summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/GVN.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/GVN.cpp2612
1 files changed, 2612 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/GVN.cpp b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
new file mode 100644
index 0000000..4822fd0
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -0,0 +1,2612 @@
+//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs global value numbering to eliminate fully redundant
+// instructions. It also performs simple dead load elimination.
+//
+// Note that this pass does the value numbering itself; it does not use the
+// ValueNumbering analysis passes.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "gvn"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/IRBuilder.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+STATISTIC(NumGVNInstr, "Number of instructions deleted");
+STATISTIC(NumGVNLoad, "Number of loads deleted");
+STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
+STATISTIC(NumGVNBlocks, "Number of blocks merged");
+STATISTIC(NumGVNSimpl, "Number of instructions simplified");
+STATISTIC(NumGVNEqProp, "Number of equalities propagated");
+STATISTIC(NumPRELoad, "Number of loads PRE'd");
+
+static cl::opt<bool> EnablePRE("enable-pre",
+ cl::init(true), cl::Hidden);
+static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
+
+// Maximum allowed recursion depth.
+static cl::opt<uint32_t>
+MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
+ cl::desc("Max recurse depth (default = 1000)"));
+
+//===----------------------------------------------------------------------===//
+// ValueTable Class
+//===----------------------------------------------------------------------===//
+
+/// This class holds the mapping between values and value numbers. It is used
+/// as an efficient mechanism to determine the expression-wise equivalence of
+/// two values.
+namespace {
+ struct Expression {
+ uint32_t opcode;
+ Type *type;
+ SmallVector<uint32_t, 4> varargs;
+
+ Expression(uint32_t o = ~2U) : opcode(o) { }
+
+ bool operator==(const Expression &other) const {
+ if (opcode != other.opcode)
+ return false;
+ if (opcode == ~0U || opcode == ~1U)
+ return true;
+ if (type != other.type)
+ return false;
+ if (varargs != other.varargs)
+ return false;
+ return true;
+ }
+
+ friend hash_code hash_value(const Expression &Value) {
+ return hash_combine(Value.opcode, Value.type,
+ hash_combine_range(Value.varargs.begin(),
+ Value.varargs.end()));
+ }
+ };
+
+ class ValueTable {
+ DenseMap<Value*, uint32_t> valueNumbering;
+ DenseMap<Expression, uint32_t> expressionNumbering;
+ AliasAnalysis *AA;
+ MemoryDependenceAnalysis *MD;
+ DominatorTree *DT;
+
+ uint32_t nextValueNumber;
+
+ Expression create_expression(Instruction* I);
+ Expression create_cmp_expression(unsigned Opcode,
+ CmpInst::Predicate Predicate,
+ Value *LHS, Value *RHS);
+ Expression create_extractvalue_expression(ExtractValueInst* EI);
+ uint32_t lookup_or_add_call(CallInst* C);
+ public:
+ ValueTable() : nextValueNumber(1) { }
+ uint32_t lookup_or_add(Value *V);
+ uint32_t lookup(Value *V) const;
+ uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
+ Value *LHS, Value *RHS);
+ void add(Value *V, uint32_t num);
+ void clear();
+ void erase(Value *v);
+ void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
+ AliasAnalysis *getAliasAnalysis() const { return AA; }
+ void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
+ void setDomTree(DominatorTree* D) { DT = D; }
+ uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
+ void verifyRemoved(const Value *) const;
+ };
+}
+
+namespace llvm {
+template <> struct DenseMapInfo<Expression> {
+ static inline Expression getEmptyKey() {
+ return ~0U;
+ }
+
+ static inline Expression getTombstoneKey() {
+ return ~1U;
+ }
+
+ static unsigned getHashValue(const Expression e) {
+ using llvm::hash_value;
+ return static_cast<unsigned>(hash_value(e));
+ }
+ static bool isEqual(const Expression &LHS, const Expression &RHS) {
+ return LHS == RHS;
+ }
+};
+
+}
+
+//===----------------------------------------------------------------------===//
+// ValueTable Internal Functions
+//===----------------------------------------------------------------------===//
+
+Expression ValueTable::create_expression(Instruction *I) {
+ Expression e;
+ e.type = I->getType();
+ e.opcode = I->getOpcode();
+ for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
+ OI != OE; ++OI)
+ e.varargs.push_back(lookup_or_add(*OI));
+ if (I->isCommutative()) {
+ // Ensure that commutative instructions that only differ by a permutation
+ // of their operands get the same value number by sorting the operand value
+ // numbers. Since all commutative instructions have two operands it is more
+ // efficient to sort by hand rather than using, say, std::sort.
+ assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
+ if (e.varargs[0] > e.varargs[1])
+ std::swap(e.varargs[0], e.varargs[1]);
+ }
+
+ if (CmpInst *C = dyn_cast<CmpInst>(I)) {
+ // Sort the operand value numbers so x<y and y>x get the same value number.
+ CmpInst::Predicate Predicate = C->getPredicate();
+ if (e.varargs[0] > e.varargs[1]) {
+ std::swap(e.varargs[0], e.varargs[1]);
+ Predicate = CmpInst::getSwappedPredicate(Predicate);
+ }
+ e.opcode = (C->getOpcode() << 8) | Predicate;
+ } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
+ for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
+ II != IE; ++II)
+ e.varargs.push_back(*II);
+ }
+
+ return e;
+}
+
+Expression ValueTable::create_cmp_expression(unsigned Opcode,
+ CmpInst::Predicate Predicate,
+ Value *LHS, Value *RHS) {
+ assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
+ "Not a comparison!");
+ Expression e;
+ e.type = CmpInst::makeCmpResultType(LHS->getType());
+ e.varargs.push_back(lookup_or_add(LHS));
+ e.varargs.push_back(lookup_or_add(RHS));
+
+ // Sort the operand value numbers so x<y and y>x get the same value number.
+ if (e.varargs[0] > e.varargs[1]) {
+ std::swap(e.varargs[0], e.varargs[1]);
+ Predicate = CmpInst::getSwappedPredicate(Predicate);
+ }
+ e.opcode = (Opcode << 8) | Predicate;
+ return e;
+}
+
+Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
+ assert(EI != 0 && "Not an ExtractValueInst?");
+ Expression e;
+ e.type = EI->getType();
+ e.opcode = 0;
+
+ IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
+ if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
+ // EI might be an extract from one of our recognised intrinsics. If it
+ // is we'll synthesize a semantically equivalent expression instead on
+ // an extract value expression.
+ switch (I->getIntrinsicID()) {
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ e.opcode = Instruction::Add;
+ break;
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ e.opcode = Instruction::Sub;
+ break;
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ e.opcode = Instruction::Mul;
+ break;
+ default:
+ break;
+ }
+
+ if (e.opcode != 0) {
+ // Intrinsic recognized. Grab its args to finish building the expression.
+ assert(I->getNumArgOperands() == 2 &&
+ "Expect two args for recognised intrinsics.");
+ e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
+ e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
+ return e;
+ }
+ }
+
+ // Not a recognised intrinsic. Fall back to producing an extract value
+ // expression.
+ e.opcode = EI->getOpcode();
+ for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
+ OI != OE; ++OI)
+ e.varargs.push_back(lookup_or_add(*OI));
+
+ for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
+ II != IE; ++II)
+ e.varargs.push_back(*II);
+
+ return e;
+}
+
+//===----------------------------------------------------------------------===//
+// ValueTable External Functions
+//===----------------------------------------------------------------------===//
+
+/// add - Insert a value into the table with a specified value number.
+void ValueTable::add(Value *V, uint32_t num) {
+ valueNumbering.insert(std::make_pair(V, num));
+}
+
+uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
+ if (AA->doesNotAccessMemory(C)) {
+ Expression exp = create_expression(C);
+ uint32_t& e = expressionNumbering[exp];
+ if (!e) e = nextValueNumber++;
+ valueNumbering[C] = e;
+ return e;
+ } else if (AA->onlyReadsMemory(C)) {
+ Expression exp = create_expression(C);
+ uint32_t& e = expressionNumbering[exp];
+ if (!e) {
+ e = nextValueNumber++;
+ valueNumbering[C] = e;
+ return e;
+ }
+ if (!MD) {
+ e = nextValueNumber++;
+ valueNumbering[C] = e;
+ return e;
+ }
+
+ MemDepResult local_dep = MD->getDependency(C);
+
+ if (!local_dep.isDef() && !local_dep.isNonLocal()) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ if (local_dep.isDef()) {
+ CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
+
+ if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
+ uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
+ uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
+ if (c_vn != cd_vn) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+ }
+
+ uint32_t v = lookup_or_add(local_cdep);
+ valueNumbering[C] = v;
+ return v;
+ }
+
+ // Non-local case.
+ const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
+ MD->getNonLocalCallDependency(CallSite(C));
+ // FIXME: Move the checking logic to MemDep!
+ CallInst* cdep = 0;
+
+ // Check to see if we have a single dominating call instruction that is
+ // identical to C.
+ for (unsigned i = 0, e = deps.size(); i != e; ++i) {
+ const NonLocalDepEntry *I = &deps[i];
+ if (I->getResult().isNonLocal())
+ continue;
+
+ // We don't handle non-definitions. If we already have a call, reject
+ // instruction dependencies.
+ if (!I->getResult().isDef() || cdep != 0) {
+ cdep = 0;
+ break;
+ }
+
+ CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
+ // FIXME: All duplicated with non-local case.
