summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp1270
1 files changed, 1270 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp
new file mode 100644
index 0000000..101ff5b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp
@@ -0,0 +1,1270 @@
+//===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements Loop Index Splitting Pass. This pass handles three
+// kinds of loops.
+//
+// [1] A loop may be eliminated if the body is executed exactly once.
+// For example,
+//
+// for (i = 0; i < N; ++i) {
+// if (i == X) {
+// body;
+// }
+// }
+//
+// is transformed to
+//
+// i = X;
+// body;
+//
+// [2] A loop's iteration space may be shrunk if the loop body is executed
+// for a proper sub-range of the loop's iteration space. For example,
+//
+// for (i = 0; i < N; ++i) {
+// if (i > A && i < B) {
+// ...
+// }
+// }
+//
+// is transformed to iterators from A to B, if A > 0 and B < N.
+//
+// [3] A loop may be split if the loop body is dominated by a branch.
+// For example,
+//
+// for (i = LB; i < UB; ++i) { if (i < SV) A; else B; }
+//
+// is transformed into
+//
+// AEV = BSV = SV
+// for (i = LB; i < min(UB, AEV); ++i)
+// A;
+// for (i = max(LB, BSV); i < UB; ++i);
+// B;
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-index-split"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+
+using namespace llvm;
+
+STATISTIC(NumIndexSplit, "Number of loop index split");
+STATISTIC(NumIndexSplitRemoved, "Number of loops eliminated by loop index split");
+STATISTIC(NumRestrictBounds, "Number of loop iteration space restricted");
+
+namespace {
+
+ class LoopIndexSplit : public LoopPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopIndexSplit() : LoopPass(&ID) {}
+
+ // Index split Loop L. Return true if loop is split.
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<ScalarEvolution>();
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ AU.addRequired<LoopInfo>();
+ AU.addPreserved<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<DominanceFrontier>();
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<DominanceFrontier>();
+ }
+
+ private:
+ /// processOneIterationLoop -- Eliminate loop if loop body is executed
+ /// only once. For example,
+ /// for (i = 0; i < N; ++i) {
+ /// if ( i == X) {
+ /// ...
+ /// }
+ /// }
+ ///
+ bool processOneIterationLoop();
+
+ // -- Routines used by updateLoopIterationSpace();
+
+ /// updateLoopIterationSpace -- Update loop's iteration space if loop
+ /// body is executed for certain IV range only. For example,
+ ///
+ /// for (i = 0; i < N; ++i) {
+ /// if ( i > A && i < B) {
+ /// ...
+ /// }
+ /// }
+ /// is transformed to iterators from A to B, if A > 0 and B < N.
+ ///
+ bool updateLoopIterationSpace();
+
+ /// restrictLoopBound - Op dominates loop body. Op compares an IV based value
+ /// with a loop invariant value. Update loop's lower and upper bound based on
+ /// the loop invariant value.
+ bool restrictLoopBound(ICmpInst &Op);
+
+ // --- Routines used by splitLoop(). --- /
+
+ bool splitLoop();
+
+ /// removeBlocks - Remove basic block DeadBB and all blocks dominated by
+ /// DeadBB. This routine is used to remove split condition's dead branch,
+ /// dominated by DeadBB. LiveBB dominates split conidition's other branch.
+ void removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB);
+
+ /// moveExitCondition - Move exit condition EC into split condition block.
+ void moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB,
+ BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC,
+ PHINode *IV, Instruction *IVAdd, Loop *LP,
+ unsigned);
+
+ /// updatePHINodes - CFG has been changed.
+ /// Before
+ /// - ExitBB's single predecessor was Latch
+ /// - Latch's second successor was Header
+ /// Now
+ /// - ExitBB's single predecessor was Header
+ /// - Latch's one and only successor was Header
+ ///
+ /// Update ExitBB PHINodes' to reflect this change.
+ void updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch,
+ BasicBlock *Header,
+ PHINode *IV, Instruction *IVIncrement, Loop *LP);
+
+ // --- Utility routines --- /
+
+ /// cleanBlock - A block is considered clean if all non terminal
+ /// instructions are either PHINodes or IV based values.
+ bool cleanBlock(BasicBlock *BB);
+
+ /// IVisLT - If Op is comparing IV based value with an loop invariant and
+ /// IV based value is less than the loop invariant then return the loop
+ /// invariant. Otherwise return NULL.
+ Value * IVisLT(ICmpInst &Op);
+
+ /// IVisLE - If Op is comparing IV based value with an loop invariant and
+ /// IV based value is less than or equal to the loop invariant then
+ /// return the loop invariant. Otherwise return NULL.
+ Value * IVisLE(ICmpInst &Op);
+
+ /// IVisGT - If Op is comparing IV based value with an loop invariant and
+ /// IV based value is greater than the loop invariant then return the loop
+ /// invariant. Otherwise return NULL.
+ Value * IVisGT(ICmpInst &Op);
+
+ /// IVisGE - If Op is comparing IV based value with an loop invariant and
+ /// IV based value is greater than or equal to the loop invariant then
+ /// return the loop invariant. Otherwise return NULL.
+ Value * IVisGE(ICmpInst &Op);
+
+ private:
+
+ // Current Loop information.
+ Loop *L;
+ LPPassManager *LPM;
+ LoopInfo *LI;
+ DominatorTree *DT;
+ DominanceFrontier *DF;
+
+ PHINode *IndVar;
+ ICmpInst *ExitCondition;
+ ICmpInst *SplitCondition;
+ Value *IVStartValue;
+ Value *IVExitValue;
+ Instruction *IVIncrement;
+ SmallPtrSet<Value *, 4> IVBasedValues;
+ };
+}
+
+char LoopIndexSplit::ID = 0;
+static RegisterPass<LoopIndexSplit>
+X("loop-index-split", "Index Split Loops");
+
+Pass *llvm::createLoopIndexSplitPass() {
+ return new LoopIndexSplit();
+}
+
+// Index split Loop L. Return true if loop is split.
+bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) {
+ L = IncomingLoop;
+ LPM = &LPM_Ref;
+
+ // If LoopSimplify form is not available, stay out of trouble.
