summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp985
1 files changed, 855 insertions, 130 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 3e122c2..d57ec22 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -77,19 +77,22 @@
#include <algorithm>
using namespace llvm;
-namespace llvm {
-cl::opt<bool> EnableNested(
- "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops"));
-
-cl::opt<bool> EnableRetry(
- "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry"));
-
// Temporary flag to cleanup congruent phis after LSR phi expansion.
// It's currently disabled until we can determine whether it's truly useful or
// not. The flag should be removed after the v3.0 release.
-cl::opt<bool> EnablePhiElim(
- "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination"));
-}
+// This is now needed for ivchains.
+static cl::opt<bool> EnablePhiElim(
+ "enable-lsr-phielim", cl::Hidden, cl::init(true),
+ cl::desc("Enable LSR phi elimination"));
+
+#ifndef NDEBUG
+// Stress test IV chain generation.
+static cl::opt<bool> StressIVChain(
+ "stress-ivchain", cl::Hidden, cl::init(false),
+ cl::desc("Stress test LSR IV chains"));
+#else
+static bool StressIVChain = false;
+#endif
namespace {
@@ -636,6 +639,91 @@ static Type *getAccessType(const Instruction *Inst) {
return AccessTy;
}
+/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
+static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
+ for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ if (SE.isSCEVable(PN->getType()) &&
+ (SE.getEffectiveSCEVType(PN->getType()) ==
+ SE.getEffectiveSCEVType(AR->getType())) &&
+ SE.getSCEV(PN) == AR)
+ return true;
+ }
+ return false;
+}
+
+/// Check if expanding this expression is likely to incur significant cost. This
+/// is tricky because SCEV doesn't track which expressions are actually computed
+/// by the current IR.
+///
+/// We currently allow expansion of IV increments that involve adds,
+/// multiplication by constants, and AddRecs from existing phis.
+///
+/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
+/// obvious multiple of the UDivExpr.
+static bool isHighCostExpansion(const SCEV *S,
+ SmallPtrSet<const SCEV*, 8> &Processed,
+ ScalarEvolution &SE) {
+ // Zero/One operand expressions
+ switch (S->getSCEVType()) {
+ case scUnknown:
+ case scConstant:
+ return false;
+ case scTruncate:
+ return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
+ Processed, SE);
+ case scZeroExtend:
+ return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
+ Processed, SE);
+ case scSignExtend:
+ return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
+ Processed, SE);
+ }
+
+ if (!Processed.insert(S))
+ return false;
+
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ if (isHighCostExpansion(*I, Processed, SE))
+ return true;
+ }
+ return false;
+ }
+
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ if (Mul->getNumOperands() == 2) {
+ // Multiplication by a constant is ok
+ if (isa<SCEVConstant>(Mul->getOperand(0)))
+ return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
+
+ // If we have the value of one operand, check if an existing
+ // multiplication already generates this expression.
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
+ Value *UVal = U->getValue();
+ for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
+ UI != UE; ++UI) {
+ // If U is a constant, it may be used by a ConstantExpr.
+ Instruction *User = dyn_cast<Instruction>(*UI);
+ if (User && User->getOpcode() == Instruction::Mul
+ && SE.isSCEVable(User->getType())) {
+ return SE.getSCEV(User) == Mul;
+ }
+ }
+ }
+ }
+ }
+
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ if (isExistingPhi(AR, SE))
+ return false;
+ }
+
+ // Fow now, consider any other type of expression (div/mul/min/max) high cost.
+ return true;
+}
+
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
@@ -705,7 +793,8 @@ public:
const DenseSet<const SCEV *> &VisitedRegs,
const Loop *L,
const SmallVectorImpl<int64_t> &Offsets,
- ScalarEvolution &SE, DominatorTree &DT);
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
void print(raw_ostream &OS) const;
void dump() const;
@@ -718,7 +807,8 @@ private:
void RatePrimaryRegister(const SCEV *Reg,
SmallPtrSet<const SCEV *, 16> &Regs,
const Loop *L,
- ScalarEvolution &SE, DominatorTree &DT);
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs);
};
}
@@ -729,41 +819,20 @@ void Cost::RateRegister(const SCEV *Reg,
const Loop *L,
ScalarEvolution &SE, DominatorTree &DT) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
- if (AR->getLoop() == L)
- AddRecCost += 1; /// TODO: This should be a function of the stride.
-
// If this is an addrec for another loop, don't second-guess its addrec phi
// nodes. LSR isn't currently smart enough to reason about more than one
- // loop at a time. LSR has either already run on inner loops, will not run
- // on other loops, and cannot be expected to change sibling loops. If the
- // AddRec exists, consider it's register free and leave it alone. Otherwise,
- // do not consider this formula at all.
- // FIXME: why do we need to generate such fomulae?
- else if (!EnableNested || L->contains(AR->getLoop()) ||
- (!AR->getLoop()->contains(L) &&
- DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
- for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- if (SE.isSCEVable(PN->getType()) &&
- (SE.getEffectiveSCEVType(PN->getType()) ==
- SE.getEffectiveSCEVType(AR->getType())) &&
- SE.getSCEV(PN) == AR)
- return;
- }
- if (!EnableNested) {
- Loose();
+ // loop at a time. LSR has already run on inner loops, will not run on outer
+ // loops, and cannot be expected to change sibling loops.
+ if (AR->getLoop() != L) {
+ // If the AddRec exists, consider it's register free and leave it alone.
