summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LICM.cpp824
1 files changed, 824 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
new file mode 100644
index 0000000..b79bb13
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -0,0 +1,824 @@
+//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion, attempting to remove as much
+// code from the body of a loop as possible. It does this by either hoisting
+// code into the preheader block, or by sinking code to the exit blocks if it is
+// safe. This pass also promotes must-aliased memory locations in the loop to
+// live in registers, thus hoisting and sinking "invariant" loads and stores.
+//
+// This pass uses alias analysis for two purposes:
+//
+// 1. Moving loop invariant loads and calls out of loops. If we can determine
+// that a load or call inside of a loop never aliases anything stored to,
+// we can hoist it or sink it like any other instruction.
+// 2. Scalar Promotion of Memory - If there is a store instruction inside of
+// the loop, we try to move the store to happen AFTER the loop instead of
+// inside of the loop. This can only happen if a few conditions are true:
+// A. The pointer stored through is loop invariant
+// B. There are no stores or loads in the loop which _may_ alias the
+// pointer. There are no calls in the loop which mod/ref the pointer.
+// If these conditions are true, we can promote the loads and stores in the
+// loop of the pointer to use a temporary alloca'd variable. We then use
+// the SSAUpdater to construct the appropriate SSA form for the value.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "licm"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumSunk , "Number of instructions sunk out of loop");
+STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
+STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
+STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
+STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
+
+static cl::opt<bool>
+DisablePromotion("disable-licm-promotion", cl::Hidden,
+ cl::desc("Disable memory promotion in LICM pass"));
+
+namespace {
+ struct LICM : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+ LICM() : LoopPass(ID) {
+ initializeLICMPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved("scalar-evolution");
+ AU.addPreservedID(LoopSimplifyID);
+ }
+
+ bool doFinalization() {
+ assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
+ return false;
+ }
+
+ private:
+ AliasAnalysis *AA; // Current AliasAnalysis information
+ LoopInfo *LI; // Current LoopInfo
+ DominatorTree *DT; // Dominator Tree for the current Loop.
+
+ // State that is updated as we process loops.
+ bool Changed; // Set to true when we change anything.
+ BasicBlock *Preheader; // The preheader block of the current loop...
+ Loop *CurLoop; // The current loop we are working on...
+ AliasSetTracker *CurAST; // AliasSet information for the current loop...
+ DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
+
+ /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
+ void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
+
+ /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
+ /// set.
+ void deleteAnalysisValue(Value *V, Loop *L);
+
+ /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
+ /// dominated by the specified block, and that are in the current loop) in
+ /// reverse depth first order w.r.t the DominatorTree. This allows us to
+ /// visit uses before definitions, allowing us to sink a loop body in one
+ /// pass without iteration.
+ ///
+ void SinkRegion(DomTreeNode *N);
+
+ /// HoistRegion - Walk the specified region of the CFG (defined by all
+ /// blocks dominated by the specified block, and that are in the current
+ /// loop) in depth first order w.r.t the DominatorTree. This allows us to
+ /// visit definitions before uses, allowing us to hoist a loop body in one
+ /// pass without iteration.
+ ///
+ void HoistRegion(DomTreeNode *N);
+
+ /// inSubLoop - Little predicate that returns true if the specified basic
+ /// block is in a subloop of the current one, not the current one itself.
+ ///
+ bool inSubLoop(BasicBlock *BB) {
+ assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
+ return LI->getLoopFor(BB) != CurLoop;
+ }
+
+ /// sink - When an instruction is found to only be used outside of the loop,
+ /// this function moves it to the exit blocks and patches up SSA form as
+ /// needed.
+ ///
+ void sink(Instruction &I);
+
+ /// hoist - When an instruction is found to only use loop invariant operands
+ /// that is safe to hoist, this instruction is called to do the dirty work.
+ ///
+ void hoist(Instruction &I);
+
+ /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
+ /// is not a trapping instruction or if it is a trapping instruction and is
+ /// guaranteed to execute.
+ ///
+ bool isSafeToExecuteUnconditionally(Instruction &I);
+
+ /// isGuaranteedToExecute - Check that the instruction is guaranteed to
+ /// execute.
