diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LICM.cpp | 824 |
1 files changed, 824 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp new file mode 100644 index 0000000..b79bb13 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp @@ -0,0 +1,824 @@ +//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs loop invariant code motion, attempting to remove as much +// code from the body of a loop as possible. It does this by either hoisting +// code into the preheader block, or by sinking code to the exit blocks if it is +// safe. This pass also promotes must-aliased memory locations in the loop to +// live in registers, thus hoisting and sinking "invariant" loads and stores. +// +// This pass uses alias analysis for two purposes: +// +// 1. Moving loop invariant loads and calls out of loops. If we can determine +// that a load or call inside of a loop never aliases anything stored to, +// we can hoist it or sink it like any other instruction. +// 2. Scalar Promotion of Memory - If there is a store instruction inside of +// the loop, we try to move the store to happen AFTER the loop instead of +// inside of the loop. This can only happen if a few conditions are true: +// A. The pointer stored through is loop invariant +// B. There are no stores or loads in the loop which _may_ alias the +// pointer. There are no calls in the loop which mod/ref the pointer. +// If these conditions are true, we can promote the loads and stores in the +// loop of the pointer to use a temporary alloca'd variable. We then use +// the SSAUpdater to construct the appropriate SSA form for the value. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "licm" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Instructions.h" +#include "llvm/LLVMContext.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumSunk , "Number of instructions sunk out of loop"); +STATISTIC(NumHoisted , "Number of instructions hoisted out of loop"); +STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); +STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); +STATISTIC(NumPromoted , "Number of memory locations promoted to registers"); + +static cl::opt<bool> +DisablePromotion("disable-licm-promotion", cl::Hidden, + cl::desc("Disable memory promotion in LICM pass")); + +namespace { + struct LICM : public LoopPass { + static char ID; // Pass identification, replacement for typeid + LICM() : LoopPass(ID) { + initializeLICMPass(*PassRegistry::getPassRegistry()); + } + + virtual bool runOnLoop(Loop *L, LPPassManager &LPM); + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG... + /// + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<DominatorTree>(); + AU.addRequired<LoopInfo>(); + AU.addRequiredID(LoopSimplifyID); + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addPreserved("scalar-evolution"); + AU.addPreservedID(LoopSimplifyID); + } + + bool doFinalization() { + assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets"); + return false; + } + + private: + AliasAnalysis *AA; // Current AliasAnalysis information + LoopInfo *LI; // Current LoopInfo + DominatorTree *DT; // Dominator Tree for the current Loop. + + // State that is updated as we process loops. + bool Changed; // Set to true when we change anything. + BasicBlock *Preheader; // The preheader block of the current loop... + Loop *CurLoop; // The current loop we are working on... + AliasSetTracker *CurAST; // AliasSet information for the current loop... + DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap; + + /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. + void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L); + + /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias + /// set. + void deleteAnalysisValue(Value *V, Loop *L); + + /// SinkRegion - Walk the specified region of the CFG (defined by all blocks + /// dominated by the specified block, and that are in the current loop) in + /// reverse depth first order w.r.t the DominatorTree. This allows us to + /// visit uses before definitions, allowing us to sink a loop body in one + /// pass without iteration. + /// + void SinkRegion(DomTreeNode *N); + + /// HoistRegion - Walk the specified region of the CFG (defined by all + /// blocks dominated by the specified block, and that are in the current + /// loop) in depth first order w.r.t the DominatorTree. This allows us to + /// visit definitions before uses, allowing us to hoist a loop body in one + /// pass without iteration. + /// + void HoistRegion(DomTreeNode *N); + + /// inSubLoop - Little predicate that returns true if the specified basic + /// block is in a subloop of the current one, not the current one itself. + /// + bool inSubLoop(BasicBlock *BB) { + assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); + return