+ if (isExistingPhi(AR, SE))
return;
- }
- // If this isn't one of the addrecs that the loop already has, it
- // would require a costly new phi and add. TODO: This isn't
- // precisely modeled right now.
- ++NumBaseAdds;
- if (!Regs.count(AR->getStart())) {
- RateRegister(AR->getStart(), Regs, L, SE, DT);
- if (isLoser())
- return;
- }
+
+ // Otherwise, do not consider this formula at all.
+ Loose();
+ return;
}
+ AddRecCost += 1; /// TODO: This should be a function of the stride.
// Add the step value register, if it needs one.
// TODO: The non-affine case isn't precisely modeled here.
@@ -791,13 +860,22 @@ void Cost::RateRegister(const SCEV *Reg,
}
/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
-/// before, rate it.
+/// before, rate it. Optional LoserRegs provides a way to declare any formula
+/// that refers to one of those regs an instant loser.
void Cost::RatePrimaryRegister(const SCEV *Reg,
SmallPtrSet<const SCEV *, 16> &Regs,
const Loop *L,
- ScalarEvolution &SE, DominatorTree &DT) {
- if (Regs.insert(Reg))
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs) {
+ if (LoserRegs && LoserRegs->count(Reg)) {
+ Loose();
+ return;
+ }
+ if (Regs.insert(Reg)) {
RateRegister(Reg, Regs, L, SE, DT);
+ if (isLoser())
+ LoserRegs->insert(Reg);
+ }
}
void Cost::RateFormula(const Formula &F,
@@ -805,14 +883,15 @@ void Cost::RateFormula(const Formula &F,
const DenseSet<const SCEV *> &VisitedRegs,
const Loop *L,
const SmallVectorImpl<int64_t> &Offsets,
- ScalarEvolution &SE, DominatorTree &DT) {
+ ScalarEvolution &SE, DominatorTree &DT,
+ SmallPtrSet<const SCEV *, 16> *LoserRegs) {
// Tally up the registers.
if (const SCEV *ScaledReg = F.ScaledReg) {
if (VisitedRegs.count(ScaledReg)) {
Loose();
return;
}
- RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
+ RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
if (isLoser())
return;
}
@@ -823,7 +902,7 @@ void Cost::RateFormula(const Formula &F,
Loose();
return;
}
- RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
+ RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
if (isLoser())
return;
}
@@ -1105,7 +1184,6 @@ bool LSRUse::InsertFormula(const Formula &F) {
Formulae.push_back(F);
// Record registers now being used by this use.
- if (F.ScaledReg) Regs.insert(F.ScaledReg);
Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
return true;
@@ -1116,7 +1194,6 @@ void LSRUse::DeleteFormula(Formula &F) {
if (&F != &Formulae.back())
std::swap(F, Formulae.back());
Formulae.pop_back();
- assert(!Formulae.empty() && "LSRUse has no formulae left!");
}
/// RecomputeRegs - Recompute the Regs field, and update RegUses.
@@ -1205,10 +1282,19 @@ static bool isLegalUse(const TargetLowering::AddrMode &AM,
// If we have low-level target information, ask the target if it can fold an
// integer immediate on an icmp.
if (AM.BaseOffs != 0) {
- if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs);
- return false;
+ if (!TLI)
+ return false;
+ // We have one of:
+ // ICmpZero BaseReg + Offset => ICmp BaseReg, -Offset
+ // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
+ // Offs is the ICmp immediate.
+ int64_t Offs = AM.BaseOffs;
+ if (AM.Scale == 0)
+ Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
+ return TLI->isLegalICmpImmediate(Offs);
}
+ // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
return true;
case LSRUse::Basic:
@@ -1220,7 +1306,7 @@ static bool isLegalUse(const TargetLowering::AddrMode &AM,
return AM.Scale == 0 || AM.Scale == -1;
}
- return false;
+ llvm_unreachable("Invalid LSRUse Kind!");
}
static bool isLegalUse(TargetLowering::AddrMode AM,
@@ -1327,6 +1413,36 @@ struct UseMapDenseMapInfo {
}
};
+/// IVInc - An individual increment in a Chain of IV increments.
+/// Relate an IV user to an expression that computes the IV it uses from the IV
+/// used by the previous link in the Chain.
+///
+/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
+/// original IVOperand. The head of the chain's IVOperand is only valid during
+/// chain collection, before LSR replaces IV users. During chain generation,
+/// IncExpr can be used to find the new IVOperand that computes the same
+/// expression.
+struct IVInc {
+ Instruction *UserInst;
+ Value* IVOperand;
+ const SCEV *IncExpr;
+
+ IVInc(Instruction *U, Value *O, const SCEV *E):
+ UserInst(U), IVOperand(O), IncExpr(E) {}
+};
+
+// IVChain - The list of IV increments in program order.
+// We typically add the head of a chain without finding subsequent links.
+typedef SmallVector<IVInc,1> IVChain;
+
+/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
+/// Distinguish between FarUsers that definitely cross IV increments and
+/// NearUsers that may be used between IV increments.
+struct ChainUsers {
+ SmallPtrSet<Instruction*, 4> FarUsers;
+ SmallPtrSet<Instruction*, 4> NearUsers;
+};
+
/// LSRInstance - This class holds state for the main loop strength reduction
/// logic.
class LSRInstance {
@@ -1359,11 +1475,29 @@ class LSRInstance {
/// RegUses - Track which uses use which register candidates.