+ if (!L->isLoopSimplifyForm())
+ return false;
+
+ // FIXME - Nested loops make dominator info updates tricky.
+ if (!L->getSubLoops().empty())
+ return false;
+
+ DT = &getAnalysis<DominatorTree>();
+ LI = &getAnalysis<LoopInfo>();
+ DF = &getAnalysis<DominanceFrontier>();
+
+ // Initialize loop data.
+ IndVar = L->getCanonicalInductionVariable();
+ if (!IndVar) return false;
+
+ bool P1InLoop = L->contains(IndVar->getIncomingBlock(1));
+ IVStartValue = IndVar->getIncomingValue(!P1InLoop);
+ IVIncrement = dyn_cast<Instruction>(IndVar->getIncomingValue(P1InLoop));
+ if (!IVIncrement) return false;
+
+ IVBasedValues.clear();
+ IVBasedValues.insert(IndVar);
+ IVBasedValues.insert(IVIncrement);
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ for(BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end();
+ BI != BE; ++BI) {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BI))
+ if (BO != IVIncrement
+ && (BO->getOpcode() == Instruction::Add
+ || BO->getOpcode() == Instruction::Sub))
+ if (IVBasedValues.count(BO->getOperand(0))
+ && L->isLoopInvariant(BO->getOperand(1)))
+ IVBasedValues.insert(BO);
+ }
+
+ // Reject loop if loop exit condition is not suitable.
+ BasicBlock *ExitingBlock = L->getExitingBlock();
+ if (!ExitingBlock)
+ return false;
+ BranchInst *EBR = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+ if (!EBR) return false;
+ ExitCondition = dyn_cast<ICmpInst>(EBR->getCondition());
+ if (!ExitCondition) return false;
+ if (ExitingBlock != L->getLoopLatch()) return false;
+ IVExitValue = ExitCondition->getOperand(1);
+ if (!L->isLoopInvariant(IVExitValue))
+ IVExitValue = ExitCondition->getOperand(0);
+ if (!L->isLoopInvariant(IVExitValue))
+ return false;
+ if (!IVBasedValues.count(
+ ExitCondition->getOperand(IVExitValue == ExitCondition->getOperand(0))))
+ return false;
+
+ // If start value is more then exit value where induction variable
+ // increments by 1 then we are potentially dealing with an infinite loop.
+ // Do not index split this loop.
+ if (ConstantInt *SV = dyn_cast<ConstantInt>(IVStartValue))
+ if (ConstantInt *EV = dyn_cast<ConstantInt>(IVExitValue))
+ if (SV->getSExtValue() > EV->getSExtValue())
+ return false;
+
+ if (processOneIterationLoop())
+ return true;
+
+ if (updateLoopIterationSpace())
+ return true;
+
+ if (splitLoop())
+ return true;
+
+ return false;
+}
+
+// --- Helper routines ---
+// isUsedOutsideLoop - Returns true iff V is used outside the loop L.
+static bool isUsedOutsideLoop(Value *V, Loop *L) {
+ for(Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+ if (!L->contains(cast<Instruction>(*UI)))
+ return true;
+ return false;
+}
+
+// Return V+1
+static Value *getPlusOne(Value *V, bool Sign, Instruction *InsertPt,
+ LLVMContext &Context) {
+ Constant *One = ConstantInt::get(V->getType(), 1, Sign);
+ return BinaryOperator::CreateAdd(V, One, "lsp", InsertPt);
+}
+
+// Return V-1
+static Value *getMinusOne(Value *V, bool Sign, Instruction *InsertPt,
+ LLVMContext &Context) {
+ Constant *One = ConstantInt::get(V->getType(), 1, Sign);
+ return BinaryOperator::CreateSub(V, One, "lsp", InsertPt);
+}
+
+// Return min(V1, V1)
+static Value *getMin(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) {
+
+ Value *C = new ICmpInst(InsertPt,
+ Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ V1, V2, "lsp");
+ return SelectInst::Create(C, V1, V2, "lsp", InsertPt);
+}
+
+// Return max(V1, V2)
+static Value *getMax(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) {
+
+ Value *C = new ICmpInst(InsertPt,
+ Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ V1, V2, "lsp");
+ return SelectInst::Create(C, V2, V1, "lsp", InsertPt);
+}
+
+/// processOneIterationLoop -- Eliminate loop if loop body is executed
+/// only once. For example,
+/// for (i = 0; i < N; ++i) {
+/// if ( i == X) {
+/// ...
+/// }
+/// }
+///
+bool LoopIndexSplit::processOneIterationLoop() {
+ SplitCondition = NULL;
+ BasicBlock *Latch = L->getLoopLatch();
+ BasicBlock *Header = L->getHeader();
+ BranchInst *BR = dyn_cast<BranchInst>(Header->getTerminator());
+ if (!BR) return false;
+ if (!isa<BranchInst>(Latch->getTerminator())) return false;
+ if (BR->isUnconditional()) return false;
+ SplitCondition = dyn_cast<ICmpInst>(BR->getCondition());
+ if (!SplitCondition) return false;
+ if (SplitCondition == ExitCondition) return false;
+ if (SplitCondition->getPredicate() != ICmpInst::ICMP_EQ) return false;
+ if (BR->getOperand(1) != Latch) return false;
+ if (!IVBasedValues.count(SplitCondition->getOperand(0))
+ && !IVBasedValues.count(SplitCondition->getOperand(1)))
+ return false;
+
+ // If IV is used outside the loop then this loop traversal is required.
+ // FIXME: Calculate and use last IV value.
+ if (isUsedOutsideLoop(IVIncrement, L))
+ return false;
+
+ // If BR operands are not IV or not loop invariants then skip this loop.
+ Value *OPV = SplitCondition->getOperand(0);
+ Value *SplitValue = SplitCondition->getOperand(1);
+ if (!L->isLoopInvariant(SplitValue))
+ std::swap(OPV, SplitValue);
+ if (!L->isLoopInvariant(SplitValue))
+ return false;
+ Instruction *OPI = dyn_cast<Instruction>(OPV);
+ if (!OPI)
+ return false;
+ if (OPI->getParent() != Header || isUsedOutsideLoop(OPI, L))
+ return false;
+ Value *StartValue = IVStartValue;
+ Value *ExitValue = IVExitValue;;
+
+ if (OPV != IndVar) {
+ // If BR operand is IV based then use this operand to calculate
+ // effective conditions for loop body.
