summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp3691
1 files changed, 3691 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
new file mode 100644
index 0000000..86ea3eb
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -0,0 +1,3691 @@
+//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation analyzes and transforms the induction variables (and
+// computations derived from them) into forms suitable for efficient execution
+// on the target.
+//
+// This pass performs a strength reduction on array references inside loops that
+// have as one or more of their components the loop induction variable, it
+// rewrites expressions to take advantage of scaled-index addressing modes
+// available on the target, and it performs a variety of other optimizations
+// related to loop induction variables.
+//
+// Terminology note: this code has a lot of handling for "post-increment" or
+// "post-inc" users. This is not talking about post-increment addressing modes;
+// it is instead talking about code like this:
+//
+// %i = phi [ 0, %entry ], [ %i.next, %latch ]
+// ...
+// %i.next = add %i, 1
+// %c = icmp eq %i.next, %n
+//
+// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
+// it's useful to think about these as the same register, with some uses using
+// the value of the register before the add and some using // it after. In this
+// example, the icmp is a post-increment user, since it uses %i.next, which is
+// the value of the induction variable after the increment. The other common
+// case of post-increment users is users outside the loop.
+//
+// TODO: More sophistication in the way Formulae are generated and filtered.
+//
+// TODO: Handle multiple loops at a time.
+//
+// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
+// instead of a GlobalValue?
+//
+// TODO: When truncation is free, truncate ICmp users' operands to make it a
+// smaller encoding (on x86 at least).
+//
+// TODO: When a negated register is used by an add (such as in a list of
+// multiple base registers, or as the increment expression in an addrec),
+// we may not actually need both reg and (-1 * reg) in registers; the
+// negation can be implemented by using a sub instead of an add. The
+// lack of support for taking this into consideration when making
+// register pressure decisions is partly worked around by the "Special"
+// use kind.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-reduce"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Analysis/IVUsers.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+namespace {
+
+/// RegSortData - This class holds data which is used to order reuse candidates.
+class RegSortData {
+public:
+ /// UsedByIndices - This represents the set of LSRUse indices which reference
+ /// a particular register.
+ SmallBitVector UsedByIndices;
+
+ RegSortData() {}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+void RegSortData::print(raw_ostream &OS) const {
+ OS << "[NumUses=" << UsedByIndices.count() << ']';
+}
+
+void RegSortData::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+/// RegUseTracker - Map register candidates to information about how they are
+/// used.
+class RegUseTracker {
+ typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
+
+ RegUsesTy RegUsesMap;
+ SmallVector<const SCEV *, 16> RegSequence;
+
+public:
+ void CountRegister(const SCEV *Reg, size_t LUIdx);
+ void DropRegister(const SCEV *Reg, size_t LUIdx);
+ void DropUse(size_t LUIdx);
+
+ bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
+
+ const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
+
+ void clear();
+
+ typedef SmallVectorImpl<const SCEV *>::iterator iterator;
+ typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
+ iterator begin() { return RegSequence.begin(); }
+ iterator end() { return RegSequence.end(); }
+ const_iterator begin() const { return RegSequence.begin(); }
+ const_iterator end() const { return RegSequence.end(); }
+};
+
+}
+
+void
+RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
+ std::pair<RegUsesTy::iterator, bool> Pair =
+ RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
+ RegSortData &RSD = Pair.first->second;
+ if (Pair.second)
+ RegSequence.push_back(Reg);
+ RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
+ RSD.UsedByIndices.set(LUIdx);
+}
+
+void
+RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
+ RegUsesTy::iterator It = RegUsesMap.find(Reg);
+ assert(It != RegUsesMap.end());
+ RegSortData &RSD = It->second;
+ assert(RSD.UsedByIndices.size() > LUIdx);
+ RSD.UsedByIndices.reset(LUIdx);
+}
+
+void
+RegUseTracker::DropUse(size_t LUIdx) {
+ // Remove the use index from every register's use list.
+ for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
+ I != E; ++I)
+ I->second.UsedByIndices.reset(LUIdx);
+}
+
+bool
+RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
+ if (!RegUsesMap.count(Reg)) return false;
+ const SmallBitVector &UsedByIndices =
+ RegUsesMap.find(Reg)->second.UsedByIndices;
+ int i = UsedByIndices.find_first();
+ if (i == -1) return false;
+ if ((size_t)i != LUIdx) return true;
+ return UsedByIndices.find_next(i) != -1;
+}
+
+const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
+ RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
+ assert(I != RegUsesMap.end() && "Unknown register!");
+ return I->second.UsedByIndices;
+}
+
+void RegUseTracker::clear() {
+ RegUsesMap.clear();
+ RegSequence.clear();
+}
+
+namespace {
+
+/// Formula - This class holds information that describes a formula for
+/// computing satisfying a use. It may include broken-out immediates and scaled
+/// registers.
+struct Formula {
+ /// AM - This is used to represent complex addressing, as well as other kinds
+ /// of interesting uses.
+ TargetLowering::AddrMode AM;
+
+ /// BaseRegs - The list of "base" registers for this use. When this is
+ /// non-empty, AM.HasBaseReg should be set to true.
+ SmallVector<const SCEV *, 2> BaseRegs;
+
+ /// ScaledReg - The 'scaled' register for this use. This should be non-null
+ /// when AM.Scale is not zero.
+ const SCEV *ScaledReg;
+
+ Formula() : ScaledReg(0) {}
+
+ void InitialMatch(const SCEV *S, Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT);
+
+ unsigned getNumRegs() const;
+ const Type *getType() const;
+
+ void DeleteBaseReg(const SCEV *&S);
+
+ bool referencesReg(const SCEV *S) const;
+ bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
+ const RegUseTracker &RegUses) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+/// DoInitialMatch - Recursion helper for InitialMatch.
+static void DoInitialMatch(const SCEV *S, Loop *L,
+ SmallVectorImpl<const SCEV *> &Good,
+ SmallVectorImpl<const SCEV *> &Bad,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ // Collect expressions which properly dominate the loop header.
+ if (S->properlyDominates(L->getHeader(), &DT)) {
+ Good.push_back(S);
+ return;
+ }
+
+ // Look at add operands.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I)
+ DoInitialMatch(*I, L, Good, Bad, SE, DT);
+ return;
+ }
+
+ // Look at addrec operands.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
+ if (!AR->getStart()->isZero()) {
+ DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
+ DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
+ AR->getStepRecurrence(SE),
+ AR->getLoop()),
+ L, Good, Bad, SE, DT);
+ return;
+ }
+
+ // Handle a multiplication by -1 (negation) if it didn't fold.
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
+ if (Mul->getOperand(0)->isAllOnesValue()) {
+ SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
+ const SCEV *NewMul = SE.getMulExpr(Ops);
+
+ SmallVector<const SCEV *, 4> MyGood;
+ SmallVector<const SCEV *, 4> MyBad;
+ DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
+ const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
+ SE.getEffectiveSCEVType(NewMul->getType())));
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
+ E = MyGood.end(); I != E; ++I)
+ Good.push_back(SE.getMulExpr(NegOne, *I));
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
+ E = MyBad.end(); I != E; ++I)
+ Bad.push_back(SE.getMulExpr(NegOne, *I));
+ return;
+ }
+
+ // Ok, we can't do anything interesting. Just stuff the whole thing into a
+ // register and hope for the best.
+ Bad.push_back(S);
+}
+
+/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
+/// attempting to keep all loop-invariant and loop-computable values in a
+/// single base register.
+void Formula::InitialMatch(const SCEV *S, Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ SmallVector<const SCEV *, 4> Good;
+ SmallVector<const SCEV *, 4> Bad;
+ DoInitialMatch(S, L, Good, Bad, SE, DT);
+ if (!Good.empty()) {
+ const SCEV *Sum = SE.getAddExpr(Good);
+ if (!Sum->isZero())
+ BaseRegs.push_back(Sum);
+ AM.HasBaseReg = true;
+ }
+ if (!Bad.empty()) {
+ const SCEV *Sum = SE.getAddExpr(Bad);
+ if (!Sum->isZero())
+ BaseRegs.push_back(Sum);
+ AM.HasBaseReg = true;
+ }
+}
+
+/// getNumRegs - Return the total number of register operands used by this
+/// formula. This does not include register uses implied by non-constant
+/// addrec strides.
+unsigned Formula::getNumRegs() const {
+ return !!ScaledReg + BaseRegs.size();
+}
+
+/// getType - Return the type of this formula, if it has one, or null
+/// otherwise. This type is meaningless except for the bit size.
+const Type *Formula::getType() const {
+ return !BaseRegs.empty() ? BaseRegs.front()->getType() :
+ ScaledReg ? ScaledReg->getType() :
+ AM.BaseGV ? AM.BaseGV->getType() :
+ 0;
+}
+
+/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
+void Formula::DeleteBaseReg(const SCEV *&S) {
+ if (&S != &BaseRegs.back())
+ std::swap(S, BaseRegs.back());
+ BaseRegs.pop_back();
+}
+
+/// referencesReg - Test if this formula references the given register.
+bool Formula::referencesReg(const SCEV *S) const {
+ return S == ScaledReg ||
+ std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
+}
+
+/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
+/// which are used by uses other than the use with the given index.
+bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
+ const RegUseTracker &RegUses) const {
+ if (ScaledReg)
+ if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
+ return true;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
+ E = BaseRegs.end(); I != E; ++I)
+ if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
+ return true;
+ return false;
+}
+
+void Formula::print(raw_ostream &OS) const {
+ bool First = true;
+ if (AM.BaseGV) {
+ if (!First) OS << " + "; else First = false;
+ WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ }
+ if (AM.BaseOffs != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << AM.BaseOffs;
+ }
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
+ E = BaseRegs.end(); I != E; ++I) {
+ if (!First) OS << " + "; else First = false;
+ OS << "reg(" << **I << ')';
+ }
+ if (AM.HasBaseReg && BaseRegs.empty()) {
+ if (!First) OS << " + "; else First = false;
+ OS << "**error: HasBaseReg**";
+ } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
+ if (!First) OS << " + "; else First = false;
+ OS << "**error: !HasBaseReg**";
+ }
+ if (AM.Scale != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << AM.Scale << "*reg(";
+ if (ScaledReg)
+ OS << *ScaledReg;
+ else
+ OS << "<unknown>";
+ OS << ')';
+ }
+}
+
+void Formula::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// isAddRecSExtable - Return true if the given addrec can be sign-extended
+/// without changing its value.
+static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
+ const Type *WideTy =
+ IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
+ return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
+}
+
+/// isAddSExtable - Return true if the given add can be sign-extended
+/// without changing its value.
+static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
+ const Type *WideTy =
+ IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
+ return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
+}
+
+/// isMulSExtable - Return true if the given add can be sign-extended
+/// without changing its value.
+static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
+ const Type *WideTy =
+ IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
+ return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
+}
+
+/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
+/// and if the remainder is known to be zero, or null otherwise. If
+/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
+/// to Y, ignoring that the multiplication may overflow, which is useful when
+/// the result will be used in a context where the most significant bits are
+/// ignored.
+static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
+ ScalarEvolution &SE,
+ bool IgnoreSignificantBits = false) {
+ // Handle the trivial case, which works for any SCEV type.
+ if (LHS == RHS)
+ return SE.getConstant(LHS->getType(), 1);
+
+ // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
+ // folding.
+ if (RHS->isAllOnesValue())
+ return SE.getMulExpr(LHS, RHS);
+
+ // Check for a division of a constant by a constant.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
+ const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
+ if (!RC)
+ return 0;
+ if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
+ return 0;
+ return SE.getConstant(C->getValue()->getValue()
+ .sdiv(RC->getValue()->getValue()));
+ }
+
+ // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
+ if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
+ const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
+ IgnoreSignificantBits);
+ if (!Start) return 0;
+ const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
+ IgnoreSignificantBits);
+ if (!Step) return 0;
+ return SE.getAddRecExpr(Start, Step, AR->getLoop());
+ }
+ }
+
+ // Distribute the sdiv over add operands, if the add doesn't overflow.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
+ if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
+ SmallVector<const SCEV *, 8> Ops;
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ const SCEV *Op = getExactSDiv(*I, RHS, SE,
+ IgnoreSignificantBits);
+ if (!Op) return 0;
+ Ops.push_back(Op);
+ }
+ return SE.getAddExpr(Ops);
+ }
+ }
+
+ // Check for a multiply operand that we can pull RHS out of.
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
+ if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
+ SmallVector<const SCEV *, 4> Ops;
+ bool Found = false;
+ for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
+ I != E; ++I) {
+ const SCEV *S = *I;
+ if (!Found)
+ if (const SCEV *Q = getExactSDiv(S, RHS, SE,
+ IgnoreSignificantBits)) {
+ S = Q;
+ Found = true;
+ }
+ Ops.push_back(S);
+ }
+ return Found ? SE.getMulExpr(Ops) : 0;
+ }
+
+ // Otherwise we don't know.
+ return 0;
+}
+
+/// ExtractImmediate - If S involves the addition of a constant integer value,
+/// return that integer value, and mutate S to point to a new SCEV with that
+/// value excluded.