LI->getLoopFor(BB) != CurLoop; + } + + /// sink - When an instruction is found to only be used outside of the loop, + /// this function moves it to the exit blocks and patches up SSA form as + /// needed. + /// + void sink(Instruction &I); + + /// hoist - When an instruction is found to only use loop invariant operands + /// that is safe to hoist, this instruction is called to do the dirty work. + /// + void hoist(Instruction &I); + + /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it + /// is not a trapping instruction or if it is a trapping instruction and is + /// guaranteed to execute. + /// + bool isSafeToExecuteUnconditionally(Instruction &I); + + /// isGuaranteedToExecute - Check that the instruction is guaranteed to + /// execute. + /// + bool isGuaranteedToExecute(Instruction &I); + + /// pointerInvalidatedByLoop - Return true if the body of this loop may + /// store into the memory location pointed to by V. + /// + bool pointerInvalidatedByLoop(Value *V, uint64_t Size, + const MDNode *TBAAInfo) { + // Check to see if any of the basic blocks in CurLoop invalidate *V. + return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod(); + } + + bool canSinkOrHoistInst(Instruction &I); + bool isNotUsedInLoop(Instruction &I); + + void PromoteAliasSet(AliasSet &AS); + }; +} + +char LICM::ID = 0; +INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false) + +Pass *llvm::createLICMPass() { return new LICM(); } + +/// Hoist expressions out of the specified loop. Note, alias info for inner +/// loop is not preserved so it is not a good idea to run LICM multiple +/// times on one loop. +/// +bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) { + Changed = false; + + // Get our Loop and Alias Analysis information... + LI = &getAnalysis<LoopInfo>(); + AA = &getAnalysis<AliasAnalysis>(); + DT = &getAnalysis<DominatorTree>(); + + CurAST = new AliasSetTracker(*AA); + // Collect Alias info from subloops. + for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end(); + LoopItr != LoopItrE; ++LoopItr) { + Loop *InnerL = *LoopItr; + AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL]; + assert(InnerAST && "Where is my AST?"); + + // What if InnerLoop was modified by other passes ? + CurAST->add(*InnerAST); + + // Once we've incorporated the inner loop's AST into ours, we don't need the + // subloop's anymore. + delete InnerAST; + LoopToAliasSetMap.erase(InnerL); + } + + CurLoop = L; + + // Get the preheader block to move instructions into... + Preheader = L->getLoopPreheader(); + + // Loop over the body of this loop, looking for calls, invokes, and stores. + // Because subloops have already been incorporated into AST, we skip blocks in + // subloops. + // + for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); + I != E; ++I) { + BasicBlock *BB = *I; + if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops. + CurAST->add(*BB); // Incorporate the specified basic block + } + + // We want to visit all of the instructions in this loop... that are not parts + // of our subloops (they have already had their invariants hoisted out of + // their loop, into this loop, so there is no need to process the BODIES of + // the subloops). + // + // Traverse the body of the loop in depth first order on the dominator tree so + // that we are guaranteed to see definitions before we see uses. This allows + // us to sink instructions in one pass, without iteration. After sinking + // instructions, we perform another pass to hoist them out of the loop. + // + if (L->hasDedicatedExits()) + SinkRegion(DT->getNode(L->getHeader())); + if (Preheader) + HoistRegion(DT->getNode(L->getHeader())); + + // Now that all loop invariants have been removed from the loop, promote any + // memory references to scalars that we can. + if (!DisablePromotion && Preheader && L->hasDedicatedExits()) { + // Loop over all of the alias sets in the tracker object. + for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); + I != E; ++I) + PromoteAliasSet(*I); + } + + // Clear out loops state information for the next iteration + CurLoop = 0; + Preheader = 0; + + // If this loop is nested inside of another one, save the alias information + // for when we process the outer loop. + if (L->getParentLoop()) + LoopToAliasSetMap[L] = CurAST; + else + delete CurAST; + return Changed; +} + +/// SinkRegion - Walk the specified region of the CFG (defined by all blocks +/// dominated by the specified block, and that are in the current loop) in +/// reverse depth first order w.r.t the DominatorTree. This allows us to visit +/// uses before definitions, allowing us to sink a loop body in one pass without +/// iteration. +/// +void LICM::SinkRegion(DomTreeNode *N) { + assert(N != 0 && "Null dominator tree node?"); + BasicBlock *BB = N->getBlock(); + + // If this subregion is not in the top level loop at all, exit. + if (!CurLoop->contains(BB)) return; + + // We are processing blocks in reverse dfo, so process children first. + const std::vector<DomTreeNode*> &Children = N->getChildren(); + for (unsigned i = 0, e = Children.size(); i != e; ++i) + SinkRegion(Children[i]); + + // Only need to process the contents of this block if it is not part of a + // subloop (which would already have been processed). + if (inSubLoop(BB)) return; + + for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) { + Instruction &I = *--II; + + // If the instruction is dead, we would try to sink it because it isn't used + // in the loop, instead, just delete it. + if (isInstructionTriviallyDead(&I)) { + DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); + ++II; + CurAST->deleteValue(&I); + I.eraseFromParent(); + Changed = true; + continue; + } + + // Check to see if we can sink this instruction to the exit blocks + // of the loop. We can do this if the all users of the instruction are + // outside of the loop. In this case, it doesn't even matter if the + // operands of the instruction are loop invariant. + // + if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) { + ++II; + sink(I); + } + } +} + +/// HoistRegion - Walk the specified region of the CFG (defined by all blocks +/// dominated by the specified block, and that are in the current loop) in depth +/// first order w.r.t the DominatorTree. This allows us to visit definitions +/// before uses, allowing us to hoist a loop body in one pass without iteration. +/// +void LICM::HoistRegion(DomTreeNode *N) { + assert(N != 0 && "Null dominator tree node?"); + BasicBlock *BB = N->getBlock(); + + // If this subregion is not in the top level loop at all, exit. + if (!CurLoop->contains(BB)) return; + + // Only need to process the contents of this block if it is not part of a + // subloop (which would already have been processed). + if (!inSubLoop(BB)) + for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) { + Instruction &I = *II++; + + // Try constant folding this instruction. If all the operands are + // constants, it is technically hoistable, but it would be better to just + // fold it. + if (Constant *C = ConstantFoldInstruction(&I)) { + DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n'); + CurAST->copyValue(&I, C); + CurAST->deleteValue(&I); + I.replaceAllUsesWith(C); + I.eraseFromParent(); + continue; + } + + // Try hoisting the instruction out to the preheader. We can only do this + // if all of the operands of the instruction are loop invariant and if it + // is safe to hoist the instruction. + // + if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) && + isSafeToExecuteUnconditionally(I)) + hoist(I); + } + + const std::vector<DomTreeNode*> &Children = N->getChildren(); + for (unsigned i = 0, e = Children.size(); i != e; ++i) + HoistRegion(Children[i]); +} + +/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this +/// instruction. +/// +bool LICM::canSinkOrHoistInst(Instruction &I) { + // Loads have extra constraints we have to verify before we can hoist them. + if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { + if (!LI->isUnordered()) + return false; // Don't hoist volatile/atomic loads! + + // Loads from constant memory are always safe to move, even if they end up + // in the same alias set as something that ends up being modified. + if (AA->pointsToConstantMemory(LI->getOperand(0))) + return true; + + // Don't hoist loads which have may-aliased stores in loop. + uint64_t Size = 0; + if (LI->getType()->isSized()) + Size = AA->getTypeStoreSize(LI->getType()); + return !pointerInvalidatedByLoop(LI->getOperand(0), Size, + LI->getMetadata(LLVMContext::MD_tbaa)); + } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { + // Don't sink or hoist dbg info; it's legal, but not useful. + if (isa<DbgInfoIntrinsic>(I)) + return false; + + // Handle simple cases by querying alias analysis. + AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI); + if (Behavior == AliasAnalysis::DoesNotAccessMemory) + return true; + if (AliasAnalysis::onlyReadsMemory(Behavior)) { + // If this call only reads from memory and there are no writes to memory + // in the loop, we can hoist or sink the call as appropriate. + bool FoundMod = false; + for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); + I != E; ++I) { + AliasSet &AS = *I; + if (!AS.isForwardingAliasSet() && AS.isMod()) { + FoundMod = true; + break; + } + } + if (!FoundMod) return true; + } + + // FIXME: This should use mod/ref information to see if we can hoist or sink + // the call. + + return false; + } + + // Otherwise these instructions are hoistable/sinkable + return