+ BinaryOperator *BOPV = dyn_cast<BinaryOperator>(OPV);
+ if (!BOPV)
+ return false;
+ if (BOPV->getOpcode() != Instruction::Add)
+ return false;
+ StartValue = BinaryOperator::CreateAdd(OPV, StartValue, "" , BR);
+ ExitValue = BinaryOperator::CreateAdd(OPV, ExitValue, "" , BR);
+ }
+
+ if (!cleanBlock(Header))
+ return false;
+
+ if (!cleanBlock(Latch))
+ return false;
+
+ // If the merge point for BR is not loop latch then skip this loop.
+ if (BR->getSuccessor(0) != Latch) {
+ DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0));
+ assert (DF0 != DF->end() && "Unable to find dominance frontier");
+ if (!DF0->second.count(Latch))
+ return false;
+ }
+
+ if (BR->getSuccessor(1) != Latch) {
+ DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1));
+ assert (DF1 != DF->end() && "Unable to find dominance frontier");
+ if (!DF1->second.count(Latch))
+ return false;
+ }
+
+ // Now, Current loop L contains compare instruction
+ // that compares induction variable, IndVar, against loop invariant. And
+ // entire (i.e. meaningful) loop body is dominated by this compare
+ // instruction. In such case eliminate
+ // loop structure surrounding this loop body. For example,
+ // for (int i = start; i < end; ++i) {
+ // if ( i == somevalue) {
+ // loop_body
+ // }
+ // }
+ // can be transformed into
+ // if (somevalue >= start && somevalue < end) {
+ // i = somevalue;
+ // loop_body
+ // }
+
+ // Replace index variable with split value in loop body. Loop body is executed
+ // only when index variable is equal to split value.
+ IndVar->replaceAllUsesWith(SplitValue);
+
+ // Replace split condition in header.
+ // Transform
+ // SplitCondition : icmp eq i32 IndVar, SplitValue
+ // into
+ // c1 = icmp uge i32 SplitValue, StartValue
+ // c2 = icmp ult i32 SplitValue, ExitValue
+ // and i32 c1, c2
+ Instruction *C1 = new ICmpInst(BR, ExitCondition->isSigned() ?
+ ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
+ SplitValue, StartValue, "lisplit");
+
+ CmpInst::Predicate C2P = ExitCondition->getPredicate();
+ BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
+ if (LatchBR->getOperand(1) != Header)
+ C2P = CmpInst::getInversePredicate(C2P);
+ Instruction *C2 = new ICmpInst(BR, C2P, SplitValue, ExitValue, "lisplit");
+ Instruction *NSplitCond = BinaryOperator::CreateAnd(C1, C2, "lisplit", BR);
+
+ SplitCondition->replaceAllUsesWith(NSplitCond);
+ SplitCondition->eraseFromParent();
+
+ // Remove Latch to Header edge.
+ BasicBlock *LatchSucc = NULL;
+ Header->removePredecessor(Latch);
+ for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch);
+ SI != E; ++SI) {
+ if (Header != *SI)
+ LatchSucc = *SI;
+ }
+
+ // Clean up latch block.
+ Value *LatchBRCond = LatchBR->getCondition();
+ LatchBR->setUnconditionalDest(LatchSucc);
+ RecursivelyDeleteTriviallyDeadInstructions(LatchBRCond);
+
+ LPM->deleteLoopFromQueue(L);
+
+ // Update Dominator Info.
+ // Only CFG change done is to remove Latch to Header edge. This
+ // does not change dominator tree because Latch did not dominate
+ // Header.
+ if (DF) {
+ DominanceFrontier::iterator HeaderDF = DF->find(Header);
+ if (HeaderDF != DF->end())
+ DF->removeFromFrontier(HeaderDF, Header);
+
+ DominanceFrontier::iterator LatchDF = DF->find(Latch);
+ if (LatchDF != DF->end())
+ DF->removeFromFrontier(LatchDF, Header);
+ }
+
+ ++NumIndexSplitRemoved;
+ return true;
+}
+
+/// restrictLoopBound - Op dominates loop body. Op compares an IV based value
+/// with a loop invariant value. Update loop's lower and upper bound based on
+/// the loop invariant value.
+bool LoopIndexSplit::restrictLoopBound(ICmpInst &Op) {
+ bool Sign = Op.isSigned();
+ Instruction *PHTerm = L->getLoopPreheader()->getTerminator();
+
+ if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) {
+ BranchInst *EBR =
+ cast<BranchInst>(ExitCondition->getParent()->getTerminator());
+ ExitCondition->setPredicate(ExitCondition->getInversePredicate());
+ BasicBlock *T = EBR->getSuccessor(0);
+ EBR->setSuccessor(0, EBR->getSuccessor(1));
+ EBR->setSuccessor(1, T);
+ }
+
+ LLVMContext &Context = Op.getContext();
+
+ // New upper and lower bounds.
+ Value *NLB = NULL;
+ Value *NUB = NULL;
+ if (Value *V = IVisLT(Op)) {
+ // Restrict upper bound.
+ if (IVisLE(*ExitCondition))
+ V = getMinusOne(V, Sign, PHTerm, Context);
+ NUB = getMin(V, IVExitValue, Sign, PHTerm);
+ } else if (Value *V = IVisLE(Op)) {
+ // Restrict upper bound.
+ if (IVisLT(*ExitCondition))
+ V = getPlusOne(V, Sign, PHTerm, Context);
+ NUB = getMin(V, IVExitValue, Sign, PHTerm);
+ } else if (Value *V = IVisGT(Op)) {
+ // Restrict lower bound.
+ V = getPlusOne(V, Sign, PHTerm, Context);
+ NLB = getMax(V, IVStartValue, Sign, PHTerm);
+ } else if (Value *V = IVisGE(Op))
+ // Restrict lower bound.