+static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
+ if (C->getValue()->getValue().getMinSignedBits() <= 64) {
+ S = SE.getConstant(C->getType(), 0);
+ return C->getValue()->getSExtValue();
+ }
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
+ int64_t Result = ExtractImmediate(NewOps.front(), SE);
+ S = SE.getAddExpr(NewOps);
+ return Result;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
+ int64_t Result = ExtractImmediate(NewOps.front(), SE);
+ S = SE.getAddRecExpr(NewOps, AR->getLoop());
+ return Result;
+ }
+ return 0;
+}
+
+/// ExtractSymbol - If S involves the addition of a GlobalValue address,
+/// return that symbol, and mutate S to point to a new SCEV with that
+/// value excluded.
+static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
+ S = SE.getConstant(GV->getType(), 0);
+ return GV;
+ }
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
+ GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
+ S = SE.getAddExpr(NewOps);
+ return Result;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
+ GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
+ S = SE.getAddRecExpr(NewOps, AR->getLoop());
+ return Result;
+ }
+ return 0;
+}
+
+/// isAddressUse - Returns true if the specified instruction is using the
+/// specified value as an address.
+static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
+ bool isAddress = isa<LoadInst>(Inst);
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ if (SI->getOperand(1) == OperandVal)
+ isAddress = true;
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::prefetch:
+ case Intrinsic::x86_sse2_loadu_dq:
+ case Intrinsic::x86_sse2_loadu_pd:
+ case Intrinsic::x86_sse_loadu_ps:
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ if (II->getOperand(1) == OperandVal)
+ isAddress = true;
+ break;
+ }
+ }
+ return isAddress;
+}
+
+/// getAccessType - Return the type of the memory being accessed.
+static const Type *getAccessType(const Instruction *Inst) {
+ const Type *AccessTy = Inst->getType();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ AccessTy = SI->getOperand(0)->getType();
+ else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ AccessTy = II->getOperand(1)->getType();
+ break;
+ }
+ }
+
+ // All pointers have the same requirements, so canonicalize them to an
+ // arbitrary pointer type to minimize variation.
+ if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
+ AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
+ PTy->getAddressSpace());
+
+ return AccessTy;
+}
+
+/// DeleteTriviallyDeadInstructions - If any of the instructions is the
+/// specified set are trivially dead, delete them and see if this makes any of
+/// their operands subsequently dead.
+static bool
+DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
+ bool Changed = false;
+
+ while (!DeadInsts.empty()) {
+ Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
+
+ if (I == 0 || !isInstructionTriviallyDead(I))
+ continue;
+
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ *OI = 0;
+ if (U->use_empty())
+ DeadInsts.push_back(U);
+ }
+
+ I->eraseFromParent();
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+namespace {
+
+/// Cost - This class is used to measure and compare candidate formulae.
+class Cost {
+ /// TODO: Some of these could be merged. Also, a lexical ordering
+ /// isn't always optimal.
+ unsigned NumRegs;
+ unsigned AddRecCost;
+ unsigned NumIVMuls;
+ unsigned NumBaseAdds;
+ unsigned ImmCost;
+ unsigned SetupCost;
+
+public:
+ Cost()
+ : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
+ SetupCost(0) {}
+
+ unsigned getNumRegs() const { return NumRegs; }
+
+ bool operator<(const Cost &Other) const;
+
+ void Loose();
+
+ void RateFormula(const Formula &F,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const DenseSet<const SCEV *> &VisitedRegs,
+ const Loop *L,
+ const SmallVectorImpl<int64_t> &Offsets,
+ ScalarEvolution &SE, DominatorTree &DT);
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+private:
+ void RateRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT);
+ void RatePrimaryRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT);
+};
+
+}
+
+/// RateRegister - Tally up interesting quantities from the given register.
+void Cost::RateRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
+ if (AR->getLoop() == L)
+ AddRecCost += 1; /// TODO: This should be a function of the stride.
+
+ // If this is an addrec for a loop that's already been visited by LSR,
+ // don't second-guess its addrec phi nodes. LSR isn't currently smart
+ // enough to reason about more than one loop at a time. Consider these
+ // registers free and leave them alone.
+ else if (L->contains(AR->getLoop()) ||
+ (!AR->getLoop()->contains(L) &&
+ DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
+ for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ if (SE.isSCEVable(PN->getType()) &&
+ (SE.getEffectiveSCEVType(PN->getType()) ==
+ SE.getEffectiveSCEVType(AR->getType())) &&
+ SE.getSCEV(PN) == AR)
+ return;
+
+ // If this isn't one of the addrecs that the loop already has, it
+ // would require a costly new phi and add. TODO: This isn't
+ // precisely modeled right now.
+ ++NumBaseAdds;
+ if (!Regs.count(AR->getStart()))
+ RateRegister(AR->getStart(), Regs, L, SE, DT);
+ }
+
+ // Add the step value register, if it needs one.
+ // TODO: The non-affine case isn't precisely modeled here.
+ if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
+ if (!Regs.count(AR->getStart()))
+ RateRegister(AR->getOperand(1), Regs, L, SE, DT);
+ }
+ ++NumRegs;
+
+ // Rough heuristic; favor registers which don't require extra setup
+ // instructions in the preheader.
+ if (!isa<SCEVUnknown>(Reg) &&
+ !isa<SCEVConstant>(Reg) &&
+ !(isa<SCEVAddRecExpr>(Reg) &&
+ (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
+ isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
+ ++SetupCost;
+}
+
+/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
+/// before, rate it.
+void Cost::RatePrimaryRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ if (Regs.insert(Reg))
+ RateRegister(Reg, Regs, L, SE, DT);
+}
+
+void Cost::RateFormula(const Formula &F,
+ SmallPtrSet<const SCEV *, 16> &Regs,
+ const DenseSet<const SCEV *> &VisitedRegs,
+ const Loop *L,
+ const SmallVectorImpl<int64_t> &Offsets,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ // Tally up the registers.
+ if (const SCEV *ScaledReg = F.ScaledReg) {
+ if (VisitedRegs.count(ScaledReg)) {
+ Loose();
+ return;
+ }
+ RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
+ }
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I) {
+ const SCEV *BaseReg = *I;
+ if (VisitedRegs.count(BaseReg)) {
+ Loose();
+ return;
+ }
+ RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
+
+ NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
+ BaseReg->hasComputableLoopEvolution(L);
+ }
+
+ if (F.BaseRegs.size() > 1)
+ NumBaseAdds += F.BaseRegs.size() - 1;
+
+ // Tally up the non-zero immediates.
+ for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
+ E = Offsets.end(); I != E; ++I) {
+ int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
+ if (F.AM.BaseGV)
+ ImmCost += 64; // Handle symbolic values conservatively.
+ // TODO: This should probably be the pointer size.
+ else if (Offset != 0)
+ ImmCost += APInt(64, Offset, true).getMinSignedBits();
+ }
+}
+
+/// Loose - Set this cost to a loosing value.
+void Cost::Loose() {
+ NumRegs = ~0u;
+ AddRecCost = ~0u;
+ NumIVMuls = ~0u;
+ NumBaseAdds = ~0u;
+ ImmCost = ~0u;
+ SetupCost = ~0u;
+}
+
+/// operator< - Choose the lower cost.
+bool Cost::operator<(const Cost &Other) const {
+ if (NumRegs != Other.NumRegs)
+ return NumRegs < Other.NumRegs;
+ if (AddRecCost != Other.AddRecCost)
+ return AddRecCost < Other.AddRecCost;
+ if (NumIVMuls != Other.NumIVMuls)
+ return NumIVMuls < Other.NumIVMuls;
+ if (NumBaseAdds != Other.NumBaseAdds)
+ return NumBaseAdds < Other.NumBaseAdds;
+ if (ImmCost != Other.ImmCost)
+ return ImmCost < Other.ImmCost;
+ if (SetupCost != Other.SetupCost)
+ return SetupCost < Other.SetupCost;
+ return false;
+}
+
+void Cost::print(raw_ostream &OS) const {
+ OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
+ if (AddRecCost != 0)
+ OS << ", with addrec cost " << AddRecCost;
+ if (NumIVMuls != 0)
+ OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
+ if (NumBaseAdds != 0)
+ OS << ", plus " << NumBaseAdds << " base add"
+ << (NumBaseAdds == 1 ? "" : "s");
+ if (ImmCost != 0)
+ OS << ", plus " << ImmCost << " imm cost";
+ if (SetupCost != 0)
+ OS << ", plus " << SetupCost << " setup cost";
+}
+
+void Cost::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+/// LSRFixup - An operand value in an instruction which is to be replaced
+/// with some equivalent, possibly strength-reduced, replacement.
+struct LSRFixup {
+ /// UserInst - The instruction which will be updated.
+ Instruction *UserInst;
+
+ /// OperandValToReplace - The operand of the instruction which will
+ /// be replaced. The operand may be used more than once; every instance
+ /// will be replaced.
+ Value *OperandValToReplace;
+
+ /// PostIncLoops - If this user is to use the post-incremented value of an
+ /// induction variable, this variable is non-null and holds the loop
+ /// associated with the induction variable.
+ PostIncLoopSet PostIncLoops;
+
+ /// LUIdx - The index of the LSRUse describing the expression which
+ /// this fixup needs, minus an offset (below).
+ size_t LUIdx;
+
+ /// Offset - A constant offset to be added to the LSRUse expression.
+ /// This allows multiple fixups to share the same LSRUse with different
+ /// offsets, for example in an unrolled loop.
+ int64_t Offset;
+
+ bool isUseFullyOutsideLoop(const Loop *L) const;
+
+ LSRFixup();
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+LSRFixup::LSRFixup()
+ : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
+
+/// isUseFullyOutsideLoop - Test whether this fixup always uses its
+/// value outside of the given loop.
+bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
+ // PHI nodes use their value in their incoming blocks.
+ if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == OperandValToReplace &&
+ L->contains(PN->getIncomingBlock(i)))
+ return false;
+ return true;
+ }
+
+ return !L->contains(UserInst);
+}
+
+void LSRFixup::print(raw_ostream &OS) const {
+ OS << "UserInst=";
+ // Store is common and interesting enough to be worth special-casing.
+ if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
+ OS << "store ";
+ WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
+ } else if (UserInst->getType()->isVoidTy())
+ OS << UserInst->getOpcodeName();
+ else
+ WriteAsOperand(OS, UserInst, /*PrintType=*/false);
+
+ OS << ", OperandValToReplace=";
+ WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
+
+ for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
+ E = PostIncLoops.end(); I != E; ++I) {
+ OS << ", PostIncLoop=";
+ WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
+ }
+
+ if (LUIdx != ~size_t(0))
+ OS << ", LUIdx=" << LUIdx;
+
+ if (Offset != 0)
+ OS << ", Offset=" << Offset;
+}
+
+void LSRFixup::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
+/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
+struct UniquifierDenseMapInfo {
+ static SmallVector<const SCEV *, 2> getEmptyKey() {
+ SmallVector<const SCEV *, 2> V;
+ V.push_back(reinterpret_cast<const SCEV *>(-1));
+ return V;
+ }
+
+ static SmallVector<const SCEV *, 2> getTombstoneKey() {
+ SmallVector<const SCEV *, 2> V;
+ V.push_back(reinterpret_cast<const SCEV *>(-2));
+ return V;
+ }
+
+ static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
+ unsigned Result = 0;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
+ E = V.end(); I != E; ++I)
+ Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
+ return Result;
+ }
+
+ static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
+ const SmallVector<const SCEV *, 2> &RHS) {
+ return LHS == RHS;
+ }
+};
+
+/// LSRUse - This class holds the state that LSR keeps for each use in
+/// IVUsers, as well as uses invented by LSR itself. It includes information
+/// about what kinds of things can be folded into the user, information about
+/// the user itself, and information about how the use may be satisfied.
+/// TODO: Represent multiple users of the same expression in common?
+class LSRUse {
+ DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
+
+public:
+ /// KindType - An enum for a kind of use, indicating what types of
+ /// scaled and immediate operands it might support.
+ enum KindType {
+ Basic, ///< A normal use, with no folding.
+ Special, ///< A special case of basic, allowing -1 scales.
+ Address, ///< An address use; folding according to TargetLowering
+ ICmpZero ///< An equality icmp with both operands folded into one.
+ // TODO: Add a generic icmp too?
+ };
+
+ KindType Kind;
+ const Type *AccessTy;
+
+ SmallVector<int64_t, 8> Offsets;
+ int64_t MinOffset;
+ int64_t MaxOffset;
+
+ /// AllFixupsOutsideLoop - This records whether all of the fixups using this
+ /// LSRUse are outside of the loop, in which case some special-case heuristics
+ /// may be used.
+ bool AllFixupsOutsideLoop;
+
+ /// Formulae - A list of ways to build a value that can satisfy this user.
+ /// After the list is populated, one of these is selected heuristically and
+ /// used to formulate a replacement for OperandValToReplace in UserInst.
+ SmallVector<Formula, 12> Formulae;
+
+ /// Regs - The set of register candidates used by all formulae in this LSRUse.
+ SmallPtrSet<const SCEV *, 4> Regs;
+
+ LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
+ MinOffset(INT64_MAX),
+ MaxOffset(INT64_MIN),
+ AllFixupsOutsideLoop(true) {}
+
+ bool HasFormulaWithSameRegs(const Formula &F) const;
+ bool InsertFormula(const Formula &F);
+ void DeleteFormula(Formula &F);
+ void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
+
+ void check() const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+/// HasFormula - Test whether this use as a formula which has the same
+/// registers as the given formula.
+bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
+ SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ if (F.ScaledReg) Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for uniquifying.
+ std::sort(Key.begin(), Key.end());
+ return Uniquifier.count(Key);
+}
+
+/// InsertFormula - If the given formula has not yet been inserted, add it to
+/// the list, and return true. Return false otherwise.
+bool LSRUse::InsertFormula(const Formula &F) {
+ SmallVector<const SCEV *, 2> Key = F.BaseRegs;
+ if (F.ScaledReg) Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for uniquifying.
+ std::sort(Key.begin(), Key.end());
+
+ if (!Uniquifier.insert(Key).second)
+ return false;
+
+ // Using a register to hold the value of 0 is not profitable.
+ assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
+ "Zero allocated in a scaled register!");
+#ifndef NDEBUG
+ for (SmallVectorImpl<const SCEV *>::const_iterator I =
+ F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
+ assert(!(*I)->isZero() && "Zero allocated in a base register!");
+#endif
+
+ // Add the formula to the list.
+ Formulae.push_back(F);
+
+ // Record registers now being used by this use.
+ if (F.ScaledReg) Regs.insert(F.ScaledReg);
+ Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
+
+ return true;
+}
+
+/// DeleteFormula - Remove the given formula from this use's list.
+void LSRUse::DeleteFormula(Formula &F) {
+ if (&F != &Formulae.back())
+ std::swap(F, Formulae.back());
+ Formulae.pop_back();
+ assert(!Formulae.empty() && "LSRUse has no formulae left!");
+}
+
+/// RecomputeRegs - Recompute the Regs field, and update RegUses.
+void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
+ // Now that we've filtered out some formulae, recompute the Regs set.
+ SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
+ Regs.clear();
+ for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
+ E = Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.ScaledReg) Regs.insert(F.ScaledReg);
+ Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
+ }
+
+ // Update the RegTracker.
+ for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
+ E = OldRegs.end(); I != E; ++I)
+ if (!Regs.count(*I))
+ RegUses.DropRegister(*I, LUIdx);
+}
+
+void LSRUse::print(raw_ostream &OS) const {
+ OS << "LSR Use: Kind=";
+ switch (Kind) {
+ case Basic: OS << "Basic"; break;
+ case Special: OS << "Special"; break;
+ case ICmpZero: OS << "ICmpZero"; break;
+ case Address:
+ OS << "Address of ";
+ if (AccessTy->isPointerTy())
+ OS << "pointer"; // the full pointer type could be really verbose
+ else
+ OS << *AccessTy;
+ }
+
+ OS << ", Offsets={";
+ for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
+ E = Offsets.end(); I != E; ++I) {
+ OS << *I;
+ if (next(I) != E)
+ OS << ',';
+ }
+ OS << '}';
+
+ if (AllFixupsOutsideLoop)
+ OS << ", all-fixups-outside-loop";
+}
+
+void LSRUse::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
+/// be completely folded into the user instruction at isel time. This includes
+/// address-mode folding and special icmp tricks.
+static bool isLegalUse(const TargetLowering::AddrMode &AM,
+ LSRUse::KindType Kind, const Type *AccessTy,
+ const TargetLowering *TLI) {
+ switch (Kind) {
+ case LSRUse::Address:
+ // If we have low-level target information, ask the target if it can
+ // completely fold this address.
+ if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+
+ // Otherwise, just guess that reg+reg addressing is legal.
+ return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+
+ case LSRUse::ICmpZero:
+ // There's not even a target hook for querying whether it would be legal to
+ // fold a GV into an ICmp.
+ if (AM.BaseGV)
+ return false;
+
+ // ICmp only has two operands; don't allow more than two non-trivial parts.
+ if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ return false;
+
+ // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
+ // putting the scaled register in the other operand of the icmp.
+ if (AM.Scale != 0 && AM.Scale != -1)
+ return false;
+
+ // If we have low-level target information, ask the target if it can fold an
+ // integer immediate on an icmp.
+ if (AM.BaseOffs != 0) {
+ if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
+ return false;
+ }
+
+ return true;
+
+ case LSRUse::Basic:
+ // Only handle single-register values.
+ return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
+
+ case LSRUse::Special:
+ // Only handle -1 scales, or no scale.
+ return AM.Scale == 0 || AM.Scale == -1;
+ }
+
+ return false;
+}
+
+static bool isLegalUse(TargetLowering::AddrMode AM,
+ int64_t MinOffset, int64_t MaxOffset,
+ LSRUse::KindType Kind, const Type *AccessTy,
+ const TargetLowering *TLI) {
+ // Check for overflow.
+ if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
+ (MinOffset > 0))
+ return false;
+ AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
+ if (isLegalUse(AM, Kind, AccessTy, TLI)) {
+ AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
+ // Check for overflow.
+ if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
+ (MaxOffset > 0))
+ return false;
+ AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
+ return isLegalUse(AM, Kind, AccessTy, TLI);
+ }
+ return false;
+}
+
+static bool isAlwaysFoldable(int64_t BaseOffs,
+ GlobalValue *BaseGV,
+ bool HasBaseReg,
+ LSRUse::KindType Kind, const Type *AccessTy,
+ const TargetLowering *TLI) {
+ // Fast-path: zero is always foldable.
+ if (BaseOffs == 0 && !BaseGV) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ TargetLowering::AddrMode AM;
+ AM.BaseOffs = BaseOffs;
+ AM.BaseGV = BaseGV;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+
+ // Canonicalize a scale of 1 to a base register if the formula doesn't
+ // already have a base register.
+ if (!AM.HasBaseReg && AM.Scale == 1) {
+ AM.Scale = 0;
+ AM.HasBaseReg = true;
+ }
+
+ return isLegalUse(AM, Kind, AccessTy, TLI);
+}
+
+static bool isAlwaysFoldable(const SCEV *S,
+ int64_t MinOffset, int64_t MaxOffset,
+ bool HasBaseReg,
+ LSRUse::KindType Kind, const Type *AccessTy,
+ const TargetLowering *TLI,
+ ScalarEvolution &SE) {
+ // Fast-path: zero is always foldable.
+ if (S->isZero()) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ int64_t BaseOffs = ExtractImmediate(S, SE);
+ GlobalValue *BaseGV = ExtractSymbol(S, SE);
+
+ // If there's anything else involved, it's not foldable.
+ if (!S->isZero()) return false;
+
+ // Fast-path: zero is always foldable.
+ if (BaseOffs == 0 && !BaseGV) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ TargetLowering::AddrMode AM;
+ AM.BaseOffs = BaseOffs;
+ AM.BaseGV = BaseGV;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+
+ return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
+}
+
+/// FormulaSorter - This class implements an ordering for formulae which sorts
+/// the by their standalone cost.
+class FormulaSorter {
+ /// These two sets are kept empty, so that we compute standalone costs.
+ DenseSet<const SCEV *> VisitedRegs;
+ SmallPtrSet<const SCEV *, 16> Regs;
+ Loop *L;
+ LSRUse *LU;
+ ScalarEvolution &SE;
+ DominatorTree &DT;
+
+public:
+ FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
+ : L(l), LU(&lu), SE(se), DT(dt) {}
+
+ bool operator()(const Formula &A, const Formula &B) {
+ Cost CostA;
+ CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
+ Regs.clear();
+ Cost CostB;
+ CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
+ Regs.clear();
+ return CostA < CostB;
+ }
+};
+
+/// LSRInstance - This class holds state for the main loop strength reduction
+/// logic.
+class LSRInstance {
+ IVUsers &IU;
+ ScalarEvolution &SE;
+ DominatorTree &DT;
+ LoopInfo &LI;
+ const TargetLowering *const TLI;
+ Loop *const L;
+ bool Changed;
+
+ /// IVIncInsertPos - This is the insert position that the current loop's
+ /// induction variable increment should be placed. In simple loops, this is
+ /// the latch block's terminator. But in more complicated cases, this is a
+ /// position which will dominate all the in-loop post-increment users.
+ Instruction *IVIncInsertPos;
+
+ /// Factors - Interesting factors between use strides.
+ SmallSetVector<int64_t, 8> Factors;
+
+ /// Types - Interesting use types, to facilitate truncation reuse.
+ SmallSetVector<const Type *, 4> Types;
+
+ /// Fixups - The list of operands which are to be replaced.
+ SmallVector<LSRFixup, 16> Fixups;
+
+ /// Uses - The list of interesting uses.
+ SmallVector<LSRUse, 16> Uses;
+
+ /// RegUses - Track which uses use which register candidates.
+ RegUseTracker RegUses;
+
+ void OptimizeShadowIV();
+ bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
+ ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
+ void OptimizeLoopTermCond();
+
+ void CollectInterestingTypesAndFactors();
+ void CollectFixupsAndInitialFormulae();
+
+ LSRFixup &getNewFixup() {
+ Fixups.push_back(LSRFixup());
+ return Fixups.back();
+ }
+
+ // Support for sharing of LSRUses between LSRFixups.
+ typedef DenseMap<const SCEV *, size_t> UseMapTy;
+ UseMapTy UseMap;
+
+ bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
+ LSRUse::KindType Kind, const Type *AccessTy);
+
+ std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
+ LSRUse::KindType Kind,
+ const Type *AccessTy);
+
+ void DeleteUse(LSRUse &LU);
+
+ LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
+
+public:
+ void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
+ void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
+ void CountRegisters(const Formula &F, size_t LUIdx);
+ bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
+
+ void CollectLoopInvariantFixupsAndFormulae();
+
+ void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
+ unsigned Depth = 0);
+ void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
+ void GenerateCrossUseConstantOffsets();
+ void GenerateAllReuseFormulae();
+
+ void FilterOutUndesirableDedicatedRegisters();
+
+ size_t EstimateSearchSpaceComplexity() const;
+ void NarrowSearchSpaceUsingHeuristics();
+
+ void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
+ Cost &SolutionCost,
+ SmallVectorImpl<const Formula *> &Workspace,
+ const Cost &CurCost,
+ const SmallPtrSet<const SCEV *, 16> &CurRegs,
+ DenseSet<const SCEV *> &VisitedRegs) const;
+ void Solve(SmallVectorImpl<const Formula *> &Solution) const;
+
+ BasicBlock::iterator
+ HoistInsertPosition(BasicBlock::iterator IP,
+ const SmallVectorImpl<Instruction *> &Inputs) const;
+ BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
+ const LSRFixup &LF,
+ const LSRUse &LU) const;
+
+ Value *Expand(const LSRFixup &LF,
+ const Formula &F,
+ BasicBlock::iterator IP,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const;
+ void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const;
+ void Rewrite(const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const;
+ void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
+ Pass *P);
+
+ LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
+
+ bool getChanged() const { return Changed; }
+
+ void print_factors_and_types(raw_ostream &OS) const;
+ void print_fixups(raw_ostream &OS) const;
+ void print_uses(raw_ostream &OS) const;
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+/// OptimizeShadowIV - If IV is used in a int-to-float cast
+/// inside the loop then try to eliminate the cast operation.
+void LSRInstance::OptimizeShadowIV() {
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return;
+
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
+ UI != E; /* empty */) {
+ IVUsers::const_iterator CandidateUI = UI;
+ ++UI;
+ Instruction *ShadowUse = CandidateUI->getUser();
+ const Type *DestTy = NULL;
+
+ /* If shadow use is a int->float cast then insert a second IV
+ to eliminate this cast.
+
+ for (unsigned i = 0; i < n; ++i)
+ foo((double)i);
+
+ is transformed into
+
+ double d = 0.0;
+ for (unsigned i = 0; i < n; ++i, ++d)
+ foo(d);
+ */
+ if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
+ DestTy = UCast->getDestTy();
+ else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
+ DestTy = SCast->getDestTy();
+ if (!DestTy) continue;
+
+ if (TLI) {
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ EVT DVT = TLI->getValueType(DestTy);
+ if (!TLI->isTypeLegal(DVT)) continue;
+ }
+
+ PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
+ if (!PH) continue;
+ if (PH->getNumIncomingValues() != 2) continue;
+
+ const Type *SrcTy = PH->getType();
+ int Mantissa = DestTy->getFPMantissaWidth();
+ if (Mantissa == -1) continue;
+ if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
+ continue;
+
+ unsigned Entry, Latch;
+ if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
+ Entry = 0;
+ Latch = 1;
+ } else {
+ Entry = 1;
+ Latch = 0;
+ }
+
+ ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
+ if (!Init) continue;
+ Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
+
+ BinaryOperator *Incr =
+ dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
+ if (!Incr) continue;
+ if (Incr->getOpcode() != Instruction::Add
+ && Incr->getOpcode() != Instruction::Sub)
+ continue;
+
+ /* Initialize new IV, double d = 0.0 in above example. */
+ ConstantInt *C = NULL;
+ if (Incr->getOperand(0) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(1));
+ else if (Incr->getOperand(1) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(0));
+ else
+ continue;
+
+ if (!C) continue;
+
+ // Ignore negative constants, as the code below doesn't handle them
+ // correctly. TODO: Remove this restriction.