RegUseTracker RegUses;
+ // Limit the number of chains to avoid quadratic behavior. We don't expect to
+ // have more than a few IV increment chains in a loop. Missing a Chain falls
+ // back to normal LSR behavior for those uses.
+ static const unsigned MaxChains = 8;
+
+ /// IVChainVec - IV users can form a chain of IV increments.
+ SmallVector<IVChain, MaxChains> IVChainVec;
+
+ /// IVIncSet - IV users that belong to profitable IVChains.
+ SmallPtrSet<Use*, MaxChains> IVIncSet;
+
void OptimizeShadowIV();
bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
void OptimizeLoopTermCond();
+ void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
+ SmallVectorImpl<ChainUsers> &ChainUsersVec);
+ void FinalizeChain(IVChain &Chain);
+ void CollectChains();
+ void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts);
+
void CollectInterestingTypesAndFactors();
void CollectFixupsAndInitialFormulae();
@@ -1389,7 +1523,6 @@ class LSRInstance {
LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
-public:
void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
void CountRegisters(const Formula &F, size_t LUIdx);
@@ -1428,9 +1561,11 @@ public:
BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,
const SmallVectorImpl<Instruction *> &Inputs) const;
- BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
- const LSRFixup &LF,
- const LSRUse &LU) const;
+ BasicBlock::iterator
+ AdjustInsertPositionForExpand(BasicBlock::iterator IP,
+ const LSRFixup &LF,
+ const LSRUse &LU,
+ SCEVExpander &Rewriter) const;
Value *Expand(const LSRFixup &LF,
const Formula &F,
@@ -1450,6 +1585,7 @@ public:
void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Pass *P);
+public:
LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
bool getChanged() const { return Changed; }
@@ -2045,7 +2181,8 @@ void LSRInstance::CollectInterestingTypesAndFactors() {
do {
const SCEV *S = Worklist.pop_back_val();
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- Strides.insert(AR->getStepRecurrence(SE));
+ if (AR->getLoop() == L)
+ Strides.insert(AR->getStepRecurrence(SE));
Worklist.push_back(AR->getStart());
} else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Worklist.append(Add->op_begin(), Add->op_end());
@@ -2091,11 +2228,544 @@ void LSRInstance::CollectInterestingTypesAndFactors() {
DEBUG(print_factors_and_types(dbgs()));
}
+/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
+/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
+/// Instructions to IVStrideUses, we could partially skip this.
+static User::op_iterator
+findIVOperand(User::op_iterator OI, User::op_iterator OE,
+ Loop *L, ScalarEvolution &SE) {
+ for(; OI != OE; ++OI) {
+ if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
+ if (!SE.isSCEVable(Oper->getType()))
+ continue;
+
+ if (const SCEVAddRecExpr *AR =
+ dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
+ if (AR->getLoop() == L)
+ break;
+ }
+ }
+ }
+ return OI;
+}
+
+/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
+/// operands, so wrap it in a convenient helper.
+static Value *getWideOperand(Value *Oper) {
+ if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
+ return Trunc->getOperand(0);
+ return Oper;
+}
+
+/// isCompatibleIVType - Return true if we allow an IV chain to include both
+/// types.
+static bool isCompatibleIVType(Value *LVal, Value *RVal) {
+ Type *LType = LVal->getType();
+ Type *RType = RVal->getType();
+ return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
+}
+
+/// getExprBase - Return an approximation of this SCEV expression's "base", or
+/// NULL for any constant. Returning the expression itself is
+/// conservative. Returning a deeper subexpression is more precise and valid as
+/// long as it isn't less complex than another subexpression. For expressions
+/// involving multiple unscaled values, we need to return the pointer-type
+/// SCEVUnknown. This avoids forming chains across objects, such as:
+/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
+///
+/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
+/// SCEVUnknown, we simply return the rightmost SCEV operand.
+static const SCEV *getExprBase(const SCEV *S) {
+ switch (S->getSCEVType()) {
+ default: // uncluding scUnknown.
+ return S;
+ case scConstant:
+ return 0;
+ case scTruncate:
+ return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
+ case scZeroExtend:
+ return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
+ case scSignExtend:
+ return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
+ case scAddExpr: {
+ // Skip over scaled operands (scMulExpr) to follow add operands as long as
+ // there's nothing more complex.
+ // FIXME: not sure if we want to recognize negation.
+ const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
+ for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
+ E(Add->op_begin()); I != E; ++I) {
+ const SCEV *SubExpr = *I;
+ if (SubExpr->getSCEVType() == scAddExpr)
+ return getExprBase(SubExpr);
+
+ if (SubExpr->getSCEVType() != scMulExpr)
+ return SubExpr;
+ }
+ return S; // all operands are scaled, be conservative.
+ }
+ case scAddRecExpr:
+ return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
+ }
+}
+
+/// Return true if the chain increment is profitable to expand into a loop
+/// invariant value, which may require its own register. A profitable chain
+/// increment will be an offset relative to the same base. We allow such offsets
+/// to potentially be used as chain increment as long as it's not obviously
+/// expensive to expand using real instructions.
+static const SCEV *
+getProfitableChainIncrement(Value *NextIV, Value *PrevIV,
+ const IVChain &Chain, Loop *L,
+ ScalarEvolution &SE, const TargetLowering *TLI) {
+ // Prune the solution space aggressively by checking that both IV operands
+ // are expressions that operate on the same unscaled SCEVUnknown. This
+ // "base" will be canceled by the subsequent getMinusSCEV call. Checking first
+ // avoids creating extra SCEV expressions.