+ ///
+ bool isGuaranteedToExecute(Instruction &I);
+
+ /// pointerInvalidatedByLoop - Return true if the body of this loop may
+ /// store into the memory location pointed to by V.
+ ///
+ bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
+ const MDNode *TBAAInfo) {
+ // Check to see if any of the basic blocks in CurLoop invalidate *V.
+ return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
+ }
+
+ bool canSinkOrHoistInst(Instruction &I);
+ bool isNotUsedInLoop(Instruction &I);
+
+ void PromoteAliasSet(AliasSet &AS);
+ };
+}
+
+char LICM::ID = 0;
+INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
+
+Pass *llvm::createLICMPass() { return new LICM(); }
+
+/// Hoist expressions out of the specified loop. Note, alias info for inner
+/// loop is not preserved so it is not a good idea to run LICM multiple
+/// times on one loop.
+///
+bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
+ Changed = false;
+
+ // Get our Loop and Alias Analysis information...
+ LI = &getAnalysis<LoopInfo>();
+ AA = &getAnalysis<AliasAnalysis>();
+ DT = &getAnalysis<DominatorTree>();
+
+ CurAST = new AliasSetTracker(*AA);
+ // Collect Alias info from subloops.
+ for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
+ LoopItr != LoopItrE; ++LoopItr) {
+ Loop *InnerL = *LoopItr;
+ AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
+ assert(InnerAST && "Where is my AST?");
+
+ // What if InnerLoop was modified by other passes ?
+ CurAST->add(*InnerAST);
+
+ // Once we've incorporated the inner loop's AST into ours, we don't need the
+ // subloop's anymore.
+ delete InnerAST;
+ LoopToAliasSetMap.erase(InnerL);
+ }
+
+ CurLoop = L;
+
+ // Get the preheader block to move instructions into...
+ Preheader = L->getLoopPreheader();
+
+ // Loop over the body of this loop, looking for calls, invokes, and stores.
+ // Because subloops have already been incorporated into AST, we skip blocks in
+ // subloops.
+ //
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops.
+ CurAST->add(*BB); // Incorporate the specified basic block
+ }
+
+ // We want to visit all of the instructions in this loop... that are not parts
+ // of our subloops (they have already had their invariants hoisted out of
+ // their loop, into this loop, so there is no need to process the BODIES of
+ // the subloops).
+ //
+ // Traverse the body of the loop in depth first order on the dominator tree so
+ // that we are guaranteed to see definitions before we see uses. This allows
+ // us to sink instructions in one pass, without iteration. After sinking
+ // instructions, we perform another pass to hoist them out of the loop.
+ //
+ if (L->hasDedicatedExits())
+ SinkRegion(DT->getNode(L->getHeader()));
+ if (Preheader)
+ HoistRegion(DT->getNode(L->getHeader()));
+
+ // Now that all loop invariants have been removed from the loop, promote any
+ // memory references to scalars that we can.
+ if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
+ // Loop over all of the alias sets in the tracker object.
+ for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
+ I != E; ++I)
+ PromoteAliasSet(*I);
+ }
+
+ // Clear out loops state information for the next iteration
+ CurLoop = 0;
+ Preheader = 0;
+
+ // If this loop is nested inside of another one, save the alias information
+ // for when we process the outer loop.
+ if (L->getParentLoop())
+ LoopToAliasSetMap[L] = CurAST;
+ else
+ delete CurAST;
+ return Changed;
+}
+
+/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
+/// dominated by the specified block, and that are in the current loop) in
+/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
+/// uses before definitions, allowing us to sink a loop body in one pass without
+/// iteration.
+///
+void LICM::SinkRegion(DomTreeNode *N) {
+ assert(N != 0 && "Null dominator tree node?");
+ BasicBlock *BB = N->getBlock();
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB)) return;
+
+ // We are processing blocks in reverse dfo, so process children first.
+ const std::vector<DomTreeNode*> &Children = N->getChildren();
+ for (unsigned i = 0, e = Children.size(); i != e; ++i)
+ SinkRegion(Children[i]);
+
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (inSubLoop(BB)) return;
+
+ for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
+ Instruction &I = *--II;
+
+ // If the instruction is dead, we would try to sink it because it isn't used
+ // in the loop, instead, just delete it.