+ if (!C->getValue().isStrictlyPositive()) continue;
+
+ /* Add new PHINode. */
+ PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
+
+ /* create new increment. '++d' in above example. */
+ Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
+ BinaryOperator *NewIncr =
+ BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
+ Instruction::FAdd : Instruction::FSub,
+ NewPH, CFP, "IV.S.next.", Incr);
+
+ NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
+ NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
+
+ /* Remove cast operation */
+ ShadowUse->replaceAllUsesWith(NewPH);
+ ShadowUse->eraseFromParent();
+ Changed = true;
+ break;
+ }
+}
+
+/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
+/// set the IV user and stride information and return true, otherwise return
+/// false.
+bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
+ for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
+ if (UI->getUser() == Cond) {
+ // NOTE: we could handle setcc instructions with multiple uses here, but
+ // InstCombine does it as well for simple uses, it's not clear that it
+ // occurs enough in real life to handle.
+ CondUse = UI;
+ return true;
+ }
+ return false;
+}
+
+/// OptimizeMax - Rewrite the loop's terminating condition if it uses
+/// a max computation.
+///
+/// This is a narrow solution to a specific, but acute, problem. For loops
+/// like this:
+///
+/// i = 0;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i < n);
+///
+/// the trip count isn't just 'n', because 'n' might not be positive. And
+/// unfortunately this can come up even for loops where the user didn't use
+/// a C do-while loop. For example, seemingly well-behaved top-test loops
+/// will commonly be lowered like this:
+//
+/// if (n > 0) {
+/// i = 0;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i < n);
+/// }
+///
+/// and then it's possible for subsequent optimization to obscure the if
+/// test in such a way that indvars can't find it.
+///
+/// When indvars can't find the if test in loops like this, it creates a
+/// max expression, which allows it to give the loop a canonical
+/// induction variable:
+///
+/// i = 0;
+/// max = n < 1 ? 1 : n;
+/// do {
+/// p[i] = 0.0;
+/// } while (++i != max);
+///
+/// Canonical induction variables are necessary because the loop passes
+/// are designed around them. The most obvious example of this is the
+/// LoopInfo analysis, which doesn't remember trip count values. It
+/// expects to be able to rediscover the trip count each time it is
+/// needed, and it does this using a simple analysis that only succeeds if
+/// the loop has a canonical induction variable.
+///
+/// However, when it comes time to generate code, the maximum operation
+/// can be quite costly, especially if it's inside of an outer loop.
+///
+/// This function solves this problem by detecting this type of loop and
+/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
+/// the instructions for the maximum computation.
+///
+ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
+ // Check that the loop matches the pattern we're looking for.
+ if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
+ Cond->getPredicate() != CmpInst::ICMP_NE)
+ return Cond;
+
+ SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
+ if (!Sel || !Sel->hasOneUse()) return Cond;
+
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return Cond;
+ const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
+
+ // Add one to the backedge-taken count to get the trip count.
+ const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
+ if (IterationCount != SE.getSCEV(Sel)) return Cond;
+
+ // Check for a max calculation that matches the pattern. There's no check
+ // for ICMP_ULE here because the comparison would be with zero, which
+ // isn't interesting.
+ CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+ const SCEVNAryExpr *Max = 0;
+ if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
+ Pred = ICmpInst::ICMP_SLE;
+ Max = S;
+ } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
+ Pred = ICmpInst::ICMP_SLT;
+ Max = S;
+ } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
+ Pred = ICmpInst::ICMP_ULT;
+ Max = U;
+ } else {
+ // No match; bail.
+ return Cond;
+ }
+
+ // To handle a max with more than two operands, this optimization would
+ // require additional checking and setup.
+ if (Max->getNumOperands() != 2)
+ return Cond;
+
+ const SCEV *MaxLHS = Max->getOperand(0);
+ const SCEV *MaxRHS = Max->getOperand(1);
+
+ // ScalarEvolution canonicalizes constants to the left. For < and >, look
+ // for a comparison with 1. For <= and >=, a comparison with zero.
+ if (!MaxLHS ||
+ (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
+ return Cond;
+
+ // Check the relevant induction variable for conformance to
+ // the pattern.
+ const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
+ if (!AR || !AR->isAffine() ||
+ AR->getStart() != One ||
+ AR->getStepRecurrence(SE) != One)
+ return Cond;
+
+ assert(AR->getLoop() == L &&
+ "Loop condition operand is an addrec in a different loop!");
+
+ // Check the right operand of the select, and remember it, as it will
+ // be used in the new comparison instruction.
+ Value *NewRHS = 0;
+ if (ICmpInst::isTrueWhenEqual(Pred)) {
+ // Look for n+1, and grab n.
+ if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
+ if (isa<ConstantInt>(BO->getOperand(1)) &&
+ cast<ConstantInt>(BO->getOperand(1))->isOne() &&
+ SE.getSCEV(BO->getOperand(0)) == MaxRHS)
+ NewRHS = BO->getOperand(0);
+ if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
+ if (isa<ConstantInt>(BO->getOperand(1)) &&
+ cast<ConstantInt>(BO->getOperand(1))->isOne() &&
+ SE.getSCEV(BO->getOperand(0)) == MaxRHS)
+ NewRHS = BO->getOperand(0);
+ if (!NewRHS)
+ return Cond;
+ } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
+ NewRHS = Sel->getOperand(1);
+ else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
+ NewRHS = Sel->getOperand(2);
+ else
+ llvm_unreachable("Max doesn't match expected pattern!");
+
+ // Determine the new comparison opcode. It may be signed or unsigned,
+ // and the original comparison may be either equality or inequality.
+ if (Cond->getPredicate() == CmpInst::ICMP_EQ)
+ Pred = CmpInst::getInversePredicate(Pred);
+
+ // Ok, everything looks ok to change the condition into an SLT or SGE and
+ // delete the max calculation.
+ ICmpInst *NewCond =
+ new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
+
+ // Delete the max calculation instructions.
+ Cond->replaceAllUsesWith(NewCond);
+ CondUse->setUser(NewCond);
+ Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
+ Cond->eraseFromParent();
+ Sel->eraseFromParent();
+ if (Cmp->use_empty())
+ Cmp->eraseFromParent();
+ return NewCond;
+}
+
+/// OptimizeLoopTermCond - Change loop terminating condition to use the
+/// postinc iv when possible.
+void
+LSRInstance::OptimizeLoopTermCond() {
+ SmallPtrSet<Instruction *, 4> PostIncs;
+
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ SmallVector<BasicBlock*, 8> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitingBlock = ExitingBlocks[i];
+
+ // Get the terminating condition for the loop if possible. If we
+ // can, we want to change it to use a post-incremented version of its
+ // induction variable, to allow coalescing the live ranges for the IV into
+ // one register value.
+
+ BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+ if (!TermBr)
+ continue;
+ // FIXME: Overly conservative, termination condition could be an 'or' etc..
+ if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
+ continue;
+
+ // Search IVUsesByStride to find Cond's IVUse if there is one.
+ IVStrideUse *CondUse = 0;
+ ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
+ if (!FindIVUserForCond(Cond, CondUse))
+ continue;
+
+ // If the trip count is computed in terms of a max (due to ScalarEvolution
+ // being unable to find a sufficient guard, for example), change the loop
+ // comparison to use SLT or ULT instead of NE.
+ // One consequence of doing this now is that it disrupts the count-down
+ // optimization. That's not always a bad thing though, because in such
+ // cases it may still be worthwhile to avoid a max.
+ Cond = OptimizeMax(Cond, CondUse);
+
+ // If this exiting block dominates the latch block, it may also use
+ // the post-inc value if it won't be shared with other uses.
+ // Check for dominance.
+ if (!DT.dominates(ExitingBlock, LatchBlock))
+ continue;
+
+ // Conservatively avoid trying to use the post-inc value in non-latch
+ // exits if there may be pre-inc users in intervening blocks.
+ if (LatchBlock != ExitingBlock)
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
+ // Test if the use is reachable from the exiting block. This dominator
+ // query is a conservative approximation of reachability.
+ if (&*UI != CondUse &&
+ !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
+ // Conservatively assume there may be reuse if the quotient of their
+ // strides could be a legal scale.
+ const SCEV *A = IU.getStride(*CondUse, L);
+ const SCEV *B = IU.getStride(*UI, L);
+ if (!A || !B) continue;
+ if (SE.getTypeSizeInBits(A->getType()) !=
+ SE.getTypeSizeInBits(B->getType())) {
+ if (SE.getTypeSizeInBits(A->getType()) >
+ SE.getTypeSizeInBits(B->getType()))
+ B = SE.getSignExtendExpr(B, A->getType());
+ else
+ A = SE.getSignExtendExpr(A, B->getType());
+ }
+ if (const SCEVConstant *D =
+ dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
+ const ConstantInt *C = D->getValue();
+ // Stride of one or negative one can have reuse with non-addresses.
+ if (C->isOne() || C->isAllOnesValue())
+ goto decline_post_inc;
+ // Avoid weird situations.
+ if (C->getValue().getMinSignedBits() >= 64 ||
+ C->getValue().isMinSignedValue())
+ goto decline_post_inc;
+ // Without TLI, assume that any stride might be valid, and so any
+ // use might be shared.
+ if (!TLI)
+ goto decline_post_inc;
+ // Check for possible scaled-address reuse.
+ const Type *AccessTy = getAccessType(UI->getUser());
+ TargetLowering::AddrMode AM;
+ AM.Scale = C->getSExtValue();
+ if (TLI->isLegalAddressingMode(AM, AccessTy))
+ goto decline_post_inc;
+ AM.Scale = -AM.Scale;
+ if (TLI->isLegalAddressingMode(AM, AccessTy))
+ goto decline_post_inc;
+ }
+ }
+
+ DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
+ << *Cond << '\n');
+
+ // It's possible for the setcc instruction to be anywhere in the loop, and
+ // possible for it to have multiple users. If it is not immediately before
+ // the exiting block branch, move it.
+ if (&*++BasicBlock::iterator(Cond) != TermBr) {
+ if (Cond->hasOneUse()) {
+ Cond->moveBefore(TermBr);
+ } else {
+ // Clone the terminating condition and insert into the loopend.
+ ICmpInst *OldCond = Cond;
+ Cond = cast<ICmpInst>(Cond->clone());
+ Cond->setName(L->getHeader()->getName() + ".termcond");
+ ExitingBlock->getInstList().insert(TermBr, Cond);
+
+ // Clone the IVUse, as the old use still exists!
+ CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
+ TermBr->replaceUsesOfWith(OldCond, Cond);
+ }
+ }
+
+ // If we get to here, we know that we can transform the setcc instruction to
+ // use the post-incremented version of the IV, allowing us to coalesce the
+ // live ranges for the IV correctly.
+ CondUse->transformToPostInc(L);
+ Changed = true;
+
+ PostIncs.insert(Cond);
+ decline_post_inc:;
+ }
+
+ // Determine an insertion point for the loop induction variable increment. It
+ // must dominate all the post-inc comparisons we just set up, and it must
+ // dominate the loop latch edge.
+ IVIncInsertPos = L->getLoopLatch()->getTerminator();
+ for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
+ E = PostIncs.end(); I != E; ++I) {
+ BasicBlock *BB =
+ DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
+ (*I)->getParent());
+ if (BB == (*I)->getParent())
+ IVIncInsertPos = *I;
+ else if (BB != IVIncInsertPos->getParent())
+ IVIncInsertPos = BB->getTerminator();
+ }
+}
+
+/// reconcileNewOffset - Determine if the given use can accomodate a fixup
+/// at the given offset and other details. If so, update the use and
+/// return true.
+bool
+LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
+ LSRUse::KindType Kind, const Type *AccessTy) {
+ int64_t NewMinOffset = LU.MinOffset;
+ int64_t NewMaxOffset = LU.MaxOffset;
+ const Type *NewAccessTy = AccessTy;
+
+ // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
+ // something conservative, however this can pessimize in the case that one of
+ // the uses will have all its uses outside the loop, for example.
+ if (LU.Kind != Kind)
+ return false;
+ // Conservatively assume HasBaseReg is true for now.
+ if (NewOffset < LU.MinOffset) {
+ if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
+ Kind, AccessTy, TLI))
+ return false;
+ NewMinOffset = NewOffset;
+ } else if (NewOffset > LU.MaxOffset) {
+ if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
+ Kind, AccessTy, TLI))
+ return false;
+ NewMaxOffset = NewOffset;
+ }
+ // Check for a mismatched access type, and fall back conservatively as needed.
+ if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
+ NewAccessTy = Type::getVoidTy(AccessTy->getContext());
+
+ // Update the use.
+ LU.MinOffset = NewMinOffset;
+ LU.MaxOffset = NewMaxOffset;
+ LU.AccessTy = NewAccessTy;
+ if (NewOffset != LU.Offsets.back())
+ LU.Offsets.push_back(NewOffset);
+ return true;
+}
+
+/// getUse - Return an LSRUse index and an offset value for a fixup which
+/// needs the given expression, with the given kind and optional access type.
+/// Either reuse an existing use or create a new one, as needed.
+std::pair<size_t, int64_t>
+LSRInstance::getUse(const SCEV *&Expr,
+ LSRUse::KindType Kind, const Type *AccessTy) {
+ const SCEV *Copy = Expr;
+ int64_t Offset = ExtractImmediate(Expr, SE);
+
+ // Basic uses can't accept any offset, for example.
+ if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
+ Expr = Copy;
+ Offset = 0;
+ }
+
+ std::pair<UseMapTy::iterator, bool> P =
+ UseMap.insert(std::make_pair(Expr, 0));
+ if (!P.second) {
+ // A use already existed with this base.
