summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LICM.cpp728
1 files changed, 382 insertions, 346 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
index 7347395..2ef8544 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
@@ -26,8 +26,7 @@
// pointer. There are no calls in the loop which mod/ref the pointer.
// If these conditions are true, we can promote the loads and stores in the
// loop of the pointer to use a temporary alloca'd variable. We then use
-// the mem2reg functionality to construct the appropriate SSA form for the
-// variable.
+// the SSAUpdater to construct the appropriate SSA form for the value.
//
//===----------------------------------------------------------------------===//
@@ -37,14 +36,15 @@
#include "llvm/DerivedTypes.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
@@ -66,7 +66,7 @@ DisablePromotion("disable-licm-promotion", cl::Hidden,
namespace {
struct LICM : public LoopPass {
static char ID; // Pass identification, replacement for typeid
- LICM() : LoopPass(&ID) {}
+ LICM() : LoopPass(ID) {}
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
@@ -75,39 +75,31 @@ namespace {
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
- AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
+ AU.addRequired<LoopInfo>();
+ AU.addRequiredID(LoopSimplifyID);
AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
- AU.addPreserved<DominanceFrontier>();
AU.addPreservedID(LoopSimplifyID);
}
bool doFinalization() {
- // Free the values stored in the map
- for (std::map<Loop *, AliasSetTracker *>::iterator
- I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
- delete I->second;
-
- LoopToAliasMap.clear();
+ assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
return false;
}
private:
- // Various analyses that we use...
AliasAnalysis *AA; // Current AliasAnalysis information
LoopInfo *LI; // Current LoopInfo
- DominatorTree *DT; // Dominator Tree for the current Loop...
- DominanceFrontier *DF; // Current Dominance Frontier
+ DominatorTree *DT; // Dominator Tree for the current Loop.
- // State that is updated as we process loops
+ // State that is updated as we process loops.
bool Changed; // Set to true when we change anything.
BasicBlock *Preheader; // The preheader block of the current loop...
Loop *CurLoop; // The current loop we are working on...
AliasSetTracker *CurAST; // AliasSet information for the current loop...
- std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
+ DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
@@ -204,25 +196,12 @@ namespace {
bool isLoopInvariantInst(Instruction &I);
bool isNotUsedInLoop(Instruction &I);
- /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
- /// to scalars as we can.
- ///
- void PromoteValuesInLoop();
-
- /// FindPromotableValuesInLoop - Check the current loop for stores to
- /// definite pointers, which are not loaded and stored through may aliases.
- /// If these are found, create an alloca for the value, add it to the
- /// PromotedValues list, and keep track of the mapping from value to
- /// alloca...
- ///
- void FindPromotableValuesInLoop(
- std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
- std::map<Value*, AllocaInst*> &Val2AlMap);
+ void PromoteAliasSet(AliasSet &AS);
};
}
char LICM::ID = 0;
-static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
+INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
Pass *llvm::createLICMPass() { return new LICM(); }
@@ -236,19 +215,23 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
// Get our Loop and Alias Analysis information...
LI = &getAnalysis<LoopInfo>();
AA = &getAnalysis<AliasAnalysis>();
- DF = &getAnalysis<DominanceFrontier>();
DT = &getAnalysis<DominatorTree>();
CurAST = new AliasSetTracker(*AA);
- // Collect Alias info from subloops
+ // Collect Alias info from subloops.
for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
LoopItr != LoopItrE; ++LoopItr) {
Loop *InnerL = *LoopItr;
- AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
- assert (InnerAST && "Where is my AST?");
+ AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
+ assert(InnerAST && "Where is my AST?");
// What if InnerLoop was modified by other passes ?
CurAST->add(*InnerAST);
+
+ // Once we've incorporated the inner loop's AST into ours, we don't need the
+ // subloop's anymore.
+ delete InnerAST;
+ LoopToAliasSetMap.erase(InnerL);
}
CurLoop = L;
@@ -263,7 +246,7 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
- if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops...
+ if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops.
CurAST->add(*BB); // Incorporate the specified basic block
}
@@ -283,15 +266,24 @@ bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
HoistRegion(DT->getNode(L->getHeader()));
// Now that all loop invariants have been removed from the loop, promote any
- // memory references to scalars that we can...
