summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp724
1 files changed, 410 insertions, 314 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
index 2a954d9..ec5e15f 100644
--- a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -28,9 +28,11 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
@@ -48,6 +50,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
using namespace llvm;
@@ -83,64 +86,62 @@ static cl::opt<ReplaceExitVal> ReplaceExitValue(
namespace {
struct RewritePhi;
-}
-namespace {
- class IndVarSimplify : public LoopPass {
- LoopInfo *LI;
- ScalarEvolution *SE;
- DominatorTree *DT;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
-
- SmallVector<WeakVH, 16> DeadInsts;
- bool Changed;
- public:
-
- static char ID; // Pass identification, replacement for typeid
- IndVarSimplify()
- : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
- initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
- }
+class IndVarSimplify : public LoopPass {
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreserved<ScalarEvolution>();
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreservedID(LCSSAID);
- AU.setPreservesCFG();
- }
+ SmallVector<WeakVH, 16> DeadInsts;
+ bool Changed;
+public:
- private:
- void releaseMemory() override {
- DeadInsts.clear();
- }
+ static char ID; // Pass identification, replacement for typeid
+ IndVarSimplify()
+ : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
+ initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
+ }
- bool isValidRewrite(Value *FromVal, Value *ToVal);
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreservedID(LCSSAID);
+ AU.setPreservesCFG();
+ }
- void HandleFloatingPointIV(Loop *L, PHINode *PH);
- void RewriteNonIntegerIVs(Loop *L);
+private:
+ void releaseMemory() override {
+ DeadInsts.clear();
+ }
- void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
+ bool isValidRewrite(Value *FromVal, Value *ToVal);
- bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
- void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
+ void handleFloatingPointIV(Loop *L, PHINode *PH);
+ void rewriteNonIntegerIVs(Loop *L);
- Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
- PHINode *IndVar, SCEVExpander &Rewriter);
+ void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
- void SinkUnusedInvariants(Loop *L);
+ bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
+ void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
- Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
- Instruction *InsertPt, Type *Ty,
- bool &IsHighCostExpansion);
- };
+ Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
+ PHINode *IndVar, SCEVExpander &Rewriter);
+
+ void sinkUnusedInvariants(Loop *L);
+
+ Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
+ Instruction *InsertPt, Type *Ty);
+};
}
char IndVarSimplify::ID = 0;
@@ -148,7 +149,7 @@ INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
"Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(IndVarSimplify, "indvars",
@@ -158,10 +159,10 @@ Pass *llvm::createIndVarSimplifyPass() {
return new IndVarSimplify();
}
-/// isValidRewrite - Return true if the SCEV expansion generated by the
-/// rewriter can replace the original value. SCEV guarantees that it
-/// produces the same value, but the way it is produced may be illegal IR.
-/// Ideally, this function will only be called for verification.
+/// Return true if the SCEV expansion generated by the rewriter can replace the
+/// original value. SCEV guarantees that it produces the same value, but the way
+/// it is produced may be illegal IR. Ideally, this function will only be
+/// called for verification.
bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
// If an SCEV expression subsumed multiple pointers, its expansion could
// reassociate the GEP changing the base pointer. This is illegal because the
@@ -175,10 +176,10 @@ bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
// because it understands lcssa phis while SCEV does not.
Value *FromPtr = FromVal;
Value *ToPtr = ToVal;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
+ if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
FromPtr = GEP->getPointerOperand();
}
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
+ if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
ToPtr = GEP->getPointerOperand();
}
if (FromPtr != FromVal || ToPtr != ToVal) {
@@ -215,7 +216,7 @@ bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
/// common dominator for the incoming blocks.
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
- DominatorTree *DT) {
+ DominatorTree *DT, LoopInfo *LI) {
PHINode *PHI = dyn_cast<PHINode>(User);
if (!PHI)
return User;
@@ -234,17 +235,28 @@ static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
InsertPt = InsertBB->getTerminator();
}
assert(InsertPt && "Missing phi operand");
- assert((!isa<Instruction>(Def) ||
- DT->dominates(cast<Instruction>(Def), InsertPt)) &&
- "def does not dominate all uses");
- return InsertPt;
+
+ auto *DefI = dyn_cast<Instruction>(Def);
+ if (!DefI)
+ return InsertPt;
+
+ assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
+
+ auto *L = LI->getLoopFor(DefI->getParent());
+ assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
+
+ for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
+ if (LI->getLoopFor(DTN->getBlock()) == L)
+ return DTN->getBlock()->getTerminator();
+
+ llvm_unreachable("DefI dominates InsertPt!");
}
//===----------------------------------------------------------------------===//
-// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
+// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
//===----------------------------------------------------------------------===//
-/// ConvertToSInt - Convert APF to an integer, if possible.