+ if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
+ cdep = NonLocalDepCall;
+ continue;
+ }
+
+ cdep = 0;
+ break;
+ }
+
+ if (!cdep) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+ for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
+ uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
+ uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
+ if (c_vn != cd_vn) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+ }
+
+ uint32_t v = lookup_or_add(cdep);
+ valueNumbering[C] = v;
+ return v;
+
+ } else {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+}
+
+/// lookup_or_add - Returns the value number for the specified value, assigning
+/// it a new number if it did not have one before.
+uint32_t ValueTable::lookup_or_add(Value *V) {
+ DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
+ if (VI != valueNumbering.end())
+ return VI->second;
+
+ if (!isa<Instruction>(V)) {
+ valueNumbering[V] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ Instruction* I = cast<Instruction>(V);
+ Expression exp;
+ switch (I->getOpcode()) {
+ case Instruction::Call:
+ return lookup_or_add_call(cast<CallInst>(I));
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or :
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::BitCast:
+ case Instruction::Select:
+ case Instruction::ExtractElement:
+ case Instruction::InsertElement:
+ case Instruction::ShuffleVector:
+ case Instruction::InsertValue:
+ case Instruction::GetElementPtr:
+ exp = create_expression(I);
+ break;
+ case Instruction::ExtractValue:
+ exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
+ break;
+ default:
+ valueNumbering[V] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ uint32_t& e = expressionNumbering[exp];
+ if (!e) e = nextValueNumber++;
+ valueNumbering[V] = e;
+ return e;
+}
+
+/// lookup - Returns the value number of the specified value. Fails if
+/// the value has not yet been numbered.
+uint32_t ValueTable::lookup(Value *V) const {
+ DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
+ assert(VI != valueNumbering.end() && "Value not numbered?");
+ return VI->second;
+}
+
+/// lookup_or_add_cmp - Returns the value number of the given comparison,
+/// assigning it a new number if it did not have one before. Useful when
+/// we deduced the result of a comparison, but don't immediately have an
+/// instruction realizing that comparison to hand.
+uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
+ CmpInst::Predicate Predicate,
+ Value *LHS, Value *RHS) {
+ Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
+ uint32_t& e = expressionNumbering[exp];
+ if (!e) e = nextValueNumber++;
+ return e;
+}
+
+/// clear - Remove all entries from the ValueTable.
+void ValueTable::clear() {
+ valueNumbering.clear();
+ expressionNumbering.clear();
+ nextValueNumber = 1;
+}
+
+/// erase - Remove a value from the value numbering.
+void ValueTable::erase(Value *V) {
+ valueNumbering.erase(V);
+}
+
+/// verifyRemoved - Verify that the value is removed from all internal data
+/// structures.
+void ValueTable::verifyRemoved(const Value *V) const {
+ for (DenseMap<Value*, uint32_t>::const_iterator
+ I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
+ assert(I->first != V && "Inst still occurs in value numbering map!");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// GVN Pass
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+ class GVN : public FunctionPass {
+ bool NoLoads;
+ MemoryDependenceAnalysis *MD;
+ DominatorTree *DT;
+ const TargetData *TD;
+ const TargetLibraryInfo *TLI;
+
+ ValueTable VN;
+
+ /// LeaderTable - A mapping from value numbers to lists of Value*'s that
+ /// have that value number. Use findLeader to query it.
+ struct LeaderTableEntry {
+ Value *Val;
+ const BasicBlock *BB;
+ LeaderTableEntry *Next;
+ };
+ DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
+ BumpPtrAllocator TableAllocator;
+
+ SmallVector<Instruction*, 8> InstrsToErase;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit GVN(bool noloads = false)
+ : FunctionPass(ID), NoLoads(noloads), MD(0) {
+ initializeGVNPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F);
+
+ /// markInstructionForDeletion - This removes the specified instruction from
+ /// our various maps and marks it for deletion.
+ void markInstructionForDeletion(Instruction *I) {
+ VN.erase(I);
+ InstrsToErase.push_back(I);
+ }
+
+ const TargetData *getTargetData() const { return TD; }
+ DominatorTree &getDominatorTree() const { return *DT; }
+ AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
+ MemoryDependenceAnalysis &getMemDep() const { return *MD; }
+ private:
+ /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
+ /// its value number.
+ void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
+ LeaderTableEntry &Curr = LeaderTable[N];
+ if (!Curr.Val) {
+ Curr.Val = V;
+ Curr.BB = BB;
+ return;
+ }
+
+ LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
+ Node->Val = V;
+ Node->BB = BB;
+ Node->Next = Curr.Next;
+ Curr.Next = Node;
+ }
+
+ /// removeFromLeaderTable - Scan the list of values corresponding to a given
+ /// value number, and remove the given instruction if encountered.
+ void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
+ LeaderTableEntry* Prev = 0;
+ LeaderTableEntry* Curr = &LeaderTable[N];
+
+ while (Curr->Val != I || Curr->BB != BB) {
+ Prev = Curr;
+ Curr = Curr->Next;
+ }
+
+ if (Prev) {
+ Prev->Next = Curr->Next;
+ } else {
+ if (!Curr->Next) {
+ Curr->Val = 0;
+ Curr->BB = 0;
+ } else {
+ LeaderTableEntry* Next = Curr->Next;
+ Curr->Val = Next->Val;
+ Curr->BB = Next->BB;
+ Curr->Next = Next->Next;
+ }
+ }
+ }
+
+ // List of critical edges to be split between iterations.
+ SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
+
+ // This transformation requires dominator postdominator info
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<TargetLibraryInfo>();
+ if (!NoLoads)
+ AU.addRequired<MemoryDependenceAnalysis>();
+ AU.addRequired<AliasAnalysis>();
+
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<AliasAnalysis>();
+ }
+
+
+ // Helper fuctions
+ // FIXME: eliminate or document these better
+ bool processLoad(LoadInst *L);
+ bool processInstruction(Instruction *I);
+ bool processNonLocalLoad(LoadInst *L);
+ bool processBlock(BasicBlock *BB);
+ void dump(DenseMap<uint32_t, Value*> &d);
+ bool iterateOnFunction(Function &F);
+ bool performPRE(Function &F);
+ Value *findLeader(const BasicBlock *BB, uint32_t num);
+ void cleanupGlobalSets();
+ void verifyRemoved(const Instruction *I) const;
+ bool splitCriticalEdges();
+ unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
+ const BasicBlockEdge &Root);
+ bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
+ };
+
+ char GVN::ID = 0;
+}
+
+// createGVNPass - The public interface to this file...
+FunctionPass *llvm::createGVNPass(bool NoLoads) {
+ return new GVN(NoLoads);
+}
+
+INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
+INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
+
+void GVN::dump(DenseMap<uint32_t, Value*>& d) {
+ errs() << "{\n";
+ for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
+ E = d.end(); I != E; ++I) {
+ errs() << I->first << "\n";
+ I->second->dump();
+ }
+ errs() << "}\n";
+}
+
+/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
+/// we're analyzing is fully available in the specified block. As we go, keep
+/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
+/// map is actually a tri-state map with the following values:
+/// 0) we know the block *is not* fully available.
+/// 1) we know the block *is* fully available.
+/// 2) we do not know whether the block is fully available or not, but we are
+/// currently speculating that it will be.
+/// 3) we are speculating for this block and have used that to speculate for
+/// other blocks.
+static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
+ DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
+ uint32_t RecurseDepth) {
+ if (RecurseDepth > MaxRecurseDepth)
+ return false;
+
+ // Optimistically assume that the block is fully available and check to see
+ // if we already know about this block in one lookup.
+ std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
+ FullyAvailableBlocks.insert(std::make_pair(BB, 2));
+
+ // If the entry already existed for this block, return the precomputed value.
+ if (!IV.second) {
+ // If this is a speculative "available" value, mark it as being used for
+ // speculation of other blocks.
+ if (IV.first->second == 2)
+ IV.first->second = 3;
+ return IV.first->second != 0;
+ }
+
+ // Otherwise, see if it is fully available in all predecessors.
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ // If this block has no predecessors, it isn't live-in here.
+ if (PI == PE)
+ goto SpeculationFailure;
+
+ for (; PI != PE; ++PI)
+ // If the value isn't fully available in one of our predecessors, then it
+ // isn't fully available in this block either. Undo our previous
+ // optimistic assumption and bail out.
+ if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
+ goto SpeculationFailure;
+
+ return true;
+
+// SpeculationFailure - If we get here, we found out that this is not, after
+// all, a fully-available block. We have a problem if we speculated on this and
+// used the speculation to mark other blocks as available.
+SpeculationFailure:
+ char &BBVal = FullyAvailableBlocks[BB];
+
+ // If we didn't speculate on this, just return with it set to false.
+ if (BBVal == 2) {
+ BBVal = 0;
+ return false;
+ }
+
+ // If we did speculate on this value, we could have blocks set to 1 that are
+ // incorrect. Walk the (transitive) successors of this block and mark them as
+ // 0 if set to one.
+ SmallVector<BasicBlock*, 32> BBWorklist;
+ BBWorklist.push_back(BB);
+
+ do {
+ BasicBlock *Entry = BBWorklist.pop_back_val();
+ // Note that this sets blocks to 0 (unavailable) if they happen to not
+ // already be in FullyAvailableBlocks. This is safe.
+ char &EntryVal = FullyAvailableBlocks[Entry];
+ if (EntryVal == 0) continue; // Already unavailable.
+
+ // Mark as unavailable.