+ NLB = getMax(V, IVStartValue, Sign, PHTerm);
+
+ if (!NLB && !NUB)
+ return false;
+
+ if (NLB) {
+ unsigned i = IndVar->getBasicBlockIndex(L->getLoopPreheader());
+ IndVar->setIncomingValue(i, NLB);
+ }
+
+ if (NUB) {
+ unsigned i = (ExitCondition->getOperand(0) != IVExitValue);
+ ExitCondition->setOperand(i, NUB);
+ }
+ return true;
+}
+
+/// updateLoopIterationSpace -- Update loop's iteration space if loop
+/// body is executed for certain IV range only. For example,
+///
+/// for (i = 0; i < N; ++i) {
+/// if ( i > A && i < B) {
+/// ...
+/// }
+/// }
+/// is transformed to iterators from A to B, if A > 0 and B < N.
+///
+bool LoopIndexSplit::updateLoopIterationSpace() {
+ SplitCondition = NULL;
+ if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE
+ || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ)
+ return false;
+ BasicBlock *Latch = L->getLoopLatch();
+ BasicBlock *Header = L->getHeader();
+ BranchInst *BR = dyn_cast<BranchInst>(Header->getTerminator());
+ if (!BR) return false;
+ if (!isa<BranchInst>(Latch->getTerminator())) return false;
+ if (BR->isUnconditional()) return false;
+ BinaryOperator *AND = dyn_cast<BinaryOperator>(BR->getCondition());
+ if (!AND) return false;
+ if (AND->getOpcode() != Instruction::And) return false;
+ ICmpInst *Op0 = dyn_cast<ICmpInst>(AND->getOperand(0));
+ ICmpInst *Op1 = dyn_cast<ICmpInst>(AND->getOperand(1));
+ if (!Op0 || !Op1)
+ return false;
+ IVBasedValues.insert(AND);
+ IVBasedValues.insert(Op0);
+ IVBasedValues.insert(Op1);
+ if (!cleanBlock(Header)) return false;
+ BasicBlock *ExitingBlock = ExitCondition->getParent();
+ if (!cleanBlock(ExitingBlock)) return false;
+
+ // If the merge point for BR is not loop latch then skip this loop.
+ if (BR->getSuccessor(0) != Latch) {
+ DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0));
+ assert (DF0 != DF->end() && "Unable to find dominance frontier");
+ if (!DF0->second.count(Latch))
+ return false;
+ }
+
+ if (BR->getSuccessor(1) != Latch) {
+ DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1));
+ assert (DF1 != DF->end() && "Unable to find dominance frontier");
+ if (!DF1->second.count(Latch))
+ return false;
+ }
+
+ // Verify that loop exiting block has only two predecessor, where one pred
+ // is split condition block. The other predecessor will become exiting block's
+ // dominator after CFG is updated. TODO : Handle CFG's where exiting block has
+ // more then two predecessors. This requires extra work in updating dominator
+ // information.
+ BasicBlock *ExitingBBPred = NULL;
+ for (pred_iterator PI = pred_begin(ExitingBlock), PE = pred_end(ExitingBlock);
+ PI != PE; ++PI) {
+ BasicBlock *BB = *PI;
+ if (Header == BB)
+ continue;
+ if (ExitingBBPred)
+ return false;
+ else
+ ExitingBBPred = BB;
+ }
+
+ if (!restrictLoopBound(*Op0))
+ return false;
+
+ if (!restrictLoopBound(*Op1))
+ return false;
+
+ // Update CFG.
+ if (BR->getSuccessor(0) == ExitingBlock)
+ BR->setUnconditionalDest(BR->getSuccessor(1));
+ else
+ BR->setUnconditionalDest(BR->getSuccessor(0));
+
+ AND->eraseFromParent();
+ if (Op0->use_empty())
+ Op0->eraseFromParent();
+ if (Op1->use_empty())
+ Op1->eraseFromParent();
+
+ // Update domiantor info. Now, ExitingBlock has only one predecessor,
+ // ExitingBBPred, and it is ExitingBlock's immediate domiantor.
+ DT->changeImmediateDominator(ExitingBlock, ExitingBBPred);
+
+ BasicBlock *ExitBlock = ExitingBlock->getTerminator()->getSuccessor(1);
+ if (L->contains(ExitBlock))
+ ExitBlock = ExitingBlock->getTerminator()->getSuccessor(0);
+
+ // If ExitingBlock is a member of the loop basic blocks' DF list then
+ // replace ExitingBlock with header and exit block in the DF list
+ DominanceFrontier::iterator ExitingBlockDF = DF->find(ExitingBlock);
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ if (BB == Header || BB == ExitingBlock)
+ continue;
+ DominanceFrontier::iterator BBDF = DF->find(BB);
+ DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin();
+ DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end();
+ while (DomSetI != DomSetE) {
+ DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI;
+ ++DomSetI;
+ BasicBlock *DFBB = *CurrentItr;
+ if (DFBB == ExitingBlock) {
+ BBDF->second.erase(DFBB);
+ for (DominanceFrontier::DomSetType::iterator
+ EBI = ExitingBlockDF->second.begin(),
+ EBE = ExitingBlockDF->second.end(); EBI != EBE; ++EBI)
+ BBDF->second.insert(*EBI);
+ }
+ }
+ }
+ NumRestrictBounds++;
+ return true;
+}
+
+/// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB.
+/// This routine is used to remove split condition's dead branch, dominated by
+/// DeadBB. LiveBB dominates split conidition's other branch.
+void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP,
+ BasicBlock *LiveBB) {
+
+ // First update DeadBB's dominance frontier.
+ SmallVector<BasicBlock *, 8> FrontierBBs;
+ DominanceFrontier::iterator DeadBBDF = DF->find(DeadBB);
+ if (DeadBBDF != DF->end()) {
+ SmallVector<BasicBlock *, 8> PredBlocks;
+
+ DominanceFrontier::DomSetType DeadBBSet = DeadBBDF->second;
+ for (DominanceFrontier::DomSetType::iterator DeadBBSetI = DeadBBSet.begin(),
+ DeadBBSetE = DeadBBSet.end(); DeadBBSetI != DeadBBSetE; ++DeadBBSetI)
+ {
+ BasicBlock *FrontierBB = *DeadBBSetI;
+ FrontierBBs.push_back(FrontierBB);
+
+ // Rremove any PHI incoming edge from blocks dominated by DeadBB.
