summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LICM.cpp881
1 files changed, 881 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
new file mode 100644
index 0000000..7347395
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -0,0 +1,881 @@
+//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion, attempting to remove as much
+// code from the body of a loop as possible. It does this by either hoisting
+// code into the preheader block, or by sinking code to the exit blocks if it is
+// safe. This pass also promotes must-aliased memory locations in the loop to
+// live in registers, thus hoisting and sinking "invariant" loads and stores.
+//
+// This pass uses alias analysis for two purposes:
+//
+// 1. Moving loop invariant loads and calls out of loops. If we can determine
+// that a load or call inside of a loop never aliases anything stored to,
+// we can hoist it or sink it like any other instruction.
+// 2. Scalar Promotion of Memory - If there is a store instruction inside of
+// the loop, we try to move the store to happen AFTER the loop instead of
+// inside of the loop. This can only happen if a few conditions are true:
+// A. The pointer stored through is loop invariant
+// B. There are no stores or loads in the loop which _may_ alias the
+// pointer. There are no calls in the loop which mod/ref the pointer.
+// If these conditions are true, we can promote the loads and stores in the
+// loop of the pointer to use a temporary alloca'd variable. We then use
+// the mem2reg functionality to construct the appropriate SSA form for the
+// variable.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "licm"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Instructions.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumSunk , "Number of instructions sunk out of loop");
+STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
+STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
+STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
+STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
+
+static cl::opt<bool>
+DisablePromotion("disable-licm-promotion", cl::Hidden,
+ cl::desc("Disable memory promotion in LICM pass"));
+
+namespace {
+ struct LICM : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+ LICM() : LoopPass(&ID) {}
+
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addPreserved<DominanceFrontier>();
+ AU.addPreservedID(LoopSimplifyID);
+ }
+
+ bool doFinalization() {
+ // Free the values stored in the map
+ for (std::map<Loop *, AliasSetTracker *>::iterator
+ I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
+ delete I->second;
+
+ LoopToAliasMap.clear();
+ return false;
+ }
+
+ private:
+ // Various analyses that we use...
+ AliasAnalysis *AA; // Current AliasAnalysis information
+ LoopInfo *LI; // Current LoopInfo
+ DominatorTree *DT; // Dominator Tree for the current Loop...
+ DominanceFrontier *DF; // Current Dominance Frontier
+
+ // State that is updated as we process loops
+ bool Changed; // Set to true when we change anything.
+ BasicBlock *Preheader; // The preheader block of the current loop...
+ Loop *CurLoop; // The current loop we are working on...
+ AliasSetTracker *CurAST; // AliasSet information for the current loop...
+ std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
+
+ /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
+ void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
+
+ /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
+ /// set.
+ void deleteAnalysisValue(Value *V, Loop *L);
+
+ /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
+ /// dominated by the specified block, and that are in the current loop) in
+ /// reverse depth first order w.r.t the DominatorTree. This allows us to
+ /// visit uses before definitions, allowing us to sink a loop body in one
+ /// pass without iteration.
+ ///
+ void SinkRegion(DomTreeNode *N);
+
+ /// HoistRegion - Walk the specified region of the CFG (defined by all
+ /// blocks dominated by the specified block, and that are in the current
+ /// loop) in depth first order w.r.t the DominatorTree. This allows us to
+ /// visit definitions before uses, allowing us to hoist a loop body in one
+ /// pass without iteration.
+ ///
+ void HoistRegion(DomTreeNode *N);
+
+ /// inSubLoop - Little predicate that returns true if the specified basic
+ /// block is in a subloop of the current one, not the current one itself.
+ ///
+ bool inSubLoop(BasicBlock *BB) {
+ assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
+ for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
+ if ((*I)->contains(BB))
+ return true; // A subloop actually contains this block!
+ return false;
+ }
+
+ /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
+ /// specified exit block of the loop is dominated by the specified block
+ /// that is in the body of the loop. We use these constraints to
+ /// dramatically limit the amount of the dominator tree that needs to be
+ /// searched.
+ bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
+ BasicBlock *BlockInLoop) const {
+ // If the block in the loop is the loop header, it must be dominated!
+ BasicBlock *LoopHeader = CurLoop->getHeader();
+ if (BlockInLoop == LoopHeader)
+ return true;
+
+ DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
+ DomTreeNode *IDom = DT->getNode(ExitBlock);
+
+ // Because the exit block is not in the loop, we know we have to get _at
+ // least_ its immediate dominator.
+ IDom = IDom->getIDom();
+
+ while (IDom && IDom != BlockInLoopNode) {
+ // If we have got to the header of the loop, then the instructions block
+ // did not dominate the exit node, so we can't hoist it.
+ if (IDom->getBlock() == LoopHeader)
+ return false;
+
+ // Get next Immediate Dominator.
+ IDom = IDom->getIDom();
+ };
+
+ return true;
+ }
+
+ /// sink - When an instruction is found to only be used outside of the loop,
+ /// this function moves it to the exit blocks and patches up SSA form as
+ /// needed.
+ ///
+ void sink(Instruction &I);
+
+ /// hoist - When an instruction is found to only use loop invariant operands
+ /// that is safe to hoist, this instruction is called to do the dirty work.
+ ///
+ void hoist(Instruction &I);
+
+ /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
+ /// is not a trapping instruction or if it is a trapping instruction and is
+ /// guaranteed to execute.
+ ///
+ bool isSafeToExecuteUnconditionally(Instruction &I);
+
+ /// pointerInvalidatedByLoop - Return true if the body of this loop may
+ /// store into the memory location pointed to by V.
+ ///
+ bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
+ // Check to see if any of the basic blocks in CurLoop invalidate *V.
+ return CurAST->getAliasSetForPointer(V, Size).isMod();
+ }
+
+ bool canSinkOrHoistInst(Instruction &I);
+ bool isLoopInvariantInst(Instruction &I);
+ bool isNotUsedInLoop(Instruction &I);
+
+ /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
+ /// to scalars as we can.
+ ///
+ void PromoteValuesInLoop();
+
+ /// FindPromotableValuesInLoop - Check the current loop for stores to
+ /// definite pointers, which are not loaded and stored through may aliases.
+ /// If these are found, create an alloca for the value, add it to the
+ /// PromotedValues list, and keep track of the mapping from value to
+ /// alloca...
+ ///
+ void FindPromotableValuesInLoop(
+ std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
+ std::map<Value*, AllocaInst*> &Val2AlMap);
+ };
+}
+
+char LICM::ID = 0;
+static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
+
+Pass *llvm::createLICMPass() { return new LICM(); }
+
+/// Hoist expressions out of the specified loop. Note, alias info for inner
+/// loop is not preserved so it is not a good idea to run LICM multiple
+/// times on one loop.
+///
+bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
+ Changed = false;
+
+ // Get our Loop and Alias Analysis information...
+ LI = &getAnalysis<LoopInfo>();
+ AA = &getAnalysis<AliasAnalysis>();
+ DF = &getAnalysis<DominanceFrontier>();
+ DT = &getAnalysis<DominatorTree>();
+
+ CurAST = new AliasSetTracker(*AA);
+ // Collect Alias info from subloops
+ for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
+ LoopItr != LoopItrE; ++LoopItr) {
+ Loop *InnerL = *LoopItr;
+ AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
+ assert (InnerAST && "Where is my AST?");
+
+ // What if InnerLoop was modified by other passes ?
+ CurAST->add(*InnerAST);
+ }
+
+ CurLoop = L;
+
+ // Get the preheader block to move instructions into...
+ Preheader = L->getLoopPreheader();
+
+ // Loop over the body of this loop, looking for calls, invokes, and stores.
+ // Because subloops have already been incorporated into AST, we skip blocks in
+ // subloops.
+ //
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops...