+ const SCEV *OperExpr = SE.getSCEV(NextIV);
+ const SCEV *PrevExpr = SE.getSCEV(PrevIV);
+ if (getExprBase(OperExpr) != getExprBase(PrevExpr) && !StressIVChain)
+ return 0;
+
+ const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
+ if (!SE.isLoopInvariant(IncExpr, L))
+ return 0;
+
+ // We are not able to expand an increment unless it is loop invariant,
+ // however, the following checks are purely for profitability.
+ if (StressIVChain)
+ return IncExpr;
+
+ // Do not replace a constant offset from IV head with a nonconstant IV
+ // increment.
+ if (!isa<SCEVConstant>(IncExpr)) {
+ const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Chain[0].IVOperand));
+ if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
+ return 0;
+ }
+
+ SmallPtrSet<const SCEV*, 8> Processed;
+ if (isHighCostExpansion(IncExpr, Processed, SE))
+ return 0;
+
+ return IncExpr;
+}
+
+/// Return true if the number of registers needed for the chain is estimated to
+/// be less than the number required for the individual IV users. First prohibit
+/// any IV users that keep the IV live across increments (the Users set should
+/// be empty). Next count the number and type of increments in the chain.
+///
+/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
+/// effectively use postinc addressing modes. Only consider it profitable it the
+/// increments can be computed in fewer registers when chained.
+///
+/// TODO: Consider IVInc free if it's already used in another chains.
+static bool
+isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
+ ScalarEvolution &SE, const TargetLowering *TLI) {
+ if (StressIVChain)
+ return true;
+
+ if (Chain.size() <= 2)
+ return false;
+
+ if (!Users.empty()) {
+ DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " users:\n";
+ for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
+ E = Users.end(); I != E; ++I) {
+ dbgs() << " " << **I << "\n";
+ });
+ return false;
+ }
+ assert(!Chain.empty() && "empty IV chains are not allowed");
+
+ // The chain itself may require a register, so intialize cost to 1.
+ int cost = 1;
+
+ // A complete chain likely eliminates the need for keeping the original IV in
+ // a register. LSR does not currently know how to form a complete chain unless
+ // the header phi already exists.
+ if (isa<PHINode>(Chain.back().UserInst)
+ && SE.getSCEV(Chain.back().UserInst) == Chain[0].IncExpr) {
+ --cost;
+ }
+ const SCEV *LastIncExpr = 0;
+ unsigned NumConstIncrements = 0;
+ unsigned NumVarIncrements = 0;
+ unsigned NumReusedIncrements = 0;
+ for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
+ I != E; ++I) {
+
+ if (I->IncExpr->isZero())
+ continue;
+
+ // Incrementing by zero or some constant is neutral. We assume constants can
+ // be folded into an addressing mode or an add's immediate operand.
+ if (isa<SCEVConstant>(I->IncExpr)) {
+ ++NumConstIncrements;
+ continue;
+ }
+
+ if (I->IncExpr == LastIncExpr)
+ ++NumReusedIncrements;
+ else
+ ++NumVarIncrements;
+
+ LastIncExpr = I->IncExpr;
+ }
+ // An IV chain with a single increment is handled by LSR's postinc
+ // uses. However, a chain with multiple increments requires keeping the IV's
+ // value live longer than it needs to be if chained.
+ if (NumConstIncrements > 1)
+ --cost;
+
+ // Materializing increment expressions in the preheader that didn't exist in
+ // the original code may cost a register. For example, sign-extended array
+ // indices can produce ridiculous increments like this:
+ // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
+ cost += NumVarIncrements;
+
+ // Reusing variable increments likely saves a register to hold the multiple of
+ // the stride.
+ cost -= NumReusedIncrements;
+
+ DEBUG(dbgs() << "Chain: " << *Chain[0].UserInst << " Cost: " << cost << "\n");
+
+ return cost < 0;
+}
+
+/// ChainInstruction - Add this IV user to an existing chain or make it the head
+/// of a new chain.
+void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
+ SmallVectorImpl<ChainUsers> &ChainUsersVec) {
+ // When IVs are used as types of varying widths, they are generally converted
+ // to a wider type with some uses remaining narrow under a (free) trunc.
+ Value *NextIV = getWideOperand(IVOper);
+
+ // Visit all existing chains. Check if its IVOper can be computed as a
+ // profitable loop invariant increment from the last link in the Chain.
+ unsigned ChainIdx = 0, NChains = IVChainVec.size();
+ const SCEV *LastIncExpr = 0;
+ for (; ChainIdx < NChains; ++ChainIdx) {
+ Value *PrevIV = getWideOperand(IVChainVec[ChainIdx].back().IVOperand);
+ if (!isCompatibleIVType(PrevIV, NextIV))
+ continue;
+
+ // A phi node terminates a chain.
+ if (isa<PHINode>(UserInst)
+ && isa<PHINode>(IVChainVec[ChainIdx].back().UserInst))
+ continue;
+
+ if (const SCEV *IncExpr =
+ getProfitableChainIncrement(NextIV, PrevIV, IVChainVec[ChainIdx],
+ L, SE, TLI)) {
+ LastIncExpr = IncExpr;
+ break;
+ }
+ }
+ // If we haven't found a chain, create a new one, unless we hit the max. Don't
+ // bother for phi nodes, because they must be last in the chain.