isa<BinaryOperator>(I) || isa<CastInst>(I) || + isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || + isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || + isa<ShuffleVectorInst>(I); +} + +/// isNotUsedInLoop - Return true if the only users of this instruction are +/// outside of the loop. If this is true, we can sink the instruction to the +/// exit blocks of the loop. +/// +bool LICM::isNotUsedInLoop(Instruction &I) { + for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + if (PHINode *PN = dyn_cast<PHINode>(User)) { + // PHI node uses occur in predecessor blocks! + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + if (PN->getIncomingValue(i) == &I) + if (CurLoop->contains(PN->getIncomingBlock(i))) + return false; + } else if (CurLoop->contains(User)) { + return false; + } + } + return true; +} + + +/// sink - When an instruction is found to only be used outside of the loop, +/// this function moves it to the exit blocks and patches up SSA form as needed. +/// This method is guaranteed to remove the original instruction from its +/// position, and may either delete it or move it to outside of the loop. +/// +void LICM::sink(Instruction &I) { + DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); + + SmallVector<BasicBlock*, 8> ExitBlocks; + CurLoop->getUniqueExitBlocks(ExitBlocks); + + if (isa<LoadInst>(I)) ++NumMovedLoads; + else if (isa<CallInst>(I)) ++NumMovedCalls; + ++NumSunk; + Changed = true; + + // The case where there is only a single exit node of this loop is common + // enough that we handle it as a special (more efficient) case. It is more + // efficient to handle because there are no PHI nodes that need to be placed. + if (ExitBlocks.size() == 1) { + if (!DT->dominates(I.getParent(), ExitBlocks[0])) { + // Instruction is not used, just delete it. + CurAST->deleteValue(&I); + // If I has users in unreachable blocks, eliminate. + // If I is not void type then replaceAllUsesWith undef. + // This allows ValueHandlers and custom metadata to adjust itself. + if (!I.use_empty()) + I.replaceAllUsesWith(UndefValue::get(I.getType())); + I.eraseFromParent(); + } else { + // Move the instruction to the start of the exit block, after any PHI + // nodes in it. + I.moveBefore(ExitBlocks[0]->getFirstInsertionPt()); + + // This instruction is no longer in the AST for the current loop, because + // we just sunk it out of the loop. If we just sunk it into an outer + // loop, we will rediscover the operation when we process it. + CurAST->deleteValue(&I); + } + return; + } + + if (ExitBlocks.empty()) { + // The instruction is actually dead if there ARE NO exit blocks. + CurAST->deleteValue(&I); + // If I has users in unreachable blocks, eliminate. + // If I is not void type then replaceAllUsesWith undef. + // This allows ValueHandlers and custom metadata to adjust itself. + if (!I.use_empty()) + I.replaceAllUsesWith(UndefValue::get(I.getType())); + I.eraseFromParent(); + return; + } + + // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the + // hard work of inserting PHI nodes as necessary. + SmallVector<PHINode*, 8> NewPHIs; + SSAUpdater SSA(&NewPHIs); + + if (!I.use_empty()) + SSA.Initialize(I.getType(), I.getName()); + + // Insert a copy of the instruction in each exit block of the loop that is + // dominated by the instruction. Each exit block is known to only be in the + // ExitBlocks list once. + BasicBlock *InstOrigBB = I.getParent(); + unsigned NumInserted = 0; + + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { + BasicBlock *ExitBlock = ExitBlocks[i]; + + if (!DT->dominates(InstOrigBB, ExitBlock)) + continue; + + // Insert the code after the last PHI node. + BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); + + // If this is the first exit block processed, just move the original + // instruction, otherwise clone the original instruction and insert + // the copy. + Instruction *New; + if (NumInserted++ == 0) { + I.moveBefore(InsertPt); + New = &I; + } else { + New = I.clone(); + if (!I.getName().empty()) + New->setName(I.getName()+".le"); + ExitBlock->getInstList().insert(InsertPt, New); + } + + // Now that we have inserted the instruction, inform SSAUpdater. + if (!I.use_empty()) + SSA.AddAvailableValue(ExitBlock, New); + } + + // If the instruction doesn't dominate any exit blocks, it must be dead. + if (NumInserted == 0) { + CurAST->deleteValue(&I); + if (!I.use_empty()) + I.replaceAllUsesWith(UndefValue::get(I.getType())); + I.eraseFromParent(); + return; + } + + // Next, rewrite uses of the instruction, inserting PHI nodes as needed. + for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) { + // Grab the use before incrementing the iterator. + Use &U = UI.getUse(); + // Increment the iterator before removing the use from the list. + ++UI; + SSA.RewriteUseAfterInsertions(U); + } + + // Update