- if (!DisablePromotion && Preheader && L->hasDedicatedExits())
- PromoteValuesInLoop();
-
+ // memory references to scalars that we can.
+ if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
+ // Loop over all of the alias sets in the tracker object.
+ for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
+ I != E; ++I)
+ PromoteAliasSet(*I);
+ }
+
// Clear out loops state information for the next iteration
CurLoop = 0;
Preheader = 0;
- LoopToAliasMap[L] = CurAST;
+ // If this loop is nested inside of another one, save the alias information
+ // for when we process the outer loop.
+ if (L->getParentLoop())
+ LoopToAliasSetMap[L] = CurAST;
+ else
+ delete CurAST;
return Changed;
}
@@ -308,7 +300,7 @@ void LICM::SinkRegion(DomTreeNode *N) {
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
- // We are processing blocks in reverse dfo, so process children first...
+ // We are processing blocks in reverse dfo, so process children first.
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
SinkRegion(Children[i]);
@@ -319,6 +311,17 @@ void LICM::SinkRegion(DomTreeNode *N) {
for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
Instruction &I = *--II;
+
+ // If the instruction is dead, we would try to sink it because it isn't used
+ // in the loop, instead, just delete it.
+ if (isInstructionTriviallyDead(&I)) {
+ DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
+ ++II;
+ CurAST->deleteValue(&I);
+ I.eraseFromParent();
+ Changed = true;
+ continue;
+ }
// Check to see if we can sink this instruction to the exit blocks
// of the loop. We can do this if the all users of the instruction are
@@ -350,6 +353,18 @@ void LICM::HoistRegion(DomTreeNode *N) {
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
Instruction &I = *II++;
+ // Try constant folding this instruction. If all the operands are
+ // constants, it is technically hoistable, but it would be better to just
+ // fold it.
+ if (Constant *C = ConstantFoldInstruction(&I)) {
+ DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
+ CurAST->copyValue(&I, C);
+ CurAST->deleteValue(&I);
+ I.replaceAllUsesWith(C);
+ I.eraseFromParent();
+ continue;
+ }
+
// Try hoisting the instruction out to the preheader. We can only do this
// if all of the operands of the instruction are loop invariant and if it
// is safe to hoist the instruction.
@@ -357,7 +372,7 @@ void LICM::HoistRegion(DomTreeNode *N) {
if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
isSafeToExecuteUnconditionally(I))
hoist(I);
- }
+ }
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
@@ -457,10 +472,10 @@ bool LICM::isLoopInvariantInst(Instruction &I) {
/// position, and may either delete it or move it to outside of the loop.
///
void LICM::sink(Instruction &I) {
- DEBUG(dbgs() << "LICM sinking instruction: " << I);
+ DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
SmallVector<BasicBlock*, 8> ExitBlocks;
- CurLoop->getExitBlocks(ExitBlocks);
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
if (isa<LoadInst>(I)) ++NumMovedLoads;
else if (isa<CallInst>(I)) ++NumMovedCalls;
@@ -477,122 +492,101 @@ void LICM::sink(Instruction &I) {
// If I has users in unreachable blocks, eliminate.
// If I is not void type then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
- if (!I.getType()->isVoidTy())
+ if (!I.use_empty())
I.replaceAllUsesWith(UndefValue::get(I.getType()));
I.eraseFromParent();
} else {
// Move the instruction to the start of the exit block, after any PHI
// nodes in it.
- I.removeFromParent();
- BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
- ExitBlocks[0]->getInstList().insert(InsertPt, &I);
+ I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
+
+ // This instruction is no longer in the AST for the current loop, because
+ // we just sunk it out of the loop. If we just sunk it into an outer
+ // loop, we will rediscover the operation when we process it.
+ CurAST->deleteValue(&I);
}
- } else if (ExitBlocks.empty()) {
+ return;
+ }
+
+ if (ExitBlocks.empty()) {
// The instruction is actually dead if there ARE NO exit blocks.
CurAST->deleteValue(&I);
// If I has users in unreachable blocks, eliminate.
// If I is not void type then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
- if (!I.getType()->isVoidTy())
+ if (!I.use_empty())
I.replaceAllUsesWith(UndefValue::get(I.getType()));
I.eraseFromParent();
- } else {
- // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
- // do all of the hard work of inserting PHI nodes as necessary. We convert
- // the value into a stack object to get it to do this.