+ PredBlocks.clear();
+ for(pred_iterator PI = pred_begin(FrontierBB), PE = pred_end(FrontierBB);
+ PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ if (P == DeadBB || DT->dominates(DeadBB, P))
+ PredBlocks.push_back(P);
+ }
+
+ for(BasicBlock::iterator FBI = FrontierBB->begin(), FBE = FrontierBB->end();
+ FBI != FBE; ++FBI) {
+ if (PHINode *PN = dyn_cast<PHINode>(FBI)) {
+ for(SmallVector<BasicBlock *, 8>::iterator PI = PredBlocks.begin(),
+ PE = PredBlocks.end(); PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ PN->removeIncomingValue(P);
+ }
+ }
+ else
+ break;
+ }
+ }
+ }
+
+ // Now remove DeadBB and all nodes dominated by DeadBB in df order.
+ SmallVector<BasicBlock *, 32> WorkList;
+ DomTreeNode *DN = DT->getNode(DeadBB);
+ for (df_iterator<DomTreeNode*> DI = df_begin(DN),
+ E = df_end(DN); DI != E; ++DI) {
+ BasicBlock *BB = DI->getBlock();
+ WorkList.push_back(BB);
+ BB->replaceAllUsesWith(UndefValue::get(
+ Type::getLabelTy(DeadBB->getContext())));
+ }
+
+ while (!WorkList.empty()) {
+ BasicBlock *BB = WorkList.pop_back_val();
+ LPM->deleteSimpleAnalysisValue(BB, LP);
+ for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
+ BBI != BBE; ) {
+ Instruction *I = BBI;
+ ++BBI;
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ LPM->deleteSimpleAnalysisValue(I, LP);
+ I->eraseFromParent();
+ }
+ DT->eraseNode(BB);
+ DF->removeBlock(BB);
+ LI->removeBlock(BB);
+ BB->eraseFromParent();
+ }
+
+ // Update Frontier BBs' dominator info.
+ while (!FrontierBBs.empty()) {
+ BasicBlock *FBB = FrontierBBs.pop_back_val();
+ BasicBlock *NewDominator = FBB->getSinglePredecessor();
+ if (!NewDominator) {
+ pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB);
+ NewDominator = *PI;
+ ++PI;
+ if (NewDominator != LiveBB) {
+ for(; PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ if (P == LiveBB) {
+ NewDominator = LiveBB;
+ break;
+ }
+ NewDominator = DT->findNearestCommonDominator(NewDominator, P);
+ }
+ }
+ }
+ assert (NewDominator && "Unable to fix dominator info.");
+ DT->changeImmediateDominator(FBB, NewDominator);
+ DF->changeImmediateDominator(FBB, NewDominator, DT);
+ }
+
+}
+
+// moveExitCondition - Move exit condition EC into split condition block CondBB.
+void LoopIndexSplit::moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB,
+ BasicBlock *ExitBB, ICmpInst *EC,
+ ICmpInst *SC, PHINode *IV,
+ Instruction *IVAdd, Loop *LP,
+ unsigned ExitValueNum) {
+
+ BasicBlock *ExitingBB = EC->getParent();
+ Instruction *CurrentBR = CondBB->getTerminator();
+
+ // Move exit condition into split condition block.
+ EC->moveBefore(CurrentBR);
+ EC->setOperand(ExitValueNum == 0 ? 1 : 0, IV);
+
+ // Move exiting block's branch into split condition block. Update its branch
+ // destination.
+ BranchInst *ExitingBR = cast<BranchInst>(ExitingBB->getTerminator());
+ ExitingBR->moveBefore(CurrentBR);
+ BasicBlock *OrigDestBB = NULL;
+ if (ExitingBR->getSuccessor(0) == ExitBB) {
+ OrigDestBB = ExitingBR->getSuccessor(1);
+ ExitingBR->setSuccessor(1, ActiveBB);
+ }
+ else {
+ OrigDestBB = ExitingBR->getSuccessor(0);
+ ExitingBR->setSuccessor(0, ActiveBB);
+ }
+
+ // Remove split condition and current split condition branch.
+ SC->eraseFromParent();
+ CurrentBR->eraseFromParent();
+
+ // Connect exiting block to original destination.
+ BranchInst::Create(OrigDestBB, ExitingBB);
+
+ // Update PHINodes
+ updatePHINodes(ExitBB, ExitingBB, CondBB, IV, IVAdd, LP);
+
+ // Fix dominator info.
+ // ExitBB is now dominated by CondBB
+ DT->changeImmediateDominator(ExitBB, CondBB);
+ DF->changeImmediateDominator(ExitBB, CondBB, DT);
+
+ // Blocks outside the loop may have been in the dominance frontier of blocks
+ // inside the condition; this is now impossible because the blocks inside the
+ // condition no loger dominate the exit. Remove the relevant blocks from
+ // the dominance frontiers.
+ for (Loop::block_iterator I = LP->block_begin(), E = LP->block_end();
+ I != E; ++I) {
+ if (*I == CondBB || !DT->dominates(CondBB, *I)) continue;
+ DominanceFrontier::iterator BBDF = DF->find(*I);
+ DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin();
+ DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end();
+ while (DomSetI != DomSetE) {
+ DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI;
+ ++DomSetI;
+ BasicBlock *DFBB = *CurrentItr;
+ if (!LP->contains(DFBB))
+ BBDF->second.erase(DFBB);
+ }
+ }
+}
+
+/// updatePHINodes - CFG has been changed.
+/// Before
+/// - ExitBB's single predecessor was Latch
+/// - Latch's second successor was Header
+/// Now
+/// - ExitBB's single predecessor is Header
+/// - Latch's one and only successor is Header
+///
+/// Update ExitBB PHINodes' to reflect this change.