+ CurAST->add(*BB); // Incorporate the specified basic block
+ }
+
+ // We want to visit all of the instructions in this loop... that are not parts
+ // of our subloops (they have already had their invariants hoisted out of
+ // their loop, into this loop, so there is no need to process the BODIES of
+ // the subloops).
+ //
+ // Traverse the body of the loop in depth first order on the dominator tree so
+ // that we are guaranteed to see definitions before we see uses. This allows
+ // us to sink instructions in one pass, without iteration. After sinking
+ // instructions, we perform another pass to hoist them out of the loop.
+ //
+ if (L->hasDedicatedExits())
+ SinkRegion(DT->getNode(L->getHeader()));
+ if (Preheader)
+ HoistRegion(DT->getNode(L->getHeader()));
+
+ // Now that all loop invariants have been removed from the loop, promote any
+ // memory references to scalars that we can...
+ if (!DisablePromotion && Preheader && L->hasDedicatedExits())
+ PromoteValuesInLoop();
+
+ // Clear out loops state information for the next iteration
+ CurLoop = 0;
+ Preheader = 0;
+
+ LoopToAliasMap[L] = CurAST;
+ return Changed;
+}
+
+/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
+/// dominated by the specified block, and that are in the current loop) in
+/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
+/// uses before definitions, allowing us to sink a loop body in one pass without
+/// iteration.
+///
+void LICM::SinkRegion(DomTreeNode *N) {
+ assert(N != 0 && "Null dominator tree node?");
+ BasicBlock *BB = N->getBlock();
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB)) return;
+
+ // We are processing blocks in reverse dfo, so process children first...
+ const std::vector<DomTreeNode*> &Children = N->getChildren();
+ for (unsigned i = 0, e = Children.size(); i != e; ++i)
+ SinkRegion(Children[i]);
+
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (inSubLoop(BB)) return;
+
+ for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
+ Instruction &I = *--II;
+
+ // Check to see if we can sink this instruction to the exit blocks
+ // of the loop. We can do this if the all users of the instruction are
+ // outside of the loop. In this case, it doesn't even matter if the
+ // operands of the instruction are loop invariant.
+ //
+ if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
+ ++II;
+ sink(I);
+ }
+ }
+}
+
+/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
+/// dominated by the specified block, and that are in the current loop) in depth
+/// first order w.r.t the DominatorTree. This allows us to visit definitions
+/// before uses, allowing us to hoist a loop body in one pass without iteration.
+///
+void LICM::HoistRegion(DomTreeNode *N) {
+ assert(N != 0 && "Null dominator tree node?");
+ BasicBlock *BB = N->getBlock();
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB)) return;
+
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (!inSubLoop(BB))
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
+ Instruction &I = *II++;
+
+ // Try hoisting the instruction out to the preheader. We can only do this
+ // if all of the operands of the instruction are loop invariant and if it
+ // is safe to hoist the instruction.
+ //
+ if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
+ isSafeToExecuteUnconditionally(I))
+ hoist(I);
+ }
+
+ const std::vector<DomTreeNode*> &Children = N->getChildren();
+ for (unsigned i = 0, e = Children.size(); i != e; ++i)
+ HoistRegion(Children[i]);
+}
+
+/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
+/// instruction.
+///
+bool LICM::canSinkOrHoistInst(Instruction &I) {
+ // Loads have extra constraints we have to verify before we can hoist them.
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (LI->isVolatile())
+ return false; // Don't hoist volatile loads!
+
+ // Loads from constant memory are always safe to move, even if they end up
+ // in the same alias set as something that ends up being modified.
+ if (AA->pointsToConstantMemory(LI->getOperand(0)))
+ return true;
+
+ // Don't hoist loads which have may-aliased stores in loop.
+ unsigned Size = 0;
+ if (LI->getType()->isSized())
+ Size = AA->getTypeStoreSize(LI->getType());
+ return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
+ } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Handle obvious cases efficiently.
+ AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
+ if (Behavior == AliasAnalysis::DoesNotAccessMemory)
+ return true;
+ else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
+ // If this call only reads from memory and there are no writes to memory
+ // in the loop, we can hoist or sink the call as appropriate.
+ bool FoundMod = false;
+ for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
+ I != E; ++I) {
+ AliasSet &AS = *I;
+ if (!AS.isForwardingAliasSet() && AS.isMod()) {
+ FoundMod = true;
+ break;
+ }
+ }
+ if (!FoundMod) return true;
+ }
+
+ // FIXME: This should use mod/ref information to see if we can hoist or sink
+ // the call.
+
+ return false;
+ }
+
+ // Otherwise these instructions are hoistable/sinkable
+ return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
+ isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
+ isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+ isa<ShuffleVectorInst>(I);
+}
+
+/// isNotUsedInLoop - Return true if the only users of this instruction are
+/// outside of the loop. If this is true, we can sink the instruction to the
+/// exit blocks of the loop.
+///
+bool LICM::isNotUsedInLoop(Instruction &I) {
+ for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (PHINode *PN = dyn_cast<PHINode>(User)) {
+ // PHI node uses occur in predecessor blocks!
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == &I)
+ if (CurLoop->contains(PN->getIncomingBlock(i)))
+ return false;
+ } else if (CurLoop->contains(User)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+/// isLoopInvariantInst - Return true if all operands of this instruction are
+/// loop invariant. We also filter out non-hoistable instructions here just for
+/// efficiency.
+///
+bool LICM::isLoopInvariantInst(Instruction &I) {
+ // The instruction is loop invariant if all of its operands are loop-invariant
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ if (!CurLoop->isLoopInvariant(I.getOperand(i)))
+ return false;
+
+ // If we got this far, the instruction is loop invariant!
+ return true;
+}
+
+/// sink - When an instruction is found to only be used outside of the loop,
+/// this function moves it to the exit blocks and patches up SSA form as needed.
+/// This method is guaranteed to remove the original instruction from its
+/// position, and may either delete it or move it to outside of the loop.
+///
+void LICM::sink(Instruction &I) {
+ DEBUG(dbgs() << "LICM sinking instruction: " << I);
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ if (isa<LoadInst>(I)) ++NumMovedLoads;
+ else if (isa<CallInst>(I)) ++NumMovedCalls;
+ ++NumSunk;
+ Changed = true;
+
+ // The case where there is only a single exit node of this loop is common
+ // enough that we handle it as a special (more efficient) case. It is more
+ // efficient to handle because there are no PHI nodes that need to be placed.
+ if (ExitBlocks.size() == 1) {
+ if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
+ // Instruction is not used, just delete it.
+ CurAST->deleteValue(&I);
+ // If I has users in unreachable blocks, eliminate.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I.getType()->isVoidTy())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ I.eraseFromParent();
+ } else {
+ // Move the instruction to the start of the exit block, after any PHI
+ // nodes in it.
+ I.removeFromParent();
+ BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
+ ExitBlocks[0]->getInstList().insert(InsertPt, &I);
+ }
+ } else if (ExitBlocks.empty()) {
+ // The instruction is actually dead if there ARE NO exit blocks.
+ CurAST->deleteValue(&I);
+ // If I has users in unreachable blocks, eliminate.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I.getType()->isVoidTy())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ I.eraseFromParent();
+ } else {
+ // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
+ // do all of the hard work of inserting PHI nodes as necessary. We convert
+ // the value into a stack object to get it to do this.
+
+ // Firstly, we create a stack object to hold the value...
+ AllocaInst *AI = 0;
+
+ if (!I.getType()->isVoidTy()) {
+ AI = new AllocaInst(I.getType(), 0, I.getName(),
+ I.getParent()->getParent()->getEntryBlock().begin());
+ CurAST->add(AI);
+ }
+
+ // Secondly, insert load instructions for each use of the instruction
+ // outside of the loop.