-
- // Firstly, we create a stack object to hold the value...
- AllocaInst *AI = 0;
-
- if (!I.getType()->isVoidTy()) {
- AI = new AllocaInst(I.getType(), 0, I.getName(),
- I.getParent()->getParent()->getEntryBlock().begin());
- CurAST->add(AI);
- }
-
- // Secondly, insert load instructions for each use of the instruction
- // outside of the loop.
- while (!I.use_empty()) {
- Instruction *U = cast<Instruction>(I.use_back());
-
- // If the user is a PHI Node, we actually have to insert load instructions
- // in all predecessor blocks, not in the PHI block itself!
- if (PHINode *UPN = dyn_cast<PHINode>(U)) {
- // Only insert into each predecessor once, so that we don't have
- // different incoming values from the same block!
- std::map<BasicBlock*, Value*> InsertedBlocks;
- for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
- if (UPN->getIncomingValue(i) == &I) {
- BasicBlock *Pred = UPN->getIncomingBlock(i);
- Value *&PredVal = InsertedBlocks[Pred];
- if (!PredVal) {
- // Insert a new load instruction right before the terminator in
- // the predecessor block.
- PredVal = new LoadInst(AI, "", Pred->getTerminator());
- CurAST->add(cast<LoadInst>(PredVal));
- }
-
- UPN->setIncomingValue(i, PredVal);
- }
-
- } else {
- LoadInst *L = new LoadInst(AI, "", U);
- U->replaceUsesOfWith(&I, L);
- CurAST->add(L);
- }
- }
-
- // Thirdly, insert a copy of the instruction in each exit block of the loop
- // that is dominated by the instruction, storing the result into the memory
- // location. Be careful not to insert the instruction into any particular
- // basic block more than once.
- std::set<BasicBlock*> InsertedBlocks;
- BasicBlock *InstOrigBB = I.getParent();
-
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = ExitBlocks[i];
-
- if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
- // If we haven't already processed this exit block, do so now.
- if (InsertedBlocks.insert(ExitBlock).second) {
- // Insert the code after the last PHI node...
- BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
-
- // If this is the first exit block processed, just move the original
- // instruction, otherwise clone the original instruction and insert
- // the copy.
- Instruction *New;
- if (InsertedBlocks.size() == 1) {
- I.removeFromParent();
- ExitBlock->getInstList().insert(InsertPt, &I);
- New = &I;
- } else {
- New = I.clone();
- CurAST->copyValue(&I, New);
- if (!I.getName().empty())
- New->setName(I.getName()+".le");
- ExitBlock->getInstList().insert(InsertPt, New);
- }
-
- // Now that we have inserted the instruction, store it into the alloca
- if (AI) new StoreInst(New, AI, InsertPt);
- }
- }
- }
-
- // If the instruction doesn't dominate any exit blocks, it must be dead.
- if (InsertedBlocks.empty()) {
- CurAST->deleteValue(&I);
- I.eraseFromParent();
- }
-
- // Finally, promote the fine value to SSA form.
- if (AI) {
- std::vector<AllocaInst*> Allocas;
- Allocas.push_back(AI);
- PromoteMemToReg(Allocas, *DT, *DF, CurAST);
+ return;
+ }
+
+ // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
+ // hard work of inserting PHI nodes as necessary.
+ SmallVector<PHINode*, 8> NewPHIs;
+ SSAUpdater SSA(&NewPHIs);
+
+ if (!I.use_empty())
+ SSA.Initialize(I.getType(), I.getName());
+
+ // Insert a copy of the instruction in each exit block of the loop that is
+ // dominated by the instruction. Each exit block is known to only be in the
+ // ExitBlocks list once.
+ BasicBlock *InstOrigBB = I.getParent();
+ unsigned NumInserted = 0;
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = ExitBlocks[i];
+
+ if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
+ continue;
+
+ // Insert the code after the last PHI node.
+ BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
+
+ // If this is the first exit block processed, just move the original
+ // instruction, otherwise clone the original instruction and insert
+ // the copy.
+ Instruction *New;
+ if (NumInserted++ == 0) {
+ I.moveBefore(InsertPt);
+ New = &I;
+ } else {
+ New = I.clone();
+ if (!I.getName().empty())
+ New->setName(I.getName()+".le");
+ ExitBlock->getInstList().insert(InsertPt, New);
}
+
+ // Now that we have inserted the instruction, inform SSAUpdater.