+/// Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
bool isExact = false;
// See if we can convert this to an int64_t
@@ -256,8 +268,8 @@ static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
return true;
}
-/// HandleFloatingPointIV - If the loop has floating induction variable
-/// then insert corresponding integer induction variable if possible.
+/// If the loop has floating induction variable then insert corresponding
+/// integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
/// bar(i)
@@ -265,13 +277,12 @@ static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
/// for(int i = 0; i < 10000; ++i)
/// bar((double)i);
///
-void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
+void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
unsigned BackEdge = IncomingEdge^1;
// Check incoming value.
- ConstantFP *InitValueVal =
- dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
+ auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
int64_t InitValue;
if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
@@ -279,8 +290,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
// Check IV increment. Reject this PN if increment operation is not
// an add or increment value can not be represented by an integer.
- BinaryOperator *Incr =
- dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
+ auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
// If this is not an add of the PHI with a constantfp, or if the constant fp
@@ -456,14 +466,14 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
// platforms.
if (WeakPH) {
Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
- PN->getParent()->getFirstInsertionPt());
+ &*PN->getParent()->getFirstInsertionPt());
PN->replaceAllUsesWith(Conv);
RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
}
Changed = true;
}
-void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
+void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
// First step. Check to see if there are any floating-point recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
@@ -477,7 +487,7 @@ void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
- HandleFloatingPointIV(L, PN);
+ handleFloatingPointIV(L, PN);
// If the loop previously had floating-point IV, ScalarEvolution
// may not have been able to compute a trip count. Now that we've done some
@@ -488,7 +498,7 @@ void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
namespace {
// Collect information about PHI nodes which can be transformed in
-// RewriteLoopExitValues.
+// rewriteLoopExitValues.
struct RewritePhi {
PHINode *PN;
unsigned Ith; // Ith incoming value.
@@ -501,70 +511,37 @@ struct RewritePhi {
};
}
-Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
+Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
Loop *L, Instruction *InsertPt,
- Type *ResultTy,
- bool &IsHighCostExpansion) {
- using namespace llvm::PatternMatch;
-
- if (!Rewriter.isHighCostExpansion(S, L)) {
- IsHighCostExpansion = false;
- return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
- }
-
+ Type *ResultTy) {
// Before expanding S into an expensive LLVM expression, see if we can use an
- // already existing value as the expansion for S. There is potential to make
- // this significantly smarter, but this simple heuristic already gets some
- // interesting cases.
-
- SmallVector<BasicBlock *, 4> Latches;
- L->getLoopLatches(Latches);
-
- for (BasicBlock *BB : Latches) {
- ICmpInst::Predicate Pred;
- Instruction *LHS, *RHS;
- BasicBlock *TrueBB, *FalseBB;
-
- if (!match(BB->getTerminator(),
- m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
- TrueBB, FalseBB)))
- continue;
-
- if (SE->getSCEV(LHS) == S && DT->dominates(LHS, InsertPt)) {
- IsHighCostExpansion = false;
- return LHS;
- }
-
- if (SE->getSCEV(RHS) == S && DT->dominates(RHS, InsertPt)) {
- IsHighCostExpansion = false;
- return RHS;
- }
- }
+ // already existing value as the expansion for S.
+ if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
+ if (ExistingValue->getType() == ResultTy)
+ return ExistingValue;
// We didn't find anything, fall back to using SCEVExpander.
- assert(Rewriter.isHighCostExpansion(S, L) && "this should not have changed!");
- IsHighCostExpansion = true;
return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
}
//===----------------------------------------------------------------------===//
-// RewriteLoopExitValues - Optimize IV users outside the loop.
+// rewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//
-/// RewriteLoopExitValues - Check to see if this loop has a computable
-/// loop-invariant execution count. If so, this means that we can compute the
-/// final value of any expressions that are recurrent in the loop, and
-/// substitute the exit values from the loop into any instructions outside of
-/// the loop that use the final values of the current expressions.
+/// Check to see if this loop has a computable loop-invariant execution count.
+/// If so, this means that we can compute the final value of any expressions
+/// that are recurrent in the loop, and substitute the exit values from the loop
+/// into any instructions outside of the loop that use the final values of the
+/// current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
-void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
- // Verify the input to the pass in already in LCSSA form.
- assert(L->isLCSSAForm(*DT));
+void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
+ // Check a pre-condition.
+ assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
@@ -679,9 +656,9 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
continue;
}
- bool HighCost = false;
- Value *ExitVal = ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst,
- PN->getType(), HighCost);
+ bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
+ Value *ExitVal =
+ expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
<< " LoopVal = " << *Inst << "\n");
@@ -698,7 +675,7 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
}
}
- bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet);
+ bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
// Transformation.
for (const RewritePhi &Phi : RewritePhiSet) {
@@ -735,10 +712,10 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Rewriter.clearInsertPoint();
}
-/// CanLoopBeDeleted - Check whether it is possible to delete the loop after
-/// rewriting exit value. If it is possible, ignore ReplaceExitValue and
-/// do rewriting aggressively.
-bool IndVarSimplify::CanLoopBeDeleted(
+/// Check whether it is possible to delete the loop after rewriting exit
+/// value. If it is possible, ignore ReplaceExitValue and do rewriting
+/// aggressively.
+bool IndVarSimplify::canLoopBeDeleted(
Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
BasicBlock *Preheader = L->getLoopPreheader();
@@ -782,14 +759,9 @@ bool IndVarSimplify::CanLoopBeDeleted(
++BI;
}
- for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
- LI != LE; ++LI) {
- for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE;
- ++BI) {
- if (BI->mayHaveSideEffects())
- return false;
- }
- }
+ for (auto *BB : L->blocks())
+ if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
+ return false;
return true;
}
@@ -799,22 +771,19 @@ bool IndVarSimplify::CanLoopBeDeleted(
//===----------------------------------------------------------------------===//
namespace {
- // Collect information about induction variables that are used by sign/zero
- // extend operations. This information is recorded by CollectExtend and
- // provides the input to WidenIV.
- struct WideIVInfo {
- PHINode *NarrowIV;
- Type *WidestNativeType; // Widest integer type created [sz]ext
- bool IsSigned; // Was a sext user seen before a zext?
-
- WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
- IsSigned(false) {}
- };
+// Collect information about induction variables that are used by sign/zero
+// extend operations. This information is recorded by CollectExtend and provides
+// the input to WidenIV.
+struct WideIVInfo {
+ PHINode *NarrowIV = nullptr;
+ Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
+ bool IsSigned = false; // Was a sext user seen before a zext?
+};
}
-/// visitCast - Update information about the induction variable that is
-/// extended by this sign or zero extend operation. This is used to determine
-/// the final width of the IV before actually widening it.
+/// Update information about the induction variable that is extended by this
+/// sign or zero extend operation. This is used to determine the final width of
+/// the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
const TargetTransformInfo *TTI) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
@@ -855,24 +824,29 @@ static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
namespace {
-/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
-/// WideIV that computes the same value as the Narrow IV def. This avoids
-/// caching Use* pointers.
+/// Record a link in the Narrow IV def-use chain along with the WideIV that
+/// computes the same value as the Narrow IV def. This avoids caching Use*
+/// pointers.
struct NarrowIVDefUse {
- Instruction *NarrowDef;
- Instruction *NarrowUse;
- Instruction *WideDef;
-
- NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
-
- NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
- NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
+ Instruction *NarrowDef = nullptr;
+ Instruction *NarrowUse = nullptr;
+ Instruction *WideDef = nullptr;
+
+ // True if the narrow def is never negative. Tracking this information lets
+ // us use a sign extension instead of a zero extension or vice versa, when
+ // profitable and legal.
+ bool NeverNegative = false;
+
+ NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
+ bool NeverNegative)
+ : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
+ NeverNegative(NeverNegative) {}
};
-/// WidenIV - The goal of this transform is to remove sign and zero extends
-/// without creating any new induction variables. To do this, it creates a new
-/// phi of the wider type and redirects all users, either removing extends or
-/// inserting truncs whenever we stop propagating the type.
+/// The goal of this transform is to remove sign and zero extends without
+/// creating any new induction variables. To do this, it creates a new phi of
+/// the wider type and redirects all users, either removing extends or inserting
+/// truncs whenever we stop propagating the type.
///
class WidenIV {
// Parameters
@@ -913,32 +887,35 @@ public:
assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
}
- PHINode *CreateWideIV(SCEVExpander &Rewriter);
+ PHINode *createWideIV(SCEVExpander &Rewriter);
protected:
- Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
- Instruction *Use);
+ Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
+ Instruction *Use);
- Instruction *CloneIVUser(NarrowIVDefUse DU);
+ Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
+ Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
+ const SCEVAddRecExpr *WideAR);
+ Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
- const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
+ const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
- const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
+ const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
- const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+ const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
unsigned OpCode) const;
- Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
+ Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
- bool WidenLoopCompare(NarrowIVDefUse DU);
+ bool widenLoopCompare(NarrowIVDefUse DU);
void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
};
} // anonymous namespace
-/// isLoopInvariant - Perform a quick domtree based check for loop invariance
-/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
-/// gratuitous for this purpose.