+ if (isInstructionTriviallyDead(&I)) {
+ DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
+ ++II;
+ CurAST->deleteValue(&I);
+ I.eraseFromParent();
+ Changed = true;
+ continue;
+ }
+
+ // Check to see if we can sink this instruction to the exit blocks
+ // of the loop. We can do this if the all users of the instruction are
+ // outside of the loop. In this case, it doesn't even matter if the
+ // operands of the instruction are loop invariant.
+ //
+ if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
+ ++II;
+ sink(I);
+ }
+ }
+}
+
+/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
+/// dominated by the specified block, and that are in the current loop) in depth
+/// first order w.r.t the DominatorTree. This allows us to visit definitions
+/// before uses, allowing us to hoist a loop body in one pass without iteration.
+///
+void LICM::HoistRegion(DomTreeNode *N) {
+ assert(N != 0 && "Null dominator tree node?");
+ BasicBlock *BB = N->getBlock();
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB)) return;
+
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (!inSubLoop(BB))
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
+ Instruction &I = *II++;
+
+ // Try constant folding this instruction. If all the operands are
+ // constants, it is technically hoistable, but it would be better to just
+ // fold it.
+ if (Constant *C = ConstantFoldInstruction(&I)) {
+ DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
+ CurAST->copyValue(&I, C);
+ CurAST->deleteValue(&I);
+ I.replaceAllUsesWith(C);
+ I.eraseFromParent();
+ continue;
+ }
+
+ // Try hoisting the instruction out to the preheader. We can only do this
+ // if all of the operands of the instruction are loop invariant and if it
+ // is safe to hoist the instruction.
+ //
+ if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
+ isSafeToExecuteUnconditionally(I))
+ hoist(I);
+ }
+
+ const std::vector<DomTreeNode*> &Children = N->getChildren();
+ for (unsigned i = 0, e = Children.size(); i != e; ++i)
+ HoistRegion(Children[i]);
+}
+
+/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
+/// instruction.
+///
+bool LICM::canSinkOrHoistInst(Instruction &I) {
+ // Loads have extra constraints we have to verify before we can hoist them.
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (!LI->isUnordered())
+ return false; // Don't hoist volatile/atomic loads!
+
+ // Loads from constant memory are always safe to move, even if they end up
+ // in the same alias set as something that ends up being modified.
+ if (AA->pointsToConstantMemory(LI->getOperand(0)))
+ return true;
+
+ // Don't hoist loads which have may-aliased stores in loop.
+ uint64_t Size = 0;
+ if (LI->getType()->isSized())
+ Size = AA->getTypeStoreSize(LI->getType());
+ return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
+ LI->getMetadata(LLVMContext::MD_tbaa));
+ } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Don't sink or hoist dbg info; it's legal, but not useful.
+ if (isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // Handle simple cases by querying alias analysis.
+ AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
+ if (Behavior == AliasAnalysis::DoesNotAccessMemory)
+ return true;
+ if (AliasAnalysis::onlyReadsMemory(Behavior)) {
+ // If this call only reads from memory and there are no writes to memory
+ // in the loop, we can hoist or sink the call as appropriate.
+ bool FoundMod = false;
+ for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
+ I != E; ++I) {
+ AliasSet &AS = *I;
+ if (!AS.isForwardingAliasSet() && AS.isMod()) {
+ FoundMod = true;
+ break;
+ }
+ }
+ if (!FoundMod) return true;
+ }
+
+ // FIXME: This should use mod/ref information to see if we can hoist or sink
+ // the call.
+
+ return false;
+ }
+
+ // Otherwise these instructions are hoistable/sinkable
+ return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
+ isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
+ isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+ isa<ShuffleVectorInst>(I);
+}
+
+/// isNotUsedInLoop - Return true if the only users of this instruction are
+/// outside of the loop. If this is true, we can sink the instruction to the
+/// exit blocks of the loop.
+///
+bool LICM::isNotUsedInLoop(Instruction &I) {
+ for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (PHINode *PN = dyn_cast<PHINode>(User)) {
+ // PHI node uses occur in predecessor blocks!
