMulExpr(ScaledS, - SE.getConstant(ScaledS->getType(), F.Scale)); + ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); + if (F.Scale != 1) + ScaledS = + SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); Ops.push_back(ScaledS); } } @@ -4530,7 +4685,9 @@ Value *LSRInstance::Expand(const LSRFixup &LF, } CI->setOperand(1, ICmpScaledV); } else { - assert(F.Scale == 0 && + // A scale of 1 means that the scale has been expanded as part of the + // base regs. + assert((F.Scale == 0 || F.Scale == 1) && "ICmp does not support folding a global value and " "a scale at the same time!"); Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), @@ -4571,7 +4728,7 @@ void LSRInstance::RewriteForPHI(PHINode *PN, Loop *PNLoop = LI.getLoopFor(Parent); if (!PNLoop || Parent != PNLoop->getHeader()) { // Split the critical edge. - BasicBlock *NewBB = 0; + BasicBlock *NewBB = nullptr; if (!Parent->isLandingPad()) { NewBB = SplitCriticalEdge(BB, Parent, P, /*MergeIdenticalEdges=*/true, @@ -4600,7 +4757,7 @@ void LSRInstance::RewriteForPHI(PHINode *PN, } std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = - Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); + Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); if (!Pair.second) PN->setIncomingValue(i, Pair.first->second); else { @@ -4707,9 +4864,10 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, LSRInstance::LSRInstance(Loop *L, Pass *P) : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), - DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()), + DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), + LI(P->getAnalysis<LoopInfo>()), TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false), - IVIncInsertPos(0) { + IVIncInsertPos(nullptr) { // If LoopSimplify form is not available, stay out of trouble. if (!L->isLoopSimplifyForm()) return; @@ -4746,7 +4904,7 @@ LSRInstance::LSRInstance(Loop *L, Pass *P) #endif // DEBUG DEBUG(dbgs() << "\nLSR on loop "; - WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); + L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << ":\n"); // First, perform some low-level loop optimizations. @@ -4876,8 +5034,8 @@ public: LoopStrengthReduce(); private: - bool runOnLoop(Loop *L, LPPassManager &LPM); - void getAnalysisUsage(AnalysisUsage &AU) const; + bool runOnLoop(Loop *L, LPPassManager &LPM) override; + void getAnalysisUsage(AnalysisUsage &AU) const override; }; } @@ -4886,7 +5044,7 @@ char LoopStrengthReduce::ID = 0; INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", "Loop Strength Reduction", false, false) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) -INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(IVUsers) INITIALIZE_PASS_DEPENDENCY(LoopInfo) @@ -4911,8 +5069,8 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<LoopInfo>(); AU.addPreserved<LoopInfo>(); AU.addRequiredID(LoopSimplifyID); - AU.addRequired<DominatorTree>(); - AU.addPreserved<DominatorTree>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); AU.addRequired<ScalarEvolution>(); AU.addPreserved<ScalarEvolution>(); // Requiring LoopSimplify a second time here prevents IVUsers from running @@ -4924,6 +5082,9 @@ void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { } bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { + if (skipOptnoneFunction(L)) + return false; + bool Changed = false; // Run the main LSR transformation. @@ -4937,10 +5098,9 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { #ifndef NDEBUG Rewriter.setDebugType(DEBUG_TYPE); #endif - unsigned numFolded = - Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), - DeadInsts, - &getAnalysis<TargetTransformInfo>()); + unsigned numFolded = Rewriter.replaceCongruentIVs( + L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, + &getAnalysis<TargetTransformInfo>()); if (numFolded) { Changed = true; DeleteTriviallyDeadInstructions(DeadInsts); |