+ while (!I.use_empty()) {
+ Instruction *U = cast<Instruction>(I.use_back());
+
+ // If the user is a PHI Node, we actually have to insert load instructions
+ // in all predecessor blocks, not in the PHI block itself!
+ if (PHINode *UPN = dyn_cast<PHINode>(U)) {
+ // Only insert into each predecessor once, so that we don't have
+ // different incoming values from the same block!
+ std::map<BasicBlock*, Value*> InsertedBlocks;
+ for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
+ if (UPN->getIncomingValue(i) == &I) {
+ BasicBlock *Pred = UPN->getIncomingBlock(i);
+ Value *&PredVal = InsertedBlocks[Pred];
+ if (!PredVal) {
+ // Insert a new load instruction right before the terminator in
+ // the predecessor block.
+ PredVal = new LoadInst(AI, "", Pred->getTerminator());
+ CurAST->add(cast<LoadInst>(PredVal));
+ }
+
+ UPN->setIncomingValue(i, PredVal);
+ }
+
+ } else {
+ LoadInst *L = new LoadInst(AI, "", U);
+ U->replaceUsesOfWith(&I, L);
+ CurAST->add(L);
+ }
+ }
+
+ // Thirdly, insert a copy of the instruction in each exit block of the loop
+ // that is dominated by the instruction, storing the result into the memory
+ // location. Be careful not to insert the instruction into any particular
+ // basic block more than once.
+ std::set<BasicBlock*> InsertedBlocks;
+ BasicBlock *InstOrigBB = I.getParent();
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = ExitBlocks[i];
+
+ if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
+ // If we haven't already processed this exit block, do so now.
+ if (InsertedBlocks.insert(ExitBlock).second) {
+ // Insert the code after the last PHI node...
+ BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
+
+ // If this is the first exit block processed, just move the original
+ // instruction, otherwise clone the original instruction and insert
+ // the copy.
+ Instruction *New;
+ if (InsertedBlocks.size() == 1) {
+ I.removeFromParent();
+ ExitBlock->getInstList().insert(InsertPt, &I);
+ New = &I;
+ } else {
+ New = I.clone();
+ CurAST->copyValue(&I, New);
+ if (!I.getName().empty())
+ New->setName(I.getName()+".le");
+ ExitBlock->getInstList().insert(InsertPt, New);
+ }
+
+ // Now that we have inserted the instruction, store it into the alloca
+ if (AI) new StoreInst(New, AI, InsertPt);
+ }
+ }
+ }
+
+ // If the instruction doesn't dominate any exit blocks, it must be dead.
+ if (InsertedBlocks.empty()) {
+ CurAST->deleteValue(&I);
+ I.eraseFromParent();
+ }
+
+ // Finally, promote the fine value to SSA form.
+ if (AI) {
+ std::vector<AllocaInst*> Allocas;
+ Allocas.push_back(AI);
+ PromoteMemToReg(Allocas, *DT, *DF, CurAST);
+ }
+ }
+}
+
+/// hoist - When an instruction is found to only use loop invariant operands
+/// that is safe to hoist, this instruction is called to do the dirty work.
+///
+void LICM::hoist(Instruction &I) {
+ DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
+ << I << "\n");
+
+ // Remove the instruction from its current basic block... but don't delete the
+ // instruction.
+ I.removeFromParent();
+
+ // Insert the new node in Preheader, before the terminator.
+ Preheader->getInstList().insert(Preheader->getTerminator(), &I);
+
+ if (isa<LoadInst>(I)) ++NumMovedLoads;
+ else if (isa<CallInst>(I)) ++NumMovedCalls;
+ ++NumHoisted;
+ Changed = true;
+}
+
+/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
+/// not a trapping instruction or if it is a trapping instruction and is
+/// guaranteed to execute.
+///
+bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
+ // If it is not a trapping instruction, it is always safe to hoist.