+void LoopIndexSplit::updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch,
+ BasicBlock *Header,
+ PHINode *IV, Instruction *IVIncrement,
+ Loop *LP) {
+
+ for (BasicBlock::iterator BI = ExitBB->begin(), BE = ExitBB->end();
+ BI != BE; ) {
+ PHINode *PN = dyn_cast<PHINode>(BI);
+ ++BI;
+ if (!PN)
+ break;
+
+ Value *V = PN->getIncomingValueForBlock(Latch);
+ if (PHINode *PHV = dyn_cast<PHINode>(V)) {
+ // PHV is in Latch. PHV has one use is in ExitBB PHINode. And one use
+ // in Header which is new incoming value for PN.
+ Value *NewV = NULL;
+ for (Value::use_iterator UI = PHV->use_begin(), E = PHV->use_end();
+ UI != E; ++UI)
+ if (PHINode *U = dyn_cast<PHINode>(*UI))
+ if (LP->contains(U)) {
+ NewV = U;
+ break;
+ }
+
+ // Add incoming value from header only if PN has any use inside the loop.
+ if (NewV)
+ PN->addIncoming(NewV, Header);
+
+ } else if (Instruction *PHI = dyn_cast<Instruction>(V)) {
+ // If this instruction is IVIncrement then IV is new incoming value
+ // from header otherwise this instruction must be incoming value from
+ // header because loop is in LCSSA form.
+ if (PHI == IVIncrement)
+ PN->addIncoming(IV, Header);
+ else
+ PN->addIncoming(V, Header);
+ } else
+ // Otherwise this is an incoming value from header because loop is in
+ // LCSSA form.
+ PN->addIncoming(V, Header);
+
+ // Remove incoming value from Latch.
+ PN->removeIncomingValue(Latch);
+ }
+}
+
+bool LoopIndexSplit::splitLoop() {
+ SplitCondition = NULL;
+ if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE
+ || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ)
+ return false;
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Latch = L->getLoopLatch();
+ BranchInst *SBR = NULL; // Split Condition Branch
+ BranchInst *EBR = cast<BranchInst>(ExitCondition->getParent()->getTerminator());
+ // If Exiting block includes loop variant instructions then this
+ // loop may not be split safely.
+ BasicBlock *ExitingBlock = ExitCondition->getParent();
+ if (!cleanBlock(ExitingBlock)) return false;
+
+ LLVMContext &Context = Header->getContext();
+
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BranchInst *BR = dyn_cast<BranchInst>((*I)->getTerminator());
+ if (!BR || BR->isUnconditional()) continue;
+ ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
+ if (!CI || CI == ExitCondition
+ || CI->getPredicate() == ICmpInst::ICMP_NE
+ || CI->getPredicate() == ICmpInst::ICMP_EQ)
+ continue;
+
+ // Unable to handle triangle loops at the moment.
+ // In triangle loop, split condition is in header and one of the
+ // the split destination is loop latch. If split condition is EQ
+ // then such loops are already handle in processOneIterationLoop().
+ if (Header == (*I)
+ && (Latch == BR->getSuccessor(0) || Latch == BR->getSuccessor(1)))
+ continue;
+
+ // If the block does not dominate the latch then this is not a diamond.
+ // Such loop may not benefit from index split.
+ if (!DT->dominates((*I), Latch))
+ continue;
+
+ // If split condition branches heads do not have single predecessor,
+ // SplitCondBlock, then is not possible to remove inactive branch.
+ if (!BR->getSuccessor(0)->getSinglePredecessor()
+ || !BR->getSuccessor(1)->getSinglePredecessor())
+ return false;
+
+ // If the merge point for BR is not loop latch then skip this condition.
+ if (BR->getSuccessor(0) != Latch) {
+ DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0));
+ assert (DF0 != DF->end() && "Unable to find dominance frontier");
+ if (!DF0->second.count(Latch))
+ continue;
+ }
+
+ if (BR->getSuccessor(1) != Latch) {
+ DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1));
+ assert (DF1 != DF->end() && "Unable to find dominance frontier");
+ if (!DF1->second.count(Latch))
+ continue;
+ }
+ SplitCondition = CI;
+ SBR = BR;
+ break;
+ }
+
+ if (!SplitCondition)
+ return false;
+
+ // If the predicate sign does not match then skip.
+ if (ExitCondition->isSigned() != SplitCondition->isSigned())
+ return false;
+
+ unsigned EVOpNum = (ExitCondition->getOperand(1) == IVExitValue);
+ unsigned SVOpNum = IVBasedValues.count(SplitCondition->getOperand(0));
+ Value *SplitValue = SplitCondition->getOperand(SVOpNum);
+ if (!L->isLoopInvariant(SplitValue))
+ return false;
+ if (!IVBasedValues.count(SplitCondition->getOperand(!SVOpNum)))
+ return false;
+
+ // Check for side effects.
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+
+ assert(DT->dominates(Header, BB));
+ if (DT->properlyDominates(SplitCondition->getParent(), BB))
+ continue;
+
+ for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
+ BI != BE; ++BI) {
+ Instruction *Inst = BI;
+
+ if (!Inst->isSafeToSpeculativelyExecute() && !isa<PHINode>(Inst)
+ && !isa<BranchInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst))
+ return false;
+ }
+ }
+
+ // Normalize loop conditions so that it is easier to calculate new loop
+ // bounds.
+ if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) {
+ ExitCondition->setPredicate(ExitCondition->getInversePredicate());
+ BasicBlock *T = EBR->getSuccessor(0);
+ EBR->setSuccessor(0, EBR->getSuccessor(1));
+ EBR->setSuccessor(1, T);
+ }
+
+ if (IVisGT(*SplitCondition) || IVisGE(*SplitCondition)) {
+ SplitCondition->setPredicate(SplitCondition->getInversePredicate());
+ BasicBlock *T = SBR->getSuccessor(0);
+ SBR->setSuccessor(0, SBR->getSuccessor(1));
+ SBR->setSuccessor(1, T);
+ }
+
+ //[*] Calculate new loop bounds.