+ if (!I.use_empty())
+ SSA.AddAvailableValue(ExitBlock, New);
}
+
+ // If the instruction doesn't dominate any exit blocks, it must be dead.
+ if (NumInserted == 0) {
+ CurAST->deleteValue(&I);
+ if (!I.use_empty())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+ I.eraseFromParent();
+ return;
+ }
+
+ // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
+ // Grab the use before incrementing the iterator.
+ Use &U = UI.getUse();
+ // Increment the iterator before removing the use from the list.
+ ++UI;
+ SSA.RewriteUseAfterInsertions(U);
+ }
+
+ // Update CurAST for NewPHIs if I had pointer type.
+ if (I.getType()->isPointerTy())
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
+ CurAST->copyValue(&I, NewPHIs[i]);
+
+ // Finally, remove the instruction from CurAST. It is no longer in the loop.
+ CurAST->deleteValue(&I);
}
/// hoist - When an instruction is found to only use loop invariant operands
@@ -602,12 +596,8 @@ void LICM::hoist(Instruction &I) {
DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
<< I << "\n");
- // Remove the instruction from its current basic block... but don't delete the
- // instruction.
- I.removeFromParent();
-
- // Insert the new node in Preheader, before the terminator.
- Preheader->getInstList().insert(Preheader->getTerminator(), &I);
+ // Move the new node to the Preheader, before its terminator.
+ I.moveBefore(Preheader->getTerminator());
if (isa<LoadInst>(I)) ++NumMovedLoads;
else if (isa<CallInst>(I)) ++NumMovedCalls;
@@ -647,223 +637,269 @@ bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
return true;
}
-
-/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
+/// PromoteAliasSet - Try to promote memory values to scalars by sinking
/// stores out of the loop and moving loads to before the loop. We do this by
/// looping over the stores in the loop, looking for stores to Must pointers
-/// which are loop invariant. We promote these memory locations to use allocas
-/// instead. These allocas can easily be raised to register values by the
-/// PromoteMem2Reg functionality.
+/// which are loop invariant.
///
-void LICM::PromoteValuesInLoop() {
- // PromotedValues - List of values that are promoted out of the loop. Each
- // value has an alloca instruction for it, and a canonical version of the
- // pointer.
- std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
- std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
-
- FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
- if (ValueToAllocaMap.empty()) return; // If there are values to promote.
-
- Changed = true;
- NumPromoted += PromotedValues.size();
-
- std::vector<Value*> PointerValueNumbers;
-
- // Emit a copy from the value into the alloca'd value in the loop preheader
- TerminatorInst *LoopPredInst = Preheader->getTerminator();
- for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
- Value *Ptr = PromotedValues[i].second;
-
- // If we are promoting a pointer value, update alias information for the
- // inserted load.
- Value *LoadValue = 0;
- if (cast<PointerType>(Ptr->getType())->getElementType()->isPointerTy()) {
- // Locate a load or store through the pointer, and assign the same value
- // to LI as we are loading or storing. Since we know that the value is
- // stored in this loop, this will always succeed.
- for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
- UI != E; ++UI) {
- User *U = *UI;
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- LoadValue = LI;
- break;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getOperand(1) == Ptr) {
- LoadValue = SI->getOperand(0);
- break;
- }
- }
- }
- assert(LoadValue && "No store through the pointer found!");
- PointerValueNumbers.push_back(LoadValue); // Remember this for later.
- }
-
- // Load from the memory we are promoting.
- LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
-
- if (LoadValue) CurAST->copyValue(LoadValue, LI);
-
- // Store into the temporary alloca.
- new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
- }
+void LICM::PromoteAliasSet(AliasSet &AS) {
+ // We can promote this alias set if it has a store, if it is a "Must" alias
+ // set, if the pointer is loop invariant, and if we are not eliminating any
+ // volatile loads or stores.
+ if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
+ AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
+ return;
+
+ assert(!AS.empty() &&
+ "Must alias set should have at least one pointer element in it!");
+ Value *SomePtr = AS.begin()->getValue();
- // Scan the basic blocks in the loop, replacing uses of our pointers with
- // uses of the allocas in question.