+ EntryVal = 0;
+
+ for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
+ BBWorklist.push_back(*I);
+ } while (!BBWorklist.empty());
+
+ return false;
+}
+
+
+/// CanCoerceMustAliasedValueToLoad - Return true if
+/// CoerceAvailableValueToLoadType will succeed.
+static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
+ Type *LoadTy,
+ const TargetData &TD) {
+ // If the loaded or stored value is an first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
+ StoredVal->getType()->isStructTy() ||
+ StoredVal->getType()->isArrayTy())
+ return false;
+
+ // The store has to be at least as big as the load.
+ if (TD.getTypeSizeInBits(StoredVal->getType()) <
+ TD.getTypeSizeInBits(LoadTy))
+ return false;
+
+ return true;
+}
+
+
+/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
+/// then a load from a must-aliased pointer of a different type, try to coerce
+/// the stored value. LoadedTy is the type of the load we want to replace and
+/// InsertPt is the place to insert new instructions.
+///
+/// If we can't do it, return null.
+static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
+ Type *LoadedTy,
+ Instruction *InsertPt,
+ const TargetData &TD) {
+ if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
+ return 0;
+
+ // If this is already the right type, just return it.
+ Type *StoredValTy = StoredVal->getType();
+
+ uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
+
+ // If the store and reload are the same size, we can always reuse it.
+ if (StoreSize == LoadSize) {
+ // Pointer to Pointer -> use bitcast.
+ if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
+ return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
+
+ // Convert source pointers to integers, which can be bitcast.
+ if (StoredValTy->isPointerTy()) {
+ StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ Type *TypeToCastTo = LoadedTy;
+ if (TypeToCastTo->isPointerTy())
+ TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
+
+ if (StoredValTy != TypeToCastTo)
+ StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
+
+ // Cast to pointer if the load needs a pointer type.
+ if (LoadedTy->isPointerTy())
+ StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
+
+ return StoredVal;
+ }
+
+ // If the loaded value is smaller than the available value, then we can
+ // extract out a piece from it. If the available value is too small, then we
+ // can't do anything.
+ assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
+
+ // Convert source pointers to integers, which can be manipulated.
+ if (StoredValTy->isPointerTy()) {
+ StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ // Convert vectors and fp to integer, which can be manipulated.
+ if (!StoredValTy->isIntegerTy()) {
+ StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
+ StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ // If this is a big-endian system, we need to shift the value down to the low
+ // bits so that a truncate will work.
+ if (TD.isBigEndian()) {
+ Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
+ StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
+ }
+
+ // Truncate the integer to the right size now.
+ Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
+ StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
+
+ if (LoadedTy == NewIntTy)
+ return StoredVal;
+
+ // If the result is a pointer, inttoptr.
+ if (LoadedTy->isPointerTy())
+ return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
+
+ // Otherwise, bitcast.
+ return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
+}
+
+/// AnalyzeLoadFromClobberingWrite - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering memory write (store,
+/// memset, memcpy, memmove). This means that the write *may* provide bits used
+/// by the load but we can't be sure because the pointers don't mustalias.
+///
+/// Check this case to see if there is anything more we can do before we give
+/// up. This returns -1 if we have to give up, or a byte number in the stored
+/// value of the piece that feeds the load.
+static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
+ Value *WritePtr,
+ uint64_t WriteSizeInBits,
+ const TargetData &TD) {
+ // If the loaded or stored value is a first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (LoadTy->isStructTy() || LoadTy->isArrayTy())
+ return -1;
+
+ int64_t StoreOffset = 0, LoadOffset = 0;
+ Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
+ if (StoreBase != LoadBase)
+ return -1;
+
+ // If the load and store are to the exact same address, they should have been
+ // a must alias. AA must have gotten confused.
+ // FIXME: Study to see if/when this happens. One case is forwarding a memset
+ // to a load from the base of the memset.
+#if 0
+ if (LoadOffset == StoreOffset) {
+ dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
+ << "Base = " << *StoreBase << "\n"
+ << "Store Ptr = " << *WritePtr << "\n"
+ << "Store Offs = " << StoreOffset << "\n"
+ << "Load Ptr = " << *LoadPtr << "\n";
+ abort();
+ }
+#endif
+
+ // If the load and store don't overlap at all, the store doesn't provide
+ // anything to the load. In this case, they really don't alias at all, AA
+ // must have gotten confused.
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
+
+ if ((WriteSizeInBits & 7) | (LoadSize & 7))
+ return -1;
+ uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
+ LoadSize >>= 3;
+
+
+ bool isAAFailure = false;
+ if (StoreOffset < LoadOffset)
+ isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
+ else
+ isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
+
+ if (isAAFailure) {
+#if 0
+ dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
+ << "Base = " << *StoreBase << "\n"
+ << "Store Ptr = " << *WritePtr << "\n"
+ << "Store Offs = " << StoreOffset << "\n"
+ << "Load Ptr = " << *LoadPtr << "\n";
+ abort();
+#endif
+ return -1;
+ }
+
+ // If the Load isn't completely contained within the stored bits, we don't
+ // have all the bits to feed it. We could do something crazy in the future
+ // (issue a smaller load then merge the bits in) but this seems unlikely to be
+ // valuable.
+ if (StoreOffset > LoadOffset ||
+ StoreOffset+StoreSize < LoadOffset+LoadSize)
+ return -1;
+
+ // Okay, we can do this transformation. Return the number of bytes into the
+ // store that the load is.
+ return LoadOffset-StoreOffset;
+}
+
+/// AnalyzeLoadFromClobberingStore - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store.
+static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
+ StoreInst *DepSI,
+ const TargetData &TD) {
+ // Cannot handle reading from store of first-class aggregate yet.
+ if (DepSI->getValueOperand()->getType()->isStructTy() ||
+ DepSI->getValueOperand()->getType()->isArrayTy())
+ return -1;
+
+ Value *StorePtr = DepSI->getPointerOperand();
+ uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
+ return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
+ StorePtr, StoreSize, TD);
+}
+
+/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
+/// memdep query of a load that ends up being clobbered by another load. See if
+/// the other load can feed into the second load.
+static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
+ LoadInst *DepLI, const TargetData &TD){
+ // Cannot handle reading from store of first-class aggregate yet.
+ if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
+ return -1;
+
+ Value *DepPtr = DepLI->getPointerOperand();
+ uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
+ int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
+ if (R != -1) return R;
+
+ // If we have a load/load clobber an DepLI can be widened to cover this load,
+ // then we should widen it!
+ int64_t LoadOffs = 0;
+ const Value *LoadBase =
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
+ unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
+
+ unsigned Size = MemoryDependenceAnalysis::
+ getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
+ if (Size == 0) return -1;
+
+ return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
+}
+
+
+
+static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
+ MemIntrinsic *MI,
+ const TargetData &TD) {
+ // If the mem operation is a non-constant size, we can't handle it.
+ ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
+ if (SizeCst == 0) return -1;
+ uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
+
+ // If this is memset, we just need to see if the offset is valid in the size
+ // of the memset..
+ if (MI->getIntrinsicID() == Intrinsic::memset)
+ return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
+ MemSizeInBits, TD);
+
+ // If we have a memcpy/memmove, the only case we can handle is if this is a
+ // copy from constant memory. In that case, we can read directly from the
+ // constant memory.
+ MemTransferInst *MTI = cast<MemTransferInst>(MI);
+
+ Constant *Src = dyn_cast<Constant>(MTI->getSource());
+ if (Src == 0) return -1;
+
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
+ if (GV == 0 || !GV->isConstant()) return -1;
+
+ // See if the access is within the bounds of the transfer.
+ int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
+ MI->getDest(), MemSizeInBits, TD);
+ if (Offset == -1)
+ return Offset;
+
+ // Otherwise, see if we can constant fold a load from the constant with the
+ // offset applied as appropriate.
+ Src = ConstantExpr::getBitCast(Src,
+ llvm::Type::getInt8PtrTy(Src->getContext()));
+ Constant *OffsetCst =
+ ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
+ Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
+ Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
+ if (ConstantFoldLoadFromConstPtr(Src, &TD))
+ return Offset;
+ return -1;
+}
+
+
+/// GetStoreValueForLoad - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store. This means
+/// that the store provides bits used by the load but we the pointers don't
+/// mustalias. Check this case to see if there is anything more we can do
+/// before we give up.
+static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
+ Type *LoadTy,
+ Instruction *InsertPt, const TargetData &TD){
+ LLVMContext &Ctx = SrcVal->getType()->getContext();
+
+ uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
+ uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
+
+ IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
+
+ // Compute which bits of the stored value are being used by the load. Convert
+ // to an integer type to start with.
+ if (SrcVal->getType()->isPointerTy())
+ SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
+ if (!SrcVal->getType()->isIntegerTy())
+ SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
+
+ // Shift the bits to the least significant depending on endianness.
+ unsigned ShiftAmt;
+ if (TD.isLittleEndian())
+ ShiftAmt = Offset*8;
+ else
+ ShiftAmt = (StoreSize-LoadSize-Offset)*8;
+
+ if (ShiftAmt)
+ SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
+
+ if (LoadSize != StoreSize)
+ SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
+
+ return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
+}
+
+/// GetLoadValueForLoad - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering load. This means
+/// that the load *may* provide bits used by the load but we can't be sure
+/// because the pointers don't mustalias. Check this case to see if there is
+/// anything more we can do before we give up.
+static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
+ Type *LoadTy, Instruction *InsertPt,
+ GVN &gvn) {
+ const TargetData &TD = *gvn.getTargetData();
+ // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
+ // widen SrcVal out to a larger load.
+ unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
+ unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
+ if (Offset+LoadSize > SrcValSize) {
+ assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
+ assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
+ // If we have a load/load clobber an DepLI can be widened to cover this
+ // load, then we should widen it to the next power of 2 size big enough!
+ unsigned NewLoadSize = Offset+LoadSize;
+ if (!isPowerOf2_32(NewLoadSize))
+ NewLoadSize = NextPowerOf2(NewLoadSize);
+
+ Value *PtrVal = SrcVal->getPointerOperand();
+
+ // Insert the new load after the old load. This ensures that subsequent
+ // memdep queries will find the new load. We can't easily remove the old
+ // load completely because it is already in the value numbering table.
+ IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
+ Type *DestPTy =
+ IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
+ DestPTy = PointerType::get(DestPTy,
+ cast<PointerType>(PtrVal->getType())->getAddressSpace());
+ Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
+ PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
+ LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
+ NewLoad->takeName(SrcVal);
+ NewLoad->setAlignment(SrcVal->getAlignment());
+
+ DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
+ DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
+
+ // Replace uses of the original load with the wider load. On a big endian
+ // system, we need to shift down to get the relevant bits.
+ Value *RV = NewLoad;
+ if (TD.isBigEndian())
+ RV = Builder.CreateLShr(RV,
+ NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
+ RV = Builder.CreateTrunc(RV, SrcVal->getType());
+ SrcVal->replaceAllUsesWith(RV);
+
+ // We would like to use gvn.markInstructionForDeletion here, but we can't
+ // because the load is already memoized into the leader map table that GVN
+ // tracks. It is potentially possible to remove the load from the table,
+ // but then there all of the operations based on it would need to be
+ // rehashed. Just leave the dead load around.
+ gvn.getMemDep().removeInstruction(SrcVal);
+ SrcVal = NewLoad;
+ }
+
+ return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
+}
+
+
+/// GetMemInstValueForLoad - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering mem intrinsic.
+static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
+ Type *LoadTy, Instruction *InsertPt,
+ const TargetData &TD){
+ LLVMContext &Ctx = LoadTy->getContext();
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
+
+ IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
+
+ // We know that this method is only called when the mem transfer fully
+ // provides the bits for the load.
+ if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
+ // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
+ // independently of what the offset is.
+ Value *Val = MSI->getValue();
+ if (LoadSize != 1)
+ Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
+
+ Value *OneElt = Val;
+
+ // Splat the value out to the right number of bits.
+ for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
+ // If we can double the number of bytes set, do it.
+ if (NumBytesSet*2 <= LoadSize) {
+ Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
+ Val = Builder.CreateOr(Val, ShVal);
+ NumBytesSet <<= 1;
+ continue;
+ }
+
+ // Otherwise insert one byte at a time.
+ Value *ShVal = Builder.CreateShl(Val, 1*8);
+ Val = Builder.CreateOr(OneElt, ShVal);
+ ++NumBytesSet;
+ }
+
+ return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
+ }
+
+ // Otherwise, this is a memcpy/memmove from a constant global.
+ MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
+ Constant *Src = cast<Constant>(MTI->getSource());
+
+ // Otherwise, see if we can constant fold a load from the constant with the
+ // offset applied as appropriate.
+ Src = ConstantExpr::getBitCast(Src,
+ llvm::Type::getInt8PtrTy(Src->getContext()));
+ Constant *OffsetCst =
+ ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
+ Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
+ Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
+ return ConstantFoldLoadFromConstPtr(Src, &TD);
+}
+
+namespace {
+
+struct AvailableValueInBlock {
+ /// BB - The basic block in question.
+ BasicBlock *BB;
+ enum ValType {
+ SimpleVal, // A simple offsetted value that is accessed.
+ LoadVal, // A value produced by a load.
+ MemIntrin // A memory intrinsic which is loaded from.
+ };
+
+ /// V - The value that is live out of the block.
+ PointerIntPair<Value *, 2, ValType> Val;
+
+ /// Offset - The byte offset in Val that is interesting for the load query.
+ unsigned Offset;
+
+ static AvailableValueInBlock get(BasicBlock *BB, Value *V,
+ unsigned Offset = 0) {
+ AvailableValueInBlock Res;
+ Res.BB = BB;
+ Res.Val.setPointer(V);
+ Res.Val.setInt(SimpleVal);
+ Res.Offset = Offset;
+ return Res;
+ }
+
+ static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
+ unsigned Offset = 0) {
+ AvailableValueInBlock Res;
+ Res.BB = BB;
+ Res.Val.setPointer(MI);
+ Res.Val.setInt(MemIntrin);
+ Res.Offset = Offset;
+ return Res;
+ }
+
+ static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
+ unsigned Offset = 0) {
+ AvailableValueInBlock Res;
+ Res.BB = BB;
+ Res.Val.setPointer(LI);
+ Res.Val.setInt(LoadVal);
+ Res.Offset = Offset;
+ return Res;
+ }
+
+ bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
+ bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
+ bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
+
+ Value *getSimpleValue() const {
+ assert(isSimpleValue() && "Wrong accessor");
+ return Val.getPointer();
+ }
+
+ LoadInst *getCoercedLoadValue() const {
+ assert(isCoercedLoadValue() && "Wrong accessor");
+ return cast<LoadInst>(Val.getPointer());
+ }
+
+ MemIntrinsic *getMemIntrinValue() const {
+ assert(isMemIntrinValue() && "Wrong accessor");
+ return cast<MemIntrinsic>(Val.getPointer());
+ }
+
+ /// MaterializeAdjustedValue - Emit code into this block to adjust the value
+ /// defined here to the specified type. This handles various coercion cases.
+ Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
+ Value *Res;
+ if (isSimpleValue()) {
+ Res = getSimpleValue();
+ if (Res->getType() != LoadTy) {
+ const TargetData *TD = gvn.getTargetData();
+ assert(TD && "Need target data to handle type mismatch case");
+ Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
+ *TD);
+
+ DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
+ << *getSimpleValue() << '\n'
+ << *Res << '\n' << "\n\n\n");
+ }
+ } else if (isCoercedLoadValue()) {
+ LoadInst *Load = getCoercedLoadValue();
+ if (Load->getType() == LoadTy && Offset == 0) {
+ Res = Load;
+ } else {
+ Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
+ gvn);
+
+ DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
+ << *getCoercedLoadValue() << '\n'
+ << *Res << '\n' << "\n\n\n");
+ }
+ } else {
+ const TargetData *TD = gvn.getTargetData();
+ assert(TD && "Need target data to handle type mismatch case");
+ Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
+ LoadTy, BB->getTerminator(), *TD);
+ DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
+ << " " << *getMemIntrinValue() << '\n'
+ << *Res << '\n' << "\n\n\n");
+ }
+ return Res;
+ }
+};
+
+} // end anonymous namespace
+
+/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
+/// construct SSA form, allowing us to eliminate LI. This returns the value
+/// that should be used at LI's definition site.
+static Value *ConstructSSAForLoadSet(LoadInst *LI,
+ SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
+ GVN &gvn) {
+ // Check for the fully redundant, dominating load case. In this case, we can
+ // just use the dominating value directly.
+ if (ValuesPerBlock.size() == 1 &&
+ gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
+ LI->getParent()))
+ return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
+
+ // Otherwise, we have to construct SSA form.
+ SmallVector<PHINode*, 8> NewPHIs;
+ SSAUpdater SSAUpdate(&NewPHIs);
+ SSAUpdate.Initialize(LI->getType(), LI->getName());
+
+ Type *LoadTy = LI->getType();
+
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
+ const AvailableValueInBlock &AV = ValuesPerBlock[i];
+ BasicBlock *BB = AV.BB;
+
+ if (SSAUpdate.HasValueForBlock(BB))
+ continue;
+
+ SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
+ }
+
+ // Perform PHI construction.
+ Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
+
+ // If new PHI nodes were created, notify alias analysis.
+ if (V->getType()->isPointerTy()) {
+ AliasAnalysis *AA = gvn.getAliasAnalysis();
+
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
+ AA->copyValue(LI, NewPHIs[i]);
+
+ // Now that we've copied information to the new PHIs, scan through
+ // them again and inform alias analysis that we've added potentially
+ // escaping uses to any values that are operands to these PHIs.
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
+ PHINode *P = NewPHIs[i];
+ for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
+ unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
+ AA->addEscapingUse(P->getOperandUse(jj));
+ }
+ }
+ }
+
+ return V;
+}
+
+static bool isLifetimeStart(const Instruction *Inst) {
+ if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
+ return II->getIntrinsicID() == Intrinsic::lifetime_start;
+ return false;
+}
+
+/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
+/// non-local by performing PHI construction.
+bool GVN::processNonLocalLoad(LoadInst *LI) {
+ // Find the non-local dependencies of the load.
+ SmallVector<NonLocalDepResult, 64> Deps;
+ AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
+ MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
+ //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
+ // << Deps.size() << *LI << '\n');
+
+ // If we had to process more than one hundred blocks to find the
+ // dependencies, this load isn't worth worrying about. Optimizing
+ // it will be too expensive.
+ unsigned NumDeps = Deps.size();
+ if (NumDeps > 100)
+ return false;
+
+ // If we had a phi translation failure, we'll have a single entry which is a
+ // clobber in the current block. Reject this early.
+ if (NumDeps == 1 &&
+ !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
+ DEBUG(
+ dbgs() << "GVN: non-local load ";
+ WriteAsOperand(dbgs(), LI);
+ dbgs() << " has unknown dependencies\n";
+ );
+ return false;
+ }
+
+ // Filter out useless results (non-locals, etc). Keep track of the blocks
+ // where we have a value available in repl, also keep track of whether we see
+ // dependencies that produce an unknown value for the load (such as a call
+ // that could potentially clobber the load).
+ SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
+ SmallVector<BasicBlock*, 64> UnavailableBlocks;
+
+ for (unsigned i = 0, e = NumDeps; i != e; ++i) {
+ BasicBlock *DepBB = Deps[i].getBB();
+ MemDepResult DepInfo = Deps[i].getResult();
+
+ if (!DepInfo.isDef() && !DepInfo.isClobber()) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+
+ if (DepInfo.isClobber()) {
+ // The address being loaded in this non-local block may not be the same as
+ // the pointer operand of the load if PHI translation occurs. Make sure
+ // to consider the right address.
+ Value *Address = Deps[i].getAddress();
+
+ // If the dependence is to a store that writes to a superset of the bits
+ // read by the load, we can extract the bits we need for the load from the
+ // stored value.
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
+ if (TD && Address) {
+ int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
+ DepSI, *TD);
+ if (Offset != -1) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ DepSI->getValueOperand(),
+ Offset));
+ continue;
+ }
+ }
+ }
+
+ // Check to see if we have something like this:
+ // load i32* P
+ // load i8* (P+1)
+ // if we have this, replace the later with an extraction from the former.
+ if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
+ // If this is a clobber and L is the first instruction in its block, then
+ // we have the first instruction in the entry block.
+ if (DepLI != LI && Address && TD) {
+ int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
+ LI->getPointerOperand(),
+ DepLI, *TD);
+
+ if (Offset != -1) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
+ Offset));
+ continue;
+ }
+ }
+ }
+
+ // If the clobbering value is a memset/memcpy/memmove, see if we can
+ // forward a value on from it.
+ if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
+ if (TD && Address) {
+ int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
+ DepMI, *TD);
+ if (Offset != -1) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
+ Offset));
+ continue;
+ }
+ }
+ }
+
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+
+ // DepInfo.isDef() here
+
+ Instruction *DepInst = DepInfo.getInst();
+
+ // Loading the allocation -> undef.
+ if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst) ||
+ // Loading immediately after lifetime begin -> undef.
+ isLifetimeStart(DepInst)) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ UndefValue::get(LI->getType())));
+ continue;
+ }
+
+ if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
+ // Reject loads and stores that are to the same address but are of
+ // different types if we have to.
+ if (S->getValueOperand()->getType() != LI->getType()) {
+ // If the stored value is larger or equal to the loaded value, we can
+ // reuse it.
+ if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
+ LI->getType(), *TD)) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+ }
+
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ S->getValueOperand()));
+ continue;
+ }
+
+ if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
+ // If the types mismatch and we can't handle it, reject reuse of the load.
+ if (LD->getType() != LI->getType()) {
+ // If the stored value is larger or equal to the loaded value, we can
+ // reuse it.
+ if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+ }
+ ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
+ continue;
+ }
+
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+
+ // If we have no predecessors that produce a known value for this load, exit
+ // early.
+ if (ValuesPerBlock.empty()) return false;
+
+ // If all of the instructions we depend on produce a known value for this
+ // load, then it is fully redundant and we can use PHI insertion to compute
+ // its value. Insert PHIs and remove the fully redundant value now.
+ if (UnavailableBlocks.empty()) {
+ DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
+
+ // Perform PHI construction.
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
+ LI->replaceAllUsesWith(V);
+
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (V->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(V);
+ markInstructionForDeletion(LI);
+ ++NumGVNLoad;
+ return true;
+ }
+
+ if (!EnablePRE || !EnableLoadPRE)
+ return false;
+
+ // Okay, we have *some* definitions of the value. This means that the value
+ // is available in some of our (transitive) predecessors. Lets think about
+ // doing PRE of this load. This will involve inserting a new load into the
+ // predecessor when it's not available. We could do this in general, but
+ // prefer to not increase code size. As such, we only do this when we know
+ // that we only have to insert *one* load (which means we're basically moving
+ // the load, not inserting a new one).
+
+ SmallPtrSet<BasicBlock *, 4> Blockers;
+ for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
+ Blockers.insert(UnavailableBlocks[i]);
+
+ // Let's find the first basic block with more than one predecessor. Walk
+ // backwards through predecessors if needed.
+ BasicBlock *LoadBB = LI->getParent();
+ BasicBlock *TmpBB = LoadBB;
+
+ bool isSinglePred = false;
+ bool allSingleSucc = true;
+ while (TmpBB->getSinglePredecessor()) {
+ isSinglePred = true;
+ TmpBB = TmpBB->getSinglePredecessor();
+ if (TmpBB == LoadBB) // Infinite (unreachable) loop.
+ return false;
+ if (Blockers.count(TmpBB))
+ return false;
+
+ // If any of these blocks has more than one successor (i.e. if the edge we
+ // just traversed was critical), then there are other paths through this
+ // block along which the load may not be anticipated. Hoisting the load
+ // above this block would be adding the load to execution paths along
+ // which it was not previously executed.
+ if (TmpBB->getTerminator()->getNumSuccessors() != 1)
+ return false;
+ }
+
+ assert(TmpBB);
+ LoadBB = TmpBB;
+
+ // FIXME: It is extremely unclear what this loop is doing, other than
+ // artificially restricting loadpre.
+ if (isSinglePred) {
+ bool isHot = false;
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
+ const AvailableValueInBlock &AV = ValuesPerBlock[i];
+ if (AV.isSimpleValue())
+ // "Hot" Instruction is in some loop (because it dominates its dep.
+ // instruction).
+ if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
+ if (DT->dominates(LI, I)) {
+ isHot = true;
+ break;
+ }
+ }
+
+ // We are interested only in "hot" instructions. We don't want to do any
+ // mis-optimizations here.
+ if (!isHot)
+ return false;
+ }
+
+ // Check to see how many predecessors have the loaded value fully
+ // available.
+ DenseMap<BasicBlock*, Value*> PredLoads;
+ DenseMap<BasicBlock*, char> FullyAvailableBlocks;
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
+ FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
+ for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
+ FullyAvailableBlocks[UnavailableBlocks[i]] = false;
+
+ SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
+ for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
+ PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
+ continue;
+ }
+ PredLoads[Pred] = 0;
+
+ if (Pred->getTerminator()->getNumSuccessors() != 1) {
+ if (isa<IndirectBrInst>(Pred->getTerminator())) {
+ DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
+ << Pred->getName() << "': " << *LI << '\n');
+ return false;
+ }
+
+ if (LoadBB->isLandingPad()) {
+ DEBUG(dbgs()
+ << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
+ << Pred->getName() << "': " << *LI << '\n');
+ return false;
+ }
+
+ unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
+ NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
+ }
+ }
+
+ if (!NeedToSplit.empty()) {
+ toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
+ return false;
+ }
+
+ // Decide whether PRE is profitable for this load.
+ unsigned NumUnavailablePreds = PredLoads.size();
+ assert(NumUnavailablePreds != 0 &&
+ "Fully available value should be eliminated above!");
+
+ // If this load is unavailable in multiple predecessors, reject it.
+ // FIXME: If we could restructure the CFG, we could make a common pred with
+ // all the preds that don't have an available LI and insert a new load into
+ // that one block.
+ if (NumUnavailablePreds != 1)
+ return false;
+
+ // Check if the load can safely be moved to all the unavailable predecessors.
+ bool CanDoPRE = true;
+ SmallVector<Instruction*, 8> NewInsts;
+ for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
+ E = PredLoads.end(); I != E; ++I) {
+ BasicBlock *UnavailablePred = I->first;
+
+ // Do PHI translation to get its value in the predecessor if necessary. The
+ // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
+
+ // If all preds have a single successor, then we know it is safe to insert
+ // the load on the pred (?!?), so we can insert code to materialize the
+ // pointer if it is not available.
+ PHITransAddr Address(LI->getPointerOperand(), TD);
+ Value *LoadPtr = 0;
+ if (allSingleSucc) {
+ LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
+ *DT, NewInsts);
+ } else {
+ Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
+ LoadPtr = Address.getAddr();
+ }
+
+ // If we couldn't find or insert a computation of this phi translated value,
+ // we fail PRE.
+ if (LoadPtr == 0) {
+ DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
+ << *LI->getPointerOperand() << "\n");
+ CanDoPRE = false;
+ break;
+ }
+
+ // Make sure it is valid to move this load here. We have to watch out for:
+ // @1 = getelementptr (i8* p, ...
+ // test p and branch if == 0
+ // load @1
+ // It is valid to have the getelementptr before the test, even if p can
+ // be 0, as getelementptr only does address arithmetic.
+ // If we are not pushing the value through any multiple-successor blocks
+ // we do not have this case. Otherwise, check that the load is safe to
+ // put anywhere; this can be improved, but should be conservatively safe.
+ if (!allSingleSucc &&
+ // FIXME: REEVALUTE THIS.
+ !isSafeToLoadUnconditionally(LoadPtr,
+ UnavailablePred->getTerminator(),
+ LI->getAlignment(), TD)) {
+ CanDoPRE = false;
+ break;
+ }
+
+ I->second = LoadPtr;
+ }
+
+ if (!CanDoPRE) {
+ while (!NewInsts.empty()) {
+ Instruction *I = NewInsts.pop_back_val();
+ if (MD) MD->removeInstruction(I);
+ I->eraseFromParent();
+ }
+ return false;
+ }
+
+ // Okay, we can eliminate this load by inserting a reload in the predecessor
+ // and using PHI construction to get the value in the other predecessors, do
+ // it.
+ DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
+ DEBUG(if (!NewInsts.empty())
+ dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
+ << *NewInsts.back() << '\n');
+
+ // Assign value numbers to the new instructions.
+ for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
+ // FIXME: We really _ought_ to insert these value numbers into their
+ // parent's availability map. However, in doing so, we risk getting into
+ // ordering issues. If a block hasn't been processed yet, we would be
+ // marking a value as AVAIL-IN, which isn't what we intend.
+ VN.lookup_or_add(NewInsts[i]);
+ }
+
+ for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
+ E = PredLoads.end(); I != E; ++I) {
+ BasicBlock *UnavailablePred = I->first;
+ Value *LoadPtr = I->second;
+
+ Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
+ LI->getAlignment(),
+ UnavailablePred->getTerminator());
+
+ // Transfer the old load's TBAA tag to the new load.
+ if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
+ NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
+
+ // Transfer DebugLoc.
+ NewLoad->setDebugLoc(LI->getDebugLoc());
+
+ // Add the newly created load.
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
+ NewLoad));
+ MD->invalidateCachedPointerInfo(LoadPtr);
+ DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
+ }
+
+ // Perform PHI construction.
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
+ LI->replaceAllUsesWith(V);
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (V->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(V);
+ markInstructionForDeletion(LI);
+ ++NumPRELoad;
+ return true;
+}
+
+static void patchReplacementInstruction(Value *Repl, Instruction *I) {
+ // Patch the replacement so that it is not more restrictive than the value
+ // being replaced.
+ BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
+ BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
+ if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
+ isa<OverflowingBinaryOperator>(ReplOp)) {
+ if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
+ ReplOp->setHasNoSignedWrap(false);
+ if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
+ ReplOp->setHasNoUnsignedWrap(false);
+ }
+ if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
+ SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
+ ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
+ for (int i = 0, n = Metadata.size(); i < n; ++i) {
+ unsigned Kind = Metadata[i].first;
+ MDNode *IMD = I->getMetadata(Kind);
+ MDNode *ReplMD = Metadata[i].second;
+ switch(Kind) {
+ default:
+ ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
+ break;
+ case LLVMContext::MD_dbg:
+ llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
+ case LLVMContext::MD_tbaa:
+ ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
+ break;
+ case LLVMContext::MD_range:
+ ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
+ break;
+ case LLVMContext::MD_prof:
+ llvm_unreachable("MD_prof in a non terminator instruction");
+ break;
+ case LLVMContext::MD_fpmath:
+ ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
+ break;
+ }
+ }
+ }
+}
+
+static void patchAndReplaceAllUsesWith(Value *Repl, Instruction *I) {
+ patchReplacementInstruction(Repl, I);
+ I->replaceAllUsesWith(Repl);
+}
+
+/// processLoad - Attempt to eliminate a load, first by eliminating it
+/// locally, and then attempting non-local elimination if that fails.
+bool GVN::processLoad(LoadInst *L) {
+ if (!MD)
+ return false;
+
+ if (!L->isSimple())
+ return false;
+
+ if (L->use_empty()) {
+ markInstructionForDeletion(L);
+ return true;
+ }
+
+ // ... to a pointer that has been loaded from before...
+ MemDepResult Dep = MD->getDependency(L);
+
+ // If we have a clobber and target data is around, see if this is a clobber
+ // that we can fix up through code synthesis.
+ if (Dep.isClobber() && TD) {
+ // Check to see if we have something like this:
+ // store i32 123, i32* %P
+ // %A = bitcast i32* %P to i8*
+ // %B = gep i8* %A, i32 1
+ // %C = load i8* %B
+ //
+ // We could do that by recognizing if the clobber instructions are obviously
+ // a common base + constant offset, and if the previous store (or memset)
+ // completely covers this load. This sort of thing can happen in bitfield
+ // access code.
+ Value *AvailVal = 0;
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
+ int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
+ L->getPointerOperand(),
+ DepSI, *TD);
+ if (Offset != -1)
+ AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
+ L->getType(), L, *TD);
+ }
+
+ // Check to see if we have something like this:
+ // load i32* P
+ // load i8* (P+1)
+ // if we have this, replace the later with an extraction from the former.
+ if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
+ // If this is a clobber and L is the first instruction in its block, then
+ // we have the first instruction in the entry block.
+ if (DepLI == L)
+ return false;
+
+ int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
+ L->getPointerOperand(),
+ DepLI, *TD);
+ if (Offset != -1)
+ AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
+ }
+
+ // If the clobbering value is a memset/memcpy/memmove, see if we can forward
+ // a value on from it.
+ if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
+ int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
+ L->getPointerOperand(),
+ DepMI, *TD);
+ if (Offset != -1)
+ AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
+ }
+
+ if (AvailVal) {
+ DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
+ << *AvailVal << '\n' << *L << "\n\n\n");
+
+ // Replace the load!
+ L->replaceAllUsesWith(AvailVal);
+ if (AvailVal->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(AvailVal);
+ markInstructionForDeletion(L);
+ ++NumGVNLoad;
+ return true;
+ }
+ }
+
+ // If the value isn't available, don't do anything!
+ if (Dep.isClobber()) {
+ DEBUG(
+ // fast print dep, using operator<< on instruction is too slow.
+ dbgs() << "GVN: load ";
+ WriteAsOperand(dbgs(), L);
+ Instruction *I = Dep.getInst();
+ dbgs() << " is clobbered by " << *I << '\n';
+ );
+ return false;
+ }
+
+ // If it is defined in another block, try harder.
+ if (Dep.isNonLocal())
+ return processNonLocalLoad(L);
+
+ if (!Dep.isDef()) {
+ DEBUG(
+ // fast print dep, using operator<< on instruction is too slow.
+ dbgs() << "GVN: load ";
+ WriteAsOperand(dbgs(), L);
+ dbgs() << " has unknown dependence\n";
+ );
+ return false;
+ }
+
+ Instruction *DepInst = Dep.getInst();
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
+ Value *StoredVal = DepSI->getValueOperand();
+
+ // The store and load are to a must-aliased pointer, but they may not
+ // actually have the same type. See if we know how to reuse the stored
+ // value (depending on its type).
+ if (StoredVal->getType() != L->getType()) {
+ if (TD) {
+ StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
+ L, *TD);
+ if (StoredVal == 0)
+ return false;
+
+ DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
+ << '\n' << *L << "\n\n\n");
+ }
+ else
+ return false;
+ }
+
+ // Remove it!
+ L->replaceAllUsesWith(StoredVal);
+ if (StoredVal->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(StoredVal);
+ markInstructionForDeletion(L);
+ ++NumGVNLoad;
+ return true;
+ }
+
+ if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
+ Value *AvailableVal = DepLI;
+
+ // The loads are of a must-aliased pointer, but they may not actually have
+ // the same type. See if we know how to reuse the previously loaded value
+ // (depending on its type).
+ if (DepLI->getType() != L->getType()) {
+ if (TD) {
+ AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
+ L, *TD);
+ if (AvailableVal == 0)
+ return false;
+
+ DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
+ << "\n" << *L << "\n\n\n");
+ }
+ else
+ return false;
+ }
+
+ // Remove it!
+ patchAndReplaceAllUsesWith(AvailableVal, L);
+ if (DepLI->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(DepLI);
+ markInstructionForDeletion(L);
+ ++NumGVNLoad;
+ return true;
+ }
+
+ // If this load really doesn't depend on anything, then we must be loading an
+ // undef value. This can happen when loading for a fresh allocation with no
+ // intervening stores, for example.
+ if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst)) {
+ L->replaceAllUsesWith(UndefValue::get(L->getType()));
+ markInstructionForDeletion(L);
+ ++NumGVNLoad;
+ return true;
+ }
+
+ // If this load occurs either right after a lifetime begin,
+ // then the loaded value is undefined.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
+ if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
+ L->replaceAllUsesWith(UndefValue::get(L->getType()));
+ markInstructionForDeletion(L);
+ ++NumGVNLoad;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// findLeader - In order to find a leader for a given value number at a
+// specific basic block, we first obtain the list of all Values for that number,
+// and then scan the list to find one whose block dominates the block in
+// question. This is fast because dominator tree queries consist of only
+// a few comparisons of DFS numbers.
+Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
+ LeaderTableEntry Vals = LeaderTable[num];
+ if (!Vals.Val) return 0;
+
+ Value *Val = 0;
+ if (DT->dominates(Vals.BB, BB)) {
+ Val = Vals.Val;
+ if (isa<Constant>(Val)) return Val;
+ }
+
+ LeaderTableEntry* Next = Vals.Next;
+ while (Next) {
+ if (DT->dominates(Next->BB, BB)) {
+ if (isa<Constant>(Next->Val)) return Next->Val;
+ if (!Val) Val = Next->Val;
+ }
+
+ Next = Next->Next;
+ }
+
+ return Val;
+}
+
+/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
+/// use is dominated by the given basic block. Returns the number of uses that
+/// were replaced.
+unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
+ const BasicBlockEdge &Root) {
+ unsigned Count = 0;
+ for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
+ UI != UE; ) {
+ Use &U = (UI++).getUse();
+
+ if (DT->dominates(Root, U)) {
+ U.set(To);
+ ++Count;
+ }
+ }
+ return Count;
+}
+
+/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return
+/// true if every path from the entry block to 'Dst' passes via this edge. In
+/// particular 'Dst' must not be reachable via another edge from 'Src'.