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == &I)
+ if (CurLoop->contains(PN->getIncomingBlock(i)))
+ return false;
+ } else if (CurLoop->contains(User)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+/// sink - When an instruction is found to only be used outside of the loop,
+/// this function moves it to the exit blocks and patches up SSA form as needed.
+/// This method is guaranteed to remove the original instruction from its
+/// position, and may either delete it or move it to outside of the loop.
+///
+void LICM::sink(Instruction &I) {
+ DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+
+ if (isa<LoadInst>(I)) ++NumMovedLoads;
+ else if (isa<CallInst>(I)) ++NumMovedCalls;
+ ++NumSunk;
+ Changed = true;
+
+ // The case where there is only a single exit node of this loop is common
+ // enough that we handle it as a special (more efficient) case. It is more
+ // efficient to handle because there are no PHI nodes that need to be placed.
+ if (ExitBlocks.size() == 1) {
+ if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
+ // Instruction is not used, just delete it.
+ CurAST->deleteValue(&I);
+ // If I has users in unreachable blocks, eliminate.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I.use_empty())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ I.eraseFromParent();
+ } else {
+ // Move the instruction to the start of the exit block, after any PHI
+ // nodes in it.
+ I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
+
+ // This instruction is no longer in the AST for the current loop, because
+ // we just sunk it out of the loop. If we just sunk it into an outer
+ // loop, we will rediscover the operation when we process it.
+ CurAST->deleteValue(&I);
+ }
+ return;
+ }
+
+ if (ExitBlocks.empty()) {
+ // The instruction is actually dead if there ARE NO exit blocks.
+ CurAST->deleteValue(&I);
+ // If I has users in unreachable blocks, eliminate.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I.use_empty())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ I.eraseFromParent();
+ return;
+ }
+
+ // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
+ // hard work of inserting PHI nodes as necessary.
+ SmallVector<PHINode*, 8> NewPHIs;
+ SSAUpdater SSA(&NewPHIs);
+
+ if (!I.use_empty())
+ SSA.Initialize(I.getType(), I.getName());
+
+ // Insert a copy of the instruction in each exit block of the loop that is
+ // dominated by the instruction. Each exit block is known to only be in the
+ // ExitBlocks list once.
+ BasicBlock *InstOrigBB = I.getParent();
+ unsigned NumInserted = 0;
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = ExitBlocks[i];
+
+ if (!DT->dominates(InstOrigBB, ExitBlock))
+ continue;
+
+ // Insert the code after the last PHI node.
+ BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
+
+ // If this is the first exit block processed, just move the original
+ // instruction, otherwise clone the original instruction and insert
+ // the copy.
+ Instruction *New;
+ if (NumInserted++ == 0) {
+ I.moveBefore(InsertPt);
+ New = &I;
+ } else {
+ New = I.clone();
+ if (!I.getName().empty())
+ New->setName(I.getName()+".le");
+ ExitBlock->getInstList().insert(InsertPt, New);
+ }
+
+ // Now that we have inserted the instruction, inform SSAUpdater.
+ if (!I.use_empty())
+ SSA.AddAvailableValue(ExitBlock, New);
+ }
+
+ // If the instruction doesn't dominate any exit blocks, it must be dead.
+ if (NumInserted == 0) {
+ CurAST->deleteValue(&I);
+ if (!I.use_empty())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ I.eraseFromParent();
+ return;
+ }
+
+ // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
+ // Grab the use before incrementing the iterator.
+ Use &U = UI.getUse();
+ // Increment the iterator before removing the use from the list.
+ ++UI;
+ SSA.RewriteUseAfterInsertions(U);
+ }
+
+ // Update CurAST for NewPHIs if I had pointer type.
+ if (I.getType()->isPointerTy())
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
+ CurAST->copyValue(&I, NewPHIs[i]);
+
+ // Finally, remove the instruction from CurAST. It is no longer in the loop.
+ CurAST->deleteValue(&I);
+}
+
+/// hoist - When an instruction is found to only use loop invariant operands
+/// that is safe to hoist, this instruction is called to do the dirty work.