+ // It isn't safe to promote a load/store from the loop if the load/store is
+ // conditional. For example, turning:
//
- for (Loop::block_iterator I = CurLoop->block_begin(),
- E = CurLoop->block_end(); I != E; ++I) {
- BasicBlock *BB = *I;
- // Rewrite all loads and stores in the block of the pointer...
- for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
- if (LoadInst *L = dyn_cast<LoadInst>(II)) {
- std::map<Value*, AllocaInst*>::iterator
- I = ValueToAllocaMap.find(L->getOperand(0));
- if (I != ValueToAllocaMap.end())
- L->setOperand(0, I->second); // Rewrite load instruction...
- } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
- std::map<Value*, AllocaInst*>::iterator
- I = ValueToAllocaMap.find(S->getOperand(1));
- if (I != ValueToAllocaMap.end())
- S->setOperand(1, I->second); // Rewrite store instruction...
- }
- }
- }
-
- // Now that the body of the loop uses the allocas instead of the original
- // memory locations, insert code to copy the alloca value back into the
- // original memory location on all exits from the loop. Note that we only
- // want to insert one copy of the code in each exit block, though the loop may
- // exit to the same block more than once.
+ // for () { if (c) *P += 1; }
//
- SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
-
- SmallVector<BasicBlock*, 8> ExitBlocks;
- CurLoop->getExitBlocks(ExitBlocks);
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- if (!ProcessedBlocks.insert(ExitBlocks[i]))
- continue;
-
- // Copy all of the allocas into their memory locations.
- BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
- Instruction *InsertPos = BI;
- unsigned PVN = 0;
- for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
- // Load from the alloca.
- LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
-
- // If this is a pointer type, update alias info appropriately.
- if (LI->getType()->isPointerTy())
- CurAST->copyValue(PointerValueNumbers[PVN++], LI);
-
- // Store into the memory we promoted.
- new StoreInst(LI, PromotedValues[i].second, InsertPos);
- }
- }
-
- // Now that we have done the deed, use the mem2reg functionality to promote
- // all of the new allocas we just created into real SSA registers.
+ // into:
//
- std::vector<AllocaInst*> PromotedAllocas;
- PromotedAllocas.reserve(PromotedValues.size());
- for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
- PromotedAllocas.push_back(PromotedValues[i].first);
- PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
-}
-
-/// FindPromotableValuesInLoop - Check the current loop for stores to definite
-/// pointers, which are not loaded and stored through may aliases and are safe
-/// for promotion. If these are found, create an alloca for the value, add it
-/// to the PromotedValues list, and keep track of the mapping from value to
-/// alloca.
-void LICM::FindPromotableValuesInLoop(
- std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
- std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
- Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
-
- // Loop over all of the alias sets in the tracker object.
- for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
- I != E; ++I) {
- AliasSet &AS = *I;
- // We can promote this alias set if it has a store, if it is a "Must" alias
- // set, if the pointer is loop invariant, and if we are not eliminating any
- // volatile loads or stores.
- if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
- AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
- continue;
+ // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
+ //
+ // is not safe, because *P may only be valid to access if 'c' is true.
+ //
+ // It is safe to promote P if all uses are direct load/stores and if at
+ // least one is guaranteed to be executed.
+ bool GuaranteedToExecute = false;
+
+ SmallVector<Instruction*, 64> LoopUses;
+ SmallPtrSet<Value*, 4> PointerMustAliases;
+
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes.
+ for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
+ Value *ASIV = ASI->getValue();
+ PointerMustAliases.insert(ASIV);
- assert(!AS.empty() &&
- "Must alias set should have at least one pointer element in it!");
- Value *V = AS.begin()->getValue();
-
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
- {
- bool PointerOk = true;
- for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
- if (V->getType() != I->getValue()->getType()) {
- PointerOk = false;
- break;
- }
- if (!PointerOk)
- continue;
- }
-
- // It isn't safe to promote a load/store from the loop if the load/store is
- // conditional. For example, turning:
- //
- // for () { if (c) *P += 1; }
- //
- // into:
- //
- // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
- //
- // is not safe, because *P may only be valid to access if 'c' is true.
- //
- // It is safe to promote P if all uses are direct load/stores and if at
- // least one is guaranteed to be executed.