+/// Perform a quick domtree based check for loop invariance assuming that V is
+/// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
+/// purpose.
static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
Instruction *Inst = dyn_cast<Instruction>(V);
if (!Inst)
@@ -947,8 +924,8 @@ static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
return DT->properlyDominates(Inst->getParent(), L->getHeader());
}
-Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
- Instruction *Use) {
+Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
+ bool IsSigned, Instruction *Use) {
// Set the debug location and conservative insertion point.
IRBuilder<> Builder(Use);
// Hoist the insertion point into loop preheaders as far as possible.
@@ -961,10 +938,11 @@ Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
Builder.CreateZExt(NarrowOper, WideType);
}
-/// CloneIVUser - Instantiate a wide operation to replace a narrow
-/// operation. This only needs to handle operations that can evaluation to
-/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
-Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
+/// Instantiate a wide operation to replace a narrow operation. This only needs
+/// to handle operations that can evaluation to SCEVAddRec. It can safely return
+/// 0 for any operation we decide not to clone.
+Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
+ const SCEVAddRecExpr *WideAR) {
unsigned Opcode = DU.NarrowUse->getOpcode();
switch (Opcode) {
default:
@@ -973,40 +951,140 @@ Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::Sub:
+ return cloneArithmeticIVUser(DU, WideAR);
+
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
- DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
-
- // Replace NarrowDef operands with WideDef. Otherwise, we don't know
- // anything about the narrow operand yet so must insert a [sz]ext. It is
- // probably loop invariant and will be folded or hoisted. If it actually
- // comes from a widened IV, it should be removed during a future call to
- // WidenIVUse.
- Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
- getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
- Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
- getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
-
- BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
- BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
- LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(DU.NarrowUse);
- Builder.Insert(WideBO);
- if (const OverflowingBinaryOperator *OBO =
- dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
- if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
- if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
+ return cloneBitwiseIVUser(DU);
+ }
+}
+
+Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
+ Instruction *NarrowUse = DU.NarrowUse;
+ Instruction *NarrowDef = DU.NarrowDef;
+ Instruction *WideDef = DU.WideDef;
+
+ DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
+
+ // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
+ // about the narrow operand yet so must insert a [sz]ext. It is probably loop
+ // invariant and will be folded or hoisted. If it actually comes from a
+ // widened IV, it should be removed during a future call to widenIVUse.
+ Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(0), WideType,
+ IsSigned, NarrowUse);
+ Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(1), WideType,
+ IsSigned, NarrowUse);
+
+ auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+ auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+ NarrowBO->getName());
+ IRBuilder<> Builder(NarrowUse);
+ Builder.Insert(WideBO);
+ WideBO->copyIRFlags(NarrowBO);
+ return WideBO;
+}
+
+Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
+ const SCEVAddRecExpr *WideAR) {
+ Instruction *NarrowUse = DU.NarrowUse;
+ Instruction *NarrowDef = DU.NarrowDef;
+ Instruction *WideDef = DU.WideDef;
+
+ DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
+
+ unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
+
+ // We're trying to find X such that
+ //
+ // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
+ //
+ // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
+ // and check using SCEV if any of them are correct.
+
+ // Returns true if extending NonIVNarrowDef according to `SignExt` is a
+ // correct solution to X.
+ auto GuessNonIVOperand = [&](bool SignExt) {
+ const SCEV *WideLHS;
+ const SCEV *WideRHS;
+
+ auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
+ if (SignExt)
+ return SE->getSignExtendExpr(S, Ty);
+ return SE->getZeroExtendExpr(S, Ty);
+ };
+
+ if (IVOpIdx == 0) {
+ WideLHS = SE->getSCEV(WideDef);
+ const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
+ WideRHS = GetExtend(NarrowRHS, WideType);
+ } else {
+ const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
+ WideLHS = GetExtend(NarrowLHS, WideType);
+ WideRHS = SE->getSCEV(WideDef);
+ }
+
+ // WideUse is "WideDef `op.wide` X" as described in the comment.