+ size_t LUIdx = P.first->second;
+ LSRUse &LU = Uses[LUIdx];
+ if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
+ // Reuse this use.
+ return std::make_pair(LUIdx, Offset);
+ }
+
+ // Create a new use.
+ size_t LUIdx = Uses.size();
+ P.first->second = LUIdx;
+ Uses.push_back(LSRUse(Kind, AccessTy));
+ LSRUse &LU = Uses[LUIdx];
+
+ // We don't need to track redundant offsets, but we don't need to go out
+ // of our way here to avoid them.
+ if (LU.Offsets.empty() || Offset != LU.Offsets.back())
+ LU.Offsets.push_back(Offset);
+
+ LU.MinOffset = Offset;
+ LU.MaxOffset = Offset;
+ return std::make_pair(LUIdx, Offset);
+}
+
+/// DeleteUse - Delete the given use from the Uses list.
+void LSRInstance::DeleteUse(LSRUse &LU) {
+ if (&LU != &Uses.back())
+ std::swap(LU, Uses.back());
+ Uses.pop_back();
+}
+
+/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
+/// a formula that has the same registers as the given formula.
+LSRUse *
+LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
+ const LSRUse &OrigLU) {
+ // Search all uses for the formula. This could be more clever. Ignore
+ // ICmpZero uses because they may contain formulae generated by
+ // GenerateICmpZeroScales, in which case adding fixup offsets may
+ // be invalid.
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ if (&LU != &OrigLU &&
+ LU.Kind != LSRUse::ICmpZero &&
+ LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
+ LU.HasFormulaWithSameRegs(OrigF)) {
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.BaseRegs == OrigF.BaseRegs &&
+ F.ScaledReg == OrigF.ScaledReg &&
+ F.AM.BaseGV == OrigF.AM.BaseGV &&
+ F.AM.Scale == OrigF.AM.Scale &&
+ LU.Kind) {
+ if (F.AM.BaseOffs == 0)
+ return &LU;
+ break;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+void LSRInstance::CollectInterestingTypesAndFactors() {
+ SmallSetVector<const SCEV *, 4> Strides;
+
+ // Collect interesting types and strides.
+ SmallVector<const SCEV *, 4> Worklist;
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
+ const SCEV *Expr = IU.getExpr(*UI);
+
+ // Collect interesting types.
+ Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
+
+ // Add strides for mentioned loops.
+ Worklist.push_back(Expr);
+ do {
+ const SCEV *S = Worklist.pop_back_val();
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ Strides.insert(AR->getStepRecurrence(SE));
+ Worklist.push_back(AR->getStart());
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
+ }
+ } while (!Worklist.empty());
+ }
+
+ // Compute interesting factors from the set of interesting strides.
+ for (SmallSetVector<const SCEV *, 4>::const_iterator
+ I = Strides.begin(), E = Strides.end(); I != E; ++I)
+ for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
+ next(I); NewStrideIter != E; ++NewStrideIter) {
+ const SCEV *OldStride = *I;
+ const SCEV *NewStride = *NewStrideIter;
+
+ if (SE.getTypeSizeInBits(OldStride->getType()) !=
+ SE.getTypeSizeInBits(NewStride->getType())) {
+ if (SE.getTypeSizeInBits(OldStride->getType()) >
+ SE.getTypeSizeInBits(NewStride->getType()))
+ NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
+ else
+ OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
+ }
+ if (const SCEVConstant *Factor =
+ dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
+ SE, true))) {
+ if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ } else if (const SCEVConstant *Factor =
+ dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
+ NewStride,
+ SE, true))) {
+ if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ }
+ }
+
+ // If all uses use the same type, don't bother looking for truncation-based
+ // reuse.
+ if (Types.size() == 1)
+ Types.clear();
+
+ DEBUG(print_factors_and_types(dbgs()));
+}
+
+void LSRInstance::CollectFixupsAndInitialFormulae() {
+ for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
+ // Record the uses.
+ LSRFixup &LF = getNewFixup();
+ LF.UserInst = UI->getUser();
+ LF.OperandValToReplace = UI->getOperandValToReplace();
+ LF.PostIncLoops = UI->getPostIncLoops();
+
+ LSRUse::KindType Kind = LSRUse::Basic;
+ const Type *AccessTy = 0;
+ if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
+ Kind = LSRUse::Address;
+ AccessTy = getAccessType(LF.UserInst);
+ }
+
+ const SCEV *S = IU.getExpr(*UI);
+
+ // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
+ // (N - i == 0), and this allows (N - i) to be the expression that we work
+ // with rather than just N or i, so we can consider the register
+ // requirements for both N and i at the same time. Limiting this code to
+ // equality icmps is not a problem because all interesting loops use
+ // equality icmps, thanks to IndVarSimplify.
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
+ if (CI->isEquality()) {
+ // Swap the operands if needed to put the OperandValToReplace on the
+ // left, for consistency.
+ Value *NV = CI->getOperand(1);
+ if (NV == LF.OperandValToReplace) {
+ CI->setOperand(1, CI->getOperand(0));
+ CI->setOperand(0, NV);
+ NV = CI->getOperand(1);
+ Changed = true;
+ }
+
+ // x == y --> x - y == 0
+ const SCEV *N = SE.getSCEV(NV);
+ if (N->isLoopInvariant(L)) {
+ Kind = LSRUse::ICmpZero;
+ S = SE.getMinusSCEV(N, S);
+ }
+
+ // -1 and the negations of all interesting strides (except the negation
+ // of -1) are now also interesting.
+ for (size_t i = 0, e = Factors.size(); i != e; ++i)
+ if (Factors[i] != -1)
+ Factors.insert(-(uint64_t)Factors[i]);
+ Factors.insert(-1);
+ }
+
+ // Set up the initial formula for this use.
+ std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
+ LF.LUIdx = P.first;
+ LF.Offset = P.second;
+ LSRUse &LU = Uses[LF.LUIdx];
+ LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
+
+ // If this is the first use of this LSRUse, give it a formula.
+ if (LU.Formulae.empty()) {
+ InsertInitialFormula(S, LU, LF.LUIdx);
+ CountRegisters(LU.Formulae.back(), LF.LUIdx);
+ }
+ }
+
+ DEBUG(print_fixups(dbgs()));
+}
+
+/// InsertInitialFormula - Insert a formula for the given expression into
+/// the given use, separating out loop-variant portions from loop-invariant
+/// and loop-computable portions.
+void
+LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
+ Formula F;
+ F.InitialMatch(S, L, SE, DT);
+ bool Inserted = InsertFormula(LU, LUIdx, F);
+ assert(Inserted && "Initial formula already exists!"); (void)Inserted;
+}
+
+/// InsertSupplementalFormula - Insert a simple single-register formula for
+/// the given expression into the given use.
+void
+LSRInstance::InsertSupplementalFormula(const SCEV *S,
+ LSRUse &LU, size_t LUIdx) {
+ Formula F;
+ F.BaseRegs.push_back(S);
+ F.AM.HasBaseReg = true;
+ bool Inserted = InsertFormula(LU, LUIdx, F);
+ assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
+}
+
+/// CountRegisters - Note which registers are used by the given formula,
+/// updating RegUses.
+void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
+ if (F.ScaledReg)
+ RegUses.CountRegister(F.ScaledReg, LUIdx);
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I)
+ RegUses.CountRegister(*I, LUIdx);
+}
+
+/// InsertFormula - If the given formula has not yet been inserted, add it to
+/// the list, and return true. Return false otherwise.
+bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
+ if (!LU.InsertFormula(F))
+ return false;
+
+ CountRegisters(F, LUIdx);
+ return true;
+}
+
+/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
+/// loop-invariant values which we're tracking. These other uses will pin these
+/// values in registers, making them less profitable for elimination.
+/// TODO: This currently misses non-constant addrec step registers.
+/// TODO: Should this give more weight to users inside the loop?
+void
+LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
+ SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
+ SmallPtrSet<const SCEV *, 8> Inserted;
+
+ while (!Worklist.empty()) {
+ const SCEV *S = Worklist.pop_back_val();
+
+ if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
+ Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
+ else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
+ Worklist.push_back(C->getOperand());
+ else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
+ Worklist.push_back(D->getLHS());
+ Worklist.push_back(D->getRHS());
+ } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ if (!Inserted.insert(U)) continue;
+ const Value *V = U->getValue();
+ if (const Instruction *Inst = dyn_cast<Instruction>(V))
+ if (L->contains(Inst)) continue;
+ for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ const Instruction *UserInst = dyn_cast<Instruction>(*UI);
+ // Ignore non-instructions.
+ if (!UserInst)
+ continue;
+ // Ignore instructions in other functions (as can happen with
+ // Constants).
+ if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
+ continue;
+ // Ignore instructions not dominated by the loop.
+ const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
+ UserInst->getParent() :
+ cast<PHINode>(UserInst)->getIncomingBlock(
+ PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
+ if (!DT.dominates(L->getHeader(), UseBB))
+ continue;
+ // Ignore uses which are part of other SCEV expressions, to avoid
+ // analyzing them multiple times.
+ if (SE.isSCEVable(UserInst->getType())) {
+ const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
+ // If the user is a no-op, look through to its uses.
+ if (!isa<SCEVUnknown>(UserS))
+ continue;
+ if (UserS == U) {
+ Worklist.push_back(
+ SE.getUnknown(const_cast<Instruction *>(UserInst)));
+ continue;
+ }
+ }
+ // Ignore icmp instructions which are already being analyzed.
+ if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
+ unsigned OtherIdx = !UI.getOperandNo();
+ Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
+ if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
+ continue;
+ }
+
+ LSRFixup &LF = getNewFixup();
+ LF.UserInst = const_cast<Instruction *>(UserInst);
+ LF.OperandValToReplace = UI.getUse();
+ std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
+ LF.LUIdx = P.first;
+ LF.Offset = P.second;
+ LSRUse &LU = Uses[LF.LUIdx];
+ LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
+ InsertSupplementalFormula(U, LU, LF.LUIdx);
+ CountRegisters(LU.Formulae.back(), Uses.size() - 1);
+ break;
+ }
+ }
+ }
+}
+
+/// CollectSubexprs - Split S into subexpressions which can be pulled out into
+/// separate registers. If C is non-null, multiply each subexpression by C.
+static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
+ SmallVectorImpl<const SCEV *> &Ops,
+ ScalarEvolution &SE) {
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ // Break out add operands.
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I)
+ CollectSubexprs(*I, C, Ops, SE);
+ return;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ // Split a non-zero base out of an addrec.
+ if (!AR->getStart()->isZero()) {
+ CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
+ AR->getStepRecurrence(SE),
+ AR->getLoop()), C, Ops, SE);
+ CollectSubexprs(AR->getStart(), C, Ops, SE);
+ return;
+ }
+ } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ // Break (C * (a + b + c)) into C*a + C*b + C*c.
+ if (Mul->getNumOperands() == 2)
+ if (const SCEVConstant *Op0 =
+ dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
+ CollectSubexprs(Mul->getOperand(1),
+ C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
+ Ops, SE);
+ return;
+ }
+ }
+
+ // Otherwise use the value itself.
+ Ops.push_back(C ? SE.getMulExpr(C, S) : S);
+}
+
+/// GenerateReassociations - Split out subexpressions from adds and the bases of
+/// addrecs.
+void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
+ Formula Base,
+ unsigned Depth) {
+ // Arbitrarily cap recursion to protect compile time.
+ if (Depth >= 3) return;
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *BaseReg = Base.BaseRegs[i];
+
+ SmallVector<const SCEV *, 8> AddOps;
+ CollectSubexprs(BaseReg, 0, AddOps, SE);
+ if (AddOps.size() == 1) continue;
+
+ for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
+ JE = AddOps.end(); J != JE; ++J) {
+ // Don't pull a constant into a register if the constant could be folded
+ // into an immediate field.
+ if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
+ Base.getNumRegs() > 1,
+ LU.Kind, LU.AccessTy, TLI, SE))
+ continue;
+
+ // Collect all operands except *J.
+ SmallVector<const SCEV *, 8> InnerAddOps;
+ for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
+ KE = AddOps.end(); K != KE; ++K)
+ if (K != J)
+ InnerAddOps.push_back(*K);
+
+ // Don't leave just a constant behind in a register if the constant could
+ // be folded into an immediate field.
+ if (InnerAddOps.size() == 1 &&
+ isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
+ Base.getNumRegs() > 1,
+ LU.Kind, LU.AccessTy, TLI, SE))
+ continue;
+
+ const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
+ if (InnerSum->isZero())
+ continue;
+ Formula F = Base;
+ F.BaseRegs[i] = InnerSum;
+ F.BaseRegs.push_back(*J);
+ if (InsertFormula(LU, LUIdx, F))
+ // If that formula hadn't been seen before, recurse to find more like
+ // it.
+ GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
+ }
+ }
+}
+
+/// GenerateCombinations - Generate a formula consisting of all of the
+/// loop-dominating registers added into a single register.
+void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // This method is only interesting on a plurality of registers.