- bool GuaranteedToExecute = false;
- bool InvalidInst = false;
- for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
+ if (SomePtr->getType() != ASIV->getType())
+ return;
+
+ for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
UI != UE; ++UI) {
- // Ignore instructions not in this loop.
+ // Ignore instructions that are outside the loop.
Instruction *Use = dyn_cast<Instruction>(*UI);
if (!Use || !CurLoop->contains(Use))
continue;
-
- if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
- InvalidInst = true;
- break;
- }
+
+ // If there is an non-load/store instruction in the loop, we can't promote
+ // it.
+ if (isa<LoadInst>(Use))
+ assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
+ else if (isa<StoreInst>(Use)) {
+ assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken");
+ if (Use->getOperand(0) == ASIV) return;
+ } else
+ return; // Not a load or store.
if (!GuaranteedToExecute)
GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
+
+ LoopUses.push_back(Use);
}
+ }
+
+ // If there isn't a guaranteed-to-execute instruction, we can't promote.
+ if (!GuaranteedToExecute)
+ return;
+
+ // Otherwise, this is safe to promote, lets do it!
+ DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
+ Changed = true;
+ ++NumPromoted;
- // If there is an non-load/store instruction in the loop, we can't promote
- // it. If there isn't a guaranteed-to-execute instruction, we can't
- // promote.
- if (InvalidInst || !GuaranteedToExecute)
+ // We use the SSAUpdater interface to insert phi nodes as required.
+ SmallVector<PHINode*, 16> NewPHIs;
+ SSAUpdater SSA(&NewPHIs);
+
+ // It wants to know some value of the same type as what we'll be inserting.
+ Value *SomeValue;
+ if (isa<LoadInst>(LoopUses[0]))
+ SomeValue = LoopUses[0];
+ else
+ SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
+ SSA.Initialize(SomeValue->getType(), SomeValue->getName());
+
+ // First step: bucket up uses of the pointers by the block they occur in.
+ // This is important because we have to handle multiple defs/uses in a block
+ // ourselves: SSAUpdater is purely for cross-block references.
+ // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
+ DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
+ for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
+ Instruction *User = LoopUses[i];
+ UsesByBlock[User->getParent()].push_back(User);
+ }
+
+ // Okay, now we can iterate over all the blocks in the loop with uses,
+ // processing them. Keep track of which loads are loading a live-in value.
+ SmallVector<LoadInst*, 32> LiveInLoads;
+ DenseMap<Value*, Value*> ReplacedLoads;
+
+ for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
+ Instruction *User = LoopUses[LoopUse];
+ std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
+
+ // If this block has already been processed, ignore this repeat use.
+ if (BlockUses.empty()) continue;
+
+ // Okay, this is the first use in the block. If this block just has a
+ // single user in it, we can rewrite it trivially.
+ if (BlockUses.size() == 1) {
+ // If it is a store, it is a trivial def of the value in the block.
+ if (isa<StoreInst>(User)) {
+ SSA.AddAvailableValue(User->getParent(),
+ cast<StoreInst>(User)->getOperand(0));
+ } else {
+ // Otherwise it is a load, queue it to rewrite as a live-in load.
+ LiveInLoads.push_back(cast<LoadInst>(User));
+ }
+ BlockUses.clear();
continue;
+ }
- const Type *Ty = cast<PointerType>(V->getType())->getElementType();
- AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
- PromotedValues.push_back(std::make_pair(AI, V));
+ // Otherwise, check to see if this block is all loads. If so, we can queue
+ // them all as live in loads.
+ bool HasStore = false;
+ for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
+ if (isa<StoreInst>(BlockUses[i])) {
+ HasStore = true;
+ break;
+ }
+ }
+
+ if (!HasStore) {
+ for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
+ LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
+ BlockUses.clear();
+ continue;
+ }
- // Update the AST and alias analysis.
- CurAST->copyValue(V, AI);
+ // Otherwise, we have mixed loads and stores (or just a bunch of stores).
+ // Since SSAUpdater is purely for cross-block values, we need to determine
+ // the order of these instructions in the block. If the first use in the
+ // block is a load, then it uses the live in value. The last store defines
+ // the live out value. We handle this by doing a linear scan of the block.