+ Value *AEV = SplitValue;
+ Value *BSV = SplitValue;
+ bool Sign = SplitCondition->isSigned();
+ Instruction *PHTerm = L->getLoopPreheader()->getTerminator();
+
+ if (IVisLT(*ExitCondition)) {
+ if (IVisLT(*SplitCondition)) {
+ /* Do nothing */
+ }
+ else if (IVisLE(*SplitCondition)) {
+ AEV = getPlusOne(SplitValue, Sign, PHTerm, Context);
+ BSV = getPlusOne(SplitValue, Sign, PHTerm, Context);
+ } else {
+ assert (0 && "Unexpected split condition!");
+ }
+ }
+ else if (IVisLE(*ExitCondition)) {
+ if (IVisLT(*SplitCondition)) {
+ AEV = getMinusOne(SplitValue, Sign, PHTerm, Context);
+ }
+ else if (IVisLE(*SplitCondition)) {
+ BSV = getPlusOne(SplitValue, Sign, PHTerm, Context);
+ } else {
+ assert (0 && "Unexpected split condition!");
+ }
+ } else {
+ assert (0 && "Unexpected exit condition!");
+ }
+ AEV = getMin(AEV, IVExitValue, Sign, PHTerm);
+ BSV = getMax(BSV, IVStartValue, Sign, PHTerm);
+
+ // [*] Clone Loop
+ DenseMap<const Value *, Value *> ValueMap;
+ Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this);
+ Loop *ALoop = L;
+
+ // [*] ALoop's exiting edge enters BLoop's header.
+ // ALoop's original exit block becomes BLoop's exit block.
+ PHINode *B_IndVar = cast<PHINode>(ValueMap[IndVar]);
+ BasicBlock *A_ExitingBlock = ExitCondition->getParent();
+ BranchInst *A_ExitInsn =
+ dyn_cast<BranchInst>(A_ExitingBlock->getTerminator());
+ assert (A_ExitInsn && "Unable to find suitable loop exit branch");
+ BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1);
+ BasicBlock *B_Header = BLoop->getHeader();
+ if (ALoop->contains(B_ExitBlock)) {
+ B_ExitBlock = A_ExitInsn->getSuccessor(0);
+ A_ExitInsn->setSuccessor(0, B_Header);
+ } else
+ A_ExitInsn->setSuccessor(1, B_Header);
+
+ // [*] Update ALoop's exit value using new exit value.
+ ExitCondition->setOperand(EVOpNum, AEV);
+
+ // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from
+ // original loop's preheader. Add incoming PHINode values from
+ // ALoop's exiting block. Update BLoop header's domiantor info.
+
+ // Collect inverse map of Header PHINodes.
+ DenseMap<Value *, Value *> InverseMap;
+ for (BasicBlock::iterator BI = ALoop->getHeader()->begin(),
+ BE = ALoop->getHeader()->end(); BI != BE; ++BI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BI)) {
+ PHINode *PNClone = cast<PHINode>(ValueMap[PN]);
+ InverseMap[PNClone] = PN;
+ } else
+ break;
+ }
+
+ BasicBlock *A_Preheader = ALoop->getLoopPreheader();
+ for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
+ BI != BE; ++BI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BI)) {
+ // Remove incoming value from original preheader.
+ PN->removeIncomingValue(A_Preheader);
+
+ // Add incoming value from A_ExitingBlock.
+ if (PN == B_IndVar)
+ PN->addIncoming(BSV, A_ExitingBlock);
+ else {
+ PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
+ Value *V2 = NULL;
+ // If loop header is also loop exiting block then
+ // OrigPN is incoming value for B loop header.
+ if (A_ExitingBlock == ALoop->getHeader())
+ V2 = OrigPN;
+ else
+ V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock);
+ PN->addIncoming(V2, A_ExitingBlock);
+ }
+ } else
+ break;
+ }
+
+ DT->changeImmediateDominator(B_Header, A_ExitingBlock);
+ DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT);
+
+ // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit
+ // block. Remove incoming PHINode values from ALoop's exiting block.
+ // Add new incoming values from BLoop's incoming exiting value.
+ // Update BLoop exit block's dominator info..
+ BasicBlock *B_ExitingBlock = cast<BasicBlock>(ValueMap[A_ExitingBlock]);
+ for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end();
+ BI != BE; ++BI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BI)) {
+ PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)],
+ B_ExitingBlock);
+ PN->removeIncomingValue(A_ExitingBlock);
+ } else
+ break;
+ }
+
+ DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock);
+ DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT);
+
+ //[*] Split ALoop's exit edge. This creates a new block which
+ // serves two purposes. First one is to hold PHINode defnitions
+ // to ensure that ALoop's LCSSA form. Second use it to act
+ // as a preheader for BLoop.
+ BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this);
+
+ //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes
+ // in A_ExitBlock to redefine outgoing PHI definitions from ALoop.
+ for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end();
+ BI != BE; ++BI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BI)) {
+ Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock);
+ PHINode *newPHI = PHINode::Create(PN->getType(), PN->getName());
+ newPHI->addIncoming(V1, A_ExitingBlock);
+ A_ExitBlock->getInstList().push_front(newPHI);
+ PN->removeIncomingValue(A_ExitBlock);
+ PN->addIncoming(newPHI, A_ExitBlock);
+ } else
+ break;
+ }
+
+ //[*] Eliminate split condition's inactive branch from ALoop.
+ BasicBlock *A_SplitCondBlock = SplitCondition->getParent();
+ BranchInst *A_BR = cast<BranchInst>(A_SplitCondBlock->getTerminator());
+ BasicBlock *A_InactiveBranch = NULL;
+ BasicBlock *A_ActiveBranch = NULL;
+ A_ActiveBranch = A_BR->getSuccessor(0);
+ A_InactiveBranch = A_BR->getSuccessor(1);
+ A_BR->setUnconditionalDest(A_ActiveBranch);
+ removeBlocks(A_InactiveBranch, L, A_ActiveBranch);
+
+ //[*] Eliminate split condition's inactive branch in from BLoop.
