diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp new file mode 100644 index 0000000..f3f4152 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp @@ -0,0 +1,335 @@ +//===-- LoopSink.cpp - Loop Sink Pass ------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass does the inverse transformation of what LICM does. +// It traverses all of the instructions in the loop's preheader and sinks +// them to the loop body where frequency is lower than the loop's preheader. +// This pass is a reverse-transformation of LICM. It differs from the Sink +// pass in the following ways: +// +// * It only handles sinking of instructions from the loop's preheader to the +// loop's body +// * It uses alias set tracker to get more accurate alias info +// * It uses block frequency info to find the optimal sinking locations +// +// Overall algorithm: +// +// For I in Preheader: +// InsertBBs = BBs that uses I +// For BB in sorted(LoopBBs): +// DomBBs = BBs in InsertBBs that are dominated by BB +// if freq(DomBBs) > freq(BB) +// InsertBBs = UseBBs - DomBBs + BB +// For BB in InsertBBs: +// Insert I at BB's beginning +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/LoopPassManager.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +using namespace llvm; + +#define DEBUG_TYPE "loopsink" + +STATISTIC(NumLoopSunk, "Number of instructions sunk into loop"); +STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop"); + +static cl::opt<unsigned> SinkFrequencyPercentThreshold( + "sink-freq-percent-threshold", cl::Hidden, cl::init(90), + cl::desc("Do not sink instructions that require cloning unless they " + "execute less than this percent of the time.")); + +static cl::opt<unsigned> MaxNumberOfUseBBsForSinking( + "max-uses-for-sinking", cl::Hidden, cl::init(30), + cl::desc("Do not sink instructions that have too many uses.")); + +/// Return adjusted total frequency of \p BBs. +/// +/// * If there is only one BB, sinking instruction will not introduce code +/// size increase. Thus there is no need to adjust the frequency. +/// * If there are more than one BB, sinking would lead to code size increase. +/// In this case, we add some "tax" to the total frequency to make it harder +/// to sink. E.g. +/// Freq(Preheader) = 100 +/// Freq(BBs) = sum(50, 49) = 99 +/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to +/// BBs as the difference is too small to justify the code size increase. +/// To model this, The adjusted Freq(BBs) will be: +/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% +static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs, + BlockFrequencyInfo &BFI) { + BlockFrequency T = 0; + for (BasicBlock *B : BBs) + T += BFI.getBlockFreq(B); + if (BBs.size() > 1) + T /= BranchProbability(SinkFrequencyPercentThreshold, 100); + return T; +} + +/// Return a set of basic blocks to insert sinked instructions. +/// +/// The returned set of basic blocks (BBsToSinkInto) should satisfy: +/// +/// * Inside the loop \p L +/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto +/// that domintates the UseBB +/// * Has minimum total frequency that is no greater than preheader frequency +/// +/// The purpose of the function is to find the optimal sinking points to +/// minimize execution cost, which is defined as "sum of frequency of +/// BBsToSinkInto". +/// As a result, the returned BBsToSinkInto needs to have minimum total +/// frequency. +/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader +/// frequency, the optimal solution is not sinking (return empty set). +/// +/// \p ColdLoopBBs is used to help find the optimal sinking locations. +/// It stores a list of BBs that is: +/// +/// * Inside the loop \p L +/// * Has a frequency no larger than the loop's preheader +/// * Sorted by BB frequency +/// +/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). +/// To avoid expensive computation, we cap the maximum UseBBs.size() in its +/// caller. +static SmallPtrSet<BasicBlock *, 2> +findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs, + const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, + DominatorTree &DT, BlockFrequencyInfo &BFI) { + SmallPtrSet<BasicBlock *, 2> BBsToSinkInto; + if (UseBBs.size() == 0) + return BBsToSinkInto; + + BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end()); + SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB; + + // For every iteration: + // * Pick the ColdestBB from ColdLoopBBs + // * Find the set BBsDominatedByColdestBB that satisfy: + // - BBsDominatedByColdestBB is a subset of BBsToSinkInto + // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB + // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove + // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to + // BBsToSinkInto + for (BasicBlock *ColdestBB : ColdLoopBBs) { + BBsDominatedByColdestBB.clear(); + for (BasicBlock *SinkedBB : BBsToSinkInto) + if (DT.dominates(ColdestBB, SinkedBB)) + BBsDominatedByColdestBB.insert(SinkedBB); + if (BBsDominatedByColdestBB.size() == 0) + continue; + if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) > + BFI.getBlockFreq(ColdestBB)) { + for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { + BBsToSinkInto.erase(DominatedBB); + } + BBsToSinkInto.insert(ColdestBB); + } + } + + // If the total frequency of BBsToSinkInto is larger than preheader frequency, + // do not sink. + if (adjustedSumFreq(BBsToSinkInto, BFI) > + BFI.getBlockFreq(L.getLoopPreheader())) + BBsToSinkInto.clear(); + return BBsToSinkInto; +} + +// Sinks \p I from the loop \p L's preheader to its uses. Returns true if +// sinking is successful. +// \p LoopBlockNumber is used to sort the insertion blocks to ensure +// determinism. +static bool sinkInstruction(Loop &L, Instruction &I, + const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, + const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, + LoopInfo &LI, DominatorTree &DT, + BlockFrequencyInfo &BFI) { + // Compute the set of blocks in loop L which contain a use of I. + SmallPtrSet<BasicBlock *, 2> BBs; + for (auto &U : I.uses()) { + Instruction *UI = cast<Instruction>(U.getUser()); + // We cannot sink I to PHI-uses. + if (dyn_cast<PHINode>(UI)) + return false; + // We cannot sink I if it has uses outside of the loop. + if (!L.contains(LI.getLoopFor(UI->getParent()))) + return false; + BBs.insert(UI->getParent()); + } + + // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max + // BBs.size() to avoid expensive computation. + // FIXME: Handle code size growth for min_size and opt_size. + if (BBs.size() > MaxNumberOfUseBBsForSinking) + return false; + + // Find the set of BBs that we should insert a copy of I. + SmallPtrSet<BasicBlock *, 2> BBsToSinkInto = + findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI); + if (BBsToSinkInto.empty()) + return false; + + // Copy the final BBs into a vector and sort them using the total ordering + // of the loop block numbers as iterating the set doesn't give a useful + // order. No need to stable sort as the block numbers are a total ordering. + SmallVector<BasicBlock *, 2> SortedBBsToSinkInto; + SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(), + BBsToSinkInto.end()); + std::sort(SortedBBsToSinkInto.begin(), SortedBBsToSinkInto.end(), + [&](BasicBlock *A, BasicBlock *B) { + return *LoopBlockNumber.find(A) < *LoopBlockNumber.find(B); + }); + + BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); + // FIXME: Optimize the efficiency for cloned value replacement. The current + // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). + for (BasicBlock *N : SortedBBsToSinkInto) { + if (N == MoveBB) + continue; + // Clone I and replace its uses. + Instruction *IC = I.clone(); + IC->setName(I.getName()); + IC->insertBefore(&*N->getFirstInsertionPt()); + // Replaces uses of I with IC in N + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) { + Use &U = *UI++; + auto *I = cast<Instruction>(U.getUser()); + if (I->getParent() == N) + U.set(IC); + } + // Replaces uses of I with IC in blocks dominated by N + replaceDominatedUsesWith(&I, IC, DT, N); + DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() + << '\n'); + NumLoopSunkCloned++; + } + DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); + NumLoopSunk++; + I.moveBefore(&*MoveBB->getFirstInsertionPt()); + + return true; +} + +/// Sinks instructions from loop's preheader to the loop body if the +/// sum frequency of inserted copy is smaller than preheader's frequency. +static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, + DominatorTree &DT, + BlockFrequencyInfo &BFI, + ScalarEvolution *SE) { + BasicBlock *Preheader = L.getLoopPreheader(); + if (!Preheader) + return false; + + // Enable LoopSink only when runtime profile is available. + // With static profile, the sinking decision may be sub-optimal. + if (!Preheader->getParent()->getEntryCount()) + return false; + + const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader); + // If there are no basic blocks with lower frequency than the preheader then + // we can avoid the detailed analysis as we will never find profitable sinking + // opportunities. + if (all_of(L.blocks(), [&](const BasicBlock *BB) { + return BFI.getBlockFreq(BB) > PreheaderFreq; + })) + return false; + + bool Changed = false; + AliasSetTracker CurAST(AA); + + // Compute alias set. + for (BasicBlock *BB : L.blocks()) + CurAST.add(*BB); + + // Sort loop's basic blocks by frequency + SmallVector<BasicBlock *, 10> ColdLoopBBs; + SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber; + int i = 0; + for (BasicBlock *B : L.blocks()) + if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) { + ColdLoopBBs.push_back(B); + LoopBlockNumber[B] = ++i; + } + std::stable_sort(ColdLoopBBs.begin(), ColdLoopBBs.end(), + [&](BasicBlock *A, BasicBlock *B) { + return BFI.getBlockFreq(A) < BFI.getBlockFreq(B); + }); + + // Traverse preheader's instructions in reverse order becaue if A depends + // on B (A appears after B), A needs to be sinked first before B can be + // sinked. + for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) { + Instruction *I = &*II++; + // No need to check for instruction's operands are loop invariant. + assert(L.hasLoopInvariantOperands(I) && + "Insts in a loop's preheader should have loop invariant operands!"); + if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr)) + continue; + if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI)) + Changed = true; + } + + if (Changed && SE) + SE->forgetLoopDispositions(&L); + return Changed; +} + +namespace { +struct LegacyLoopSinkPass : public LoopPass { + static char ID; + LegacyLoopSinkPass() : LoopPass(ID) { + initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); + return sinkLoopInvariantInstructions( + *L, getAnalysis<AAResultsWrapperPass>().getAAResults(), + getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), + getAnalysis<DominatorTreeWrapperPass>().getDomTree(), + getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(), + SE ? &SE->getSE() : nullptr); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + getLoopAnalysisUsage(AU); + } +}; +} + +char LegacyLoopSinkPass::ID = 0; +INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, + false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false) + +Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); } |