diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp | 467 |
1 files changed, 348 insertions, 119 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp index 1130d22..dcdcfed 100644 --- a/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp +++ b/contrib/llvm/lib/Transforms/Scalar/JumpThreading.cpp @@ -18,15 +18,22 @@ #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BlockFrequencyInfoImpl.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" @@ -36,6 +43,8 @@ #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" +#include <algorithm> +#include <memory> using namespace llvm; #define DEBUG_TYPE "jump-threading" @@ -49,6 +58,13 @@ BBDuplicateThreshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden); +static cl::opt<unsigned> +ImplicationSearchThreshold( + "jump-threading-implication-search-threshold", + cl::desc("The number of predecessors to search for a stronger " + "condition to use to thread over a weaker condition"), + cl::init(3), cl::Hidden); + namespace { // These are at global scope so static functions can use them too. typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; @@ -80,10 +96,13 @@ namespace { class JumpThreading : public FunctionPass { TargetLibraryInfo *TLI; LazyValueInfo *LVI; + std::unique_ptr<BlockFrequencyInfo> BFI; + std::unique_ptr<BranchProbabilityInfo> BPI; + bool HasProfileData; #ifdef NDEBUG - SmallPtrSet<BasicBlock*, 16> LoopHeaders; + SmallPtrSet<const BasicBlock *, 16> LoopHeaders; #else - SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; + SmallSet<AssertingVH<const BasicBlock>, 16> LoopHeaders; #endif DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; @@ -114,9 +133,15 @@ namespace { void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<LazyValueInfo>(); AU.addPreserved<LazyValueInfo>(); + AU.addPreserved<GlobalsAAWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); } + void releaseMemory() override { + BFI.reset(); + BPI.reset(); + } + void FindLoopHeaders(Function &F); bool ProcessBlock(BasicBlock *BB); bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, @@ -134,9 +159,17 @@ namespace { bool ProcessBranchOnPHI(PHINode *PN); bool ProcessBranchOnXOR(BinaryOperator *BO); + bool ProcessImpliedCondition(BasicBlock *BB); bool SimplifyPartiallyRedundantLoad(LoadInst *LI); bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); + bool TryToUnfoldSelectInCurrBB(BasicBlock *BB); + + private: + BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, + const char *Suffix); + void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB, + BasicBlock *NewBB, BasicBlock *SuccBB); }; } @@ -160,23 +193,34 @@ bool JumpThreading::runOnFunction(Function &F) { DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); LVI = &getAnalysis<LazyValueInfo>(); + BFI.reset(); + BPI.reset(); + // When profile data is available, we need to update edge weights after + // successful jump threading, which requires both BPI and BFI being available. + HasProfileData = F.getEntryCount().hasValue(); + if (HasProfileData) { + LoopInfo LI{DominatorTree(F)}; + BPI.reset(new BranchProbabilityInfo(F, LI)); + BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); + } // Remove unreachable blocks from function as they may result in infinite // loop. We do threading if we found something profitable. Jump threading a // branch can create other opportunities. If these opportunities form a cycle - // i.e. if any jump treading is undoing previous threading in the path, then + // i.e. if any jump threading is undoing previous threading in the path, then // we will loop forever. We take care of this issue by not jump threading for // back edges. This works for normal cases but not for unreachable blocks as // they may have cycle with no back edge. - removeUnreachableBlocks(F); + bool EverChanged = false; + EverChanged |= removeUnreachableBlocks(F, LVI); FindLoopHeaders(F); - bool Changed, EverChanged = false; + bool Changed; do { Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E;) { - BasicBlock *BB = I; + BasicBlock *BB = &*I; // Thread all of the branches we can over this block. while (ProcessBlock(BB)) Changed = true; @@ -239,11 +283,26 @@ bool JumpThreading::runOnFunction(Function &F) { static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, unsigned Threshold) { /// Ignore PHI nodes, these will be flattened when duplication happens. - BasicBlock::const_iterator I = BB->getFirstNonPHI(); + BasicBlock::const_iterator I(BB->getFirstNonPHI()); // FIXME: THREADING will delete values that are just used to compute the // branch, so they shouldn't count against the duplication cost. + unsigned Bonus = 0; + const TerminatorInst *BBTerm = BB->getTerminator(); + // Threading through a switch statement is