+ const SCEV *WideUse = nullptr;
+
+ switch (NarrowUse->getOpcode()) {
+ default:
+ llvm_unreachable("No other possibility!");
+
+ case Instruction::Add:
+ WideUse = SE->getAddExpr(WideLHS, WideRHS);
+ break;
+
+ case Instruction::Mul:
+ WideUse = SE->getMulExpr(WideLHS, WideRHS);
+ break;
+
+ case Instruction::UDiv:
+ WideUse = SE->getUDivExpr(WideLHS, WideRHS);
+ break;
+
+ case Instruction::Sub:
+ WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
+ break;
}
- return WideBO;
+
+ return WideUse == WideAR;
+ };
+
+ bool SignExtend = IsSigned;
+ if (!GuessNonIVOperand(SignExtend)) {
+ SignExtend = !SignExtend;
+ if (!GuessNonIVOperand(SignExtend))
+ return nullptr;
}
+
+ Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(0), WideType,
+ SignExtend, NarrowUse);
+ Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(1), WideType,
+ SignExtend, NarrowUse);
+
+ auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+ auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+ NarrowBO->getName());
+
+ IRBuilder<> Builder(NarrowUse);
+ Builder.Insert(WideBO);
+ WideBO->copyIRFlags(NarrowBO);
+ return WideBO;
}
-const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
unsigned OpCode) const {
if (OpCode == Instruction::Add)
return SE->getAddExpr(LHS, RHS);
@@ -1022,7 +1100,7 @@ const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
/// operands. Generate the SCEV value for the widened operation without
/// actually modifying the IR yet. If the expression after extending the
/// operands is an AddRec for this loop, return it.
-const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
+const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
// Handle the common case of add<nsw/nuw>
const unsigned OpCode = DU.NarrowUse->getOpcode();
@@ -1062,19 +1140,18 @@ const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
if (ExtendOperIdx == 0)
std::swap(lhs, rhs);
const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
+ dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
if (!AddRec || AddRec->getLoop() != L)
return nullptr;
return AddRec;
}
-/// GetWideRecurrence - Is this instruction potentially interesting for further
-/// simplification after widening it's type? In other words, can the
-/// extend be safely hoisted out of the loop with SCEV reducing the value to a
-/// recurrence on the same loop. If so, return the sign or zero extended
-/// recurrence. Otherwise return NULL.
-const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
+/// Is this instruction potentially interesting for further simplification after
+/// widening it's type? In other words, can the extend be safely hoisted out of
+/// the loop with SCEV reducing the value to a recurrence on the same loop. If
+/// so, return the sign or zero extended recurrence. Otherwise return NULL.
+const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
if (!SE->isSCEVable(NarrowUse->getType()))
return nullptr;
@@ -1097,10 +1174,11 @@ const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
/// This IV user cannot be widen. Replace this use of the original narrow IV
/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
-static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
+static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
<< " for user " << *DU.NarrowUse << "\n");
- IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
+ IRBuilder<> Builder(
+ getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
}
@@ -1108,13 +1186,27 @@ static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
/// If the narrow use is a compare instruction, then widen the compare
// (and possibly the other operand). The extend operation is hoisted into the
// loop preheader as far as possible.
-bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
+bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
if (!Cmp)
return false;
- // Sign of IV user and compare must match.
- if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
+ // We can legally widen the comparison in the following two cases:
+ //
+ // - The signedness of the IV extension and comparison match
+ //
+ // - The narrow IV is always positive (and thus its sign extension is equal
+ // to its zero extension). For instance, let's say we're zero extending
+ // %narrow for the following use
+ //
+ // icmp slt i32 %narrow, %val ... (A)
+ //
+ // and %narrow is always positive. Then
+ //
+ // (A) == icmp slt i32 sext(%narrow), sext(%val)
+ // == icmp slt i32 zext(%narrow), sext(%val)
+
+ if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
return false;
Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
@@ -1123,20 +1215,21 @@ bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
// Widen the compare instruction.
- IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
+ IRBuilder<> Builder(
+ getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
// Widen the other operand of the compare, if necessary.
if (CastWidth < IVWidth) {
- Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
+ Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
}
return true;
}
-/// WidenIVUse - Determine whether an individual user of the narrow IV can be
-/// widened. If so, return the wide clone of the user.
-Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
+/// Determine whether an individual user of the narrow IV can be widened. If so,
+/// return the wide clone of the user.
+Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
// Stop traversing the def-use chain at inner-loop phis or post-loop phis.
if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
@@ -1145,13 +1238,13 @@ Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
// After SimplifyCFG most loop exit targets have a single predecessor.
// Otherwise fall back to a truncate within the loop.
if (UsePhi->getNumOperands() != 1)
- truncateIVUse(DU, DT);
+ truncateIVUse(DU, DT, LI);
else {
PHINode *WidePhi =
PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
UsePhi);
WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
- IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
+ IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
UsePhi->replaceAllUsesWith(Trunc);
DeadInsts.emplace_back(UsePhi);
@@ -1200,20 +1293,20 @@ Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
}
// Does this user itself evaluate to a recurrence after widening?