+static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
+ DominatorTree *DT) {
+ // While in theory it is interesting to consider the case in which Dst has
+ // more than one predecessor, because Dst might be part of a loop which is
+ // only reachable from Src, in practice it is pointless since at the time
+ // GVN runs all such loops have preheaders, which means that Dst will have
+ // been changed to have only one predecessor, namely Src.
+ const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
+ const BasicBlock *Src = E.getStart();
+ assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
+ (void)Src;
+ return Pred != 0;
+}
+
+/// propagateEquality - The given values are known to be equal in every block
+/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
+/// 'RHS' everywhere in the scope. Returns whether a change was made.
+bool GVN::propagateEquality(Value *LHS, Value *RHS,
+ const BasicBlockEdge &Root) {
+ SmallVector<std::pair<Value*, Value*>, 4> Worklist;
+ Worklist.push_back(std::make_pair(LHS, RHS));
+ bool Changed = false;
+ // For speed, compute a conservative fast approximation to
+ // DT->dominates(Root, Root.getEnd());
+ bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
+
+ while (!Worklist.empty()) {
+ std::pair<Value*, Value*> Item = Worklist.pop_back_val();
+ LHS = Item.first; RHS = Item.second;
+
+ if (LHS == RHS) continue;
+ assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
+
+ // Don't try to propagate equalities between constants.
+ if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
+
+ // Prefer a constant on the right-hand side, or an Argument if no constants.
+ if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
+ std::swap(LHS, RHS);
+ assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
+
+ // If there is no obvious reason to prefer the left-hand side over the right-
+ // hand side, ensure the longest lived term is on the right-hand side, so the
+ // shortest lived term will be replaced by the longest lived. This tends to
+ // expose more simplifications.
+ uint32_t LVN = VN.lookup_or_add(LHS);
+ if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
+ (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
+ // Move the 'oldest' value to the right-hand side, using the value number as
+ // a proxy for age.
+ uint32_t RVN = VN.lookup_or_add(RHS);
+ if (LVN < RVN) {
+ std::swap(LHS, RHS);
+ LVN = RVN;
+ }
+ }
+
+ // If value numbering later sees that an instruction in the scope is equal
+ // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
+ // the invariant that instructions only occur in the leader table for their
+ // own value number (this is used by removeFromLeaderTable), do not do this
+ // if RHS is an instruction (if an instruction in the scope is morphed into
+ // LHS then it will be turned into RHS by the next GVN iteration anyway, so
+ // using the leader table is about compiling faster, not optimizing better).
+ // The leader table only tracks basic blocks, not edges. Only add to if we
+ // have the simple case where the edge dominates the end.
+ if (RootDominatesEnd && !isa<Instruction>(RHS))
+ addToLeaderTable(LVN, RHS, Root.getEnd());
+
+ // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
+ // LHS always has at least one use that is not dominated by Root, this will
+ // never do anything if LHS has only one use.
+ if (!LHS->hasOneUse()) {
+ unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
+ Changed |= NumReplacements > 0;
+ NumGVNEqProp += NumReplacements;
+ }
+
+ // Now try to deduce additional equalities from this one. For example, if the
+ // known equality was "(A != B)" == "false" then it follows that A and B are
+ // equal in the scope. Only boolean equalities with an explicit true or false
+ // RHS are currently supported.
+ if (!RHS->getType()->isIntegerTy(1))
+ // Not a boolean equality - bail out.
+ continue;
+ ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
+ if (!CI)
+ // RHS neither 'true' nor 'false' - bail out.
+ continue;
+ // Whether RHS equals 'true'. Otherwise it equals 'false'.
+ bool isKnownTrue = CI->isAllOnesValue();
+ bool isKnownFalse = !isKnownTrue;
+
+ // If "A && B" is known true then both A and B are known true. If "A || B"
+ // is known false then both A and B are known false.
+ Value *A, *B;
+ if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
+ (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
+ Worklist.push_back(std::make_pair(A, RHS));
+ Worklist.push_back(std::make_pair(B, RHS));
+ continue;
+ }
+
+ // If we are propagating an equality like "(A == B)" == "true" then also
+ // propagate the equality A == B. When propagating a comparison such as
+ // "(A >= B)" == "true", replace all instances of "A < B" with "false".
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
+ Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
+
+ // If "A == B" is known true, or "A != B" is known false, then replace
+ // A with B everywhere in the scope.
+ if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
+ (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
+ Worklist.push_back(std::make_pair(Op0, Op1));
+
+ // If "A >= B" is known true, replace "A < B" with false everywhere.
+ CmpInst::Predicate NotPred = Cmp->getInversePredicate();
+ Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
+ // Since we don't have the instruction "A < B" immediately to hand, work out
+ // the value number that it would have and use that to find an appropriate
+ // instruction (if any).
+ uint32_t NextNum = VN.getNextUnusedValueNumber();
+ uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
+ // If the number we were assigned was brand new then there is no point in
+ // looking for an instruction realizing it: there cannot be one!
+ if (Num < NextNum) {
+ Value *NotCmp = findLeader(Root.getEnd(), Num);
+ if (NotCmp && isa<Instruction>(NotCmp)) {
+ unsigned NumReplacements =
+ replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
+ Changed |= NumReplacements > 0;
+ NumGVNEqProp += NumReplacements;
+ }
+ }
+ // Ensure that any instruction in scope that gets the "A < B" value number
+ // is replaced with false.
+ // The leader table only tracks basic blocks, not edges. Only add to if we
+ // have the simple case where the edge dominates the end.
+ if (RootDominatesEnd)
+ addToLeaderTable(Num, NotVal, Root.getEnd());
+
+ continue;
+ }
+ }
+
+ return Changed;
+}
+
+/// processInstruction - When calculating availability, handle an instruction
+/// by inserting it into the appropriate sets
+bool GVN::processInstruction(Instruction *I) {
+ // Ignore dbg info intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // If the instruction can be easily simplified then do so now in preference
+ // to value numbering it. Value numbering often exposes redundancies, for
+ // example if it determines that %y is equal to %x then the instruction
+ // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
+ if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
+ I->replaceAllUsesWith(V);
+ if (MD && V->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(V);
+ markInstructionForDeletion(I);
+ ++NumGVNSimpl;
+ return true;
+ }
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (processLoad(LI))
+ return true;
+
+ unsigned Num = VN.lookup_or_add(LI);
+ addToLeaderTable(Num, LI, LI->getParent());
+ return false;
+ }
+
+ // For conditional branches, we can perform simple conditional propagation on
+ // the condition value itself.
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
+ return false;
+
+ Value *BranchCond = BI->getCondition();
+
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+ // Avoid multiple edges early.
+ if (TrueSucc == FalseSucc)
+ return false;
+
+ BasicBlock *Parent = BI->getParent();
+ bool Changed = false;
+
+ Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
+ BasicBlockEdge TrueE(Parent, TrueSucc);
+ Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
+
+ Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
+ BasicBlockEdge FalseE(Parent, FalseSucc);
+ Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
+
+ return Changed;
+ }
+
+ // For switches, propagate the case values into the case destinations.
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
+ Value *SwitchCond = SI->getCondition();
+ BasicBlock *Parent = SI->getParent();
+ bool Changed = false;
+ for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
+ i != e; ++i) {
+ BasicBlock *Dst = i.getCaseSuccessor();
+ BasicBlockEdge E(Parent, Dst);
+ if (E.isSingleEdge())
+ Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
+ }
+ return Changed;
+ }
+
+ // Instructions with void type don't return a value, so there's
+ // no point in trying to find redundancies in them.
+ if (I->getType()->isVoidTy()) return false;
+
+ uint32_t NextNum = VN.getNextUnusedValueNumber();
+ unsigned Num = VN.lookup_or_add(I);
+
+ // Allocations are always uniquely numbered, so we can save time and memory
+ // by fast failing them.
+ if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
+ addToLeaderTable(Num, I, I->getParent());
+ return false;
+ }
+
+ // If the number we were assigned was a brand new VN, then we don't
+ // need to do a lookup to see if the number already exists
+ // somewhere in the domtree: it can't!
+ if (Num >= NextNum) {
+ addToLeaderTable(Num, I, I->getParent());
+ return false;
+ }
+
+ // Perform fast-path value-number based elimination of values inherited from
+ // dominators.
+ Value *repl = findLeader(I->getParent(), Num);
+ if (repl == 0) {
+ // Failure, just remember this instance for future use.
+ addToLeaderTable(Num, I, I->getParent());
+ return false;
+ }
+
+ // Remove it!
+ patchAndReplaceAllUsesWith(repl, I);
+ if (MD && repl->getType()->isPointerTy())
+ MD->invalidateCachedPointerInfo(repl);
+ markInstructionForDeletion(I);
+ return true;
+}
+
+/// runOnFunction - This is the main transformation entry point for a function.
+bool GVN::runOnFunction(Function& F) {
+ if (!NoLoads)
+ MD = &getAnalysis<MemoryDependenceAnalysis>();
+ DT = &getAnalysis<DominatorTree>();
+ TD = getAnalysisIfAvailable<TargetData>();
+ TLI = &getAnalysis<TargetLibraryInfo>();
+ VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
+ VN.setMemDep(MD);
+ VN.setDomTree(DT);
+
+ bool Changed = false;
+ bool ShouldContinue = true;
+
+ // Merge unconditional branches, allowing PRE to catch more
+ // optimization opportunities.