CurAST for NewPHIs if I had pointer type. + if (I.getType()->isPointerTy()) + for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) + CurAST->copyValue(&I, NewPHIs[i]); + + // Finally, remove the instruction from CurAST. It is no longer in the loop. + CurAST->deleteValue(&I); +} + +/// hoist - When an instruction is found to only use loop invariant operands +/// that is safe to hoist, this instruction is called to do the dirty work. +/// +void LICM::hoist(Instruction &I) { + DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " + << I << "\n"); + + // Move the new node to the Preheader, before its terminator. + I.moveBefore(Preheader->getTerminator()); + + if (isa<LoadInst>(I)) ++NumMovedLoads; + else if (isa<CallInst>(I)) ++NumMovedCalls; + ++NumHoisted; + Changed = true; +} + +/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is +/// not a trapping instruction or if it is a trapping instruction and is +/// guaranteed to execute. +/// +bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) { + // If it is not a trapping instruction, it is always safe to hoist. + if (Inst.isSafeToSpeculativelyExecute()) + return true; + + return isGuaranteedToExecute(Inst); +} + +bool LICM::isGuaranteedToExecute(Instruction &Inst) { + // Otherwise we have to check to make sure that the instruction dominates all + // of the exit blocks. If it doesn't, then there is a path out of the loop + // which does not execute this instruction, so we can't hoist it. + + // If the instruction is in the header block for the loop (which is very + // common), it is always guaranteed to dominate the exit blocks. Since this + // is a common case, and can save some work, check it now. + if (Inst.getParent() == CurLoop->getHeader()) + return true; + + // Get the exit blocks for the current loop. + SmallVector<BasicBlock*, 8> ExitBlocks; + CurLoop->getExitBlocks(ExitBlocks); + + // Verify that the block dominates each of the exit blocks of the loop. + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) + if (!DT->dominates(Inst.getParent(), ExitBlocks[i])) + return false; + + return true; +} + +namespace { + class LoopPromoter : public LoadAndStorePromoter { + Value *SomePtr; // Designated pointer to store to. + SmallPtrSet<Value*, 4> &PointerMustAliases; + SmallVectorImpl<BasicBlock*> &LoopExitBlocks; + AliasSetTracker &AST; + DebugLoc DL; + int Alignment; + public: + LoopPromoter(Value *SP, + const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, + SmallPtrSet<Value*, 4> &PMA, + SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast, + DebugLoc dl, int alignment) + : LoadAndStorePromoter(Insts, S), SomePtr(SP), + PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl), + Alignment(alignment) {} + + virtual bool isInstInList(Instruction *I, + const SmallVectorImpl<Instruction*> &) const { + Value *Ptr; + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + Ptr = LI->getOperand(0); + else + Ptr = cast<StoreInst>(I)->getPointerOperand(); + return PointerMustAliases.count(Ptr); + } + + virtual void doExtraRewritesBeforeFinalDeletion() const { + // Insert stores after in the loop exit blocks. Each exit block gets a + // store of the live-out values that feed them. Since we've already told + // the SSA updater about the defs in the loop and the preheader + // definition, it is all set and we can start using it. + for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { + BasicBlock *ExitBlock = LoopExitBlocks[i]; + Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); + Instruction *InsertPos = ExitBlock->getFirstInsertionPt(); + StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos); + NewSI->setAlignment(Alignment); + NewSI->setDebugLoc(DL); + } + } + + virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const { + // Update alias analysis. + AST.copyValue(LI, V); + } + virtual void instructionDeleted(Instruction *I) const { + AST.deleteValue(I); + } + }; +} // end anon namespace + +/// PromoteAliasSet - Try to promote memory values to scalars by sinking +/// stores out of the loop and moving loads to before the loop. We do this by +/// looping over the stores in the loop, looking for stores to Must pointers +/// which are loop invariant. +/// +void LICM::PromoteAliasSet(AliasSet &AS) { + // We can promote this alias set if it has a store, if it is a "Must" alias + // set, if the pointer is loop invariant, and if we are not eliminating any + // volatile loads or stores. + if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || + AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue())) + return; + + assert(!AS.empty() && + "Must alias set should have at least one pointer element in it!"); + Value *SomePtr = AS.begin()->getValue(); + + // It isn't safe to promote a load/store from the loop if