+ if (Base.BaseRegs.size() <= 1) return;
+
+ Formula F = Base;
+ F.BaseRegs.clear();
+ SmallVector<const SCEV *, 4> Ops;
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
+ const SCEV *BaseReg = *I;
+ if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
+ !BaseReg->hasComputableLoopEvolution(L))
+ Ops.push_back(BaseReg);
+ else
+ F.BaseRegs.push_back(BaseReg);
+ }
+ if (Ops.size() > 1) {
+ const SCEV *Sum = SE.getAddExpr(Ops);
+ // TODO: If Sum is zero, it probably means ScalarEvolution missed an
+ // opportunity to fold something. For now, just ignore such cases
+ // rather than proceed with zero in a register.
+ if (!Sum->isZero()) {
+ F.BaseRegs.push_back(Sum);
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+}
+
+/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
+void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // We can't add a symbolic offset if the address already contains one.
+ if (Base.AM.BaseGV) return;
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *G = Base.BaseRegs[i];
+ GlobalValue *GV = ExtractSymbol(G, SE);
+ if (G->isZero() || !GV)
+ continue;
+ Formula F = Base;
+ F.AM.BaseGV = GV;
+ if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ F.BaseRegs[i] = G;
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+}
+
+/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
+void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // TODO: For now, just add the min and max offset, because it usually isn't
+ // worthwhile looking at everything inbetween.
+ SmallVector<int64_t, 4> Worklist;
+ Worklist.push_back(LU.MinOffset);
+ if (LU.MaxOffset != LU.MinOffset)
+ Worklist.push_back(LU.MaxOffset);
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *G = Base.BaseRegs[i];
+
+ for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
+ E = Worklist.end(); I != E; ++I) {
+ Formula F = Base;
+ F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
+ if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
+ LU.Kind, LU.AccessTy, TLI)) {
+ F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
+
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+
+ int64_t Imm = ExtractImmediate(G, SE);
+ if (G->isZero() || Imm == 0)
+ continue;
+ Formula F = Base;
+ F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
+ if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ F.BaseRegs[i] = G;
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+}
+
+/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
+/// the comparison. For example, x == y -> x*c == y*c.
+void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ if (LU.Kind != LSRUse::ICmpZero) return;
+
+ // Determine the integer type for the base formula.
+ const Type *IntTy = Base.getType();
+ if (!IntTy) return;
+ if (SE.getTypeSizeInBits(IntTy) > 64) return;
+
+ // Don't do this if there is more than one offset.
+ if (LU.MinOffset != LU.MaxOffset) return;
+
+ assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+
+ // Check each interesting stride.
+ for (SmallSetVector<int64_t, 8>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ int64_t Factor = *I;
+ Formula F = Base;
+
+ // Check that the multiplication doesn't overflow.
+ if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
+ continue;
+ F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
+ if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
+ continue;
+
+ // Check that multiplying with the use offset doesn't overflow.
+ int64_t Offset = LU.MinOffset;
+ if (Offset == INT64_MIN && Factor == -1)
+ continue;
+ Offset = (uint64_t)Offset * Factor;
+ if (Offset / Factor != LU.MinOffset)
+ continue;
+
+ // Check that this scale is legal.
+ if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
+ continue;
+
+ // Compensate for the use having MinOffset built into it.
+ F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
+
+ const SCEV *FactorS = SE.getConstant(IntTy, Factor);
+
+ // Check that multiplying with each base register doesn't overflow.
+ for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
+ F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
+ if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
+ goto next;
+ }
+
+ // Check that multiplying with the scaled register doesn't overflow.
+ if (F.ScaledReg) {
+ F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
+ if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
+ continue;
+ }
+
+ // If we make it here and it's legal, add it.
+ (void)InsertFormula(LU, LUIdx, F);
+ next:;
+ }
+}
+
+/// GenerateScales - Generate stride factor reuse formulae by making use of
+/// scaled-offset address modes, for example.
+void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
+ // Determine the integer type for the base formula.
+ const Type *IntTy = Base.getType();
+ if (!IntTy) return;
+
+ // If this Formula already has a scaled register, we can't add another one.
+ if (Base.AM.Scale != 0) return;
+
+ // Check each interesting stride.
+ for (SmallSetVector<int64_t, 8>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ int64_t Factor = *I;
+
+ Base.AM.Scale = Factor;
+ Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
+ // Check whether this scale is going to be legal.
+ if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI)) {
+ // As a special-case, handle special out-of-loop Basic users specially.
+ // TODO: Reconsider this special case.
+ if (LU.Kind == LSRUse::Basic &&
+ isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
+ LSRUse::Special, LU.AccessTy, TLI) &&
+ LU.AllFixupsOutsideLoop)
+ LU.Kind = LSRUse::Special;
+ else
+ continue;
+ }
+ // For an ICmpZero, negating a solitary base register won't lead to
+ // new solutions.
+ if (LU.Kind == LSRUse::ICmpZero &&
+ !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
+ continue;
+ // For each addrec base reg, apply the scale, if possible.
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
+ if (const SCEVAddRecExpr *AR =
+ dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
+ const SCEV *FactorS = SE.getConstant(IntTy, Factor);
+ if (FactorS->isZero())
+ continue;
+ // Divide out the factor, ignoring high bits, since we'll be
+ // scaling the value back up in the end.
+ if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
+ // TODO: This could be optimized to avoid all the copying.
+ Formula F = Base;
+ F.ScaledReg = Quotient;
+ F.DeleteBaseReg(F.BaseRegs[i]);
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+ }
+}
+
+/// GenerateTruncates - Generate reuse formulae from different IV types.
+void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
+ // This requires TargetLowering to tell us which truncates are free.
+ if (!TLI) return;
+
+ // Don't bother truncating symbolic values.
+ if (Base.AM.BaseGV) return;
+
+ // Determine the integer type for the base formula.
+ const Type *DstTy = Base.getType();
+ if (!DstTy) return;
+ DstTy = SE.getEffectiveSCEVType(DstTy);
+
+ for (SmallSetVector<const Type *, 4>::const_iterator
+ I = Types.begin(), E = Types.end(); I != E; ++I) {
+ const Type *SrcTy = *I;
+ if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ Formula F = Base;
+
+ if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
+ for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
+ JE = F.BaseRegs.end(); J != JE; ++J)
+ *J = SE.getAnyExtendExpr(*J, SrcTy);
+
+ // TODO: This assumes we've done basic processing on all uses and
+ // have an idea what the register usage is.
+ if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
+ continue;
+
+ (void)InsertFormula(LU, LUIdx, F);
+ }
+ }
+}
+
+namespace {
+
+/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
+/// defer modifications so that the search phase doesn't have to worry about
+/// the data structures moving underneath it.
+struct WorkItem {
+ size_t LUIdx;
+ int64_t Imm;
+ const SCEV *OrigReg;
+
+ WorkItem(size_t LI, int64_t I, const SCEV *R)
+ : LUIdx(LI), Imm(I), OrigReg(R) {}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+void WorkItem::print(raw_ostream &OS) const {
+ OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
+ << " , add offset " << Imm;
+}
+
+void WorkItem::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
+/// distance apart and try to form reuse opportunities between them.
+void LSRInstance::GenerateCrossUseConstantOffsets() {
+ // Group the registers by their value without any added constant offset.
+ typedef std::map<int64_t, const SCEV *> ImmMapTy;
+ typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
+ RegMapTy Map;
+ DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
+ SmallVector<const SCEV *, 8> Sequence;
+ for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
+ I != E; ++I) {
+ const SCEV *Reg = *I;
+ int64_t Imm = ExtractImmediate(Reg, SE);
+ std::pair<RegMapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(Reg, ImmMapTy()));
+ if (Pair.second)
+ Sequence.push_back(Reg);
+ Pair.first->second.insert(std::make_pair(Imm, *I));
+ UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
+ }
+
+ // Now examine each set of registers with the same base value. Build up
+ // a list of work to do and do the work in a separate step so that we're
+ // not adding formulae and register counts while we're searching.
+ SmallVector<WorkItem, 32> WorkItems;
+ SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
+ E = Sequence.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ const ImmMapTy &Imms = Map.find(Reg)->second;
+
+ // It's not worthwhile looking for reuse if there's only one offset.
+ if (Imms.size() == 1)
+ continue;
+
+ DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
+ for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
+ J != JE; ++J)
+ dbgs() << ' ' << J->first;
+ dbgs() << '\n');
+
+ // Examine each offset.
+ for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
+ J != JE; ++J) {
+ const SCEV *OrigReg = J->second;
+
+ int64_t JImm = J->first;
+ const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
+
+ if (!isa<SCEVConstant>(OrigReg) &&
+ UsedByIndicesMap[Reg].count() == 1) {
+ DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
+ continue;
+ }
+
+ // Conservatively examine offsets between this orig reg a few selected
+ // other orig regs.
+ ImmMapTy::const_iterator OtherImms[] = {
+ Imms.begin(), prior(Imms.end()),
+ Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
+ };
+ for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
+ ImmMapTy::const_iterator M = OtherImms[i];
+ if (M == J || M == JE) continue;
+
+ // Compute the difference between the two.
+ int64_t Imm = (uint64_t)JImm - M->first;
+ for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
+ LUIdx = UsedByIndices.find_next(LUIdx))
+ // Make a memo of this use, offset, and register tuple.
+ if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
+ WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
+ }
+ }
+ }
+
+ Map.clear();
+ Sequence.clear();
+ UsedByIndicesMap.clear();
+ UniqueItems.clear();
+
+ // Now iterate through the worklist and add new formulae.
+ for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
+ E = WorkItems.end(); I != E; ++I) {
+ const WorkItem &WI = *I;
+ size_t LUIdx = WI.LUIdx;
+ LSRUse &LU = Uses[LUIdx];
+ int64_t Imm = WI.Imm;
+ const SCEV *OrigReg = WI.OrigReg;
+
+ const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
+ const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
+ unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
+
+ // TODO: Use a more targeted data structure.
+ for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
+ const Formula &F = LU.Formulae[L];
+ // Use the immediate in the scaled register.
+ if (F.ScaledReg == OrigReg) {
+ int64_t Offs = (uint64_t)F.AM.BaseOffs +
+ Imm * (uint64_t)F.AM.Scale;
+ // Don't create 50 + reg(-50).
+ if (F.referencesReg(SE.getSCEV(
+ ConstantInt::get(IntTy, -(uint64_t)Offs))))
+ continue;
+ Formula NewF = F;
+ NewF.AM.BaseOffs = Offs;
+ if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
+
+ // If the new scale is a constant in a register, and adding the constant
+ // value to the immediate would produce a value closer to zero than the
+ // immediate itself, then the formula isn't worthwhile.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
+ if (C->getValue()->getValue().isNegative() !=
+ (NewF.AM.BaseOffs < 0) &&
+ (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
+ .ule(abs64(NewF.AM.BaseOffs)))
+ continue;
+
+ // OK, looks good.
+ (void)InsertFormula(LU, LUIdx, NewF);
+ } else {
+ // Use the immediate in a base register.
+ for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
+ const SCEV *BaseReg = F.BaseRegs[N];
+ if (BaseReg != OrigReg)
+ continue;
+ Formula NewF = F;
+ NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
+ if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI))
+ continue;
+ NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
+
+ // If the new formula has a constant in a register, and adding the
+ // constant value to the immediate would produce a value closer to
+ // zero than the immediate itself, then the formula isn't worthwhile.
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
+ J != JE; ++J)
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
+ if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
+ abs64(NewF.AM.BaseOffs)) &&
+ (C->getValue()->getValue() +
+ NewF.AM.BaseOffs).countTrailingZeros() >=
+ CountTrailingZeros_64(NewF.AM.BaseOffs))
+ goto skip_formula;
+
+ // Ok, looks good.
+ (void)InsertFormula(LU, LUIdx, NewF);
+ break;
+ skip_formula:;
+ }
+ }
+ }
+ }
+}
+
+/// GenerateAllReuseFormulae - Generate formulae for each use.
+void
+LSRInstance::GenerateAllReuseFormulae() {
+ // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
+ // queries are more precise.
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
+ }
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateScales(LU, LUIdx, LU.Formulae[i]);
+ }
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
+ }
+
+ GenerateCrossUseConstantOffsets();
+}
+
+/// If their are multiple formulae with the same set of registers used
+/// by other uses, pick the best one and delete the others.
+void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
+#ifndef NDEBUG
+ bool ChangedFormulae = false;
+#endif
+
+ // Collect the best formula for each unique set of shared registers. This
+ // is reset for each use.
+ typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
+ BestFormulaeTy;
+ BestFormulaeTy BestFormulae;
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ FormulaSorter Sorter(L, LU, SE, DT);
+ DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
+
+ bool Any = false;
+ for (size_t FIdx = 0, NumForms = LU.Formulae.size();
+ FIdx != NumForms; ++FIdx) {
+ Formula &F = LU.Formulae[FIdx];
+
+ SmallVector<const SCEV *, 2> Key;
+ for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
+ JE = F.BaseRegs.end(); J != JE; ++J) {
+ const SCEV *Reg = *J;
+ if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
+ Key.push_back(Reg);
+ }
+ if (F.ScaledReg &&
+ RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
+ Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for
+ // uniquifying.