+ if (Inst.isSafeToSpeculativelyExecute())
+ return true;
+
+ // Otherwise we have to check to make sure that the instruction dominates all
+ // of the exit blocks. If it doesn't, then there is a path out of the loop
+ // which does not execute this instruction, so we can't hoist it.
+
+ // If the instruction is in the header block for the loop (which is very
+ // common), it is always guaranteed to dominate the exit blocks. Since this
+ // is a common case, and can save some work, check it now.
+ if (Inst.getParent() == CurLoop->getHeader())
+ return true;
+
+ // Get the exit blocks for the current loop.
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ // For each exit block, get the DT node and walk up the DT until the
+ // instruction's basic block is found or we exit the loop.
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
+ return false;
+
+ return true;
+}
+
+
+/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
+/// stores out of the loop and moving loads to before the loop. We do this by
+/// looping over the stores in the loop, looking for stores to Must pointers
+/// which are loop invariant. We promote these memory locations to use allocas
+/// instead. These allocas can easily be raised to register values by the
+/// PromoteMem2Reg functionality.
+///
+void LICM::PromoteValuesInLoop() {
+ // PromotedValues - List of values that are promoted out of the loop. Each
+ // value has an alloca instruction for it, and a canonical version of the
+ // pointer.
+ std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
+ std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
+
+ FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
+ if (ValueToAllocaMap.empty()) return; // If there are values to promote.
+
+ Changed = true;
+ NumPromoted += PromotedValues.size();
+
+ std::vector<Value*> PointerValueNumbers;
+
+ // Emit a copy from the value into the alloca'd value in the loop preheader
+ TerminatorInst *LoopPredInst = Preheader->getTerminator();
+ for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
+ Value *Ptr = PromotedValues[i].second;
+
+ // If we are promoting a pointer value, update alias information for the
+ // inserted load.
+ Value *LoadValue = 0;
+ if (cast<PointerType>(Ptr->getType())->getElementType()->isPointerTy()) {
+ // Locate a load or store through the pointer, and assign the same value
+ // to LI as we are loading or storing. Since we know that the value is
+ // stored in this loop, this will always succeed.
+ for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
+ UI != E; ++UI) {
+ User *U = *UI;
+ if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ LoadValue = LI;
+ break;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (SI->getOperand(1) == Ptr) {
+ LoadValue = SI->getOperand(0);
+ break;
+ }
+ }
+ }
+ assert(LoadValue && "No store through the pointer found!");
+ PointerValueNumbers.push_back(LoadValue); // Remember this for later.
+ }
+
+ // Load from the memory we are promoting.
+ LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
+
+ if (LoadValue) CurAST->copyValue(LoadValue, LI);
+
+ // Store into the temporary alloca.
+ new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
+ }
+
+ // Scan the basic blocks in the loop, replacing uses of our pointers with
+ // uses of the allocas in question.
+ //
+ for (Loop::block_iterator I = CurLoop->block_begin(),
+ E = CurLoop->block_end(); I != E; ++I) {
+ BasicBlock *BB = *I;
+ // Rewrite all loads and stores in the block of the pointer...
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
+ if (LoadInst *L = dyn_cast<LoadInst>(II)) {
+ std::map<Value*, AllocaInst*>::iterator
+ I = ValueToAllocaMap.find(L->getOperand(0));
+ if (I != ValueToAllocaMap.end())
+ L->setOperand(0, I->second); // Rewrite load instruction...
+ } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
+ std::map<Value*, AllocaInst*>::iterator
+ I = ValueToAllocaMap.find(S->getOperand(1));
+ if (I != ValueToAllocaMap.end())
+ S->setOperand(1, I->second); // Rewrite store instruction...
+ }
+ }
+ }
+
+ // Now that the body of the loop uses the allocas instead of the original
+ // memory locations, insert code to copy the alloca value back into the
+ // original memory location on all exits from the loop. Note that we only
+ // want to insert one copy of the code in each exit block, though the loop may
+ // exit to the same block more than once.
+ //
+ SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ if (!ProcessedBlocks.insert(ExitBlocks[i]))
+ continue;
+
+ // Copy all of the allocas into their memory locations.
+ BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
+ Instruction *InsertPos = BI;
+ unsigned PVN = 0;
+ for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
+ // Load from the alloca.
+ LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
+
+ // If this is a pointer type, update alias info appropriately.
+ if (LI->getType()->isPointerTy())
+ CurAST->copyValue(PointerValueNumbers[PVN++], LI);
+
+ // Store into the memory we promoted.
+ new StoreInst(LI, PromotedValues[i].second, InsertPos);
+ }
+ }
+
+ // Now that we have done the deed, use the mem2reg functionality to promote
+ // all of the new allocas we just created into real SSA registers.
+ //
+ std::vector<AllocaInst*> PromotedAllocas;
+ PromotedAllocas.reserve(PromotedValues.size());
+ for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
+ PromotedAllocas.push_back(PromotedValues[i].first);
+ PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
+}
+
+/// FindPromotableValuesInLoop - Check the current loop for stores to definite
+/// pointers, which are not loaded and stored through may aliases and are safe
+/// for promotion. If these are found, create an alloca for the value, add it
+/// to the PromotedValues list, and keep track of the mapping from value to
+/// alloca.
+void LICM::FindPromotableValuesInLoop(
+ std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
+ std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
+ Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
+
+ // Loop over all of the alias sets in the tracker object.
+ for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
+ I != E; ++I) {
+ AliasSet &AS = *I;
+ // We can promote this alias set if it has a store, if it is a "Must" alias
+ // set, if the pointer is loop invariant, and if we are not eliminating any
+ // volatile loads or stores.
+ if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
+ AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
+ continue;
+
+ assert(!AS.empty() &&
+ "Must alias set should have at least one pointer element in it!");
+ Value *V = AS.begin()->getValue();
+
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes.
+ {
+ bool PointerOk = true;
+ for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
+ if (V->getType() != I->getValue()->getType()) {
+ PointerOk = false;
+ break;
+ }
+ if (!PointerOk)
+ continue;
+ }
+
+ // It isn't safe to promote a load/store from the loop if the load/store is
+ // conditional. For example, turning:
+ //
+ // for () { if (c) *P += 1; }
+ //
+ // into:
+ //
+ // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
+ //
+ // is not safe, because *P may only be valid to access if 'c' is true.
+ //
+ // It is safe to promote P if all uses are direct load/stores and if at
+ // least one is guaranteed to be executed.
+ bool GuaranteedToExecute = false;
+ bool InvalidInst = false;
+ for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ // Ignore instructions not in this loop.
+ Instruction *Use = dyn_cast<Instruction>(*UI);
+ if (!Use || !CurLoop->contains(Use))
+ continue;
+
+ if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
+ InvalidInst = true;
+ break;
+ }
+
+ if (!GuaranteedToExecute)
+ GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
+ }
+
+ // If there is an non-load/store instruction in the loop, we can't promote
+ // it. If there isn't a guaranteed-to-execute instruction, we can't
+ // promote.
+ if (InvalidInst || !GuaranteedToExecute)
+ continue;
+
+ const Type *Ty = cast<PointerType>(V->getType())->getElementType();
+ AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
+ PromotedValues.push_back(std::make_pair(AI, V));
+
+ // Update the AST and alias analysis.
+ CurAST->copyValue(V, AI);
+
+ for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
+ ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
+
+ DEBUG(dbgs() << "LICM: Promoting value: " << *V << "\n");
+ }
+}
+
+/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
+void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
+ AliasSetTracker *AST = LoopToAliasMap[L];
+ if (!AST)
+ return;
+
+ AST->copyValue(From, To);
+}
+
+/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
+/// set.
+void LICM::deleteAnalysisValue(Value *V, Loop *L) {
+ AliasSetTracker *AST = LoopToAliasMap[L];
+ if (!AST)
+ return;
+
+ AST->deleteValue(V);
+}
OpenPOWER on IntegriCloud