+///
+void LICM::hoist(Instruction &I) {
+ DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
+ << I << "\n");
+
+ // Move the new node to the Preheader, before its terminator.
+ I.moveBefore(Preheader->getTerminator());
+
+ if (isa<LoadInst>(I)) ++NumMovedLoads;
+ else if (isa<CallInst>(I)) ++NumMovedCalls;
+ ++NumHoisted;
+ Changed = true;
+}
+
+/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
+/// not a trapping instruction or if it is a trapping instruction and is
+/// guaranteed to execute.
+///
+bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
+ // If it is not a trapping instruction, it is always safe to hoist.
+ if (Inst.isSafeToSpeculativelyExecute())
+ return true;
+
+ return isGuaranteedToExecute(Inst);
+}
+
+bool LICM::isGuaranteedToExecute(Instruction &Inst) {
+ // Otherwise we have to check to make sure that the instruction dominates all
+ // of the exit blocks. If it doesn't, then there is a path out of the loop
+ // which does not execute this instruction, so we can't hoist it.
+
+ // If the instruction is in the header block for the loop (which is very
+ // common), it is always guaranteed to dominate the exit blocks. Since this
+ // is a common case, and can save some work, check it now.
+ if (Inst.getParent() == CurLoop->getHeader())
+ return true;
+
+ // Get the exit blocks for the current loop.
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ // Verify that the block dominates each of the exit blocks of the loop.
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
+ return false;
+
+ return true;
+}
+
+namespace {
+ class LoopPromoter : public LoadAndStorePromoter {
+ Value *SomePtr; // Designated pointer to store to.
+ SmallPtrSet<Value*, 4> &PointerMustAliases;
+ SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
+ AliasSetTracker &AST;
+ DebugLoc DL;
+ int Alignment;
+ public:
+ LoopPromoter(Value *SP,
+ const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
+ SmallPtrSet<Value*, 4> &PMA,
+ SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
+ DebugLoc dl, int alignment)
+ : LoadAndStorePromoter(Insts, S), SomePtr(SP),
+ PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
+ Alignment(alignment) {}
+
+ virtual bool isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction*> &) const {
+ Value *Ptr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ Ptr = LI->getOperand(0);
+ else
+ Ptr = cast<StoreInst>(I)->getPointerOperand();
+ return PointerMustAliases.count(Ptr);
+ }
+
+ virtual void doExtraRewritesBeforeFinalDeletion() const {
+ // Insert stores after in the loop exit blocks. Each exit block gets a
+ // store of the live-out values that feed them. Since we've already told
+ // the SSA updater about the defs in the loop and the preheader
+ // definition, it is all set and we can start using it.
+ for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = LoopExitBlocks[i];
+ Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
+ Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
+ StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
+ NewSI->setAlignment(Alignment);
+ NewSI->setDebugLoc(DL);
+ }
+ }
+
+ virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
+ // Update alias analysis.
+ AST.copyValue(LI, V);
+ }
+ virtual void instructionDeleted(Instruction *I) const {
+ AST.deleteValue(I);
+ }
+ };
+} // end anon namespace
+
+/// PromoteAliasSet - Try to promote memory values to scalars by sinking
+/// stores out of the loop and moving loads to before the loop. We do this by
+/// looping over the stores in the loop, looking for stores to Must pointers
+/// which are loop invariant.
+///
+void LICM::PromoteAliasSet(AliasSet &AS) {
+ // We can promote this alias set if it has a store, if it is a "Must" alias
+ // set, if the pointer is loop invariant, and if we are not eliminating any
+ // volatile loads or stores.
+ if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
+ AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
+ return;
+
+ assert(!AS.empty() &&
+ "Must alias set should have at least one pointer element in it!");
+ Value *SomePtr = AS.begin()->getValue();
+
+ // It isn't safe to promote a load/store from the loop if the load/store is
+ // conditional. For example, turning:
+ //
+ // for () { if (c) *P += 1; }
+ //
+ // into:
+ //
+ // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
+ //
+ // is not safe, because *P may only be valid to access if 'c' is true.
+ //
+ // It is safe to promote P if all uses are direct load/stores and if at
+ // least one is guaranteed to be executed.