+ BasicBlock *BB = User->getParent();
+ Value *StoredValue = 0;
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
+ if (LoadInst *L = dyn_cast<LoadInst>(II)) {
+ // If this is a load from an unrelated pointer, ignore it.
+ if (!PointerMustAliases.count(L->getOperand(0))) continue;
+
+ // If we haven't seen a store yet, this is a live in use, otherwise
+ // use the stored value.
+ if (StoredValue) {
+ L->replaceAllUsesWith(StoredValue);
+ ReplacedLoads[L] = StoredValue;
+ } else {
+ LiveInLoads.push_back(L);
+ }
+ continue;
+ }
+
+ if (StoreInst *S = dyn_cast<StoreInst>(II)) {
+ // If this is a store to an unrelated pointer, ignore it.
+ if (!PointerMustAliases.count(S->getOperand(1))) continue;
- for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
- ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
+ // Remember that this is the active value in the block.
+ StoredValue = S->getOperand(0);
+ }
+ }
+
+ // The last stored value that happened is the live-out for the block.
+ assert(StoredValue && "Already checked that there is a store in block");
+ SSA.AddAvailableValue(BB, StoredValue);
+ BlockUses.clear();
+ }
+
+ // Now that all the intra-loop values are classified, set up the preheader.
+ // It gets a load of the pointer we're promoting, and it is the live-out value
+ // from the preheader.
+ LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
+ Preheader->getTerminator());
+ SSA.AddAvailableValue(Preheader, PreheaderLoad);
+
+ // Now that the preheader is good to go, set up the exit blocks. Each exit
+ // block gets a store of the live-out values that feed them. Since we've
+ // already told the SSA updater about the defs in the loop and the preheader
+ // definition, it is all set and we can start using it.
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = ExitBlocks[i];
+ Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
+ Instruction *InsertPos = ExitBlock->getFirstNonPHI();
+ new StoreInst(LiveInValue, SomePtr, InsertPos);
+ }
- DEBUG(dbgs() << "LICM: Promoting value: " << *V << "\n");
+ // Okay, now we rewrite all loads that use live-in values in the loop,
+ // inserting PHI nodes as necessary.
+ for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
+ LoadInst *ALoad = LiveInLoads[i];
+ Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
+ ALoad->replaceAllUsesWith(NewVal);
+ CurAST->copyValue(ALoad, NewVal);
+ ReplacedLoads[ALoad] = NewVal;
+ }
+
+ // If the preheader load is itself a pointer, we need to tell alias analysis
+ // about the new pointer we created in the preheader block and about any PHI
+ // nodes that just got inserted.
+ if (PreheaderLoad->getType()->isPointerTy()) {
+ // Copy any value stored to or loaded from a must-alias of the pointer.
+ CurAST->copyValue(SomeValue, PreheaderLoad);
+
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
+ CurAST->copyValue(SomeValue, NewPHIs[i]);
}
+
+ // Now that everything is rewritten, delete the old instructions from the body
+ // of the loop. They should all be dead now.
+ for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
+ Instruction *User = LoopUses[i];
+
+ // If this is a load that still has uses, then the load must have been added
+ // as a live value in the SSAUpdate data structure for a block (e.g. because
+ // the loaded value was stored later). In this case, we need to recursively
+ // propagate the updates until we get to the real value.
+ if (!User->use_empty()) {
+ Value *NewVal = ReplacedLoads[User];
+ assert(NewVal && "not a replaced load?");
+
+ // Propagate down to the ultimate replacee. The intermediately loads
+ // could theoretically already have been deleted, so we don't want to
+ // dereference the Value*'s.
+ DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
+ while (RLI != ReplacedLoads.end()) {
+ NewVal = RLI->second;
+ RLI = ReplacedLoads.find(NewVal);
+ }
+
+ User->replaceAllUsesWith(NewVal);
+ CurAST->copyValue(User, NewVal);
+ }
+
+ CurAST->deleteValue(User);
+ User->eraseFromParent();
+ }
+
+ // fwew, we're done!
}
+
/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
- AliasSetTracker *AST = LoopToAliasMap[L];
+ AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
if (!AST)
return;
@@ -873,7 +909,7 @@ void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
/// set.
void LICM::deleteAnalysisValue(Value *V, Loop *L) {
- AliasSetTracker *AST = LoopToAliasMap[L];
+ AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
if (!AST)
return;
OpenPOWER on IntegriCloud