+ if (ChainIdx == NChains) {
+ if (isa<PHINode>(UserInst))
+ return;
+ if (NChains >= MaxChains && !StressIVChain) {
+ DEBUG(dbgs() << "IV Chain Limit\n");
+ return;
+ }
+ LastIncExpr = SE.getSCEV(NextIV);
+ // IVUsers may have skipped over sign/zero extensions. We don't currently
+ // attempt to form chains involving extensions unless they can be hoisted
+ // into this loop's AddRec.
+ if (!isa<SCEVAddRecExpr>(LastIncExpr))
+ return;
+ ++NChains;
+ IVChainVec.resize(NChains);
+ ChainUsersVec.resize(NChains);
+ DEBUG(dbgs() << "IV Head: (" << *UserInst << ") IV=" << *LastIncExpr
+ << "\n");
+ }
+ else
+ DEBUG(dbgs() << "IV Inc: (" << *UserInst << ") IV+" << *LastIncExpr
+ << "\n");
+
+ // Add this IV user to the end of the chain.
+ IVChainVec[ChainIdx].push_back(IVInc(UserInst, IVOper, LastIncExpr));
+
+ SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
+ // This chain's NearUsers become FarUsers.
+ if (!LastIncExpr->isZero()) {
+ ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
+ NearUsers.end());
+ NearUsers.clear();
+ }
+
+ // All other uses of IVOperand become near uses of the chain.
+ // We currently ignore intermediate values within SCEV expressions, assuming
+ // they will eventually be used be the current chain, or can be computed
+ // from one of the chain increments. To be more precise we could
+ // transitively follow its user and only add leaf IV users to the set.
+ for (Value::use_iterator UseIter = IVOper->use_begin(),
+ UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
+ Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
+ if (!OtherUse || OtherUse == UserInst)
+ continue;
+ if (SE.isSCEVable(OtherUse->getType())
+ && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
+ && IU.isIVUserOrOperand(OtherUse)) {
+ continue;
+ }
+ NearUsers.insert(OtherUse);
+ }
+
+ // Since this user is part of the chain, it's no longer considered a use
+ // of the chain.
+ ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
+}
+
+/// CollectChains - Populate the vector of Chains.
+///
+/// This decreases ILP at the architecture level. Targets with ample registers,
+/// multiple memory ports, and no register renaming probably don't want
+/// this. However, such targets should probably disable LSR altogether.
+///
+/// The job of LSR is to make a reasonable choice of induction variables across
+/// the loop. Subsequent passes can easily "unchain" computation exposing more
+/// ILP *within the loop* if the target wants it.
+///
+/// Finding the best IV chain is potentially a scheduling problem. Since LSR
+/// will not reorder memory operations, it will recognize this as a chain, but
+/// will generate redundant IV increments. Ideally this would be corrected later
+/// by a smart scheduler:
+/// = A[i]
+/// = A[i+x]
+/// A[i] =
+/// A[i+x] =
+///
+/// TODO: Walk the entire domtree within this loop, not just the path to the
+/// loop latch. This will discover chains on side paths, but requires
+/// maintaining multiple copies of the Chains state.
+void LSRInstance::CollectChains() {
+ SmallVector<ChainUsers, 8> ChainUsersVec;
+
+ SmallVector<BasicBlock *,8> LatchPath;
+ BasicBlock *LoopHeader = L->getHeader();
+ for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
+ Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
+ LatchPath.push_back(Rung->getBlock());
+ }
+ LatchPath.push_back(LoopHeader);
+
+ // Walk the instruction stream from the loop header to the loop latch.
+ for (SmallVectorImpl<BasicBlock *>::reverse_iterator
+ BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
+ BBIter != BBEnd; ++BBIter) {
+ for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
+ I != E; ++I) {
+ // Skip instructions that weren't seen by IVUsers analysis.
+ if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
+ continue;
+
+ // Ignore users that are part of a SCEV expression. This way we only
+ // consider leaf IV Users. This effectively rediscovers a portion of
+ // IVUsers analysis but in program order this time.
+ if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
+ continue;
+
+ // Remove this instruction from any NearUsers set it may be in.
+ for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
+ ChainIdx < NChains; ++ChainIdx) {
+ ChainUsersVec[ChainIdx].NearUsers.erase(I);
+ }
+ // Search for operands that can be chained.
+ SmallPtrSet<Instruction*, 4> UniqueOperands;
+ User::op_iterator IVOpEnd = I->op_end();
+ User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
+ while (IVOpIter != IVOpEnd) {
+ Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
+ if (UniqueOperands.insert(IVOpInst))
+ ChainInstruction(I, IVOpInst, ChainUsersVec);
+ IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
+ }
+ } // Continue walking down the instructions.
+ } // Continue walking down the domtree.
+ // Visit phi backedges to determine if the chain can generate the IV postinc.
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ if (!SE.isSCEVable(PN->getType()))
+ continue;
+
+ Instruction *IncV =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
+ if (IncV)
+ ChainInstruction(PN, IncV, ChainUsersVec);
+ }
+ // Remove any unprofitable chains.
+ unsigned ChainIdx = 0;
+ for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
+ UsersIdx < NChains; ++UsersIdx) {
+ if (!isProfitableChain(IVChainVec[UsersIdx],
+ ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
+ continue;
+ // Preserve the chain at UsesIdx.