- const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
+ const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
if (!WideAddRec)
- WideAddRec = GetExtendedOperandRecurrence(DU);
+ WideAddRec = getExtendedOperandRecurrence(DU);
if (!WideAddRec) {
// If use is a loop condition, try to promote the condition instead of
// truncating the IV first.
- if (WidenLoopCompare(DU))
+ if (widenLoopCompare(DU))
return nullptr;
// This user does not evaluate to a recurence after widening, so don't
// follow it. Instead insert a Trunc to kill off the original use,
// eventually isolating the original narrow IV so it can be removed.
- truncateIVUse(DU, DT);
+ truncateIVUse(DU, DT, LI);
return nullptr;
}
// Assume block terminators cannot evaluate to a recurrence. We can't to
@@ -1228,7 +1321,7 @@ Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
&& Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
WideUse = WideInc;
else {
- WideUse = CloneIVUser(DU);
+ WideUse = cloneIVUser(DU, WideAddRec);
if (!WideUse)
return nullptr;
}
@@ -1248,9 +1341,13 @@ Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
return WideUse;
}
-/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
+/// Add eligible users of NarrowDef to NarrowIVUsers.
///
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
+ const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
+ bool NeverNegative =
+ SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
+ SE->getConstant(NarrowSCEV->getType(), 0));
for (User *U : NarrowDef->users()) {
Instruction *NarrowUser = cast<Instruction>(U);
@@ -1258,21 +1355,21 @@ void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
if (!Widened.insert(NarrowUser).second)
continue;
- NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
+ NarrowIVUsers.push_back(
+ NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative));
}
}
-/// CreateWideIV - Process a single induction variable. First use the
-/// SCEVExpander to create a wide induction variable that evaluates to the same
-/// recurrence as the original narrow IV. Then use a worklist to forward
-/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
-/// interesting IV users, the narrow IV will be isolated for removal by
-/// DeleteDeadPHIs.
+/// Process a single induction variable. First use the SCEVExpander to create a
+/// wide induction variable that evaluates to the same recurrence as the
+/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
+/// def-use chain. After widenIVUse has processed all interesting IV users, the
+/// narrow IV will be isolated for removal by DeleteDeadPHIs.
///
/// It would be simpler to delete uses as they are processed, but we must avoid
/// invalidating SCEV expressions.
///
-PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
+PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
// Is this phi an induction variable?
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
if (!AddRec)
@@ -1302,11 +1399,11 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
// either find an existing phi or materialize a new one. Either way, we
// expect a well-formed cyclic phi-with-increments. i.e. any operand not part
// of the phi-SCC dominates the loop entry.
- Instruction *InsertPt = L->getHeader()->begin();
+ Instruction *InsertPt = &L->getHeader()->front();
WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
// Remembering the WideIV increment generated by SCEVExpander allows
- // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
+ // widenIVUse to reuse it when widening the narrow IV's increment. We don't
// employ a general reuse mechanism because the call above is the only call to
// SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
if (BasicBlock *LatchBlock = L->getLoopLatch()) {
@@ -1329,13 +1426,13 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
// Process a def-use edge. This may replace the use, so don't hold a
// use_iterator across it.
- Instruction *WideUse = WidenIVUse(DU, Rewriter);
+ Instruction *WideUse = widenIVUse(DU, Rewriter);
// Follow all def-use edges from the previous narrow use.
if (WideUse)
pushNarrowIVUsers(DU.NarrowUse, WideUse);
- // WidenIVUse may have removed the def-use edge.
+ // widenIVUse may have removed the def-use edge.
if (DU.NarrowDef->use_empty())
DeadInsts.emplace_back(DU.NarrowDef);
}
@@ -1352,38 +1449,38 @@ PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
//===----------------------------------------------------------------------===//
namespace {
- class IndVarSimplifyVisitor : public IVVisitor {
- ScalarEvolution *SE;
- const TargetTransformInfo *TTI;
- PHINode *IVPhi;
-
- public:
- WideIVInfo WI;
-
- IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const TargetTransformInfo *TTI,
- const DominatorTree *DTree)
- : SE(SCEV), TTI(TTI), IVPhi(IV) {
- DT = DTree;
- WI.NarrowIV = IVPhi;
- if (ReduceLiveIVs)
- setSplitOverflowIntrinsics();
- }
+class IndVarSimplifyVisitor : public IVVisitor {
+ ScalarEvolution *SE;
+ const TargetTransformInfo *TTI;
+ PHINode *IVPhi;
- // Implement the interface used by simplifyUsersOfIV.