particularly profitable. If this + // block ends in a switch, decrease its cost to make it more likely to happen. + if (isa<SwitchInst>(BBTerm)) + Bonus = 6; + + // The same holds for indirect branches, but slightly more so. + if (isa<IndirectBrInst>(BBTerm)) + Bonus = 8; + + // Bump the threshold up so the early exit from the loop doesn't skip the + // terminator-based Size adjustment at the end. + Threshold += Bonus; + // Sum up the cost of each instruction until we get to the terminator. Don't // include the terminator because the copy won't include it. unsigned Size = 0; @@ -260,6 +319,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) continue; + // Bail out if this instruction gives back a token type, it is not possible + // to duplicate it if it is used outside this BB. + if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) + return ~0U; + // All other instructions count for at least one unit. ++Size; @@ -268,7 +332,7 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, // as having cost of 2 total, and if they are a vector intrinsic, we model // them as having cost 1. if (const CallInst *CI = dyn_cast<CallInst>(I)) { - if (CI->cannotDuplicate()) + if (CI->cannotDuplicate() || CI->isConvergent()) // Blocks with NoDuplicate are modelled as having infinite cost, so they // are never duplicated. return ~0U; @@ -279,16 +343,7 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, } } - // Threading through a switch statement is particularly profitable. If this - // block ends in a switch, decrease its cost to make it more likely to happen. - if (isa<SwitchInst>(I)) - Size = Size > 6 ? Size-6 : 0; - - // The same holds for indirect branches, but slightly more so. - if (isa<IndirectBrInst>(I)) - Size = Size > 8 ? Size-8 : 0; - - return Size; + return Size > Bonus ? Size - Bonus : 0; } /// FindLoopHeaders - We do not want jump threading to turn proper loop @@ -310,8 +365,8 @@ void JumpThreading::FindLoopHeaders(Function &F) { SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; FindFunctionBackedges(F, Edges); - for (unsigned i = 0, e = Edges.size(); i != e; ++i) - LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); + for (const auto &Edge : Edges) + LoopHeaders.insert(Edge.second); } /// getKnownConstant - Helper method to determine if we can thread over a @@ -357,8 +412,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, // If V is a constant, then it is known in all predecessors. if (Constant *KC = getKnownConstant(V, Preference)) { - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) - Result.push_back(std::make_pair(KC, *PI)); + for (BasicBlock *Pred : predecessors(BB)) + Result.push_back(std::make_pair(KC, Pred)); return true; } @@ -381,8 +436,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. // Perhaps getConstantOnEdge should be smart enough to do this? - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - BasicBlock *P = *PI; + for (BasicBlock *P : predecessors(BB)) { // If the value is known by LazyValueInfo to be a constant in a // predecessor, use that information to try to thread this block. Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); @@ -438,22 +492,17 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, // Scan for the sentinel. If we find an undef, force it to the // interesting value: x|undef -> true and x&undef -> false. - for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) - if (LHSVals[i].first == InterestingVal || - isa<UndefValue>(LHSVals[i].first)) { - Result.push_back(LHSVals[i]); - Result.back().first = InterestingVal; - LHSKnownBBs.insert(LHSVals[i].second); + for (const auto &LHSVal : LHSVals) + if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { + Result.emplace_back(InterestingVal, LHSVal.second); + LHSKnownBBs.insert(LHSVal.second); } - for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) - if (RHSVals[i].first == InterestingVal || - isa<UndefValue>(RHSVals[i].first)) { + for (const auto &RHSVal : RHSVals) + if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { // If we already inferred a value for this block on the LHS, don't // re-add it. - if (!LHSKnownBBs.count(RHSVals[i].second)) { - Result.push_back(RHSVals[i]); - Result.back().first = InterestingVal; - } + if (!LHSKnownBBs.count(RHSVal.second)) + Result.emplace_back(InterestingVal, RHSVal.second); } return !Result.empty(); @@ -469,8 +518,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, return false; // Invert the known values. - for (unsigned i = 0, e = Result.size(); i != e; ++i) - Result[i].first = ConstantExpr::getNot(Result[i].first); + for (auto &R : Result) + R.first = ConstantExpr::getNot(R.first); return true; } @@ -485,12 +534,12 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, WantInteger, CxtI); // Try