+ std::sort(Key.begin(), Key.end());
+
+ std::pair<BestFormulaeTy::const_iterator, bool> P =
+ BestFormulae.insert(std::make_pair(Key, FIdx));
+ if (!P.second) {
+ Formula &Best = LU.Formulae[P.first->second];
+ if (Sorter.operator()(F, Best))
+ std::swap(F, Best);
+ DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
+ dbgs() << "\n"
+ " in favor of formula "; Best.print(dbgs());
+ dbgs() << '\n');
+#ifndef NDEBUG
+ ChangedFormulae = true;
+#endif
+ LU.DeleteFormula(F);
+ --FIdx;
+ --NumForms;
+ Any = true;
+ continue;
+ }
+ }
+
+ // Now that we've filtered out some formulae, recompute the Regs set.
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+
+ // Reset this to prepare for the next use.
+ BestFormulae.clear();
+ }
+
+ DEBUG(if (ChangedFormulae) {
+ dbgs() << "\n"
+ "After filtering out undesirable candidates:\n";
+ print_uses(dbgs());
+ });
+}
+
+// This is a rough guess that seems to work fairly well.
+static const size_t ComplexityLimit = UINT16_MAX;
+
+/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
+/// solutions the solver might have to consider. It almost never considers
+/// this many solutions because it prune the search space, but the pruning
+/// isn't always sufficient.
+size_t LSRInstance::EstimateSearchSpaceComplexity() const {
+ uint32_t Power = 1;
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ size_t FSize = I->Formulae.size();
+ if (FSize >= ComplexityLimit) {
+ Power = ComplexityLimit;
+ break;
+ }
+ Power *= FSize;
+ if (Power >= ComplexityLimit)
+ break;
+ }
+ return Power;
+}
+
+/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
+/// formulae to choose from, use some rough heuristics to prune down the number
+/// of formulae. This keeps the main solver from taking an extraordinary amount
+/// of time in some worst-case scenarios.
+void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
+ if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
+ "which use a superset of registers used by other "
+ "formulae.\n");
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ bool Any = false;
+ for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
+ Formula &F = LU.Formulae[i];
+ // Look for a formula with a constant or GV in a register. If the use
+ // also has a formula with that same value in an immediate field,
+ // delete the one that uses a register.
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
+ Formula NewF = F;
+ NewF.AM.BaseOffs += C->getValue()->getSExtValue();
+ NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
+ (I - F.BaseRegs.begin()));
+ if (LU.HasFormulaWithSameRegs(NewF)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
+ LU.DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ break;
+ }
+ } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
+ if (!F.AM.BaseGV) {
+ Formula NewF = F;
+ NewF.AM.BaseGV = GV;
+ NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
+ (I - F.BaseRegs.begin()));
+ if (LU.HasFormulaWithSameRegs(NewF)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs());
+ dbgs() << '\n');
+ LU.DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+ }
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+
+ if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
+ "separated by a constant offset will use the same "
+ "registers.\n");
+
+ // This is especially useful for unrolled loops.
+
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
+ if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
+ if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
+ /*HasBaseReg=*/false,
+ LU.Kind, LU.AccessTy)) {
+ DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
+ dbgs() << '\n');
+
+ LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
+
+ // Delete formulae from the new use which are no longer legal.
+ bool Any = false;
+ for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
+ Formula &F = LUThatHas->Formulae[i];
+ if (!isLegalUse(F.AM,
+ LUThatHas->MinOffset, LUThatHas->MaxOffset,
+ LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs());
+ dbgs() << '\n');
+ LUThatHas->DeleteFormula(F);
+ --i;
+ --e;
+ Any = true;
+ }
+ }
+ if (Any)
+ LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
+
+ // Update the relocs to reference the new use.
+ for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ LSRFixup &Fixup = *I;
+ if (Fixup.LUIdx == LUIdx) {
+ Fixup.LUIdx = LUThatHas - &Uses.front();
+ Fixup.Offset += F.AM.BaseOffs;
+ DEBUG(errs() << "New fixup has offset "
+ << Fixup.Offset << '\n');
+ }
+ if (Fixup.LUIdx == NumUses-1)
+ Fixup.LUIdx = LUIdx;
+ }
+
+ // Delete the old use.
+ DeleteUse(LU);
+ --LUIdx;
+ --NumUses;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+
+ // With all other options exhausted, loop until the system is simple
+ // enough to handle.
+ SmallPtrSet<const SCEV *, 4> Taken;
+ while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
+ // Ok, we have too many of formulae on our hands to conveniently handle.
+ // Use a rough heuristic to thin out the list.
+ DEBUG(dbgs() << "The search space is too complex.\n");
+
+ // Pick the register which is used by the most LSRUses, which is likely
+ // to be a good reuse register candidate.
+ const SCEV *Best = 0;
+ unsigned BestNum = 0;
+ for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
+ I != E; ++I) {
+ const SCEV *Reg = *I;
+ if (Taken.count(Reg))
+ continue;
+ if (!Best)
+ Best = Reg;
+ else {
+ unsigned Count = RegUses.getUsedByIndices(Reg).count();
+ if (Count > BestNum) {
+ Best = Reg;
+ BestNum = Count;
+ }
+ }
+ }
+
+ DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
+ << " will yield profitable reuse.\n");
+ Taken.insert(Best);
+
+ // In any use with formulae which references this register, delete formulae
+ // which don't reference it.
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+ if (!LU.Regs.count(Best)) continue;
+
+ bool Any = false;
+ for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
+ Formula &F = LU.Formulae[i];
+ if (!F.referencesReg(Best)) {
+ DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
+ LU.DeleteFormula(F);
+ --e;
+ --i;
+ Any = true;
+ assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
+ continue;
+ }
+ }
+
+ if (Any)
+ LU.RecomputeRegs(LUIdx, RegUses);
+ }
+
+ DEBUG(dbgs() << "After pre-selection:\n";
+ print_uses(dbgs()));
+ }
+}
+
+/// SolveRecurse - This is the recursive solver.
+void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
+ Cost &SolutionCost,
+ SmallVectorImpl<const Formula *> &Workspace,
+ const Cost &CurCost,
+ const SmallPtrSet<const SCEV *, 16> &CurRegs,
+ DenseSet<const SCEV *> &VisitedRegs) const {
+ // Some ideas:
+ // - prune more:
+ // - use more aggressive filtering
+ // - sort the formula so that the most profitable solutions are found first
+ // - sort the uses too
+ // - search faster:
+ // - don't compute a cost, and then compare. compare while computing a cost
+ // and bail early.
+ // - track register sets with SmallBitVector
+
+ const LSRUse &LU = Uses[Workspace.size()];
+
+ // If this use references any register that's already a part of the
+ // in-progress solution, consider it a requirement that a formula must
+ // reference that register in order to be considered. This prunes out
+ // unprofitable searching.
+ SmallSetVector<const SCEV *, 4> ReqRegs;
+ for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
+ E = CurRegs.end(); I != E; ++I)
+ if (LU.Regs.count(*I))
+ ReqRegs.insert(*I);
+
+ bool AnySatisfiedReqRegs = false;
+ SmallPtrSet<const SCEV *, 16> NewRegs;
+ Cost NewCost;
+retry:
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+
+ // Ignore formulae which do not use any of the required registers.
+ for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
+ JE = ReqRegs.end(); J != JE; ++J) {
+ const SCEV *Reg = *J;
+ if ((!F.ScaledReg || F.ScaledReg != Reg) &&
+ std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
+ F.BaseRegs.end())
+ goto skip;
+ }
+ AnySatisfiedReqRegs = true;
+
+ // Evaluate the cost of the current formula. If it's already worse than
+ // the current best, prune the search at that point.
+ NewCost = CurCost;
+ NewRegs = CurRegs;
+ NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
+ if (NewCost < SolutionCost) {
+ Workspace.push_back(&F);
+ if (Workspace.size() != Uses.size()) {
+ SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
+ NewRegs, VisitedRegs);
+ if (F.getNumRegs() == 1 && Workspace.size() == 1)
+ VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
+ } else {
+ DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
+ dbgs() << ". Regs:";
+ for (SmallPtrSet<const SCEV *, 16>::const_iterator
+ I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
+ dbgs() << ' ' << **I;
+ dbgs() << '\n');
+
+ SolutionCost = NewCost;
+ Solution = Workspace;
+ }
+ Workspace.pop_back();
+ }
+ skip:;
+ }
+
+ // If none of the formulae had all of the required registers, relax the
+ // constraint so that we don't exclude all formulae.
+ if (!AnySatisfiedReqRegs) {
+ assert(!ReqRegs.empty() && "Solver failed even without required registers");
+ ReqRegs.clear();
+ goto retry;
+ }
+}
+
+/// Solve - Choose one formula from each use. Return the results in the given
+/// Solution vector.
+void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
+ SmallVector<const Formula *, 8> Workspace;
+ Cost SolutionCost;
+ SolutionCost.Loose();
+ Cost CurCost;
+ SmallPtrSet<const SCEV *, 16> CurRegs;
+ DenseSet<const SCEV *> VisitedRegs;
+ Workspace.reserve(Uses.size());
+
+ // SolveRecurse does all the work.
+ SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
+ CurRegs, VisitedRegs);
+
+ // Ok, we've now made all our decisions.
+ DEBUG(dbgs() << "\n"
+ "The chosen solution requires "; SolutionCost.print(dbgs());
+ dbgs() << ":\n";
+ for (size_t i = 0, e = Uses.size(); i != e; ++i) {
+ dbgs() << " ";
+ Uses[i].print(dbgs());
+ dbgs() << "\n"
+ " ";
+ Solution[i]->print(dbgs());
+ dbgs() << '\n';
+ });
+
+ assert(Solution.size() == Uses.size() && "Malformed solution!");
+}
+
+/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
+/// the dominator tree far as we can go while still being dominated by the
+/// input positions. This helps canonicalize the insert position, which
+/// encourages sharing.
+BasicBlock::iterator
+LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
+ const SmallVectorImpl<Instruction *> &Inputs)
+ const {
+ for (;;) {
+ const Loop *IPLoop = LI.getLoopFor(IP->getParent());
+ unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
+
+ BasicBlock *IDom;
+ for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
+ if (!Rung) return IP;
+ Rung = Rung->getIDom();
+ if (!Rung) return IP;
+ IDom = Rung->getBlock();
+
+ // Don't climb into a loop though.
+ const Loop *IDomLoop = LI.getLoopFor(IDom);
+ unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
+ if (IDomDepth <= IPLoopDepth &&
+ (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
+ break;
+ }
+
+ bool AllDominate = true;
+ Instruction *BetterPos = 0;
+ Instruction *Tentative = IDom->getTerminator();
+ for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
+ E = Inputs.end(); I != E; ++I) {
+ Instruction *Inst = *I;
+ if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
+ AllDominate = false;
+ break;
+ }
+ // Attempt to find an insert position in the middle of the block,
+ // instead of at the end, so that it can be used for other expansions.
+ if (IDom == Inst->getParent() &&
+ (!BetterPos || DT.dominates(BetterPos, Inst)))
+ BetterPos = llvm::next(BasicBlock::iterator(Inst));
+ }
+ if (!AllDominate)
+ break;
+ if (BetterPos)
+ IP = BetterPos;
+ else
+ IP = Tentative;
+ }
+
+ return IP;
+}
+
+/// AdjustInsertPositionForExpand - Determine an input position which will be
+/// dominated by the operands and which will dominate the result.
+BasicBlock::iterator
+LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
+ const LSRFixup &LF,
+ const LSRUse &LU) const {
+ // Collect some instructions which must be dominated by the
+ // expanding replacement. These must be dominated by any operands that
+ // will be required in the expansion.
+ SmallVector<Instruction *, 4> Inputs;
+ if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
+ Inputs.push_back(I);
+ if (LU.Kind == LSRUse::ICmpZero)
+ if (Instruction *I =
+ dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
+ Inputs.push_back(I);
+ if (LF.PostIncLoops.count(L)) {
+ if (LF.isUseFullyOutsideLoop(L))
+ Inputs.push_back(L->getLoopLatch()->getTerminator());
+ else
+ Inputs.push_back(IVIncInsertPos);
+ }
+ // The expansion must also be dominated by the increment positions of any
+ // loops it for which it is using post-inc mode.
+ for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
+ E = LF.PostIncLoops.end(); I != E; ++I) {
+ const Loop *PIL = *I;
+ if (PIL == L) continue;
+
+ // Be dominated by the loop exit.
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ PIL->getExitingBlocks(ExitingBlocks);
+ if (!ExitingBlocks.empty()) {
+ BasicBlock *BB = ExitingBlocks[0];
+ for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
+ BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
+ Inputs.push_back(BB->getTerminator());
+ }
+ }
+
+ // Then, climb up the immediate dominator tree as far as we can go while
+ // still being dominated by the input positions.
+ IP = HoistInsertPosition(IP, Inputs);
+
+ // Don't insert instructions before PHI nodes.
+ while (isa<PHINode>(IP)) ++IP;
+
+ // Ignore debug intrinsics.
+ while (isa<DbgInfoIntrinsic>(IP)) ++IP;
+
+ return IP;
+}
+
+/// Expand - Emit instructions for the leading candidate expression for this
+/// LSRUse (this is called "expanding").
+Value *LSRInstance::Expand(const LSRFixup &LF,
+ const Formula &F,
+ BasicBlock::iterator IP,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) const {
+ const LSRUse &LU = Uses[LF.LUIdx];
+
+ // Determine an input position which will be dominated by the operands and
+ // which will dominate the result.
+ IP = AdjustInsertPositionForExpand(IP, LF, LU);
+
+ // Inform the Rewriter if we have a post-increment use, so that it can
+ // perform an advantageous expansion.