+ for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
+ BasicBlock *BB = FI++;
+
+ bool removedBlock = MergeBlockIntoPredecessor(BB, this);
+ if (removedBlock) ++NumGVNBlocks;
+
+ Changed |= removedBlock;
+ }
+
+ unsigned Iteration = 0;
+ while (ShouldContinue) {
+ DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
+ ShouldContinue = iterateOnFunction(F);
+ if (splitCriticalEdges())
+ ShouldContinue = true;
+ Changed |= ShouldContinue;
+ ++Iteration;
+ }
+
+ if (EnablePRE) {
+ bool PREChanged = true;
+ while (PREChanged) {
+ PREChanged = performPRE(F);
+ Changed |= PREChanged;
+ }
+ }
+ // FIXME: Should perform GVN again after PRE does something. PRE can move
+ // computations into blocks where they become fully redundant. Note that
+ // we can't do this until PRE's critical edge splitting updates memdep.
+ // Actually, when this happens, we should just fully integrate PRE into GVN.
+
+ cleanupGlobalSets();
+
+ return Changed;
+}
+
+
+bool GVN::processBlock(BasicBlock *BB) {
+ // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
+ // (and incrementing BI before processing an instruction).
+ assert(InstrsToErase.empty() &&
+ "We expect InstrsToErase to be empty across iterations");
+ bool ChangedFunction = false;
+
+ for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
+ BI != BE;) {
+ ChangedFunction |= processInstruction(BI);
+ if (InstrsToErase.empty()) {
+ ++BI;
+ continue;
+ }
+
+ // If we need some instructions deleted, do it now.
+ NumGVNInstr += InstrsToErase.size();
+
+ // Avoid iterator invalidation.
+ bool AtStart = BI == BB->begin();
+ if (!AtStart)
+ --BI;
+
+ for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
+ E = InstrsToErase.end(); I != E; ++I) {
+ DEBUG(dbgs() << "GVN removed: " << **I << '\n');
+ if (MD) MD->removeInstruction(*I);
+ (*I)->eraseFromParent();
+ DEBUG(verifyRemoved(*I));
+ }
+ InstrsToErase.clear();
+
+ if (AtStart)
+ BI = BB->begin();
+ else
+ ++BI;
+ }
+
+ return ChangedFunction;
+}
+
+/// performPRE - Perform a purely local form of PRE that looks for diamond
+/// control flow patterns and attempts to perform simple PRE at the join point.
+bool GVN::performPRE(Function &F) {
+ bool Changed = false;
+ DenseMap<BasicBlock*, Value*> predMap;
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *CurrentBlock = *DI;
+
+ // Nothing to PRE in the entry block.
+ if (CurrentBlock == &F.getEntryBlock()) continue;
+
+ // Don't perform PRE on a landing pad.
+ if (CurrentBlock->isLandingPad()) continue;
+
+ for (BasicBlock::iterator BI = CurrentBlock->begin(),
+ BE = CurrentBlock->end(); BI != BE; ) {
+ Instruction *CurInst = BI++;
+
+ if (isa<AllocaInst>(CurInst) ||
+ isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
+ CurInst->getType()->isVoidTy() ||
+ CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
+ isa<DbgInfoIntrinsic>(CurInst))
+ continue;
+
+ // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
+ // sinking the compare again, and it would force the code generator to
+ // move the i1 from processor flags or predicate registers into a general
+ // purpose register.
+ if (isa<CmpInst>(CurInst))
+ continue;
+
+ // We don't currently value number ANY inline asm calls.
+ if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
+ if (CallI->isInlineAsm())
+ continue;
+
+ uint32_t ValNo = VN.lookup(CurInst);
+
+ // Look for the predecessors for PRE opportunities. We're
+ // only trying to solve the basic diamond case, where
+ // a value is computed in the successor and one predecessor,
+ // but not the other. We also explicitly disallow cases
+ // where the successor is its own predecessor, because they're
+ // more complicated to get right.
+ unsigned NumWith = 0;
+ unsigned NumWithout = 0;
+ BasicBlock *PREPred = 0;
+ predMap.clear();
+
+ for (pred_iterator PI = pred_begin(CurrentBlock),
+ PE = pred_end(CurrentBlock); PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ // We're not interested in PRE where the block is its
+ // own predecessor, or in blocks with predecessors
+ // that are not reachable.
+ if (P == CurrentBlock) {
+ NumWithout = 2;
+ break;
+ } else if (!DT->dominates(&F.getEntryBlock(), P)) {
+ NumWithout = 2;
+ break;
+ }
+
+ Value* predV = findLeader(P, ValNo);
+ if (predV == 0) {
+ PREPred = P;
+ ++NumWithout;
+ } else if (predV == CurInst) {
+ NumWithout = 2;
+ } else {
+ predMap[P] = predV;
+ ++NumWith;
+ }
+ }
+
+ // Don't do PRE when it might increase code size, i.e. when
+ // we would need to insert instructions in more than one pred.
+ if (NumWithout != 1 || NumWith == 0)
+ continue;
+
+ // Don't do PRE across indirect branch.
+ if (isa<IndirectBrInst>(PREPred->getTerminator()))
+ continue;
+
+ // We can't do PRE safely on a critical edge, so instead we schedule
+ // the edge to be split and perform the PRE the next time we iterate
+ // on the function.
+ unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
+ if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
+ toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
+ continue;
+ }
+
+ // Instantiate the expression in the predecessor that lacked it.
+ // Because we are going top-down through the block, all value numbers
+ // will be available in the predecessor by the time we need them. Any
+ // that weren't originally present will have been instantiated earlier
+ // in this loop.
+ Instruction *PREInstr = CurInst->clone();
+ bool success = true;
+ for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
+ Value *Op = PREInstr->getOperand(i);
+ if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
+ continue;
+
+ if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
+ PREInstr->setOperand(i, V);
+ } else {
+ success = false;
+ break;
+ }
+ }
+
+ // Fail out if we encounter an operand that is not available in
+ // the PRE predecessor. This is typically because of loads which
+ // are not value numbered precisely.
+ if (!success) {
+ delete PREInstr;
+ DEBUG(verifyRemoved(PREInstr));
+ continue;
+ }
+
+ PREInstr->insertBefore(PREPred->getTerminator());
+ PREInstr->setName(CurInst->getName() + ".pre");
+ PREInstr->setDebugLoc(CurInst->getDebugLoc());
+ predMap[PREPred] = PREInstr;
+ VN.add(PREInstr, ValNo);
+ ++NumGVNPRE;
+
+ // Update the availability map to include the new instruction.
+ addToLeaderTable(ValNo, PREInstr, PREPred);
+
+ // Create a PHI to make the value available in this block.
+ pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
+ PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
+ CurInst->getName() + ".pre-phi",
+ CurrentBlock->begin());
+ for (pred_iterator PI = PB; PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ Phi->addIncoming(predMap[P], P);
+ }
+
+ VN.add(Phi, ValNo);
+ addToLeaderTable(ValNo, Phi, CurrentBlock);
+ Phi->setDebugLoc(CurInst->getDebugLoc());
+ CurInst->replaceAllUsesWith(Phi);
+ if (Phi->getType()->isPointerTy()) {
+ // Because we have added a PHI-use of the pointer value, it has now
+ // "escaped" from alias analysis' perspective. We need to inform
+ // AA of this.
+ for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
+ ++ii) {
+ unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
+ VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
+ }
+
+ if (MD)
+ MD->invalidateCachedPointerInfo(Phi);
+ }
+ VN.erase(CurInst);
+ removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
+
+ DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
+ if (MD) MD->removeInstruction(CurInst);
+ CurInst->eraseFromParent();
+ DEBUG(verifyRemoved(CurInst));
+ Changed = true;
+ }
+ }
+
+ if (splitCriticalEdges())
+ Changed = true;
+
+ return Changed;
+}
+
+/// splitCriticalEdges - Split critical edges found during the previous
+/// iteration that may enable further optimization.
+bool GVN::splitCriticalEdges() {
+ if (toSplit.empty())
+ return false;
+ do {
+ std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
+ SplitCriticalEdge(Edge.first, Edge.second, this);
+ } while (!toSplit.empty());
+ if (MD) MD->invalidateCachedPredecessors();
+ return true;
+}
+
+/// iterateOnFunction - Executes one iteration of GVN
+bool GVN::iterateOnFunction(Function &F) {
+ cleanupGlobalSets();
+
+ // Top-down walk of the dominator tree
+ bool Changed = false;
+#if 0
+ // Needed for value numbering with phi construction to work.
+ ReversePostOrderTraversal<Function*> RPOT(&F);
+ for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
+ RE = RPOT.end(); RI != RE; ++RI)
+ Changed |= processBlock(*RI);
+#else
+ for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
+ DE = df_end(DT->getRootNode()); DI != DE; ++DI)
+ Changed |= processBlock(DI->getBlock());
+#endif
+
+ return Changed;
+}
+
+void GVN::cleanupGlobalSets() {
+ VN.clear();
+ LeaderTable.clear();
+ TableAllocator.Reset();
+}
+
+/// verifyRemoved - Verify that the specified instruction does not occur in our
+/// internal data structures.
+void GVN::verifyRemoved(const Instruction *Inst) const {
+ VN.verifyRemoved(Inst);
+
+ // Walk through the value number scope to make sure the instruction isn't
+ // ferreted away in it.
+ for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
+ I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
+ const LeaderTableEntry *Node = &I->second;
+ assert(Node->Val != Inst && "Inst still in value numbering scope!");
+
+ while (Node->Next) {
+ Node = Node->Next;
+ assert(Node->Val != Inst && "Inst still in value numbering scope!");
+ }
+ }
+}
OpenPOWER on IntegriCloud