+ if (ChainIdx != UsersIdx)
+ IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
+ FinalizeChain(IVChainVec[ChainIdx]);
+ ++ChainIdx;
+ }
+ IVChainVec.resize(ChainIdx);
+}
+
+void LSRInstance::FinalizeChain(IVChain &Chain) {
+ assert(!Chain.empty() && "empty IV chains are not allowed");
+ DEBUG(dbgs() << "Final Chain: " << *Chain[0].UserInst << "\n");
+
+ for (IVChain::const_iterator I = llvm::next(Chain.begin()), E = Chain.end();
+ I != E; ++I) {
+ DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n");
+ User::op_iterator UseI =
+ std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
+ assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
+ IVIncSet.insert(UseI);
+ }
+}
+
+/// Return true if the IVInc can be folded into an addressing mode.
+static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
+ Value *Operand, const TargetLowering *TLI) {
+ const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
+ if (!IncConst || !isAddressUse(UserInst, Operand))
+ return false;
+
+ if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
+ return false;
+
+ int64_t IncOffset = IncConst->getValue()->getSExtValue();
+ if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
+ LSRUse::Address, getAccessType(UserInst), TLI))
+ return false;
+
+ return true;
+}
+
+/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
+/// materialize the IV user's operand from the previous IV user's operand.
+void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts) {
+ // Find the new IVOperand for the head of the chain. It may have been replaced
+ // by LSR.
+ const IVInc &Head = Chain[0];
+ User::op_iterator IVOpEnd = Head.UserInst->op_end();
+ User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
+ IVOpEnd, L, SE);
+ Value *IVSrc = 0;
+ while (IVOpIter != IVOpEnd) {
+ IVSrc = getWideOperand(*IVOpIter);
+
+ // If this operand computes the expression that the chain needs, we may use
+ // it. (Check this after setting IVSrc which is used below.)
+ //
+ // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
+ // narrow for the chain, so we can no longer use it. We do allow using a
+ // wider phi, assuming the LSR checked for free truncation. In that case we
+ // should already have a truncate on this operand such that
+ // getSCEV(IVSrc) == IncExpr.
+ if (SE.getSCEV(*IVOpIter) == Head.IncExpr
+ || SE.getSCEV(IVSrc) == Head.IncExpr) {
+ break;
+ }
+ IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
+ }
+ if (IVOpIter == IVOpEnd) {
+ // Gracefully give up on this chain.
+ DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
+ return;
+ }
+
+ DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
+ Type *IVTy = IVSrc->getType();
+ Type *IntTy = SE.getEffectiveSCEVType(IVTy);
+ const SCEV *LeftOverExpr = 0;
+ for (IVChain::const_iterator IncI = llvm::next(Chain.begin()),
+ IncE = Chain.end(); IncI != IncE; ++IncI) {
+
+ Instruction *InsertPt = IncI->UserInst;
+ if (isa<PHINode>(InsertPt))
+ InsertPt = L->getLoopLatch()->getTerminator();
+
+ // IVOper will replace the current IV User's operand. IVSrc is the IV
+ // value currently held in a register.
+ Value *IVOper = IVSrc;
+ if (!IncI->IncExpr->isZero()) {
+ // IncExpr was the result of subtraction of two narrow values, so must
+ // be signed.
+ const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
+ LeftOverExpr = LeftOverExpr ?
+ SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
+ }
+ if (LeftOverExpr && !LeftOverExpr->isZero()) {
+ // Expand the IV increment.
+ Rewriter.clearPostInc();
+ Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
+ const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
+ SE.getUnknown(IncV));
+ IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
+
+ // If an IV increment can't be folded, use it as the next IV value.
+ if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
+ TLI)) {
+ assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
+ IVSrc = IVOper;
+ LeftOverExpr = 0;
+ }
+ }
+ Type *OperTy = IncI->IVOperand->getType();
+ if (IVTy != OperTy) {
+ assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
+ "cannot extend a chained IV");
+ IRBuilder<> Builder(InsertPt);
+ IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
+ }
+ IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
+ DeadInsts.push_back(IncI->IVOperand);
+ }
+ // If LSR created a new, wider phi, we may also replace its postinc. We only
+ // do this if we also found a wide value for the head of the chain.
+ if (isa<PHINode>(Chain.back().UserInst)) {
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
+ if (!isCompatibleIVType(Phi, IVSrc))
+ continue;
+ Instruction *PostIncV = dyn_cast<Instruction>(
+ Phi->getIncomingValueForBlock(L->getLoopLatch()));
+ if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
+ continue;
+ Value *IVOper = IVSrc;
+ Type *PostIncTy = PostIncV->getType();
+ if (IVTy != PostIncTy) {
+ assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
+ IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
+ Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
+ IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
+ }
+ Phi->replaceUsesOfWith(PostIncV, IVOper);
+ DeadInsts.push_back(PostIncV);
+ }
+ }
+}
+
void LSRInstance::CollectFixupsAndInitialFormulae() {
for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
+ Instruction *UserInst = UI->getUser();
+ // Skip IV users that are part of profitable IV Chains.
+ User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
+ UI->getOperandValToReplace());
+ assert(UseI != UserInst->op_end() && "cannot find IV operand");
+ if (IVIncSet.count(UseI))
+ continue;
+
// Record the uses.