+ BasicBlock *B_SplitCondBlock = cast<BasicBlock>(ValueMap[A_SplitCondBlock]);
+ BranchInst *B_BR = cast<BranchInst>(B_SplitCondBlock->getTerminator());
+ BasicBlock *B_InactiveBranch = NULL;
+ BasicBlock *B_ActiveBranch = NULL;
+ B_ActiveBranch = B_BR->getSuccessor(1);
+ B_InactiveBranch = B_BR->getSuccessor(0);
+ B_BR->setUnconditionalDest(B_ActiveBranch);
+ removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch);
+
+ BasicBlock *A_Header = ALoop->getHeader();
+ if (A_ExitingBlock == A_Header)
+ return true;
+
+ //[*] Move exit condition into split condition block to avoid
+ // executing dead loop iteration.
+ ICmpInst *B_ExitCondition = cast<ICmpInst>(ValueMap[ExitCondition]);
+ Instruction *B_IndVarIncrement = cast<Instruction>(ValueMap[IVIncrement]);
+ ICmpInst *B_SplitCondition = cast<ICmpInst>(ValueMap[SplitCondition]);
+
+ moveExitCondition(A_SplitCondBlock, A_ActiveBranch, A_ExitBlock, ExitCondition,
+ cast<ICmpInst>(SplitCondition), IndVar, IVIncrement,
+ ALoop, EVOpNum);
+
+ moveExitCondition(B_SplitCondBlock, B_ActiveBranch,
+ B_ExitBlock, B_ExitCondition,
+ B_SplitCondition, B_IndVar, B_IndVarIncrement,
+ BLoop, EVOpNum);
+
+ NumIndexSplit++;
+ return true;
+}
+
+/// cleanBlock - A block is considered clean if all non terminal instructions
+/// are either, PHINodes, IV based.
+bool LoopIndexSplit::cleanBlock(BasicBlock *BB) {
+ Instruction *Terminator = BB->getTerminator();
+ for(BasicBlock::iterator BI = BB->begin(), BE = BB->end();
+ BI != BE; ++BI) {
+ Instruction *I = BI;
+
+ if (isa<PHINode>(I) || I == Terminator || I == ExitCondition
+ || I == SplitCondition || IVBasedValues.count(I)
+ || isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ if (I->mayHaveSideEffects())
+ return false;
+
+ // I is used only inside this block then it is OK.
+ bool usedOutsideBB = false;
+ for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
+ UI != UE; ++UI) {
+ Instruction *U = cast<Instruction>(UI);
+ if (U->getParent() != BB)
+ usedOutsideBB = true;
+ }
+ if (!usedOutsideBB)
+ continue;
+
+ // Otherwise we have a instruction that may not allow loop spliting.
+ return false;
+ }
+ return true;
+}
+
+/// IVisLT - If Op is comparing IV based value with an loop invariant and
+/// IV based value is less than the loop invariant then return the loop
+/// invariant. Otherwise return NULL.
+Value * LoopIndexSplit::IVisLT(ICmpInst &Op) {
+ ICmpInst::Predicate P = Op.getPredicate();
+ if ((P == ICmpInst::ICMP_SLT || P == ICmpInst::ICMP_ULT)
+ && IVBasedValues.count(Op.getOperand(0))
+ && L->isLoopInvariant(Op.getOperand(1)))
+ return Op.getOperand(1);
+
+ if ((P == ICmpInst::ICMP_SGT || P == ICmpInst::ICMP_UGT)
+ && IVBasedValues.count(Op.getOperand(1))
+ && L->isLoopInvariant(Op.getOperand(0)))
+ return Op.getOperand(0);
+
+ return NULL;
+}
+
+/// IVisLE - If Op is comparing IV based value with an loop invariant and
+/// IV based value is less than or equal to the loop invariant then
+/// return the loop invariant. Otherwise return NULL.
+Value * LoopIndexSplit::IVisLE(ICmpInst &Op) {
+ ICmpInst::Predicate P = Op.getPredicate();
+ if ((P == ICmpInst::ICMP_SLE || P == ICmpInst::ICMP_ULE)
+ && IVBasedValues.count(Op.getOperand(0))
+ && L->isLoopInvariant(Op.getOperand(1)))
+ return Op.getOperand(1);
+
+ if ((P == ICmpInst::ICMP_SGE || P == ICmpInst::ICMP_UGE)
+ && IVBasedValues.count(Op.getOperand(1))
+ && L->isLoopInvariant(Op.getOperand(0)))
+ return Op.getOperand(0);
+
+ return NULL;
+}
+
+/// IVisGT - If Op is comparing IV based value with an loop invariant and
+/// IV based value is greater than the loop invariant then return the loop
+/// invariant. Otherwise return NULL.
+Value * LoopIndexSplit::IVisGT(ICmpInst &Op) {
+ ICmpInst::Predicate P = Op.getPredicate();
+ if ((P == ICmpInst::ICMP_SGT || P == ICmpInst::ICMP_UGT)
+ && IVBasedValues.count(Op.getOperand(0))
+ && L->isLoopInvariant(Op.getOperand(1)))
+ return Op.getOperand(1);
+
+ if ((P == ICmpInst::ICMP_SLT || P == ICmpInst::ICMP_ULT)
+ && IVBasedValues.count(Op.getOperand(1))
+ && L->isLoopInvariant(Op.getOperand(0)))
+ return Op.getOperand(0);
+
+ return NULL;
+}
+
+/// IVisGE - If Op is comparing IV based value with an loop invariant and
+/// IV based value is greater than or equal to the loop invariant then
+/// return the loop invariant. Otherwise return NULL.
+Value * LoopIndexSplit::IVisGE(ICmpInst &Op) {
+ ICmpInst::Predicate P = Op.getPredicate();
+ if ((P == ICmpInst::ICMP_SGE || P == ICmpInst::ICMP_UGE)
+ && IVBasedValues.count(Op.getOperand(0))
+ && L->isLoopInvariant(Op.getOperand(1)))
+ return Op.getOperand(1);
+
+ if ((P == ICmpInst::ICMP_SLE || P == ICmpInst::ICMP_ULE)
+ && IVBasedValues.count(Op.getOperand(1))
+ && L->isLoopInvariant(Op.getOperand(0)))
+ return Op.getOperand(0);
+
+ return NULL;
+}
+
OpenPOWER on IntegriCloud