+ bool GuaranteedToExecute = false;
+
+ SmallVector<Instruction*, 64> LoopUses;
+ SmallPtrSet<Value*, 4> PointerMustAliases;
+
+ // We start with an alignment of one and try to find instructions that allow
+ // us to prove better alignment.
+ unsigned Alignment = 1;
+
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes.
+ for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
+ Value *ASIV = ASI->getValue();
+ PointerMustAliases.insert(ASIV);
+
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes.
+ if (SomePtr->getType() != ASIV->getType())
+ return;
+
+ for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
+ UI != UE; ++UI) {
+ // Ignore instructions that are outside the loop.
+ Instruction *Use = dyn_cast<Instruction>(*UI);
+ if (!Use || !CurLoop->contains(Use))
+ continue;
+
+ // If there is an non-load/store instruction in the loop, we can't promote
+ // it.
+ if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
+ assert(!load->isVolatile() && "AST broken");
+ if (!load->isSimple())
+ return;
+ } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
+ // Stores *of* the pointer are not interesting, only stores *to* the
+ // pointer.
+ if (Use->getOperand(1) != ASIV)
+ continue;
+ assert(!store->isVolatile() && "AST broken");
+ if (!store->isSimple())
+ return;
+
+ // Note that we only check GuaranteedToExecute inside the store case
+ // so that we do not introduce stores where they did not exist before
+ // (which would break the LLVM concurrency model).
+
+ // If the alignment of this instruction allows us to specify a more
+ // restrictive (and performant) alignment and if we are sure this
+ // instruction will be executed, update the alignment.
+ // Larger is better, with the exception of 0 being the best alignment.
+ unsigned InstAlignment = store->getAlignment();
+ if ((InstAlignment > Alignment || InstAlignment == 0)
+ && (Alignment != 0))
+ if (isGuaranteedToExecute(*Use)) {
+ GuaranteedToExecute = true;
+ Alignment = InstAlignment;
+ }
+
+ if (!GuaranteedToExecute)
+ GuaranteedToExecute = isGuaranteedToExecute(*Use);
+
+ } else
+ return; // Not a load or store.
+
+ LoopUses.push_back(Use);
+ }
+ }
+
+ // If there isn't a guaranteed-to-execute instruction, we can't promote.
+ if (!GuaranteedToExecute)
+ return;
+
+ // Otherwise, this is safe to promote, lets do it!
+ DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
+ Changed = true;
+ ++NumPromoted;
+
+ // Grab a debug location for the inserted loads/stores; given that the
+ // inserted loads/stores have little relation to the original loads/stores,
+ // this code just arbitrarily picks a location from one, since any debug
+ // location is better than none.
+ DebugLoc DL = LoopUses[0]->getDebugLoc();
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+
+ // We use the SSAUpdater interface to insert phi nodes as required.
+ SmallVector<PHINode*, 16> NewPHIs;
+ SSAUpdater SSA(&NewPHIs);
+ LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
+ *CurAST, DL, Alignment);
+
+ // Set up the preheader to have a definition of the value. It is the live-out
+ // value from the preheader that uses in the loop will use.
+ LoadInst *PreheaderLoad =
+ new LoadInst(SomePtr, SomePtr->getName()+".promoted",
+ Preheader->getTerminator());
+ PreheaderLoad->setAlignment(Alignment);
+ PreheaderLoad->setDebugLoc(DL);
+ SSA.AddAvailableValue(Preheader, PreheaderLoad);
+
+ // Rewrite all the loads in the loop and remember all the definitions from
+ // stores in the loop.
+ Promoter.run(LoopUses);
+
+ // If the SSAUpdater didn't use the load in the preheader, just zap it now.
+ if (PreheaderLoad->use_empty())
+ PreheaderLoad->eraseFromParent();
+}
+
+
+/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
+void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
+ AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
+ if (!AST)
+ return;
+
+ AST->copyValue(From, To);
+}
+
+/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
+/// set.
+void LICM::deleteAnalysisValue(Value *V, Loop *L) {
+ AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
+ if (!AST)
+ return;
+
+ AST->deleteValue(V);
+}
OpenPOWER on IntegriCloud