LSRFixup &LF = getNewFixup();
- LF.UserInst = UI->getUser();
+ LF.UserInst = UserInst;
LF.OperandValToReplace = UI->getOperandValToReplace();
LF.PostIncLoops = UI->getPostIncLoops();
@@ -2914,6 +3584,7 @@ LSRInstance::GenerateAllReuseFormulae() {
void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
DenseSet<const SCEV *> VisitedRegs;
SmallPtrSet<const SCEV *, 16> Regs;
+ SmallPtrSet<const SCEV *, 16> LoserRegs;
#ifndef NDEBUG
bool ChangedFormulae = false;
#endif
@@ -2933,46 +3604,66 @@ void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
FIdx != NumForms; ++FIdx) {
Formula &F = LU.Formulae[FIdx];
- SmallVector<const SCEV *, 2> Key;
- for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
- JE = F.BaseRegs.end(); J != JE; ++J) {
- const SCEV *Reg = *J;
- if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
- Key.push_back(Reg);
+ // Some formulas are instant losers. For example, they may depend on
+ // nonexistent AddRecs from other loops. These need to be filtered
+ // immediately, otherwise heuristics could choose them over others leading
+ // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
+ // avoids the need to recompute this information across formulae using the
+ // same bad AddRec. Passing LoserRegs is also essential unless we remove
+ // the corresponding bad register from the Regs set.
+ Cost CostF;
+ Regs.clear();
+ CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
+ &LoserRegs);
+ if (CostF.isLoser()) {
+ // During initial formula generation, undesirable formulae are generated
+ // by uses within other loops that have some non-trivial address mode or
+ // use the postinc form of the IV. LSR needs to provide these formulae
+ // as the basis of rediscovering the desired formula that uses an AddRec
+ // corresponding to the existing phi. Once all formulae have been
+ // generated, these initial losers may be pruned.
+ DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
+ dbgs() << "\n");
}
- if (F.ScaledReg &&
- RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
- Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for
- // uniquifying.
- std::sort(Key.begin(), Key.end());
-
- std::pair<BestFormulaeTy::const_iterator, bool> P =
- BestFormulae.insert(std::make_pair(Key, FIdx));
- if (!P.second) {
+ else {
+ SmallVector<const SCEV *, 2> Key;
+ for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
+ JE = F.BaseRegs.end(); J != JE; ++J) {
+ const SCEV *Reg = *J;
+ if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
+ Key.push_back(Reg);
+ }
+ if (F.ScaledReg &&
+ RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
+ Key.push_back(F.ScaledReg);
+ // Unstable sort by host order ok, because this is only used for
+ // uniquifying.
+ std::sort(Key.begin(), Key.end());
+
+ std::pair<BestFormulaeTy::const_iterator, bool> P =
+ BestFormulae.insert(std::make_pair(Key, FIdx));
+ if (P.second)
+ continue;
+
Formula &Best = LU.Formulae[P.first->second];
- Cost CostF;
- CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
- Regs.clear();
Cost CostBest;
- CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
Regs.clear();
+ CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
if (CostF < CostBest)
std::swap(F, Best);
DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
dbgs() << "\n"
" in favor of formula "; Best.print(dbgs());
dbgs() << '\n');
+ }
#ifndef NDEBUG
- ChangedFormulae = true;
+ ChangedFormulae = true;
#endif
- LU.DeleteFormula(F);
- --FIdx;
- --NumForms;
- Any = true;
- continue;
- }
+ LU.DeleteFormula(F);
+ --FIdx;
+ --NumForms;
+ Any = true;
}
// Now that we've filtered out some formulae, recompute the Regs set.
@@ -3284,24 +3975,29 @@ void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
if (LU.Regs.count(*I))
ReqRegs.insert(*I);
- bool AnySatisfiedReqRegs = false;
SmallPtrSet<const SCEV *, 16> NewRegs;
Cost NewCost;
-retry:
for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
E = LU.Formulae.end(); I != E; ++I) {
const Formula &F = *I;
// Ignore formulae which do not use any of the required registers.
+ bool SatisfiedReqReg = true;
for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
JE = ReqRegs.end(); J != JE; ++J) {
const SCEV *Reg = *J;
if ((!F.ScaledReg || F.ScaledReg != Reg) &&
std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
- F.BaseRegs.end())
- goto skip;
+ F.BaseRegs.end()) {
+ SatisfiedReqReg = false;
+ break;
+ }
+ }
+ if (!SatisfiedReqReg) {
+ // If none of the formulae satisfied the required registers, then we could
+ // clear ReqRegs and try again. Currently, we simply give up in this case.
+ continue;
}
- AnySatisfiedReqRegs = true;
// Evaluate the cost of the current formula. If it's already worse than
// the current best, prune the search at that point.
@@ -3317,7 +4013,7 @@ retry:
VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
} else {
DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
- dbgs() << ". Regs:";
+ dbgs() << ".\n Regs:";
for (SmallPtrSet<const SCEV *, 16>::const_iterator
I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
dbgs() << ' ' << **I;
@@ -3328,18 +4024,6 @@ retry:
}
Workspace.pop_back();
}
- skip:;
- }
-
- if (!EnableRetry && !AnySatisfiedReqRegs)
- return;
-
- // If none of the formulae had all of the required registers, relax the
- // constraint so that we don't exclude all formulae.
- if (!AnySatisfiedReqRegs) {
- assert(!ReqRegs.empty() && "Solver failed even without required registers");
- ReqRegs.clear();
- goto retry;
}
}
@@ -3435,9 +4119,10 @@ LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
/// AdjustInsertPositionForExpand - Determine an input position which will be
/// dominated by the operands and which will dominate the result.