the load/store is + // conditional. For example, turning: + // + // for () { if (c) *P += 1; } + // + // into: + // + // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; + // + // is not safe, because *P may only be valid to access if 'c' is true. + // + // It is safe to promote P if all uses are direct load/stores and if at + // least one is guaranteed to be executed. + bool GuaranteedToExecute = false; + + SmallVector<Instruction*, 64> LoopUses; + SmallPtrSet<Value*, 4> PointerMustAliases; + + // We start with an alignment of one and try to find instructions that allow + // us to prove better alignment. + unsigned Alignment = 1; + + // Check that all of the pointers in the alias set have the same type. We + // cannot (yet) promote a memory location that is loaded and stored in + // different sizes. + for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) { + Value *ASIV = ASI->getValue(); + PointerMustAliases.insert(ASIV); + + // Check that all of the pointers in the alias set have the same type. We + // cannot (yet) promote a memory location that is loaded and stored in + // different sizes. + if (SomePtr->getType() != ASIV->getType()) + return; + + for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end(); + UI != UE; ++UI) { + // Ignore instructions that are outside the loop. + Instruction *Use = dyn_cast<Instruction>(*UI); + if (!Use || !CurLoop->contains(Use)) + continue; + + // If there is an non-load/store instruction in the loop, we can't promote + // it. + if (LoadInst *load = dyn_cast<LoadInst>(Use)) { + assert(!load->isVolatile() && "AST broken"); + if (!load->isSimple()) + return; + } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) { + // Stores *of* the pointer are not interesting, only stores *to* the + // pointer. + if (Use->getOperand(1) != ASIV) + continue; + assert(!store->isVolatile() && "AST broken"); + if (!store->isSimple()) + return; + + // Note that we only check GuaranteedToExecute inside the store case + // so that we do not introduce stores where they did not exist before + // (which would break the LLVM concurrency model). + + // If the alignment of this instruction allows us to specify a more + // restrictive (and performant) alignment and if we are sure this + // instruction will be executed, update the alignment. + // Larger is better, with the exception of 0 being the best alignment. + unsigned InstAlignment = store->getAlignment(); + if ((InstAlignment > Alignment || InstAlignment == 0) + && (Alignment != 0)) + if (isGuaranteedToExecute(*Use)) { + GuaranteedToExecute = true; + Alignment = InstAlignment; + } + + if (!GuaranteedToExecute) + GuaranteedToExecute = isGuaranteedToExecute(*Use); + + } else + return; // Not a load or store. + + LoopUses.push_back(Use); + } + } + + // If there isn't a guaranteed-to-execute instruction, we can't promote. + if (!GuaranteedToExecute) + return; + + // Otherwise, this is safe to promote, lets do it! + DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n'); + Changed = true; + ++NumPromoted; + + // Grab a debug location for the inserted loads/stores; given that the + // inserted loads/stores have little relation to the original loads/stores, + // this code just arbitrarily picks a location from one, since any debug + // location is better than none. + DebugLoc DL = LoopUses[0]->getDebugLoc(); + + SmallVector<BasicBlock*, 8> ExitBlocks; + CurLoop->getUniqueExitBlocks(ExitBlocks); + + // We use the SSAUpdater interface to insert phi nodes as required. + SmallVector<PHINode*, 16> NewPHIs; + SSAUpdater SSA(&NewPHIs); + LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, + *CurAST, DL, Alignment); + + // Set up the preheader to have a definition of the value. It is the live-out + // value from the preheader that uses in the loop will use. + LoadInst *PreheaderLoad = + new LoadInst(SomePtr, SomePtr->getName()+".promoted", + Preheader->getTerminator()); + PreheaderLoad->setAlignment(Alignment); + PreheaderLoad->setDebugLoc(DL); + SSA.AddAvailableValue(Preheader, PreheaderLoad); + + // Rewrite all the loads in the loop and remember all the definitions from + // stores in the loop. + Promoter.run(LoopUses); + + // If the SSAUpdater didn't use the load in the preheader, just zap it now. + if (PreheaderLoad->use_empty()) + PreheaderLoad->eraseFromParent(); +} + + +/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. +void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) { + AliasSetTracker *AST = LoopToAliasSetMap.lookup(L); + if (!AST) + return; + + AST->copyValue(From, To); +} + +/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias +/// set. +void LICM::deleteAnalysisValue(Value *V, Loop *L) { + AliasSetTracker *AST = LoopToAliasSetMap.lookup(L); + if (!AST) + return; + + AST->deleteValue(V); +} |