- void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
- };
+public:
+ WideIVInfo WI;
+
+ IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
+ const TargetTransformInfo *TTI,
+ const DominatorTree *DTree)
+ : SE(SCEV), TTI(TTI), IVPhi(IV) {
+ DT = DTree;
+ WI.NarrowIV = IVPhi;
+ if (ReduceLiveIVs)
+ setSplitOverflowIntrinsics();
+ }
+
+ // Implement the interface used by simplifyUsersOfIV.
+ void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
+};
}
-/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
-/// users. Each successive simplification may push more users which may
-/// themselves be candidates for simplification.
+/// Iteratively perform simplification on a worklist of IV users. Each
+/// successive simplification may push more users which may themselves be
+/// candidates for simplification.
///
/// Sign/Zero extend elimination is interleaved with IV simplification.
///
-void IndVarSimplify::SimplifyAndExtend(Loop *L,
+void IndVarSimplify::simplifyAndExtend(Loop *L,
SCEVExpander &Rewriter,
- LPPassManager &LPM) {
+ LoopInfo *LI) {
SmallVector<WideIVInfo, 8> WideIVs;
SmallVector<PHINode*, 8> LoopPhis;
@@ -1400,14 +1497,14 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
// extension. The first time SCEV attempts to normalize sign/zero extension,
// the result becomes final. So for the most predictable results, we delay
// evaluation of sign/zero extend evaluation until needed, and avoid running
- // other SCEV based analysis prior to SimplifyAndExtend.
+ // other SCEV based analysis prior to simplifyAndExtend.
do {
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
- Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
+ Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
if (Visitor.WI.WidestNativeType) {
WideIVs.push_back(Visitor.WI);
@@ -1416,7 +1513,7 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
for (; !WideIVs.empty(); WideIVs.pop_back()) {
WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
- if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
+ if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
Changed = true;
LoopPhis.push_back(WidePhi);
}
@@ -1425,12 +1522,12 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
}
//===----------------------------------------------------------------------===//
-// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
+// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
//===----------------------------------------------------------------------===//
-/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
-/// count expression can be safely and cheaply expanded into an instruction
-/// sequence that can be used by LinearFunctionTestReplace.
+/// Return true if this loop's backedge taken count expression can be safely and
+/// cheaply expanded into an instruction sequence that can be used by
+/// linearFunctionTestReplace.
///
/// TODO: This fails for pointer-type loop counters with greater than one byte
/// strides, consequently preventing LFTR from running. For the purpose of LFTR
@@ -1461,8 +1558,7 @@ static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
return true;
}
-/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
-/// invariant value to the phi.
+/// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
Instruction *IncI = dyn_cast<Instruction>(IncV);
if (!IncI)
@@ -1513,8 +1609,8 @@ static ICmpInst *getLoopTest(Loop *L) {
return dyn_cast<ICmpInst>(BI->getCondition());
}
-/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
-/// that the current exit test is already sufficiently canonical.
+/// linearFunctionTestReplace policy. Return true unless we can show that the
+/// current exit test is already sufficiently canonical.
static bool needsLFTR(Loop *L, DominatorTree *DT) {
// Do LFTR to simplify the exit condition to an ICMP.
ICmpInst *Cond = getLoopTest(L);
@@ -1574,10 +1670,10 @@ static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
return false;
// Optimistically handle other instructions.
- for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
- if (!Visited.insert(*OI).second)
+ for (Value *Op : I->operands()) {
+ if (!Visited.insert(Op).second)
continue;
- if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
+ if (!hasConcreteDefImpl(Op, Visited, Depth+1))
return false;
}
return true;
@@ -1594,8 +1690,8 @@ static bool hasConcreteDef(Value *V) {
return hasConcreteDefImpl(V, Visited, 0);
}
-/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
-/// be rewritten) loop exit test.
+/// Return true if this IV has any uses other than the (soon to be rewritten)
+/// loop exit test.
static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
Value *IncV = Phi->getIncomingValue(LatchIdx);
@@ -1608,7 +1704,7 @@ static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
return true;
}
-/// FindLoopCounter - Find an affine IV in canonical form.
+/// Find an affine IV in canonical form.
///
/// BECount may be an i8* pointer type. The pointer difference is already
/// valid count without scaling the address stride, so it remains a pointer
@@ -1702,8 +1798,8 @@ static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
return BestPhi;
}
-/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
-/// holds the RHS of the new loop test.
+/// Help linearFunctionTestReplace by generating a value that holds the RHS of
+/// the new loop test.
static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
SCEVExpander &Rewriter, ScalarEvolution *SE) {
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
@@ -1785,13 +1881,13 @@ static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
}
}
-/// LinearFunctionTestReplace - This method rewrites the exit condition of the
-/// loop to be a canonical != comparison against the incremented loop induction
-/// variable. This pass is able to rewrite the exit tests of any loop where the
-/// SCEV analysis can determine a loop-invariant trip count of the loop, which
-/// is actually a much broader range than just linear tests.