BasicBlock::iterator
-LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
+LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
const LSRFixup &LF,
- const LSRUse &LU) const {
+ const LSRUse &LU,
+ SCEVExpander &Rewriter) const {
// Collect some instructions which must be dominated by the
// expanding replacement. These must be dominated by any operands that
// will be required in the expansion.
@@ -3472,9 +4157,13 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
}
}
+ assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
+ && !isa<DbgInfoIntrinsic>(LowestIP) &&
+ "Insertion point must be a normal instruction");
+
// Then, climb up the immediate dominator tree as far as we can go while
// still being dominated by the input positions.
- IP = HoistInsertPosition(IP, Inputs);
+ BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
// Don't insert instructions before PHI nodes.
while (isa<PHINode>(IP)) ++IP;
@@ -3485,6 +4174,11 @@ LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
// Ignore debug intrinsics.
while (isa<DbgInfoIntrinsic>(IP)) ++IP;
+ // Set IP below instructions recently inserted by SCEVExpander. This keeps the
+ // IP consistent across expansions and allows the previously inserted
+ // instructions to be reused by subsequent expansion.
+ while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
+
return IP;
}
@@ -3499,7 +4193,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Determine an input position which will be dominated by the operands and
// which will dominate the result.
- IP = AdjustInsertPositionForExpand(IP, LF, LU);
+ IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
// Inform the Rewriter if we have a post-increment use, so that it can
// perform an advantageous expansion.
@@ -3775,10 +4469,20 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
SmallVector<WeakVH, 16> DeadInsts;
SCEVExpander Rewriter(SE, "lsr");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
Rewriter.disableCanonicalMode();
Rewriter.enableLSRMode();
Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
+ // Mark phi nodes that terminate chains so the expander tries to reuse them.
+ for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
+ ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
+ if (PHINode *PN = dyn_cast<PHINode>(ChainI->back().UserInst))
+ Rewriter.setChainedPhi(PN);
+ }
+
// Expand the new value definitions and update the users.
for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
E = Fixups.end(); I != E; ++I) {
@@ -3789,6 +4493,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed = true;
}
+ for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
+ ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
+ GenerateIVChain(*ChainI, Rewriter, DeadInsts);
+ Changed = true;
+ }
// Clean up after ourselves. This must be done before deleting any
// instructions.
Rewriter.clear();
@@ -3804,11 +4513,29 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
// If LoopSimplify form is not available, stay out of trouble.
- if (!L->isLoopSimplifyForm()) return;
+ if (!L->isLoopSimplifyForm())
+ return;
// If there's no interesting work to be done, bail early.
if (IU.empty()) return;
+#ifndef NDEBUG
+ // All dominating loops must have preheaders, or SCEVExpander may not be able
+ // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
+ //
+ // IVUsers analysis should only create users that are dominated by simple loop
+ // headers. Since this loop should dominate all of its users, its user list
+ // should be empty if this loop itself is not within a simple loop nest.
+ for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
+ Rung; Rung = Rung->getIDom()) {
+ BasicBlock *BB = Rung->getBlock();
+ const Loop *DomLoop = LI.getLoopFor(BB);
+ if (DomLoop && DomLoop->getHeader() == BB) {
+ assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
+ }
+ }
+#endif // DEBUG
+
DEBUG(dbgs() << "\nLSR on loop ";
WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
dbgs() << ":\n");
@@ -3821,24 +4548,18 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
if (IU.empty()) return;
// Skip nested loops until we can model them better with formulae.
- if (!EnableNested && !L->empty()) {
-
- if (EnablePhiElim) {
- // Remove any extra phis created by processing inner loops.
- SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(SE, "lsr");
- Changed |= Rewriter.replaceCongruentIVs(L, &DT, DeadInsts);
- Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
- }
+ if (!L->empty()) {
DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
return;
}
// Start collecting data and preparing for the solver.
+ CollectChains();
CollectInterestingTypesAndFactors();
CollectFixupsAndInitialFormulae();
CollectLoopInvariantFixupsAndFormulae();
+ assert(!Uses.empty() && "IVUsers reported at least one use");
DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
print_uses(dbgs()));
@@ -3875,14 +4596,6 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
// Now that we've decided what we want, make it so.
ImplementSolution(Solution, P);
-
- if (EnablePhiElim) {
- // Remove any extra phis created by processing inner loops.
- SmallVector<WeakVH, 16> DeadInsts;
- SCEVExpander Rewriter(SE, "lsr");
- Changed |= Rewriter.replaceCongruentIVs(L, &DT, DeadInsts);
- Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
- }
}
void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
@@ -4008,9 +4721,21 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
// Run the main LSR transformation.
Changed |= LSRInstance(TLI, L, this).getChanged();
- // At this point, it is worth checking to see if any recurrence PHIs are also
- // dead, so that we can remove them as well.
+ // Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());
-
+ if (EnablePhiElim) {
+ SmallVector<WeakVH, 16> DeadInsts;
+ SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
+ unsigned numFolded = Rewriter.
+ replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
+ if (numFolded) {
+ Changed = true;
+ DeleteTriviallyDeadInstructions(DeadInsts);
+ DeleteDeadPHIs(L->getHeader());
+ }
+ }
return Changed;
}
OpenPOWER on IntegriCloud