to use constant folding to simplify the binary operator. - for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { - Constant *V = LHSVals[i].first; + for (const auto &LHSVal : LHSVals) { + Constant *V = LHSVal.first; Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); if (Constant *KC = getKnownConstant(Folded, WantInteger)) - Result.push_back(std::make_pair(KC, LHSVals[i].second)); + Result.push_back(std::make_pair(KC, LHSVal.second)); } } @@ -538,8 +587,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ - BasicBlock *P = *PI; + for (BasicBlock *P : predecessors(BB)) { // If the value is known by LazyValueInfo to be a constant in a // predecessor, use that information to try to thread this block. LazyValueInfo::Tristate Res = @@ -562,12 +610,12 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, WantInteger, CxtI); - for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { - Constant *V = LHSVals[i].first; + for (const auto &LHSVal : LHSVals) { + Constant *V = LHSVal.first; Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), V, CmpConst); if (Constant *KC = getKnownConstant(Folded, WantInteger)) - Result.push_back(std::make_pair(KC, LHSVals[i].second)); + Result.push_back(std::make_pair(KC, LHSVal.second)); } return !Result.empty(); @@ -584,8 +632,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, if ((TrueVal || FalseVal) && ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, WantInteger, CxtI)) { - for (unsigned i = 0, e = Conds.size(); i != e; ++i) { - Constant *Cond = Conds[i].first; + for (auto &C : Conds) { + Constant *Cond = C.first; // Figure out what value to use for the condition. bool KnownCond; @@ -602,7 +650,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, // See if the select has a known constant value for this predecessor. if (Constant *Val = KnownCond ? TrueVal : FalseVal) - Result.push_back(std::make_pair(Val, Conds[i].second)); + Result.push_back(std::make_pair(Val, C.second)); } return !Result.empty(); @@ -612,8 +660,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, // If all else fails, see if LVI can figure out a constant value for us. Constant *CI = LVI->getConstant(V, BB, CxtI); if (Constant *KC = getKnownConstant(CI, Preference)) { - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) - Result.push_back(std::make_pair(KC, *PI)); + for (BasicBlock *Pred : predecessors(BB)) + Result.push_back(std::make_pair(KC, Pred)); } return !Result.empty(); @@ -669,7 +717,8 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) { // because now the condition in this block can be threaded through // predecessors of our predecessor block. if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { - if (SinglePred->getTerminator()->getNumSuccessors() == 1 && + const TerminatorInst *TI = SinglePred->getTerminator(); + if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && SinglePred != BB && !hasAddressTakenAndUsed(BB)) { // If SinglePred was a loop header, BB becomes one. if (LoopHeaders.erase(SinglePred)) @@ -682,6 +731,9 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) { } } + if (TryToUnfoldSelectInCurrBB(BB)) + return true; + // What kind of constant we're looking for. ConstantPreference Preference = WantInteger; @@ -761,7 +813,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) { // If we're branching on a conditional, LVI might be able to determine // it's value at the branch instruction. We only handle comparisons // against a constant at this time. - // TODO: This should be extended to handle switches as well. + // TODO: This should be extended to handle switches as well. BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); if (CondBr && CondConst && CondBr->isConditional()) { @@ -829,9 +881,40 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) { CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); + // Search for a stronger dominating condition that can be used to simplify a + // conditional branch leaving BB. + if (ProcessImpliedCondition(BB)) + return true; + + return false; +} + +bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) { + auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + BasicBlock *CurrentBB = BB; + BasicBlock *CurrentPred = BB->getSinglePredecessor(); + unsigned Iter = 0; - // TODO: If we have: "br (X > 0)" and we have a predecessor where we know - // "(X == 4)", thread through this block. + auto &DL = BB->getModule()->getDataLayout(); + + while (CurrentPred && Iter++ < ImplicationSearchThreshold) { + auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); + if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB) + return false; + + if (isImpliedCondition(PBI->getCondition(), Cond, DL)) { + BI->getSuccessor(1)->removePredecessor(BB); + BranchInst::Create(BI->getSuccessor(0), BI); + BI->eraseFromParent(); + return true; + } + CurrentBB = CurrentPred; + CurrentPred = CurrentBB->getSinglePredecessor(); + } return false; } @@ -850,10 +933,10 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { if (LoadBB->getSinglePredecessor()) return false; - // If the load is defined in a landing pad, it can't be partially redundant, - // because the edges between the invoke and the landing pad cannot have other + // If the load is defined in an EH pad, it can't be partially redundant, + // because the edges between the invoke and the EH pad cannot have other // instructions between them. - if (LoadBB->isLandingPad()) + if (LoadBB->isEHPad()) return false; Value *LoadedPtr = LI->getOperand(0); @@ -866,11 +949,11 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Scan a few instructions up from the load, to see if it is obviously live at // the entry to its block. - BasicBlock::iterator BBIt = LI; + BasicBlock::iterator BBIt(LI); if (Value *AvailableVal = - FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { - // If the value if the load is locally available within the block, just use + FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) { + // If the value of the load is locally available within the block, just use // it. This frequently occurs for reg2mem'd allocas. //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; @@ -903,10 +986,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // If we got here, the loaded value is transparent through to the start of the // block. Check to see if it is available in any of the predecessor blocks. - for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); - PI != PE; ++PI) { - BasicBlock *PredBB = *PI; - + for (BasicBlock *PredBB : predecessors(LoadBB)) { // If we already scanned this predecessor, skip it. if (!PredsScanned.insert(PredBB).second) continue; @@ -914,7 +994,8 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Scan the predecessor to see if the value is available in the pred. BBIt = PredBB->end(); AAMDNodes ThisAATags; - Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, + Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, + DefMaxInstsToScan, nullptr, &ThisAATags); if (!PredAvailable) { OneUnavailablePred = PredBB; @@ -952,13 +1033,11 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { SmallVector<BasicBlock*, 8> PredsToSplit; SmallPtrSet<BasicBlock*, 8> AvailablePredSet; - for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) - AvailablePredSet.insert(AvailablePreds[i].first); + for (const auto &AvailablePred : AvailablePreds) + AvailablePredSet.insert(AvailablePred.first); // Add all the unavailable predecessors to the PredsToSplit list. - for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); - PI != PE; ++PI) { - BasicBlock *P = *PI; + for (BasicBlock *P : predecessors(LoadBB)) { // If the predecessor is an indirect goto, we can't split the edge. if (isa<IndirectBrInst>(P->getTerminator())) return false; @@ -968,8 +1047,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { } // Split them out to their own block. - UnavailablePred = - SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); + UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); } // If the value isn't available in all predecessors, then there will be @@ -995,7 +1073,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Create a PHI node at the start of the block for the PRE'd load value. pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", - LoadBB->begin()); + &LoadBB->front()); PN->takeName(LI); PN->setDebugLoc(LI->getDebugLoc()); @@ -1044,9 +1122,9 @@ FindMostPopularDest(BasicBlock *BB, // blocks with known and real destinations to threading undef. We'll handle // them later if interesting. DenseMap<BasicBlock*, unsigned> DestPopularity; - for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) - if (PredToDestList[i].second) - DestPopularity[PredToDestList[i].second]++; + for (const auto &PredToDest : PredToDestList) + if (PredToDest.second) + DestPopularity[PredToDest.second]++; // Find the most popular dest. DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); @@ -1109,10 +1187,10 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, "ComputeValueKnownInPredecessors returned true with no values"); DEBUG(dbgs() << "IN BB: " << *BB; - for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { + for (const auto &PredValue : PredValues) { dbgs() << " BB '" << BB->getName() << "': FOUND condition = " - << *PredValues[i].first - << " for pred '" << PredValues[i].second->getName() << "'.\n"; + << *PredValue.first + << " for pred '" << PredValue.second->getName() << "'.