+ Rewriter.setPostInc(LF.PostIncLoops);
+
+ // This is the type that the user actually needs.
+ const Type *OpTy = LF.OperandValToReplace->getType();
+ // This will be the type that we'll initially expand to.
+ const Type *Ty = F.getType();
+ if (!Ty)
+ // No type known; just expand directly to the ultimate type.
+ Ty = OpTy;
+ else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
+ // Expand directly to the ultimate type if it's the right size.
+ Ty = OpTy;
+ // This is the type to do integer arithmetic in.
+ const Type *IntTy = SE.getEffectiveSCEVType(Ty);
+
+ // Build up a list of operands to add together to form the full base.
+ SmallVector<const SCEV *, 8> Ops;
+
+ // Expand the BaseRegs portion.
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ assert(!Reg->isZero() && "Zero allocated in a base register!");
+
+ // If we're expanding for a post-inc user, make the post-inc adjustment.
+ PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
+ Reg = TransformForPostIncUse(Denormalize, Reg,
+ LF.UserInst, LF.OperandValToReplace,
+ Loops, SE, DT);
+
+ Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
+ }
+
+ // Flush the operand list to suppress SCEVExpander hoisting.
+ if (!Ops.empty()) {
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Ops.clear();
+ Ops.push_back(SE.getUnknown(FullV));
+ }
+
+ // Expand the ScaledReg portion.
+ Value *ICmpScaledV = 0;
+ if (F.AM.Scale != 0) {
+ const SCEV *ScaledS = F.ScaledReg;
+
+ // If we're expanding for a post-inc user, make the post-inc adjustment.
+ PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
+ ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
+ LF.UserInst, LF.OperandValToReplace,
+ Loops, SE, DT);
+
+ if (LU.Kind == LSRUse::ICmpZero) {
+ // An interesting way of "folding" with an icmp is to use a negated
+ // scale, which we'll implement by inserting it into the other operand
+ // of the icmp.
+ assert(F.AM.Scale == -1 &&
+ "The only scale supported by ICmpZero uses is -1!");
+ ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
+ } else {
+ // Otherwise just expand the scaled register and an explicit scale,
+ // which is expected to be matched as part of the address.
+ ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
+ ScaledS = SE.getMulExpr(ScaledS,
+ SE.getConstant(ScaledS->getType(), F.AM.Scale));
+ Ops.push_back(ScaledS);
+
+ // Flush the operand list to suppress SCEVExpander hoisting.
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Ops.clear();
+ Ops.push_back(SE.getUnknown(FullV));
+ }
+ }
+
+ // Expand the GV portion.
+ if (F.AM.BaseGV) {
+ Ops.push_back(SE.getUnknown(F.AM.BaseGV));
+
+ // Flush the operand list to suppress SCEVExpander hoisting.
+ Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
+ Ops.clear();
+ Ops.push_back(SE.getUnknown(FullV));
+ }
+
+ // Expand the immediate portion.
+ int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
+ if (Offset != 0) {
+ if (LU.Kind == LSRUse::ICmpZero) {
+ // The other interesting way of "folding" with an ICmpZero is to use a
+ // negated immediate.
+ if (!ICmpScaledV)
+ ICmpScaledV = ConstantInt::get(IntTy, -Offset);
+ else {
+ Ops.push_back(SE.getUnknown(ICmpScaledV));
+ ICmpScaledV = ConstantInt::get(IntTy, Offset);
+ }
+ } else {
+ // Just add the immediate values. These again are expected to be matched
+ // as part of the address.
+ Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
+ }
+ }
+
+ // Emit instructions summing all the operands.
+ const SCEV *FullS = Ops.empty() ?
+ SE.getConstant(IntTy, 0) :
+ SE.getAddExpr(Ops);
+ Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
+
+ // We're done expanding now, so reset the rewriter.
+ Rewriter.clearPostInc();
+
+ // An ICmpZero Formula represents an ICmp which we're handling as a
+ // comparison against zero. Now that we've expanded an expression for that
+ // form, update the ICmp's other operand.
+ if (LU.Kind == LSRUse::ICmpZero) {
+ ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
+ DeadInsts.push_back(CI->getOperand(1));
+ assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ "a scale at the same time!");
+ if (F.AM.Scale == -1) {
+ if (ICmpScaledV->getType() != OpTy) {
+ Instruction *Cast =
+ CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
+ OpTy, false),
+ ICmpScaledV, OpTy, "tmp", CI);
+ ICmpScaledV = Cast;
+ }
+ CI->setOperand(1, ICmpScaledV);
+ } else {
+ assert(F.AM.Scale == 0 &&
+ "ICmp does not support folding a global value and "
+ "a scale at the same time!");
+ Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
+ -(uint64_t)Offset);
+ if (C->getType() != OpTy)
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ OpTy, false),
+ C, OpTy);
+
+ CI->setOperand(1, C);
+ }
+ }
+
+ return FullV;
+}
+
+/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
+/// of their operands effectively happens in their predecessor blocks, so the
+/// expression may need to be expanded in multiple places.
+void LSRInstance::RewriteForPHI(PHINode *PN,
+ const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const {
+ DenseMap<BasicBlock *, Value *> Inserted;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
+ BasicBlock *BB = PN->getIncomingBlock(i);
+
+ // If this is a critical edge, split the edge so that we do not insert
+ // the code on all predecessor/successor paths. We do this unless this
+ // is the canonical backedge for this loop, which complicates post-inc
+ // users.
+ if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
+ !isa<IndirectBrInst>(BB->getTerminator()) &&
+ (PN->getParent() != L->getHeader() || !L->contains(BB))) {
+ // Split the critical edge.
+ BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
+
+ // If PN is outside of the loop and BB is in the loop, we want to
+ // move the block to be immediately before the PHI block, not
+ // immediately after BB.
+ if (L->contains(BB) && !L->contains(PN))
+ NewBB->moveBefore(PN->getParent());
+
+ // Splitting the edge can reduce the number of PHI entries we have.
+ e = PN->getNumIncomingValues();
+ BB = NewBB;
+ i = PN->getBasicBlockIndex(BB);
+ }
+
+ std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
+ Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
+ if (!Pair.second)
+ PN->setIncomingValue(i, Pair.first->second);
+ else {
+ Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
+
+ // If this is reuse-by-noop-cast, insert the noop cast.
+ const Type *OpTy = LF.OperandValToReplace->getType();
+ if (FullV->getType() != OpTy)
+ FullV =
+ CastInst::Create(CastInst::getCastOpcode(FullV, false,
+ OpTy, false),
+ FullV, LF.OperandValToReplace->getType(),
+ "tmp", BB->getTerminator());
+
+ PN->setIncomingValue(i, FullV);
+ Pair.first->second = FullV;
+ }
+ }
+}
+
+/// Rewrite - Emit instructions for the leading candidate expression for this
+/// LSRUse (this is called "expanding"), and update the UserInst to reference
+/// the newly expanded value.
+void LSRInstance::Rewrite(const LSRFixup &LF,
+ const Formula &F,
+ SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ Pass *P) const {
+ // First, find an insertion point that dominates UserInst. For PHI nodes,
+ // find the nearest block which dominates all the relevant uses.
+ if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
+ RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
+ } else {
+ Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
+
+ // If this is reuse-by-noop-cast, insert the noop cast.
+ const Type *OpTy = LF.OperandValToReplace->getType();
+ if (FullV->getType() != OpTy) {
+ Instruction *Cast =
+ CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
+ FullV, OpTy, "tmp", LF.UserInst);
+ FullV = Cast;
+ }
+
+ // Update the user. ICmpZero is handled specially here (for now) because
+ // Expand may have updated one of the operands of the icmp already, and
+ // its new value may happen to be equal to LF.OperandValToReplace, in
+ // which case doing replaceUsesOfWith leads to replacing both operands
+ // with the same value. TODO: Reorganize this.
+ if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
+ LF.UserInst->setOperand(0, FullV);
+ else
+ LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
+ }
+
+ DeadInsts.push_back(LF.OperandValToReplace);
+}
+
+/// ImplementSolution - Rewrite all the fixup locations with new values,
+/// following the chosen solution.
+void
+LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
+ Pass *P) {
+ // Keep track of instructions we may have made dead, so that
+ // we can remove them after we are done working.
+ SmallVector<WeakVH, 16> DeadInsts;
+
+ SCEVExpander Rewriter(SE);
+ Rewriter.disableCanonicalMode();
+ Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
+
+ // Expand the new value definitions and update the users.
+ for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ const LSRFixup &Fixup = *I;
+
+ Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
+
+ Changed = true;
+ }
+
+ // Clean up after ourselves. This must be done before deleting any
+ // instructions.
+ Rewriter.clear();
+
+ Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
+}
+
+LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()),
+ SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()),
+ LI(P->getAnalysis<LoopInfo>()),
+ TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
+
+ // If LoopSimplify form is not available, stay out of trouble.
+ if (!L->isLoopSimplifyForm()) return;
+
+ // If there's no interesting work to be done, bail early.
+ if (IU.empty()) return;
+
+ DEBUG(dbgs() << "\nLSR on loop ";
+ WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
+ dbgs() << ":\n");
+
+ // First, perform some low-level loop optimizations.
+ OptimizeShadowIV();
+ OptimizeLoopTermCond();
+
+ // Start collecting data and preparing for the solver.
+ CollectInterestingTypesAndFactors();
+ CollectFixupsAndInitialFormulae();
+ CollectLoopInvariantFixupsAndFormulae();
+
+ DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
+ print_uses(dbgs()));
+
+ // Now use the reuse data to generate a bunch of interesting ways
+ // to formulate the values needed for the uses.
+ GenerateAllReuseFormulae();
+
+ DEBUG(dbgs() << "\n"
+ "After generating reuse formulae:\n";
+ print_uses(dbgs()));
+
+ FilterOutUndesirableDedicatedRegisters();
+ NarrowSearchSpaceUsingHeuristics();
+
+ SmallVector<const Formula *, 8> Solution;
+ Solve(Solution);
+
+ // Release memory that is no longer needed.
+ Factors.clear();
+ Types.clear();
+ RegUses.clear();
+
+#ifndef NDEBUG
+ // Formulae should be legal.
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ const LSRUse &LU = *I;
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end(); J != JE; ++J)
+ assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
+ LU.Kind, LU.AccessTy, TLI) &&
+ "Illegal formula generated!");
+ };
+#endif
+
+ // Now that we've decided what we want, make it so.
+ ImplementSolution(Solution, P);
+}
+
+void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
+ if (Factors.empty() && Types.empty()) return;
+
+ OS << "LSR has identified the following interesting factors and types: ";
+ bool First = true;
+
+ for (SmallSetVector<int64_t, 8>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ if (!First) OS << ", ";
+ First = false;
+ OS << '*' << *I;
+ }
+
+ for (SmallSetVector<const Type *, 4>::const_iterator
+ I = Types.begin(), E = Types.end(); I != E; ++I) {
+ if (!First) OS << ", ";
+ First = false;
+ OS << '(' << **I << ')';
+ }
+ OS << '\n';
+}
+
+void LSRInstance::print_fixups(raw_ostream &OS) const {
+ OS << "LSR is examining the following fixup sites:\n";
+ for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
+ E = Fixups.end(); I != E; ++I) {
+ dbgs() << " ";
+ I->print(OS);
+ OS << '\n';
+ }
+}
+
+void LSRInstance::print_uses(raw_ostream &OS) const {
+ OS << "LSR is examining the following uses:\n";
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ const LSRUse &LU = *I;
+ dbgs() << " ";
+ LU.print(OS);
+ OS << '\n';
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end(); J != JE; ++J) {
+ OS << " ";
+ J->print(OS);
+ OS << '\n';
+ }
+ }
+}
+
+void LSRInstance::print(raw_ostream &OS) const {
+ print_factors_and_types(OS);
+ print_fixups(OS);
+ print_uses(OS);
+}
+
+void LSRInstance::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+class LoopStrengthReduce : public LoopPass {
+ /// TLI - Keep a pointer of a TargetLowering to consult for determining
+ /// transformation profitability.
+ const TargetLowering *const TLI;
+
+public:
+ static char ID; // Pass ID, replacement for typeid
+ explicit LoopStrengthReduce(const TargetLowering *tli = 0);
+
+private:
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+ void getAnalysisUsage(AnalysisUsage &AU) const;
+};
+
+}
+
+char LoopStrengthReduce::ID = 0;
+static RegisterPass<LoopStrengthReduce>
+X("loop-reduce", "Loop Strength Reduction");
+
+Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
+ return new LoopStrengthReduce(TLI);
+}
+
+LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
+ : LoopPass(&ID), TLI(tli) {}
+
+void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
+ // We split critical edges, so we change the CFG. However, we do update
+ // many analyses if they are around.
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreserved("domfrontier");
+
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<DominatorTree>();
+ AU.addPreserved<DominatorTree>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<IVUsers>();
+ AU.addPreserved<IVUsers>();
+}
+
+bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
+ bool Changed = false;
+
+ // Run the main LSR transformation.
+ Changed |= LSRInstance(TLI, L, this).getChanged();
+
+ // At this point, it is worth checking to see if any recurrence PHIs are also
+ // dead, so that we can remove them as well.
+ Changed |= DeleteDeadPHIs(L->getHeader());
+
+ return Changed;
+}
OpenPOWER on IntegriCloud