+/// This method rewrites the exit condition of the loop to be a canonical !=
+/// comparison against the incremented loop induction variable. This pass is
+/// able to rewrite the exit tests of any loop where the SCEV analysis can
+/// determine a loop-invariant trip count of the loop, which is actually a much
+/// broader range than just linear tests.
Value *IndVarSimplify::
-LinearFunctionTestReplace(Loop *L,
+linearFunctionTestReplace(Loop *L,
const SCEV *BackedgeTakenCount,
PHINode *IndVar,
SCEVExpander &Rewriter) {
@@ -1809,7 +1905,7 @@ LinearFunctionTestReplace(Loop *L,
// This addition may overflow, which is valid as long as the comparison is
// truncated to BackedgeTakenCount->getType().
IVCount = SE->getAddExpr(BackedgeTakenCount,
- SE->getConstant(BackedgeTakenCount->getType(), 1));
+ SE->getOne(BackedgeTakenCount->getType()));
// The BackedgeTaken expression contains the number of times that the
// backedge branches to the loop header. This is one less than the
// number of times the loop executes, so use the incremented indvar.
@@ -1847,8 +1943,8 @@ LinearFunctionTestReplace(Loop *L,
const SCEV *ARStep = AR->getStepRecurrence(*SE);
// For constant IVCount, avoid truncation.
if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
- const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
- APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
+ const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
+ APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
// Note that the post-inc value of BackedgeTakenCount may have overflowed
// above such that IVCount is now zero.
if (IVCount != BackedgeTakenCount && Count == 0) {
@@ -1886,21 +1982,21 @@ LinearFunctionTestReplace(Loop *L,
}
//===----------------------------------------------------------------------===//
-// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
+// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
//===----------------------------------------------------------------------===//
/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
-void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
+void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
BasicBlock *ExitBlock = L->getExitBlock();
if (!ExitBlock) return;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) return;
- Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
- BasicBlock::iterator I = Preheader->getTerminator();
+ Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
+ BasicBlock::iterator I(Preheader->getTerminator());
while (I != Preheader->begin()) {
--I;
// New instructions were inserted at the end of the preheader.
@@ -1920,8 +2016,8 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
if (isa<DbgInfoIntrinsic>(I))
continue;
- // Skip landingpad instructions.
- if (isa<LandingPadInst>(I))
+ // Skip eh pad instructions.
+ if (I->isEHPad())
continue;
// Don't sink alloca: we never want to sink static alloca's out of the
@@ -1953,7 +2049,7 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
continue;
// Otherwise, sink it to the exit block.
- Instruction *ToMove = I;
+ Instruction *ToMove = &*I;
bool Done = false;
if (I != Preheader->begin()) {
@@ -1994,7 +2090,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
return false;
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- SE = &getAnalysis<ScalarEvolution>();
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI() : nullptr;
@@ -2007,7 +2103,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// If there are any floating-point recurrences, attempt to
// transform them to use integer recurrences.
- RewriteNonIntegerIVs(L);
+ rewriteNonIntegerIVs(L);
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
@@ -2024,7 +2120,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// other expressions involving loop IVs have been evaluated. This helps SCEV
// set no-wrap flags before normalizing sign/zero extension.
Rewriter.disableCanonicalMode();
- SimplifyAndExtend(L, Rewriter, LPM);
+ simplifyAndExtend(L, Rewriter, LI);
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions
@@ -2034,7 +2130,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
//
if (ReplaceExitValue != NeverRepl &&
!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- RewriteLoopExitValues(L, Rewriter);
+ rewriteLoopExitValues(L, Rewriter);
// Eliminate redundant IV cycles.
NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
@@ -2054,7 +2150,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// explicitly check any assumptions made by SCEV. Brittle.
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
if (!AR || AR->getLoop()->getLoopPreheader())
- (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
+ (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
Rewriter);
}
}
@@ -2074,13 +2170,13 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// Loop-invariant instructions in the preheader that aren't used in the
// loop may be sunk below the loop to reduce register pressure.
- SinkUnusedInvariants(L);
+ sinkUnusedInvariants(L);
// Clean up dead instructions.
Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
+
// Check a post-condition.
- assert(L->isLCSSAForm(*DT) &&
- "Indvars did not leave the loop in lcssa form!");
+ assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
// Verify that LFTR, and any other change have not interfered with SCEV's
// ability to compute trip count.
OpenPOWER on IntegriCloud