\n"; }); // Decide what we want to thread through. Convert our list of known values to @@ -1125,8 +1203,8 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, BasicBlock *OnlyDest = nullptr; BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; - for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { - BasicBlock *Pred = PredValues[i].second; + for (const auto &PredValue : PredValues) { + BasicBlock *Pred = PredValue.second; if (!SeenPreds.insert(Pred).second) continue; // Duplicate predecessor entry. @@ -1135,7 +1213,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, if (isa<IndirectBrInst>(Pred->getTerminator())) continue; - Constant *Val = PredValues[i].first; + Constant *Val = PredValue.first; BasicBlock *DestBB; if (isa<UndefValue>(Val)) @@ -1175,16 +1253,15 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, // Now that we know what the most popular destination is, factor all // predecessors that will jump to it into a single predecessor. SmallVector<BasicBlock*, 16> PredsToFactor; - for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) - if (PredToDestList[i].second == MostPopularDest) { - BasicBlock *Pred = PredToDestList[i].first; + for (const auto &PredToDest : PredToDestList) + if (PredToDest.second == MostPopularDest) { + BasicBlock *Pred = PredToDest.first; // This predecessor may be a switch or something else that has multiple // edges to the block. Factor each of these edges by listing them // according to # occurrences in PredsToFactor. - TerminatorInst *PredTI = Pred->getTerminator(); - for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) - if (PredTI->getSuccessor(i) == BB) + for (BasicBlock *Succ : successors(Pred)) + if (Succ == BB) PredsToFactor.push_back(Pred); } @@ -1262,7 +1339,7 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { // Into: // BB': // %Y = icmp ne i32 %A, %B - // br i1 %Z, ... + // br i1 %Y, ... PredValueInfoTy XorOpValues; bool isLHS = true; @@ -1281,11 +1358,11 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { // Scan the information to see which is most popular: true or false. The // predecessors can be of the set true, false, or undef. unsigned NumTrue = 0, NumFalse = 0; - for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { - if (isa<UndefValue>(XorOpValues[i].first)) + for (const auto &XorOpValue : XorOpValues) { + if (isa<UndefValue>(XorOpValue.first)) // Ignore undefs for the count. continue; - if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) + if (cast<ConstantInt>(XorOpValue.first)->isZero()) ++NumFalse; else ++NumTrue; @@ -1301,12 +1378,11 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { // Collect all of the blocks that this can be folded into so that we can // factor this once and clone it once. SmallVector<BasicBlock*, 8> BlocksToFoldInto; - for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { - if (XorOpValues[i].first != SplitVal && - !isa<UndefValue>(XorOpValues[i].first)) + for (const auto &XorOpValue : XorOpValues) { + if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) continue; - BlocksToFoldInto.push_back(XorOpValues[i].second); + BlocksToFoldInto.push_back(XorOpValue.second); } // If we inferred a value for all of the predecessors, then duplication won't @@ -1387,14 +1463,14 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, return false; } - // And finally, do it! Start by factoring the predecessors is needed. + // And finally, do it! Start by factoring the predecessors if needed. BasicBlock *PredBB; if (PredBBs.size() == 1) PredBB = PredBBs[0]; else { DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); - PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); + PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); } // And finally, do it! @@ -1415,6 +1491,13 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BB->getParent(), BB); NewBB->moveAfter(PredBB); + // Set the block frequency of NewBB. + if (HasProfileData) { + auto NewBBFreq = + BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); + BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); + } + BasicBlock::iterator BI = BB->begin(); for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); @@ -1425,7 +1508,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, Instruction *New = BI->clone(); New->setName(BI->getName()); NewBB->getInstList().push_back(New); - ValueMapping[BI] = New; + ValueMapping[&*BI] = New; // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) @@ -1438,7 +1521,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, // We didn't copy the terminator from BB over to NewBB, because there is now // an unconditional jump to SuccBB. Insert the unconditional jump. - BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); + BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the @@ -1451,10 +1534,10 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, // PHI insertion, of which we are prepared to do, clean these up now. SSAUpdater SSAUpdate; SmallVector<Use*, 16> UsesToRename; - for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { + for (Instruction &I : *BB) { // Scan all uses of this instruction to see if it is used outside of its // block, and if so, record them in UsesToRename. - for (Use &U : I->uses()) { + for (Use &U : I.uses()) { Instruction *User = cast<Instruction>(U.getUser()); if (PHINode *UserPN = dyn_cast<PHINode>(User)) { if (UserPN->getIncomingBlock(U) == BB) @@ -1469,14 +1552,14 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, if (UsesToRename.empty()) continue; - DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); + DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); // We found a use of I outside of BB. Rename all uses of I that are outside // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks // with the two values we know. - SSAUpdate.Initialize(I->getType(), I->getName()); - SSAUpdate.AddAvailableValue(BB, I); - SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); + SSAUpdate.Initialize(I.getType(), I.getName()); + SSAUpdate.AddAvailableValue(BB, &I); + SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); while (!UsesToRename.empty()) SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); @@ -1499,11 +1582,98 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, // frequently happens because of phi translation. SimplifyInstructionsInBlock(NewBB, TLI); + // Update the edge weight from BB to SuccBB, which should be less than before. + UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); + // Threaded an edge! ++NumThreads; return true; } +/// Create a new basic block that will be the predecessor of BB and successor of +/// all blocks in Preds. When profile data is availble, update the frequency of +/// this new block. +BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB, + ArrayRef<BasicBlock *> Preds, + const char *Suffix) { + // Collect the frequencies of all predecessors of BB, which will be used to + // update the edge weight on BB->SuccBB. + BlockFrequency PredBBFreq(0); + if (HasProfileData) + for (auto Pred : Preds) + PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); + + BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); + + // Set the block frequency of the newly created PredBB, which is the sum of + // frequencies of Preds. + if (HasProfileData) + BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); + return PredBB; +} + +/// Update the block frequency of BB and branch weight and the metadata on the +/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - +/// Freq(PredBB->BB) / Freq(BB->SuccBB). +void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, + BasicBlock *BB, + BasicBlock *NewBB, + BasicBlock *SuccBB) { + if (!HasProfileData) + return; + + assert(BFI && BPI && "BFI & BPI should have been created here"); + + // As the edge from PredBB to BB is deleted, we have to update the block + // frequency of BB. + auto BBOrigFreq = BFI->getBlockFreq(BB); + auto NewBBFreq = BFI->getBlockFreq(NewBB); + auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); + auto BBNewFreq = BBOrigFreq - NewBBFreq; + BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); + + // Collect updated outgoing edges' frequencies from BB and use them to update + // edge probabilities. + SmallVector<uint64_t, 4> BBSuccFreq; + for (BasicBlock *Succ : successors(BB)) { + auto SuccFreq = (Succ == SuccBB) + ? BB2SuccBBFreq - NewBBFreq + : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); + BBSuccFreq.push_back(SuccFreq.getFrequency()); + } + + uint64_t MaxBBSuccFreq = + *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); + + SmallVector<BranchProbability, 4> BBSuccProbs; + if (MaxBBSuccFreq == 0) + BBSuccProbs.assign(BBSuccFreq.size(), + {1, static_cast<unsigned>(BBSuccFreq.size())}); + else { + for (uint64_t Freq : BBSuccFreq) + BBSuccProbs.push_back( + BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); + // Normalize edge probabilities so that they sum up to one. + BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), + BBSuccProbs.end()); + } + + // Update edge probabilities in BPI. + for (int I = 0, E = BBSuccProbs.size(); I < E; I++) + BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); + + if (BBSuccProbs.size() >= 2) { + SmallVector<uint32_t, 4> Weights; + for (auto Prob : BBSuccProbs) + Weights.push_back(Prob.getNumerator()); + + auto TI = BB->getTerminator(); + TI->setMetadata( + LLVMContext::MD_prof, + MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); + } +} + /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch /// to BB which contains an i1 PHI node and a conditional branch on that PHI. /// If we can duplicate the contents of BB up into PredBB do so now, this @@ -1530,14 +1700,14 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, return false; } - // And finally, do it! Start by factoring the predecessors is needed. + // And finally, do it! Start by factoring the predecessors if needed. BasicBlock *PredBB; if (PredBBs.size() == 1) PredBB = PredBBs[0]; else { DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); - PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); + PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); } // Okay, we decided to do this! Clone all the instructions in BB onto the end @@ -1581,12 +1751,12 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, if (Value *IV = SimplifyInstruction(New, BB->getModule()->getDataLayout())) { delete New; - ValueMapping[BI] = IV; + ValueMapping[&*BI] = IV; } else { // Otherwise, insert the new instruction into the block. New->setName(BI->getName()); - PredBB->getInstList().insert(OldPredBranch, New); - ValueMapping[BI] = New; + PredBB->getInstList().insert(OldPredBranch->getIterator(), New); + ValueMapping[&*BI] = New; } } @@ -1604,10 +1774,10 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, // PHI insertion, of which we are prepared to do, clean these up now. SSAUpdater SSAUpdate; SmallVector<Use*, 16> UsesToRename; - for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { + for (Instruction &I : *BB) { // Scan all uses of this instruction to see if it is used outside of its // block, and if so, record them in UsesToRename. - for (Use &U : I->uses()) { + for (Use &U : I.uses()) { Instruction *User = cast<Instruction>(U.getUser()); if (PHINode *UserPN = dyn_cast<PHINode>(User)) { if (UserPN->getIncomingBlock(U) == BB) @@ -1622,14 +1792,14 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, if (UsesToRename.empty()) continue; - DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); + DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); // We found a use of I outside of BB. Rename all uses of I that are outside // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks // with the two values we know. - SSAUpdate.Initialize(I->getType(), I->getName()); - SSAUpdate.AddAvailableValue(BB, I); - SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); + SSAUpdate.Initialize(I.getType(), I.getName()); + SSAUpdate.AddAvailableValue(BB, &I); + SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); while (!UsesToRename.empty()) SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); @@ -1724,3 +1894,62 @@ bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { } return false; } + +/// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form +/// bb: +/// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... +/// %s = select p, trueval, falseval +/// +/// And expand the select into a branch structure. This later enables +/// jump-threading over bb in this pass. +/// +/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold +/// select if the associated PHI has at least one constant. If the unfolded +/// select is not jump-threaded, it will be folded again in the later +/// optimizations. +bool JumpThreading::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { + // If threading this would thread across a loop header, don't thread the edge. + // See the comments above FindLoopHeaders for justifications and caveats. + if (LoopHeaders.count(BB)) + return false; + + // Look for a Phi/Select pair in the same basic block. The Phi feeds the + // condition of the Select and at least one of the incoming values is a + // constant. + for (BasicBlock::iterator BI = BB->begin(); + PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { + unsigned NumPHIValues = PN->getNumIncomingValues(); + if (NumPHIValues == 0 || !PN->hasOneUse()) + continue; + + SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); + if (!SI || SI->getParent() != BB) + continue; + + Value *Cond = SI->getCondition(); + if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) + continue; + + bool HasConst = false; + for (unsigned i = 0; i != NumPHIValues; ++i) { + if (PN->getIncomingBlock(i) == BB) + return false; + if (isa<ConstantInt>(PN->getIncomingValue(i))) + HasConst = true; + } + + if (HasConst) { + // Expand the select. + TerminatorInst *Term = + SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); + PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); + NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); + NewPN->addIncoming(SI->getFalseValue(), BB); + SI->replaceAllUsesWith(NewPN); + SI->eraseFromParent(); + return true; + } + } + + return false; +} |